
A Comprehensive Benchmark of Kernel Methods to
Extract Protein–Protein Interactions from Literature
Domonkos Tikk1,2*, Philippe Thomas1, Peter Palaga1, Jörg Hakenberg3, Ulf Leser1

1 Knowledge Management in Bioinformatics, Computer Science Department, Humboldt-Universität zu Berlin, Berlin, Germany, 2 Department of Telecommunications and

Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary, 3 Department of Computer Science and Engineering, Arizona State University,

Tempe, Arizona, United States of America

Abstract

The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein–
protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences.
Recently, a new class of such methods has been proposed - convolution kernels that identify PPIs using deep parses of
sentences. However, comparing published results of different PPI extraction methods is impossible due to the use of
different evaluation corpora, different evaluation metrics, different tuning procedures, etc. In this paper, we study whether
the reported performance metrics are robust across different corpora and learning settings and whether the use of deep
parsing actually leads to an increase in extraction quality. Our ultimate goal is to identify the one method that performs
best in real-life scenarios, where information extraction is performed on unseen text and not on specifically prepared
evaluation data. We performed a comprehensive benchmarking of nine different methods for PPI extraction that use
convolution kernels on rich linguistic information. Methods were evaluated on five different public corpora using cross-
validation, cross-learning, and cross-corpus evaluation. Our study confirms that kernels using dependency trees generally
outperform kernels based on syntax trees. However, our study also shows that only the best kernel methods can compete
with a simple rule-based approach when the evaluation prevents information leakage between training and test corpora.
Our results further reveal that the F-score of many approaches drops significantly if no corpus-specific parameter
optimization is applied and that methods reaching a good AUC score often perform much worse in terms of F-score. We
conclude that for most kernels no sensible estimation of PPI extraction performance on new text is possible, given the
current heterogeneity in evaluation data. Nevertheless, our study shows that three kernels are clearly superior to the other
methods.

Citation: Tikk D, Thomas P, Palaga P, Hakenberg J, Leser U (2010) A Comprehensive Benchmark of Kernel Methods to Extract Protein–Protein Interactions from
Literature. PLoS Comput Biol 6(7): e1000837. doi:10.1371/journal.pcbi.1000837

Editor: Andrey Rzhetsky, University of Chicago, United States of America

Received January 15, 2010; Accepted May 27, 2010; Published July 1, 2010

Copyright: � 2010 Tikk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: DT is supported by the Alexander-von-Humboldt Foundation (http://www.humboldt-foundation.de/web/home.html). PT is supported by the Federal
Ministriy of Education and Research, Germany (BMBF, http://www.bmbf.de/en/1398.php), grant no 0315417B. JH acknowledges support by Arizona State
University (http://www.asu.edu/) and Science Foundation Arizona (http://www.sfaz.org/). PP was supported by the Max-Planck-Gesellschaft (http://www.mpg.de/
english/portal/index.html) under project TM-REG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tikk@informatik.hu-berlin.de

Introduction

Protein-protein interactions (PPIs) are integral to virtually all

cellular processes, such as metabolism, signaling, regulation, and

proliferation. Collecting data on individual interactions is crucial

for understanding these processes at a systems biology level [1].

Known PPIs help to predict the function of yet uncharacterized

proteins, for instance using conserved PPI networks [2] or

proximity in a PPI network [3]. Networks can be generated from

molecular interaction data and are useful for multiple purposes,

such as identification of functional modules [4] or finding novel

associations between genes and diseases [5].

Several approaches are in use to study interactions in large- or

small-scale experiments. Among the techniques most often used

are two-hybrid screens, mass spectrometry, and tandem affinity

purification [6]. Results of high-throughput techniques (such as

two-hybrid screens and mass spectrometry) usually are published

in tabular form and can be imported by renowned PPI databases

quickly. These techniques are prone to produce comparably large

numbers of false positives [7]. Other techniques, such as co-

immunoprecipitation, cross-linking, or rate-zonal centrifugation,

produce more reliable results but are small-scale; these are

typically used to verify interesting yet putative interactions,

possibly first hypothesized during large-scale experiments [8].

Only now, authors started to submit results directly to PPI

databases in a regular manner, oftentimes as a step required by

publishers to ensure quality.

Taking into account the great wealth of PPI data that was

published before the advent of PPI databases, it becomes clear that

still much valuable data is available only in text. Turning this

information into a structured form is a costly task that has to be

performed by human experts [9]. Recent years have seen a steep

increase in the number of techniques that aim to alleviate this task

by applying computational methods, especially machine learning

and statistical natural language processing [10]. Such tools are not

only used to populate PPI databases, but their output is often also

used directly as independent input to biological data mining (see,

e.g., [11,12]).

PLoS Computational Biology | www.ploscompbiol.org 1 July 2010 | Volume 6 | Issue 7 | e1000837

Several techniques for extracting protein-protein interactions

from text have been proposed (cf. Related Work). Unfortunately,

the reported results differ widely. While early works reported

fabulous results of over 90% precision and recall [13], the recent

BioCreative II.5 community challenge led to results at the opposite

edge of the quality range, with the best system performing just

above 30% F-measure [14]. Much of these differences can be

accounted to the fact that some evaluations work on corpora that

have proteins already annotated, while others include recognition

and identification of proteins as a subtask [15]. However, even

within the same setting, the spread of reported results remains

large. Since there also is a lack of unbiased benchmarks of

published systems, a potential end user currently is left rather

uncertain about which tool to use and which quality to expect

when working with new texts, and published experiences often are

rather negative [16].

In this paper, we give an unbiased and comprehensive

benchmark of a large set of PPI extraction methods. We

concentrate on a fairly recent class of algorithms which usually

is summarized with the term kernel methods [17–33]. In a nutshell,

these methods work as follows. First, they require a training corpus

consisting of labeled sentences, some of which contain PPIs, some

contain non-interacting proteins, and some contain only one or no

protein. The exact information that later should be extracted must

be known, that is, usually the pair of proteins that interact. All

sentences in the training corpus are transformed into representa-

tions that try to best capture properties of how the interaction is

expressed (or not for negative examples). The simplest such

representation is the set of words that occur in the sentence; more

complex representations are syntax trees (also called constituent

trees), capturing the syntactic structure of the sentence, and

dependency graphs, which represent the main grammatical

entities and their relationships to each other (see Figures 1 and

2). The set of structured representations together with the PPIs are

analyzed by a kernel-based learner (mostly an SVM), which learns

a model of how PPIs typically are expressed. Every new sentence

that should be analyzed must be turned into the same

representation, which is then classified by the kernel method.

Central to the learning and the classification phases is a so-

called kernel function. Simply speaking, a kernel function is a

function that takes the representation of two sentences and

computes their similarity. Kernel-based approaches to PPI

extraction—and especially those working with convolution kernels—

have shown high predictive accuracy and occupied top ranks in

relevant CASP-style community challenges [34]. Consequently,

the number of suggested methods has grown quite a bit, differing

mostly in the representation they use and in the particular kernel

they apply. The reported results differ largely and are difficult to

compare, as often different corpora are used together with

different ways of defining and measuring quality.

In this paper, we provide a comprehensive benchmark of nine

kernel-based methods for relationship extraction from natural text

(all substantially different approaches that were available as

programs from a list of around 20 methods we considered). We

tested each method in various scenarios on five different corpora.

The transformation of the sentences in the corpora were

performed using state-of-the-art parser software, in particular,

the latest release of the Charniak–Lease parser for constituent trees

and the Stanford Parser for dependency graphs. We show how

publicly available kernels compare to each other in three

scenarios: document-level 10-fold cross-validation (CV), cross-

learning (CL), and cross-corpus (CC) settings. We also introduce a

new and very fast kernel, kBSPS, and demonstrate that it is highly

competitive.

We see our work as a continuation of similar benchmarks that

have recently shed some light on the state-of-the-art of selected

phases in the PPI extraction pipeline; in particular, these are the

work on the performance of different constituent and dependency

parsers [35]; on evaluation metrics and the influence of corpus

properties on PPI quality [36]; an analysis of the impact of parsers

on PPI performance [37]; and a recent study on the performance

of different classes of features [38].

Related Work
A number of different techniques have been proposed to solve

the problem of extracting interactions between proteins in natural

language text. These can be roughly sorted into one of three

classes: co-occurrence, pattern matching, and machine learning.

We briefly review these methods here for completeness; see [39]

for a recent survey. We describe kernel-based methods in more

detail in Methods.

A common baseline method for relationship extraction is to

assume a relationship between each pair of entities that co-occur in

the same piece of text (e.g., [36]). This ‘‘piece of text’’ is usually

restricted to single sentences, but can also be a phrase, a

paragraph, or a whole document. The underlying assumption is

that whenever (two or more) entities are mentioned together, a

semantic relation holds between them. However, the semantic

relation does not necessarily mean that the entities interact;

consequently, the kind of relation might not match what is sought.

In the case of co-occurring proteins, only a fraction of sentences

will discuss actual interactions between them. As an example, in

the AIMed corpus (see Corpora), only 17% of all sentence-level

protein pairs describe protein-protein interactions. Accordingly,

precision is often low, but can be improved by additional filtering

steps, such as aggregation of single PPI at the corpus level [19],

removal of sentences matching certain lexico-syntactic patterns

[40], or requiring the occurrence of an additional ‘‘interaction

word’’ from a fixed list between the two proteins [15].

The second common approach is pattern matching. SUISEKI

was one of the first systems to use hand-crafted regular expressions

to encode phrases that typically express protein-protein interac-

Author Summary

The most important way of conveying new findings in
biomedical research is scientific publication. In turn, the
most recent and most important findings can only be
found by carefully reading the scientific literature, which
becomes more and more of a problem because of the
enormous number of published articles. This situation has
led to the development of various computational ap-
proaches to the automatic extraction of important facts
from articles, mostly concentrating on the recognition of
protein names and on interactions between proteins (PPI).
However, so far there is little agreement on which
methods perform best for which task. Our paper reports
on an extensive comparison of nine recent PPI extraction
tools. We studied their performance in various settings on
a set of five different text collections containing articles
describing PPIs, which for the first time allows for an
unbiased comparison of their respective effectiveness. Our
results show that the tools’ performance depends largely
on the collection they are trained on and the collection
they are then evaluated on, which means that extrapolat-
ing their measured performance to arbitrary text is still
highly problematic. We also show that certain classes of
methods for extracting PPIs are clearly superior to other
classes.

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 2 July 2010 | Volume 6 | Issue 7 | e1000837

tions, using part-of-speech and word lists [41]. Overall, they found

that a set of about 40 manually derived patterns yields high

precision, but achieves only low recall. [42] proposed Open-

DMAP, a framework for template matching, which is backed by

ontological resources to represent slots and potential slot fillers, etc.

With 78 hand-crafted templates, they achieve an F-score of 29%

on the BioCreative 2 IPS test set [43], which was the best at the

time of the competition. [44] showed that patterns can be

generated automatically using manually annotated sentences that

are abstracted into patterns. ALIBABA goes a step further in

deriving patterns from automatically generated training data [45].

The fact that automatically generated patterns usually yield high

precision but low individual recall is made up by this method by

generating thousands of patterns. On the BioCreative 2 IPS test

set, this method achieves an F-score of around 24% without any

corpus-specific tuning [45]. The third category of approaches use

machine learning, for instance, Bayesian network approaches [46]

or maximum-entropy-based methods [47]. The later can be set up

as a two-step classification scenario, first judging sentences for

relevance to discussing protein-protein interactions, and then

classifying each candidate pair of proteins in such sentences. Using

half of the BioCreative 1 PPI corpus each for training and testing,

the approach yields an accuracy of 81.9% when using both steps,

and 81.2% when using the second step only. As ML-based

methods are the focus of our paper, we will discuss more closely

related work in the next sections.

Methods

In this section, we describe in detail the kernels we evaluated,

the corpora and how we used them as gold standards, the

measures we computed, and the parameter settings we used and

how they were obtained. We believe that such a level of detail is

necessary to compare different methods in a fair and unbiased

manner. Note that our evaluation often produces results that are

far from those published by other authors (see Results), which only

underlines the importance of a clear statement regarding

evaluation methods.

Figure 1. Syntax tree parse generated by the Charniak–Lease parser. The syntax tree parse of the example sentence SsgG transcription also
requires the DNA binding protein GerE. Under the parse tree we show its substructures used by the subtree, subset tree, partial tree, and spectrum tree
kernels.
doi:10.1371/journal.pcbi.1000837.g001

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 3 July 2010 | Volume 6 | Issue 7 | e1000837

Parsers
The effect of using different parsers and parse representations

for the task of extracting protein-protein interactions has been

investigated in [48]. In that study, the authors measured the

accuracy improvements in PPI extraction when the parser output

was incorporated as statistical features of the applied machine

learning classifier. Their experiments showed that the investigated

parsers are very similar concerning their influence on accuracy.

For our experiments we selected the Charniak–Lease re-ranking

parser (ftp://ftp.cs.brown.edu/pub/nlparser/reranking-parserAug06.

tar.gz) as syntax parser, since several authors [35,49] found it

as the best in recent evaluations. We used the latest official

release (Aug 2006 version) with the improved self-trained

biomedical model [50] using GENIA parse trees. We also

performed experiments using the newer pre-release version of

the same parser (courtesy of David McClosky, Eugene

Figure 2. Dependency tree parse generated by the Stanford parser. The dependency tree parse of the example sentence SsgG transcription
also requires the DNA binding protein GerE. Some substructures (paths) generated from the parse tree for kernels. We showed in red the shortest path
between the two proteins (in blue), which is used by kBSPS, cosine similarity and edit distance, and all-path graphs kernels. APG kernel also uses the
links outside the shortest path, but with lower weights (0.3 vs. 0.9).
doi:10.1371/journal.pcbi.1000837.g002

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 4 July 2010 | Volume 6 | Issue 7 | e1000837

Charniak and Mark Johnson), and with model files trained

exclusively on a news corpus and another trained on both news

and PubMed abstracts [51]. However, differences in results were

insignificant, and therefore we omit them for brevity. We used the

Stanford conversion tool (http://nlp.stanford.edu/software/lex-

parser.shtml) to obtain dependency graphs from the Charniak–

Lease syntax tree parses. When explaining various kernel functions

we will make use of the syntax tree (Figure 1) and the dependency

tree (Figure 2) of the sentence ‘‘SsgG transcription also requires the

DNA binding protein GerE,’’ as generated by the aforementioned

parsers and tools.

Classification with Kernels
A support vector machine (SVM) is a classifier that, given a set

of training examples, finds the linear (hyper)plane that separates

positive and negative examples with the largest possible margin

[52]. The training examples that lie closest to the hyperplane are

the support vectors. If the two sets are not linearly separable,

kernel functions can transform the problem space to a nonlinear,

often higher dimensional space, in which the problem might be

separable [53]. The kernel is a similarity function that maps a pair

of instances to their similarity score: K : X|X?½0,?�, where X
is the feature space in which the instances are represented. Given a

finite set of instances, the kernel can be represented by a similarity

matrix that contains all pairwise similarity scores. Kernels can be

easily computed with inner products between instances without

explicit feature handling that permits of the use of high

dimensional feature spaces such as the rich structured represen-

tation of graphs or trees.

In our experiments we make use of SVM implementations

where the training is performed by a convex quadratic

programming (QP) task. Additionally, as proposed by its authors

[17], the all-path graph kernel was also trained with sparse

regularized least squares (RLS) [54], which requires to solve a

single system of linear equations. In practice, various flavors of

SVMs have been described [55]; they differ, for instance, in

their training algorithm, parameter set, or representation of

features. Furthermore, several freely available implementations

exist, among which SVMlight [52] and LIBSVM [56] probably

are the most renowned ones. Both can be adapted to special

needs—such as working with linguistic structures—by providing

an option to integrate user-defined kernel functions. There are

two alternatives for the integration of a kernel functions. In

SVMlight one can code his own kernel function that accepts the

corresponding instance representation (with option -t 4 and a

self-implemented kernel.h). LIBSVM supports the use of pre-

computed kernels, i.e., the kernel function is passed to the SVM

learner as a Gram-matrix, containing the pairwise similarity of

all instances. Most of the kernels we experimented with use the

SVMlight implementation, except for the shallow linguistic

kernel that uses LIBSVM. To be able to measure the AUC

score (see Evaluation Methods) we had to apply changes in the

LIBSVM code to retrieve not just the class label, but also the

value of the prediction.

Kernel Methods
The kernels introduced in this section are mostly convolution

kernels [57], i.e., they make use of the structure of the instances (in

our case, syntax trees or dependency graphs of sentences). Their

main idea is to quantify the similarity of two instances through

counting the similarities of their substructures; however, there

have been many proposals on to how to do this in the best way.

We include into our experiments all publicly available approaches

that make use of different kernel functions we are aware of. We

were able to obtain nine out of the about 20 considered kernels

(see Tables S1 and S2), either from a publicly available download,

or upon request from the respective authors (details about kernel

packages are in Table S3, all software source code are available

with installation instruction on our website http://informatik.

hu-berlin.de/forschung/gebiete/wbi/ppi-benchmark).

Most of these kernels have been specifically designed to extract

PPI from text or have been successfully applied to this task.

Exceptions are subtree, partial tree and spectrum tree kernels

which to our knowledge were not tested for PPI extraction before.

Next, we will very briefly introduce their underlying principles (see

also Table S1 for an overview).

Shallow linguistic kernel (SL). From all kernels we tested,

this is the only one that exclusively uses shallow parsing

information [23]. We included it to contrast its performance

from the more complex convolution kernels. The kernel is defined

as the sum of two kernels, the global and the local context kernels.

The feature set of the global context kernel is based on the words

occurring in the sentence fore-between, between and between-after

relative to the pair of investigated proteins. Based on this, three

term frequency vectors are created according to the bag-of-words

paradigm. The global kernel is then obtained as the count of

common words in the three vectors obtained from the two

compared sentences. The local context kernel uses surface

(capitalization, punctuation, numerals) and shallow linguistic

(POS-tag, lemma) features generated from tokens left and right

to proteins of the protein pair (the size of the window is adjustable).

The similarity of the generated pairs of left and right feature

vectors is calculated using scalar product.

Subtree kernel (ST). The next four kernels use the syntax

tree representation of sentences (see Figure 1). They differ in the

definition of extracted substructures. The subtree kernel considers all

common subtrees in the syntax tree representation of two

compared sentences [30]. Therein, a subtree is a node with all

its descendants in the tree (see again Figure 1). Two subtrees are

identical if the node labels and order of children are identical for

all nodes.

Subset tree kernel (SST). The subset tree kernel relaxes the

constraint that all descendants, including leaves, must always be

included in the substructures [20]. It retains the constraint that

grammatical rules must not be broken. For a given tree node,

either none or all of its children must be included in the resulting

subset tree (see Figure 1). As for the ST kernel, the order of child

nodes matters.

Partial tree kernel (PT). The partial tree kernel is the most

permissive syntax-tree-based kernel we considered [28]. It

allows virtually any tree substructures; the only constraint that

is kept is that the order of child nodes must be identical (see

Figure 1).

Spectrum tree kernel (SpT). The spectrum tree kernel focuses

on simpler syntax-tree substructures than those discussed so far.

It compares all vertex-walks (v-walks), sequences of edge-

connected syntax tree nodes, of length q (also known as q-

grams, [58]). Note that the orientation of edges is important: the

vertex-walks a/b?c and a?b?c are thus not identical (see

Figure 1).

k-band shortest path spectrum kernel (kBSPS). In

[29], we proposed a new kernel function that is an extension of the

SpT kernel. As it was not published before, we explain it here in

more detail. kBSPS combines three ideas: First, the syntax-tree-

based SpT kernel is adapted to dependency graphs. Second, the

definition of v-walk is extended and when comparing two v-walks,

certain mismatches are allowed. Third, it considers not only the

shortest path between two proteins in the graph (as many others

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000837

do), but also adds neighboring nodes. The first two extensions

work as follows. The kBSPS kernel first includes edge labels into v-

walks, which determine the dependency type of a relationship (see

Figure 2). For consistency, the length of such v-walks remains the

number of included nodes, i.e., edges are not counted into the

length. Vertex-walks of dependency graphs contain on average

more surface tokens than syntax tree v-walks, because the latter

contain surface tokens only in leaves, of which at most two may be

present in any syntax tree v-walk. Since the variation in surface

tokens is much larger than in internal nodes of syntax trees, a

tolerant matching is necessary to allow for linguistic variation. This

tolerant matching distinguishes three types of nodes: dependency

types (D), candidate entities (E), and other surface tokens (L).

Mismatches/matches are then scored differently depending on the

type of nodes (determined by appropriate parameters). When two

v-walks are compared, a tolerated mismatch assigns score 0 only to

the given node in the v-walk, while an untolerated mismatch sets

the entire similarity score to 0 (see examples in Figure 3). The third

extension changes the substructures that are compared by

representing them as v-walks. Instead of using all v-walks of the

dependency graph, kBSPS starts from only considering those one

lying on the shortest path between the investigated entity pair. It is

widely acknowledged that tokens on this path carry most

information regarding their relationship; however, in some cases,

interacting words are outside this scope, like in ‘‘e1 is an e2 binding

protein.’’ Therefore, optionally, kBSPS also adds all nodes within

distance k from the shortest path of the investigated entity pair.

The resulting subgraph is called k-band shortest path of a pair

p(e1,e2). Finally, the similarity of two entity pairs pi and pj is

calculated as:

SPSk(pi,pj)~
Xqmax

q~qmin

max
i[p

q
i

,j[p
q
j

t-scoreL,E,D,l,e,d (i,j)ð Þ ð1Þ

where pq is the set of v-walks of length q generated from the k-

band shortest path of pair p, qmin and qmax control the range of q,

and t-scoreL,E,D,l,e,d (i,j) is the tolerant matching score (defined in

Supporting Information, Text S1, exemplified in Figure 3).

Cosine similarity kernel (cosine). In [22], the authors

define two kernel functions based on the cosine similarity and the

edit distance among the shortest paths between protein names in a

dependency tree parse (see Figure 2). Let pi and pj be two such

shortest paths between two pairs of analyzed entities. The cosine

similarity kernel calculates the angle between the representation of pi

and pj as vectors of term frequencies in a vector space. Basically

cosine counts the number of common terms of the two paths,

normalized by the length of the paths.

Edit distance kernel (edit). The drawback of the cosine

similarity for textual data is its order-independence. The edit

distance kernel, also proposed in [22], overcomes this issue.

Therein, the distance between two paths is defined as the edit

distance between them, i.e., the minimal number of operations

(deletion, insertion, substitution at word level) needed to

transform one path into the other, normalized by the length

of the longer path. This measure is converted into a similarity

measure using:

editsim(pi,pj)~e{c:editdist(pi ,pj) ð2Þ

where cw0 is a parameter.

All-paths graph kernel (APG). The all-paths graph kernel [17]

counts weighted shared paths of all possible lengths. Paths are

generated both from the dependency parse and from the surface

word sequence of the sentence. Path weights are determined by

dependencies weights which are the higher the shorter the distance

of the dependency to the shortest path between the candidate

entities is. One peculiarity of Airola’s method is the usage of the

sparse regularized least squares (RLS) method (instead of standard

SVM), which is a state-of-the-art kernel-based machine learning

method that scales very well with very large training sets. For

comparison, we also trained APG kernel with SVM.

Other kernels. In the literature, several further kernel-based

approaches to relationship extraction were proposed. We give a

brief survey of them below. Note that most of these kernels are

either unavailable as programs or very similar to at least one of

those we selected for our benchmark (see also Table S2).

In [25] predicate, walk, dependency, and hybrid kernels are

proposed, each operating on dependency trees extended with

shallow linguistic and gazetteer information. The walk kernel

showed the best performance. It generates vertex-walks and

edge-walks (edge-based counterpart of v-walks) of fixed length two

on syntactic (POS) and lexical (token) level along the shortest path

between the analyzed entities. A polynomial SVM kernel was

applied to calculate the similarity between vectors. The idea of

Kim was developed further in [26] by augmenting the original

feature set with additional sentence characteristics, for example,

word stems of all tokens and shortest path length. Since the feature

set can get pretty large (10k+ features), feature selection is applied

before training. Both kernels were unavailable.

In [21], a kernel that used subtrees of dependency trees is

proposed. The nodes of the dependency tree were augmented with

various syntactic and semantic features. A kernel function was

applied to compare subtrees, calculating the common contiguous

or sparse subsequences of nodes, which incorporated a similarity

function for the augmented features. A similar kernel function was

proposed in [32], albeit with a smaller feature set. The source code

for these kernels is not publicly available.

The general sparse subsequence kernel for relation extraction

[19] calculates the total number of weighted subsequences of a

given length between two strings. Sentences are represented by

fore-between, between, and between-after sequences relative to the

investigated entity pair. The sequences can be defined over various

alphabets, such as set of words, POS tags, or broader word classes.

This kernel is similar to SL kernel proposed in [23]. SL kernel uses

similar feature sets and it is computationally much more effective,

though order-independent kernel.

A mixture of previous approaches was proposed in [31], called

convolution dependency path kernel, which combined the beneficial high

Figure 3. Examples of tolerant matching. L, E mismatches are tolerated (L~D~0), D mismatches are untolerated (D~{1); similarity weights
are l~1, e~3, d~6. For kBSPS, we use default values ½LEDled�~½0,0,{1,1,6,6�, qmin~qmax~2, and k~0 for the kernel.
doi:10.1371/journal.pcbi.1000837.g003

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 6 July 2010 | Volume 6 | Issue 7 | e1000837

recall of subsequence kernels with the reduced feature space using

syntactic information of shortest path of dependency trees. The

combined kernel applied the subsequence kernel on the shortest

dependency paths, which makes it very similar to the method of

[21]. The source code of the kernel was not available.

In [27], a combined multiple layers of syntactic information is

proposed. A bag-of-words kernel, a subset tree kernel [28], and an

APG kernel [17] were used together with dependency parses and

deep parses. The kernels were combined simply through summing

the normalized values of each kernel for each parse. The hybrid

kernel is currently not available.

In [24], the authors used the Smith–Waterman distance

function when comparing two string sequences. Their local

alignment kernel was then defined as the sum of SW scores on all

possible alignments between the strings. To compute SW distance,

a substitution matrix should be initialized with the pairwise

similarity of any two words. The matrix elements were estimated

by distributional similarity measures calculated on a large

independent corpus, which is very costly in terms of time. The

source of the approach is currently not available.

Corpora
There is no widely accepted definition of the concept of PPI,

i.e., what should be annotated as PPI in text, therefore methods

evaluated on different PPI-annotated corpora are difficult to

compare. In [36], a thorough analysis of five freely available PPI-

annotated resources, namely AIMed [18], BioInfer [59], HPRD50

[60], IEPA [61], and LLL [62], was performed. Some basic

statistics of the corpora can be found in Table 1. Although all of

these corpora carry information about named entities and all

annotate PPIs, there are many aspects in which the corpora show

significant differences. Corpora differ in quite a few aspects, for

instance, the scope of annotated entities varies (typically proteins

and genes, some also RNAs, but IEPA only chemicals), the

coverage of entities is not always complete, some corpora specify

the direction of interactions, just to name a few. As ‘‘greatest

common factor’’ among the notions of PPI, in [36] it is suggested

to use only the information on undirected, untyped interactions

(among a few other constraints) for evaluation purposes. We also

followed this suggestion.

In the same study, an XML-based format was also defined for

annotating PPIs, called PPI learning format. The authors trans-

formed all five aforementioned corpora into this format, which we

reuse. The general structure of the learning format is shown in

Figure 4. Each corpus consists of documents, and documents

consist of sentences. The sentence text is located in the attribute

text. The actual annotation of named entities and their relations is

encoded through entity and pair elements. The position of an entity

in the sentence text is specified in the charOffset attribute.

The presence or absence of a relation is marked on the level of

named entity pairs, not on the level of sentences (cf. attribute

interaction of pair in Figure 4), which enables the annotation of

multiple entity pairs per sentence. For instance, in the sentence in

Figure 4, there is a relation between entities e0 and e2 and e1 and

e2, whereas there is no relation between entities e0 and e1.

Consequently, the learning examples used by a classifier

correspond to entity pairs rather than to sentences. The learning

format also provides means for expressing token boundaries and

dependency parses of sentences, and it allows to store several

alternative tokenizations and parses for a given sentence.

Evaluation Methods
We use various performance measures to evaluate kernel-based

classifiers for PPI extraction. On one hand, we report on the

standard evaluation measures: precision, recall, and F1-score. F-

score has been criticized recently as inadequate for PPI extraction

because of its sensitivity to the ratio of positive/negative examples

in the training set [17,36]. Therefore, we also report on the AUC

measure (area under the receiver operating characteristics curve)

of the methods, which is invariant to the class distribution in the

data sets. We evaluated all kernel methods in three different

settings: Cross-validation, cross-learning, and cross-corpus. None

of these is new; cross-validation still seems to be the current de

facto standard in PPI extraction, cross-learning was proposed in

[26], and cross-corpus was, for instance, used in [15,17,63].

Cross-Validation (CV). In this setting, we train and test each

kernel on the same corpus using document-level 10-fold cross-

validation. We refrain from using the also frequently mentioned

instance-level splitting, in which every sentence containing more

than two protein names may appear, though with different

labeling, both in the training and the test sets. This is a clear case

of information leakage and compromises the evaluation results. Its

impact on PPI results is higher than in many other domains, since

in PPI corpora sentences very often contain more than two protein

names. We employ the document-level splits that were used by

Airola and many others, which allow direct comparison of the

results. We indicate the standard deviation of the averaged 10-fold

cross-validation values.

Cross-Learning (CL). Although the document-level 10-fold

cross-validation became the de facto standard of PPI relation

extraction evaluation, it is also somewhat biased, because the

training and the test data sets have very similar corpus

characteristics. It was shown [36] that the different positive/

negative interaction pair distribution of the five benchmark

corpora accounts for a substantial part of the diversity of the

performance of approaches. Since the ultimate goal of PPI

extraction is the identification of PPIs in biomedical texts with

unknown characteristics, we performed experiments with learning

across corpora, where the training and test data sets are drawn

from different distributions. In CL experiments, we train on the

ensemble of four corpora and test on the fifth one.

Cross-Corpus (CC). Finally, in CC experiments, we train

the model on one corpus and then test on the other four corpora.

Apart from measuring the quality of the extractions, we also

looked at the time it takes to classify the corpora. Whenever the

texts to be analyzed are large, classification time may be the

decisive factor to choose a method. However, we did not take

particular measures to obtain perfect run times (eliminating all

concurrent processes on the machines), so our times should only be

considered as rough estimates. We should also mention that all the

tested software are prototypes where the efficiency of implemen-

Table 1. Basic statistics of the 5 corpora used for kernel
evaluation.

Corpus Sentences Positive pairs Negative pairs

AIMed 1955 1000 4834

BioInfer 1100 2534 7132

HPRD50 145 163 270

IEPA 486 335 482

LLL 77 164 166

Pairs are checked for (orderless) uniqueness; self-interacting proteins are
excluded.
doi:10.1371/journal.pcbi.1000837.t001

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 7 July 2010 | Volume 6 | Issue 7 | e1000837

tations may significantly differ. Nevertheless, these figures should

be good indicators of what can be expected when using the kernels

out-of-the-box. Note that all methods we analyzed also require

extra time (in addition to classification) to parse sentences.

Experimental Setup
Entity blinding. All corpora we use for evaluation have all

entities readily annotated. This means that our results only

measure the performance of PPI extraction and are not influenced

by problems of named entity recognition. However, to produce the

right format for the kernel methods, we apply entity blinding, that

is, we replace named entity occurrences with a generic string.

Entity blinding is usually applied in relation extraction systems to

(1) inform the classifier about the location of the NEs; (2) ensure

the generality of the learned model, since classifiers should work

for any entity in the given context. Before doing that we had to

resolve the entity–token mismatch problem.

Syntax and dependency parsers work on token-based represen-

tation of sentence text being the output of the tokenization, also

encoded in the learning format. Entities, however, may not match

directly contiguous token sequences; this phenomenon has to be

resolved for enabling the entity-based referencing of PPIs.

Practically all combinations of entailment and overlapping occur

in text: one entity may spread over several tokens or correspond

merely to a part of a token, and there may exist several named

entities in one token. We depicted some examples of the entity–

token mismatch phenomenon in Figure 5.

In order to overcome these difficulties and adopt a clear entity–

token mapping concept, we apply the following strategy: every

token that at least partly overlaps with an entity is marked as

entity. Entity blinding is performed as follows: A sentence with n

entities contains
n

2

� �
possibly differently labeled entity pairs (see

Figures 4+5). For each entity pair of the sentence, we replicate the

sentence and create a separate learning example. In order to

distinguish entities of the learning example from other entities, we

label all tokens of the entity pair under consideration as _ENT_1_

and _ENT_2_, respectively, while we label the others as _ENT_.

In case of overlapping entities (cf. Figure 5), we use the special

label _ENT_1_AND_2_ for the token including both entities; this

strategy was also applied in [17].

Constituent tree parses. Since some of the selected kernel

methods, namely ST, SST, PT and SpT kernels are defined for

syntax trees, we injected the syntax tree parses into the learning

format. The terminal symbols of the syntax tree parses (i.e., tokens)

were mapped to the character offsets of the original sentence text.

This was necessary for the entity blinding in the constituent tree

parse. Finally, the parses were formatted so that they comply with

the expectations of the given kernel’s implementation (the

extended corpus files are available at our web site).

Parameter optimization. All evaluated methods have

several parameters whose setting has significant impact on the

performance. To achieve best results, authors often apply an

exhaustive systematic parameter search—a multidimensional

fine-grained grid search for myriads of parameter

combinations—for each corpus they evaluate on. However,

results obtained in this way cannot be expected to be the same

as for other corpora or for new texts, where such an optimization

is not possible. In this study, we take the role of an end-user

which has a completely new text and wants to choose a PPI

extraction method to extract all PPIs from this text. Which

parameters should this user apply?

Ideally, one could simply use the default parameters of the

kernels, leaving the choice of best settings to the authors of the

kernels. This was our initial idea, which we had to abandon for

two reasons: (1) for some syntax-tree-based kernels (ST, SST,

PT), the default regularization parameter of the learner, c, often

produced 0% F-score; (2) for APG there is no explicit default

parameterization. As a compromise, we resorted to a coarse-

grained grid parameter search only on a small set of important

parameters (see Table S4). We selected the best average setting

as the de facto default setting for each kernel. We did not perform

separate optimization runs for AUC and F-score, thus reported

data always belong to the same experiment.

Figure 4. The general structure of the learning format.
doi:10.1371/journal.pcbi.1000837.g004

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 8 July 2010 | Volume 6 | Issue 7 | e1000837

Also in CC evaluation, optimization geared towards the test-

corpus may improve the performance. As shown in [17, Tables 3

and 4], the F-score can raise tremendously (sometimes by

50 points) when the APG-based classifier is optimized with a

threshold according to the ratio of positive/negative pairs in the

test corpus. We refrained from using such an optimization

technique at CC evaluation, because again such information is

not available in a real world application.

Results

We performed a thorough evaluation of nine different methods

for extracting protein-protein interactions from text on five

different, publicly available and manually annotated corpora. All

methods we studied classify each pair of proteins in a sentence

using a kernel function. The methods differ widely in their

individual definition of this kernel function (comparing all

subtrees, all subsets, all paths,…), use different classifiers, and

make use of different types of information (shallow linguistic

information, syntax trees or dependency graphs).

We report results in three different scenarios. In cross-validation,

each corpus is treated independently from each other. Reported

results are the average over a document-level 10-fold cross-

validation per corpus. Even though this strategy is the de facto way

of evaluating PPI extraction systems, its results cannot be safely

extrapolated to the application of a method on completely new

text, as the model that is learned overfits to the particular corpus.

In cross-learning, training and test data come from different corpora

altogether. We report results on five experiments, where in each

experiment each method was trained on four corpora and tested

on the fifth. This strategy should produce results that are much

more likely to hold also on unseen texts. A variation of this strategy

is cross-corpus, where we always train on one corpus and evaluate on

the other four. Obviously, one expects worse results in CC than in

CL, as the diversity of training data is reduced, while the

heterogeneity in the test data is increased.

Cross-Validation
Table 2 and Figure 6 give results of CV on a per-corpus basis. In

the table, for SL, kBSPS, cosine, edit, and APG kernels we provide

both our own measurements and the ones published in the respective

original paper. We also ran APG with SVM. Recall that, to closely

imitate the real word scenario, we did not perform a systematic

parameter tuning (see Methods). Table 2 also contains results for rich-

feature-vector-based kernel [26] and hybrid kernel [63], which are

both not covered in our evaluation. As a baseline, we additionally give

precision/recall/F-score values for the sentence based co-occurrence

methods and the rule-based RelEx [60].

Table 2 shows that we often could not reproduce results

reported by the authors. However, we want to emphasize that our

study is the first to provide an unbiased comparison of different

methods where each method was presented exactly the same

training and test data and where the same tuning procedures were

used (see Methods). The differences may have different reasons.

First, evaluation strategies differ (different splits or document- vs.

instance-level CV). Second, parameter tuning was different. Third,

corpora were treated differently. We provide examples below.

In case of the AIMed corpus, there are different interpretations

regarding the number of interacting and non-interacting pairs [64].

The learning format we applied contains 1000 positive and 4834

negative examples (cf. Table 1), while in [23] (SL kernel) 8 more

positive and 200 fewer negative examples are reported. If the entity

blinding is performed only partially, that can also affect the

performance of the learner. Using the same learning format as in

our paper, with the shallow linguistic kernel of [23] an F-score of

52.4% was achieved, which is actually somewhat worse than our

result of 54.5%.

In case of the cosine and the edit kernels, the figures reported in

the original paper were achieved with instance-level CV (personal

communication, not mentioned in the original paper). As noted

earlier in the literature [17,64], this strategy increases F-score

significantly (on AIMed by 18%) but relies on information leakage.

We account for smaller differences in F-score to the fact that we

used different parameter optimization than in the original works.

This is, for instance, the case for kBSPS (our own implementation)

and APG. However, recall that parameter tuning always carries

the danger of overfitting to the training data. The relative

performance of different kernels in our results should be fairly

robust due to the usage of the same tuning strategy for all kernels,

while better results can be achieved by performing further corpus-

Figure 5. Learning format pitfalls (sentence BioInfer.d77.s0). (1) Named entities may overlap. The string Arp2/3 contains two named entities,
namely Arp2 and Arp3. (2) An entity may spread over multiple noncontiguous text ranges. The entity Arp3 paragraph spreads over two ranges [0–2]
and [5–5]. (3) Such noncontiguous and overlapping entities may constitute a relation, such as in The Arp2/3 complex….
doi:10.1371/journal.pcbi.1000837.g005

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 9 July 2010 | Volume 6 | Issue 7 | e1000837

specific tuning. Interestingly, for APG, we obtained better F-score

and AUC values than the published ones for two of the five

corpora.

Based on the results in Table 2, we can roughly divide the

kernels into three groups. Syntax-tree-based kernels (ST, SST, PT,

SpT) oftentimes are just on par with the co-occurrence approach

in terms of F-score. They are clearly better than co-occurrence

only on BioInfer and IEPA. On the very small LLL, their results

practically coincide with co-occurrence. The second group consists

of cosine and edit. These two usually outperform co-occurrence (in

some cases significantly), but their performance does not exceed

the one of the rule-based RelEx method in terms of F-score. The

cosine kernel on average delivers better F-scores, while the edit

kernel gives higher AUC values. Both of the former groups are

outperformed by APG, SL and kBSPS. The figures show that

there is only an insignificant difference among APG and SL on the

more important larger corpora (AIMed and BioInfer), while on the

three smaller ones (HPRD50, IEPA, and LLL) SL has slightly

lower scores when compared to APG and kBSPS kernels. Note

that when APG is trained with SVM its AUC score drops below

average ({13:4 on AIMed and {7:6 on BioInfer) while its F-

score remains among the best. These three kernels clearly

outperform the rule-based RelEx on AIMed and BioInfer, and

are slightly better on average on the other corpora.

Cross-Learning
Table 3 and Figure 7 show our results for CL performance.

Because the training on the ensemble of four corpora generally

takes much longer time, we computed results only for the fastest

out of the four syntax-tree-based kernels (SpT), since all of them

performed similarly low in the CV setting. This trend is

confirmed, as SpT also here performs considerably worse than

all other tested methods. We also looked for CL results in the

literature. Beside the results of the combined kernel proposed in

[25] (numbers showed in the table are taken from [38]), the only

one we could find were produced without the BioInfer corpus

[26]. This means that classifiers were trained only on three

corpora. Since BioInfer contains the largest number of entity

pairs, these numbers are not directly comparable to ours and

therefore omitted.

The overall trend from CV to CL confirms our expectation.

Performance results drop significantly, sometimes by more than

15 points. The most stable is the kBSPS kernel (average drop AUC:

1.12, F: 2.84); in a few cases CL outperforms CV results (also seen

with APG on HPRD). The SL and APG kernels show a modest drop

in AUC (4.5 and 2.82), which gets larger by F-score (9.28 and 10.22).

Cosine and edit suffer from the most significant drops.

We can form two groups of kernels based on their CL

performance. The first consists of SpT, cosine, and edit—

supposedly other syntax-tree-based kernels belong here as well.

SpT is clearly the worst in this comparison. Two outlier corpora

are BioInfer and IEPA: on the former SpT is on par with other

kernels, while on the latter it achieves very low value due to the

extremely low recall. Cosine and edit are just somewhat better

than SpT, particularly on AIMed and IEPA. Their AUC scores

are mostly just above 60%, and their F-scores outperform the

co-occurrence methods only on AIMed. On IEPA and LLL, all

three F-scores are inferior to the co-occurrence baseline.

Table 2. 10-fold document-level CV results.

Kernel AIMed BioInfer HPRD50 IEPA LLL

AUC P R F AUC P R F AUC P R F AUC P R F AUC P R F

SL 83.5 47.5 65.5 54.5 81.1 55.1 66.5 60.0 80.0 64.4 67.0 64.2 81.1 69.5 71.2 69.3 81.2 69.0 85.3 74.5

ST 68.9 40.3 25.5 30.9 74.2 46.8 60.0 52.2 63.3 49.7 67.8 54.5 75.8 59.4 75.6 65.9 69.0 55.9 100. 70.3

SST 68.9 42.6 19.4 26.2 73.6 47.0 54.3 50.1 62.2 48.1 63.8 52.2 72.4 54.8 76.9 63.4 63.8 55.9 100. 70.3

PT 68.5 39.2 31.9 34.6 73.8 45.3 58.1 50.5 65.2 54.9 56.7 52.4 73.1 63.1 66.3 63.8 66.7 56.2 97.3 69.3

SpT 66.1 33.0 25.5 27.3 74.1 44.0 68.2 53.4 65.7 49.3 71.7 56.4 75.9 54.5 81.8 64.7 50.0 55.9 100. 70.3

kBSPS 75.1 50.1 41.4 44.6 75.2 49.9 61.8 55.1 79.3 62.2 87.1 71.0 83.2 58.8 89.7 70.5 84.3 69.3 93.2 78.1

cosine 70.5 43.6 39.4 40.9 66.1 44.8 44.0 44.1 74.8 59.0 67.2 61.2 75.5 61.3 68.4 64.1 75.2 70.2 81.7 73.8

edit 75.2 68.8 27.7 39.0 67.4 50.4 39.2 43.8 79.2 71.3 45.2 53.3 80.2 77.2 60.2 67.1 87.5 68.0 98.0 78.4

APG 84.6 59.9 53.6 56.2 81.5 60.2 61.3 60.7 80.9 68.2 69.8 67.8 83.9 66.6 82.6 73.1 83.5 71.3 91 78.1

APG (with SVM) 71.2 62.9 48.9 54.7 73.9 60.2 63.4 61.6 74.1 65.4 72.5 67.5 76.2 71.0 75.1 72.1 74.9 70.9 95.4 79.7

SL [23] 60.9 57.2 59.0

kBSPS [29] 67.2 49.4 44.7 46.1 76.9 66.7 80.2 70.9 75.8 70.4 73.0 70.8 78.5 76.8 91.8 82.2

cosine [22]{ 62.0 55.0 58.1

edit [22]{ 77.5 43.5 55.6

APG [17] 84.8 52.9 61.8 56.4 81.9 56.7 67.2 61.3 79.7 64.3 65.8 63.4 85.1 69.6 82.7 75.1 83.4 72.5 82.2 76.8

rich-feature-based [26] 49.0 44.0 46.0 60.0 51.0 55.0 64.0 70.0 67.0 72.0 73.0 73.0

hybrid [63] 86.8 55.0 68.8 60.8 85.9 65.7 71.1 68.1 82.2 68.5 76.1 70.9 84.4 67.5 78.6 71.7 86.3 77.6 86.0 80.1

co-occ. [17] 17.8 100. 30.1 26.6 100. 41.7 38.9 100. 55.4 40.8 100. 57.6 55.9 100. 70.3

RelEx [36] 40.0 50.0 44.0 39.0 45.0 41.0 76.0 64.0 69.0 74.0 61.0 67.0 82.0 72.0 77.0

The first two blocks contain the results of our evaluation, the third block contains corresponding results of kernel approaches from the literature, and the third block
shows some non-kernel-based baselines. Bold typeface shows our best results for a particular corpus (differences under 1 base point are ignored). AUC, precision, recall,
and F1-score in percent.
{ instance-level CV.
doi:10.1371/journal.pcbi.1000837.t002

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 10 July 2010 | Volume 6 | Issue 7 | e1000837

The other group consists of SL, kBSPS, and APG kernels. The

SL kernel produced the least divergent values across the five

corpora in terms of both major evaluation measures. It shows

performance comparable with the best kernels on the two larger

corpora, but is somewhat inferior on the three smaller ones. The

AUC values of our kBSPS kernel are improved with decreasing

size of the test corpus, and are comparable on most corpora with

the SL and APG kernel, except for AIMed ({5%). For F-scores,

the size dependent tendency is somewhat similar, but here the

kBSPS kernel outperforms the other kernels on three corpora, with

a remarkable margin of 8–10% on IEPA and LLL. APG results

are comparable or better for AUC than the ones of kBSPS and SL

kernel, except on BioInfer. It achieved the best F-score value on

AIMed and HPRD50, but on the other three corpora its

performance is clearly below kBSPS.

Finally, it is interesting to compare the performance of the

better group with RelEx, the rule-based baseline (which requires

no learning at all). We can see that on most corpora, only the best

Figure 6. AUC, F-score, precision and recall values with CV evaluation, including standard deviation measured on the 10 folds.
doi:10.1371/journal.pcbi.1000837.g006

Table 3. Cross-learning results.

Kernel AIMed BioInfer HPRD50 IEPA LLL

AUC P R F AUC P R F AUC P R F AUC P R F AUC P R F

SL 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4

SpT 56.8 20.3 48.4 28.6 64.2 38.9 48.0 43.0 60.4 44.7 77.3 56.6 54.2 41.6 19.6 15.5 50.5 48.2 83.5 61.2

kBSPS 72.1 28.6 68.0 40.3 73.3 62.2 38.5 47.6 78.3 61.7 74.2 67.4 81.0 72.8 68.7 70.7 86.8 83.7 75.0 79.1

cosine 65.4 27.5 59.1 37.6 61.3 42.1 32.2 36.5 71.2 63.0 56.4 59.6 57.0 46.3 31.6 37.6 66.9 80.3 37.2 50.8

edit 62.8 26.8 59.7 37.0 61.0 53.0 22.7 31.7 60.7 58.1 55.2 56.6 62.1 58.1 45.1 50.8 57.6 68.1 48.2 56.4

APG 77.6 30.5 77.5 43.8 69.6 58.1 29.4 39.1 84.0 64.2 76.1 69.7 82.4 78.5 48.1 59.6 86.5 86.4 62.2 72.3

Fayruzov et al. 72.0 40.0 70.0 31.0 75.0 56.0 68.0 29.0 74.0 39.0

Classifiers are trained on the ensemble of four corpora and tested on the fifth one. Rows correspond to test corpora. Best results are typeset in bold (differences under 1
base point are ignored). We show for reference the results with the combined full kernel of [25], taken from [38]. AUC, precision, recall, and F1-score in percent.
doi:10.1371/journal.pcbi.1000837.t003

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 11 July 2010 | Volume 6 | Issue 7 | e1000837

kernel-based method is comparable with RelEx, and except on

BioInfer, the difference is a mere few percent.

Cross-Corpus Evaluation
Table 4 and Figure 8 show cross-corpus results for classifiers

trained on AIMed and BioInfer for some selected kernels. Results

for all other kernels and for classifiers trained on HPRD50, IEPA

and LLL can be found in Table S5.

Overall, our expectation that average CC performance would

be worse than CL performance because of the smaller size of

training data was in general not confirmed. On the one hand, the

average performance measured across all four possible training

corpora drops for SL, kBSPS, and APG kernels (the magnitude of

the drop increases in this order), while it increases for SpT and

edit, so the difference between the performance of these groups

shrinks. On the other hand, the average CC F-score belonging to

the best training corpus is somewhat better than the average CL F-

score also for SL, kBSPS and APG, while AUC decreases slightly.

The CC results show large performance differences for most

kernels depending on the training corpus. From cross-corpus

evaluation, we can estimate which corpora is the best resource from

a generalization perspective. We rank each training corpus for each

kernel and average these numbers to obtain an overall rank (Table

S6, Figure 9). This ranking only roughly reflects the size of the

corpora. BioInfer, containing the most PPI pairs, gives the best

performance with most kernels, and its overall rank calculated over

the five kernels is 2.1 (AUC) and 1.3 (F). Surprisingly, systems trained

on IEPA perform on average quite well, though IEPA is an order of

magnitude smaller than AIMed or BioInfer. In contrast, AIMed is,

despite its size, only the third best corpus in terms of AUC and by far

the worst for F-score. This does not mean that AIMed is a bad choice

for training, but only that differs from the other corpora: the ratio of

positive/negative examples is the smallest, and it has the largest

fraction of sentences with no interactions.

Discussion

We performed a systematic benchmark of nine different methods

for the extraction of protein-protein-interactions from text using five

different evaluation corpora. All figures we report were produced

using locally installed, trained, and tuned systems (the packages are

available in the online appendix). In almost all cases, our results in

cross-validation are well in-line with those published in the respective

original papers; only in some cases we observed differences larger

than 2%, and those could be attributed to different evaluation

methods and different tuning procedures (see Results, Cross-

validation). In contrast to cross-validation, our results regarding

cross-learning and cross-corpus settings mostly cannot be compared

to those of others as such numbers do not exist.

Relative Performance of Kernels
Taking all our results into account (summarized in Table 5), we

can safely state that APG, SL and kBSPS kernels are superior to

the other methods we tested. APG provides on average the best

Figure 7. AUC, F-score, precision and recall values with CL evaluation.
doi:10.1371/journal.pcbi.1000837.g007

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 12 July 2010 | Volume 6 | Issue 7 | e1000837

AUC scores over all experiments when trained with the AUC-

optimized sparse RLS. Its AUC scores drop significantly when

trained with SVM. There is only one experiment where APG-RLS

is outperformed by another method by a clear margin (CL on

BioInfer). SL and kBSPS are on par in CL evaluation, while SL is

slightly more accurate at CV. The ranking of kernels based on F-

score is more diverse. At the more important CL evaluation, the

clear advantage of APG observed at CV vanishes against kBSPS.

Similarly, SL produces significantly better F-score at CV than at

CL evaluation. Only these top-3 performing kernels outperform

the rule-based RelEx approach (recall that RelEx’s classification

model is corpus-independent and thus can be used as baseline in

all evaluation settings), at least in CV evaluation. When the more

realistic CL evaluation is used, the best methods only just reach or

marginally overcome RelEx’s accuracy.

The performance of the other six kernels is clearly weaker.

Kernels using syntax trees are on par with simple co-occurrence

for CV, and their performance decreases drastically at CL

evaluation. Cosine and edit kernels are slightly better than co-

occurrence in CV, but their performance also drops significantly

in CL evaluation.

Table 5 clearly shows that performance drops considerably for

all kernels from CV to CL (see also Figure 10). There also is strong

tendency to a worse performance when switching from CL to CC

in terms of F-score, but this tendency has many exceptions for

AUC. The general decrease in performance can be attributed both

to overlearning on the training set (in other words missing

generalization capability) and to the significant differences among

corpus characteristics. The magnitude of the decrease varies by

kernels (CV to CL): From the top-3 kernels, kBSPS has the least

decline, while SL shows the largest drop. APG has particularly low

scores on the BioInfer corpus compared to other experiments.

This corpus exhibits the average largest drop from CV to CL,

which can be explained by the fact that it has the largest number

of PPI pairs and that a remarkable portion of those pairs is

uncovered by the patterns of other corpora.

Diversity of Corpora
The performance of machine-learning methods to PPI

extraction largely depends on the specific relationship between

the training data and the data the method is used on later (test

data). If these two data sets exhibit large differences, then

evaluation results obtained using only the training data will be

much different than those obtained when using the trained model

on the test data. Differences can be, among other, the style of

writing, the frequency of certain linguistic phenomena, or the

level of technical detail in the texts. For the case of PPI, important

differences are the ratio between sentences containing a PPI and

those that do not, or the implicit understanding of what actually is

a PPI—this might, for instance, include or exclude temporary

interactions, protein transport, functional association only

hinting, yet not proving a physical contact etc; see [36, Table

1] for more details.

Our experiments in CL and CC setting show, in accordance

with results obtained by others [36], that the five corpora used for

evaluation indeed have different characteristics. The main source

of differences stems from the different ratio of positive pairs to

negative pairs. The AIMed corpus has the largest fraction of

negative sentences; accordingly, models trained on this corpus are

more conservative in predicting PPIs, which leads to a lower recall

when those models are applied on corpora with a smaller fraction

of negative sentences. Both CL and CC evaluation clearly confirm

this behavior, giving the AIMed corpus a bit of an outsider status.

To further test this hypothesis, we repeated the CL experiment

discarding AIMed from the learning pool. This leads to a

significant increase in average F-measures (see details in

Supplement; Text S2 and Table S7), confirming the special role

of AIMed.

However, also the other corpora are not homogeneous. This

becomes especially clear when comparing CV results with those

from CL and CC evaluations. As explained before, in CV all

characteristics of the test corpus are also present in the training

corpus and are thus learned by the algorithms; in contrast, in

CL and CC this is not the case. The relatively large differences

in the obtained performance measures indicate that different

corpora have notably different characteristics. As any new texts

that PPI extraction algorithms would be applied on would have

unknown characteristics, we conclude that only the perfor-

mance we measured for CL and CC can be expected on such

texts.

Table 4. Cross-corpus results trained on AIMed and BioInfer.

Kernel
Training
corpus AIMed BioInfer HPRD50 IEPA LLL

AUC P R F AUC P R F AUC P R F AUC P R F AUC P R F

SL AIMed (83.5) (47.5) (65.5) (54.5) 73.1 66.8 29.2 40.6 72.9 61.7 56.4 59.0 68.8 66.3 15.8 25.5 72.6 86.4 23.2 36.5

BioInfer 76.8 27.2 87.1 41.5 (81.1) (55.1) (66.5) (60.0) 74.8 51.0 78.5 61.8 76.6 63.3 64.8 64.0 80.5 71.5 78.0 74.6

SpT AIMed (66.1) (33.0) (25.5) (27.3) 69.5 48.4 16.3 24.3 60.0 47.1 39.9 43.2 67.9 59.7 11.0 18.6 57.0 72.7 29.8 17.2

BioInfer 65.3 22.3 77.8 34.7 (74.1) (44.0) (68.2) (53.4) 57.2 41.4 67.5 51.3 69.9 61.2 52.2 56.4 55.7 54.2 62.8 58.2

kBSPS AIMed (75.1) (50.1) (41.4) (44.6) 69.9 71.6 15.0 24.8 76.8 77.5 38.0 51.0 73.6 66.7 25.4 29.9 75.1 85.7 27.3 13.5

BioInfer 71.8 29.1 65.6 40.3 (75.2) (49.9) (61.8) (55.1) 77.7 61.0 81.6 69.881.5 67.4 78.2 72.4 85.1 76.8 84.8 80.6

edit AIMed (75.2) (68.8) (27.7) (39.0) 67.5 86.4 28.8 15.9 78.1 87.0 24.5 38.3 71.1 92.9 23.9 27.5 73.2 75.0 21.8 3.6

BioInfer 66.9 30.0 58.4 39.6 (67.4) (50.4) (39.2) (43.8) 72.7 59.4 65.6 62.4 69.3 61.1 55.8 58.4 66.9 69.0 54.3 60.8

APG AIMed (84.6) (59.9) (53.6) (56.2) 66.0 56.5 14.0 22.5 77.7 74.1 52.8 61.6 73.1 69.2 13.4 22.5 82.7 88.9 29.8 17.6

BioInfer 71.2 24.7 81.8 37.9 (81.5) (60.2) (61.3) (60.7) 76.0 49.3 84.0 62.1 81.4 61.7 82.7 70.7 82.0 69.0 85.4 76.3

CC results trained on the 3 smaller corpora are shown in the Supplement, Table S5. Classifiers are trained on one corpus and tested on the other four corpora. Rows
correspond to the training corpora and columns to test corpora. For reference, cross-validated results are shown in parentheses. Bold typeface highlights overall best
results per corpus (differences under 1 base point are ignored).
doi:10.1371/journal.pcbi.1000837.t004

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 13 July 2010 | Volume 6 | Issue 7 | e1000837

Figure 8. AUC, F-score, precision and recall values with CC evaluation trained on AIMed and BioInfer.
doi:10.1371/journal.pcbi.1000837.g008

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 14 July 2010 | Volume 6 | Issue 7 | e1000837

Shallow Parsing versus Syntax Trees versus Dependency
Graphs

We evaluated kernels based on shallow linguistic features,

syntax tree, dependency graph, and mixtures of these three. Our

results clearly show that syntax trees are less useful than the other

representations. Recall that syntax trees contain no explicit

information about the semantic relations of connected nodes,

which apparently is crucial in a relation extraction task. For the

other types of data, the picture is less clear.

Several authors claimed that using more types of information

yields better performance [37,63]. Our experiments only partially

confirm this claim. In cross-validation results, the APG kernel,

which combines multiple sources of sentence information, shows

the best performance among all analyzed kernels in terms of both

AUC (only with RLS) and F-score. However, this advantage

shrinks (AUC) or vanishes (F-score) for cross-corpus and cross-

learning evaluation when compared to the pure dependency

graph-based kBSPS. We conclude that using more information in

first place helps in becoming more corpus-specific. However, this

situation might be different if larger training corpora were

available.

In contrast to APG and kBSPS kernel, the SL kernel does not

use any deep parse information. Nevertheless, it produces results

comparable with APG and better than kBSPS for cross-validation.

Its superiority over kBSPS vanishes for cross-learning, however.

This change may be attributed to the decreasing usefulness of

shallow linguistic features—including word sequences—when the

model is trained on a more heterogeneous corpus.

Our results also show that the descriptive power of dependency

graph parses can only be exploited when combined with an

appropriate kernel. Cosine and edit kernels are unable to

efficiently capture the features from dependency graphs. In case

of the former, the shortcoming may be accounted to the fact that

cosine does not take the word order into account. The handicap of

the latter can be explained by weighting scheme applied at path

distance calculation: its uniform, grammar-independent weighting

disregards grammatical rules and structures, and thus the

semantics of the underlying text.

AUC or F-Measure?
Recently, some authors criticized the F-score as performance

measure, because it is very sensitive to the ratio of positive/

negative pairs in the corpus [17,36], and it is less stable to

parameter modifications than AUC. Our experiments confirm

both statements. The standard deviation of AUC in CV across the

five corpora ranges between 1.34 and 7.45 (F-score: 8.36–24.04).

The SL and APG kernels are the most stable ones, while SpT and

edit kernels belong to the other extreme in terms of both measures.

Figure 6 depicts the robustness on corpus level for cross-validation.

We can observe that the larger the corpus the smaller the standard

deviation, independently from the applied kernel.

On the other hand, one must keep in mind that AUC is a

statement about the general capabilities of a PPI extraction

method that must not be confused with its expected performance

on a concrete problem. For a concrete task, a concrete set of

parameters has to be chosen, while AUC expresses a measure over

a range of parameter settings. When a user wants to analyze a set

of documents, one probably can safely advise her to prefer kernels

with higher average AUC measure, but the achieved performance

will depend very much on the concrete parameters chosen. We

also show via the APG-SVM experiment that the AUC score

depends very much on the learning algorithm of the classifier, and

only partially on the kernel. Therefore, the (less stable) F-score

actually gives a better picture on the expected performance on new

texts.

Robustness against Parameter Setting
We investigated the robustness of the different kernels against

parameter settings. To this end, we performed exhaustive, fine-

grained parameter optimization for selected tasks and measured

the difference to the parameter setting used in the benchmark. The

resulting picture is quite heterogeneous.

SL kernel in principle has a number of parameters, but the

implementation we were provided with from the authors always

uses a default setting (which yields sound results). Therefore, we

could not test robustness of SL in terms of parameter settings.

When using task-specific parameter tuning at CV for syntax-

tree-based kernels, an improvement of 3 (5) points can be achieved

on AUC (F-score). The magnitude of improvement is larger on

CL, but the figures remain low. On the other hand, with improper

parameter setting, the F-score may drop drastically, even to 0.

Overall, syntax-tree-based kernels behave very sensitive to

parameter setting.

A fine-grained parameter tuning improves kBSPS results only

insignificantly (1–3 points of improvement both AUC and F). A

Table 5. Comparison of CV, CL, and CC results of selected
kernels.

AIMed BioInfer

Kernel AUC F AUC F

CV/CL/CC CV/CL/CC CV/CL/CC CV/CL/CC

SL 83.5/77.5/76.8 54.5/42.6/41.5 81.1/74.9/73.1 60.0/46.2/40.6

SpT 66.1/56.8/65.3 27.3/28.6/34.7 74.1/64.2/69.5 53.4/43.0/24.3

kBSPS 75.1/72.1/71.8 44.6/40.3/40.3 75.2/73.3/69.9 55.1/47.6/24.8

edit 75.2/62.8/66.9 39.0/37.0/39.6 67.4/61.0/67.5 43.8/31.7/15.9

APG 84.6/77.6/71.2 56.2/43.8/37.9 81.5/69.6/66.0 60.7/39.1/22.5

CC results for AIMed (resp. BioInfer) are obtained with classifier trained on
BioInfer (resp. AIMed).
doi:10.1371/journal.pcbi.1000837.t005

Figure 9. Overall ranking of the 5 corpora from the generality
perspective in terms of the main performance measures based
on the CL evaluation. The ranking are calculated as the average of
rankings on the 5 selected kernels (see Table S6).
doi:10.1371/journal.pcbi.1000837.g009

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 15 July 2010 | Volume 6 | Issue 7 | e1000837

similar small drop can be observed at CV evaluation if the

parameters are selected improperly, while at CL evaluation the

drop gets larger and reaches 10–15 points F-score. Consequently,

we can state that kBSPS is fairly robust to parameter selection.

Cosine and edit show significantly better (high 60s/low 70s)

AUC values with task-specific parameter tuning at CL evaluation,

but those settings cause a dramatic F-score decrease (cosine: 20–

25, edit 6–12 points). At CV evaluation, the trend is similar, but

the extent of changes is smaller. As a summary, cosine and edit

also should be considered as sensitive to parameter settings.

The performance of APG hardly changes (1–2 points) if the

parameters are set differently (CV). The F-score drop is somewhat

larger at CL. On the other hand, a major F-score drop can be

observed when the threshold parameter is not optimized. When

trained with SVM, APG becomes even more sensitive to the right

selection of parameters.

Classification Time
The runtime of a kernel-based method has two main

components. First, the linguistic structures have to be generated.

Previous experiments show [37, Table 2] that dependency parsers

can be about an order of magnitude faster than syntax parsers and

shallow parsing is about 1.5 order of magnitude faster than

dependency parsing (see [65, Table 2]). Second, the substructures

used by the kernels have to be determined and the classifier has to

be applied.

We give an overview of the theoretical complexity of each

kernel in the Supporting Information (Text S3). Actual runtimes

are probably more interesting, as the complexity of an algorithm

can be distorted to a large degree by the quality of its

implementation. We show in Table S9 averaged training and test

times for each corpus for CV settings. Note that these figures do

not contain the time it takes to parse a sentence; thus, real

runtimes would be much higher for all kernels except SL. The

APG with its cubic complexity clearly has the longest training

time, but the classifier is fast. PT kernel generates the most syntax

tree substructures and is an order of magnitude slower both in

terms of training and classification time. We can also see that

kernels with linear complexity exhibit very different runtimes.

Among them kBSPS clearly is the fastest both at training and

classification.

Runtime is a strong argument when it comes to the application

of a PPI extraction method on large corpora. Consider the top-3

kernels AGP, SL, and kBSPS. When applied to all of Medline with

its approximately 120M sentences, one would expect runtimes of

45, 141, and 4 days, respectively, on a single processor and I/O

stream. Taking also into account the computation of shallow

parses and dependency trees (on average 4 ms and 130 ms per

sentence, respectively), times change to 226, 147, and 185 days,

thus the formerly existing large differences almost vanish. Clearly,

the exact times depend on the hardware that is used, but the ratios

should stay roughly the same. The figures imply that an

Figure 10. Performance comparison of SL, SpT, kBSPS, edit and APG kernels across CV, CL and CC evaluations. AUC and F-score values
on AIMed and BioInfer. CC values are obtained with training on the other large corpus, though, eventually training on a smaller corpora may yield
better results.
doi:10.1371/journal.pcbi.1000837.g010

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 16 July 2010 | Volume 6 | Issue 7 | e1000837

application of kernel based methods to PPI extraction on large

corpora is only possible if considerable computational resources

are available.

Summary Kernel-by-Kernel
The SL kernel uses only shallow linguistic information plus the

usual bag-of-word features. Taking parse time into account, this

kernel is the fastest among all we tested. Despite its simplicity, its

performance is remarkable. It is on par with the best kernels in

most of the evaluation settings, and yields particularly good results

in CV — all with default parameter settings. Furthermore, its

performance is the most robust on the two larger corpora across

CV, CL and CC evaluation in terms of both AUC and F-score.

Syntax-tree-based kernels (ST, SST, PT, SpT) fail to achieve

comparative performance. Their performance hardly reaches the

baseline even at CV evaluation. They are also very sensitive to the

parameter setting and have a long runtime. Results are very

sensitive to the particular training/test corpora and therefore

cannot be extrapolated safely to new texts.

The kBSPS kernel achieves an overall very good performance,

particularly in the more important CL and CC evaluations. Its

performance decreases the least when CL evaluation is used

instead of CV. It is very robust against parameter settings and

achieves very good results with default parameters. Furthermore, it

is by far the fastest kernel among all that use rich linguistic

information.

Cosine and edit kernels, though using dependency trees, show

significantly worse performance than the top-3 kernels. They are

also very sensitive to the parameter settings. Their runtime is the

double compared to other dependency tree kernels. In [22] Erkan

proposed to train these kernels with transductive SVM [66],

however the performance gain is dubious (see Table S8), while

increases tremendously the training time.

APG shows the best performance at CV setting, but its

superiority vanishes on the more important CL and CC settings.

It uses a different learner than other kernels, which optimizes for

AUC. Consequently, its AUC results are the best, but its F-score

values are also good (CV, and partly CL). Recall when APG is

trained with SVM its AUC performance drops significantly

compared to APG-RLS. This reflects the fact that RLS specifically

optimizes for AUC; in turn, one can expect other kernels to also

obtain better results when RLS learning would be applied. APG is

rather sensitive to evaluation settings, where is exhibits the largest

drop among top-3 kernels. It is robust to parameter settings except

the threshold for the RLS procedure, but becomes very sensitive to

parameters when trained with SVM. The classification is pretty

fast, but with the necessary preprocessing, it becomes the slowest of

the top-3 kernels.

Conclusion
We investigated nine kernel-based methods for the extraction of

PPIs from scientific texts. We studied how these methods behave

in different evaluation settings, using different parameter sets, and

on different gold standard corpora. We showed that even the best

performing kernels, requiring extensive parameter optimizations

and large training corpora, cannot be considered as significantly

better than a simple rule-based method which does not need any

training at all and has essentially no parameters to tune. We also

showed that the characteristic features of PPIs can be extracted

much more efficiently by kernels based on dependency tree parses

than by those based on syntax tree parses. Interestingly, the SL

kernel, using only shallow linguistic analysis, is almost as good as

the best dependency-based kernels. We pointed out that the

advantage of APG kernel, using multiple representations as

features, vanishes in a realistic evaluation scenario when compared

to the simpler kBSPS and SL kernels.

The ultimate goal of this study was to select the best PPI

extraction method for real applications and to generate perfor-

mance estimates for this method (and others) on new text. We state

that this goal was not achieved for mostly two reasons. First, the

performance of the methods we studied is very sensitive to

parameter settings, evaluation method, and evaluation corpus.

Best scores are only achieved when settings are optimized against a

gold standard kernel—something that is not possible on unseen

text. Our results reveal that some methods apparently are better

than others, but a clear-cut winner is not detectable given the

bandwidth of results. Second, the heterogeneity between corpora

leads to extremely heterogeneous evaluation results, showing that

all methods strongly adapt to the training set, and that, in turn, the

existing training corpora are not large or not general enough to

capture the characteristics of the respective other corpora. This

implies that any extrapolation of the observed scores (AUC or F-

score) to unseen texts is questionable.

We believe that these findings call for a number of actions. First,

there is a strong need to create larger and better characterized

evaluation corpora. Second, we think that there is also a need to

complement the currently predominant approach, treating all

interactions as equally important, with more specific extraction

tasks. To this end, it is important to create specialized corpora,

such as those for the extraction of regulation events or for protein

complex formation. The more specific a question is, the simpler it

is to create representative corpora, leading to better models, often

higher extraction performance and better comparability of

methods. For instance, works like [67] on extraction of gene

regulation or [68] on extraction of phosphorylation events report

much higher accuracies than those current achievable in the

general PPI task. Third, there is a severe lack in studies measuring

real-life performance of PPI extraction methods, circumventing

the usage of gold standards by, for instance, user surveys with

biological experts. Last but not least, our result also show that rule-

based methods still make an excellent stand when compared to

machine-learning based approaches as soon as specific evaluation

settings are left behind.

Supporting Information

Table S1 Overview of the evaluated kernels. Overview of the

nine kernels evaluated in the paper.

Found at: doi:10.1371/journal.pcbi.1000837.s001 (0.07 MB PDF)

Table S2 Other kernels considered. Overview of other kernel

based methods in the literature that we did not tested in the paper.

Found at: doi:10.1371/journal.pcbi.1000837.s002 (0.06 MB PDF)

Table S3 Overview of the usability of the different kernels. Some

details on the nine evaluated kernels: availability of the algorithm

and documentation, type of learning software.

Found at: doi:10.1371/journal.pcbi.1000837.s003 (0.06 MB PDF)

Table S4 Overview of our parameter selection strategy.

Overview of our parameter selection strategy used in the paper.

We provide a coarse description of parameter ranges and best

parameters for each kernel and evaluation setting.

Found at: doi:10.1371/journal.pcbi.1000837.s004 (0.07 MB PDF)

Table S5 Cross-corpus results. Full table of cross-corpus results

trained on all 5 corpora and evaluated on all nine kernels.

Found at: doi:10.1371/journal.pcbi.1000837.s005 (0.08 MB PDF)

Table S6 Ranking of corpora at CC evaluation based on their

AUC and F-score values. We ranked the corpora from the

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 17 July 2010 | Volume 6 | Issue 7 | e1000837

generality perspective, i.e. how general the systems are trained on

specific corpora. The evaluation is based on their AUC and F-

score values at CC evaluation.

Found at: doi:10.1371/journal.pcbi.1000837.s006 (0.07 MB PDF)

Table S7 Cross-learning experiments with some selected kernel

performed on 4 corpora (all but AIMed). Cross-learning

experiments with some selected kernel performed on 4 corpora

(all but AIMed). Classifiers are trained on the ensemble of three

corpora and tested on the forth one.

Found at: doi:10.1371/journal.pcbi.1000837.s007 (0.07 MB PDF)

Table S8 CV results with transductive SVM for kBSPS, edit,

cosine kernels. Results with the transductive learning strategy for

some selected kernels.

Found at: doi:10.1371/journal.pcbi.1000837.s008 (0.06 MB PDF)

Table S9 Average runtime of training and test processes, and

runtime estimates on entire Medline. Average runtime of training

and test processes per corpus measured over all cross-validation

experiments for each kernel (not including the parsing time at pre-

processing), and rough runtime estimates on the entire Medline.

Found at: doi:10.1371/journal.pcbi.1000837.s009 (0.06 MB PDF)

Text S1 Similarity function in kBSPS kernel. Definition of

similarity score used in kBSPS kernel.

Found at: doi:10.1371/journal.pcbi.1000837.s010 (0.07 MB PDF)

Text S2 Additional experiments. We provide here details of two

additional experiments. (1) Cross-learning (CL) without AIMed,

that is systems are trained on 3 corpora and tested on the fourth

one. (2) Models trained with transductive SVM.

Found at: doi:10.1371/journal.pcbi.1000837.s011 (0.05 MB PDF)

Text S3 Theoretical complexity of kernels. We provide here

details on the computational complexity of kernels.

Found at: doi:10.1371/journal.pcbi.1000837.s012 (0.04 MB PDF)

Acknowledgments

We thank all authors of the kernel methods we discuss for providing code

and numerous hints on how to install and use the systems. We particularly

thank Antti Airola for intensive discussions on benchmarking PPI

extraction in general and in numerous special cases. We also thank the

anonymous reviewers for their valuable comments.

Author Contributions

Conceived and designed the experiments: DT UL. Performed the

experiments: DT PT PP. Analyzed the data: DT PT PP. Wrote the

paper: DT PT JH UL.

References

1. Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, et al. (2005)

Text mining for metabolic pathways, signaling cascades, and protein networks.

Sci STKE 2005: pe21.

2. Jaeger S, Gaudan S, Leser U, Rebholz-Schuhmann D (2008) Integrating

protein-protein interactions and text mining for protein function prediction.

BMC Bioinformatics 9 Suppl 8: S2.

3. Jiang X, Nariai N, Steffen M, Kasif S, Kolaczyk ED (2008) Integration of

relational and hierarchical network information for protein function prediction.

BMC Bioinformatics 9: 350.

4. Spirin V, Mirny LA (2003) Protein complexes and functional modules in

molecular networks. Proc Natl Acad Sci U S A 100: 12123–8.

5. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:

644–652.

6. Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, et al. (2008) Molecular

and cellular approaches for the detection of protein-protein interactions: latest

techniques and current limitations. Plant J 53: 610–35.

7. Sprinzak E, Sattath S, Margalit H (2003) How reliable are experimental protein-

protein interaction data? J Mol Biol 327: 919–923.

8. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein-

protein interactions. Plant J 53: 597–609.

9. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, et al.

(2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:

D572–D574.

10. Winnenburg R, Wächter T, Plake C, Doms A, Schroeder M (2008) Facts from

text: can text mining help to scale-up high-quality manual curation of gene

products with ontologies? Brief Bioinform 9: 466–478.

11. Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease

associations using centrality on a literature mined gene-interaction network.

Bioinformatics 24: i277–285.

12. Lage K, Karlberg EO, Størling ZM, Ólason PI, Pedersen AG, et al. (2007) A

human phenome-interactome network of protein complexes implicated in

genetic disorders. Nat Biotechnol 25: 309–16.

13. Proux D, Rechenmann F, Julliard L (2000) A pragmatic information extraction

strategy for gathering data on genetic interactions. Proc Int Conf Intell Syst Mol

Biol 8: 279–85.

14. Leitner F, Hirschman L (2009) Biocreative ii.5: Evaluation and ensemble system

performance. In: Proc BioCreative II.5. Madrid, Spain. 20 p.

15. Kabiljo R, Clegg A, Shepherd A (2009) A realistic assessment of methods for

extracting gene/protein interactions from free text. BMC Bioinformatics 10:

233.

16. Giles C, Wren J (2008) Large-scale directional relationship extraction and

resolution. BMC Bioinformatics 9: S11.

17. Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, et al. (2008) All-paths graph

kernel for protein-protein interaction extraction with evaluation of cross-corpus

learning. BMC Bioinformatics 9: S2.

18. Bunescu R, Ge R, Kate RJ, Marcotte EM, Mooney RJ, et al. (2005)

Comparative experiments on learning information extractors for proteins and

their interactions. Artif Intell Med 33: 139–155.

19. Bunescu R, Mooney R (2006) Subsequence kernels for relation extraction. In:

Weiss Y, Schölkopf B, Platt J, eds. Advances in Neural Information Processing
Systems 18. CambridgeMA: MIT Press. pp 171–178. URL http://books.nips.

cc/papers/files/nips18/NIPS2005_0450.pdf.

20. Collins M, Duffy N (2001) Convolution kernels for natural language. In: Proc. of
Neural Information Processing Systems (NIPS’01). Vancouver, BC, Canada, pp

625–632.

21. Culotta A, Sorensen JS (2004) Dependency tree kernels for relation extraction.
In: Proc. of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL’04). Barcelona, Spain, pp 423–429.

22. Erkan G, Özgür A, Radev DR (2007) Semi-supervised classification for extracting

protein interaction sentences using dependency parsing. In: Proc. of the 2007 Joint

Conf. on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic, pp

228–237. URL http://www.aclweb.org/anthology/D/D07/D07-1024.

23. Giuliano C, Lavelli A, Romano L (2006) Exploiting shallow linguistic

information for relation extraction from biomedical literature. In: Proc. of the

11st Conf. of the European Chapter of the Association for Computational
Linguistics (EACL’06). Trento, Italy: The Association for Computer Linguistics.

pp 401–408. URL http://acl.ldc.upenn.edu/E/E06/E06-1051.pdf.

24. Katrenko S, Adriaans P (2008) A local alignment kernel in the context of NLP.

In: Proc. of the 22nd Int. Conf. on Computational Linguistics (Coling 2008).

Manchester, UK, pp 417–424.

25. Kim S, Yoon J, Yang J (2008) Kernel approaches for genic interaction

extraction. Bioinformatics 24: 118–126.

26. Van Landeghem S, Saeys Y, De Baets B, Van de Peer Y (2008) Extracting

protein-protein interactions from text using rich feature vectors and feature

selection. In: Proc. of 3rd Int. Symp. on Semantic Mining in Biomedicine
(SMBM’08). Turku, Finnland, pp 77–84.

27. Miwa M, Sætre R, Miyao Y, Ohta T, Tsujii J (2008) Combining multiple layers
of syntactic information for protein-protein interaction extraction. In: Proc. of

3rd Int. Symp. on Semantic Mining in Biomedicine (SMBM’08). Turku,

Finnland, pp 101–108.

28. Moschitti A (2006) Efficient convolution kernels for dependency and constituent

syntactic trees. In: Proc. of The 17th European Conf. on Machine Learning.
Berlin, Germany, pp 318–329.

29. Palaga P (2009) Extracting Relations from Biomedical Texts Using Syntactic

Information. Master’s Thesis, Technische Universität Berlin.

30. Vishwanathan SVN, Smola AJ (2002) Fast kernels for string and tree matching.

In: Proc. of Neural Information Processing Systems (NIPS’02). Vancouver, BC,

Canada, pp 569–576.

31. Wang M (2008) A re-examination of dependency path kernels for relation

extraction. In: Proc. of the 3rd Int. Conf. on Natural Language Processing
(IJCNLP’08). Hyderabad, India, pp 841–846.

32. Zelenko D, Aone C, Richardella A (2003) Kernel methods for relation

extraction. J Mach Learn Res 3: 1083–1106.

33. Niu Y, Otasek D, Jurisica I (2010) Evaluation of linguistic features useful in

extraction of interactions from PubMed; Application to annotating known, high-
throughput and predicted interactions in I2D. Bioinformatics 26: 111–119.

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 18 July 2010 | Volume 6 | Issue 7 | e1000837

34. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J (2009) Overview of BioNLP’09

shared task on event extraction. In: Proc. of the BioNLP 2009 Workshop
Companion Volume for Shared Task. Boulder, CO, USA, pp 1–9.

35. Clegg AB, Shepherd AJ (2007) Benchmarking natural-language parsers for

biological applications using dependency graphs. BMC Bioinformatics 8: 24.
36. Pyysalo S, Airola A, Heimonen J, Björne J, Ginter F, et al. (2008) Comparative

analysis of five protein-protein interaction corpora. BMC Bioinformatics 9 Suppl
3: S6.

37. Miyao Y, Sagae K, Saetre R, Matsuzaki T, Tsujii J (2009) Evaluating

contributions of natural language parsers to protein-protein interaction
extraction. Bioinformatics 25: 394–400.

38. Fayruzov T, De Cock M, Cornelis C, Hoste V (2009) Linguistic feature analysis
for protein interaction extraction. BMC Bioinformatics 10: 374.

39. Zhou D, He Y (2008) Extracting interactions between proteins from the
literature. J Biomed Inform 41: 393–407.

40. Rinaldi F, Kappeler T, Kaljurand K, Schneider G, Klenner M, et al. (2008)

OntoGene in BioCreative II. Genome Biol 9: S13.
41. Blaschke C, Valencia A (2002) The frame-based module of the SUISEKI

information extraction system. IEEE Intell Syst 17: 14–20.
42. Hunter L, Lu Z, Firby J, Jr. WAB, Johnson HL, et al. (2008) OpenDMAP: An

open source, ontology-driven concept analysis engine, with applications to

capturing knowledge regarding protein transport, protein interactions and cell-
type-specific gene expression. BMC Bioinformatics 9: 78.

43. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A (2008) Overview of
the protein-protein interaction annotation extraction task of BioCreative II.

Genome Biol 9: S4.
44. Hao Y, Zhu X, Huang M, Li M (2005) Discovering patterns to extract protein-

protein interactions from the literature: Part II. Bioinformatics 21: 3294–3300.

45. Hakenberg J, Plake C, Royer L, Strobelt H, Leser U, et al. (2008) Gene mention
normalization and interaction extraction with context models and sentence

motifs. Genome Biol 9: S14.
46. Chowdhary R, Zhang J, Liu JS (2009) Bayesian inference of protein-protein

interactions from biological literature. Bioinformatics 25: 1536–1542.

47. Sun C, Lin L, Wang X, Guan Y (2007) Using maximum entropy model to
extract protein-protein interaction information from biomedical literature. In:

Advanced Intelligent Computing Theories and Applications, Springer, number
4681 in LNCS. pp 730–737.

48. Miyao Y, Sætre R, Sagae K, Matsuzaki T, Tsujii J (2008) Task-oriented
evaluation of syntactic parsers and their representations. In: Proc. of the 46th

Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies (ACL’08: HLT). pp 46–54.
49. Pyysalo S, Ginter F, Laippala V, Haverinen K, Heimonen J, et al. (2007) On the

unification of syntactic annotations under the Stanford dependency scheme: A
case study on BioInfer and GENIA. In: Biological, translational, and clinical

language processing. Prague, Czech Republic, pp 25–32.

50. McClosky D (2009) Any Domain Parsing: Automatic Domain Adaptation for
Natural Language Parsing. Ph.D. thesis, Department of Computer Science,

Brown University.

51. McClosky D, Charniak E (2008) Self-training for biomedical parsing. In: Proc. of

the 46th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (ACL’08: HLT). Columbus, OH, USA, pp

101–104.

52. Joachims T (1999) Making large-scale support vector machine learning practical,
Advances in kernel methods: support vector learning. Cambridge, MA: MIT

Press.
53. Schölkopf B, Burges CJC, Smola AJ, eds (1999) Advances in kernel methods:

support vector learning The MIT Press.

54. Rifkin R, Yeo G, Poggio T (2003) Regularized least-squares classification. Nato
Science Series Sub Series III Computer and Systems Sciences 190: 131–154.

55. Winters-Hilt S, Yelundur A, McChesney C, Landry M (2006) Support vector
machine implementations for classification & clustering. BMC Bioinformatics 7:

S4.
56. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

57. Haussler D (1999) Convolution kernels on discrete structures. Technical Report
UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA,

USA.
58. Kuboyama T, Hirata K, Kashima H, Aoki-Kinoshita KF, Yasuda H (2007) A

spectrum tree kernel. Information and Media Technologies 2: 292–299.

59. Pyysalo S, Ginter F, Heimonen J, Bjorne J, Boberg J, et al. (2007) BioInfer: a
corpus for information extraction in the biomedical domain. BMC Bioinfor-

matics 8: 50.
60. Fundel K, Küffner R, Zimmer R (2007) RelEx – relation extraction using

dependency parse trees. Bioinformatics 23: 365–371.
61. Ding J, Berleant D, Nettleton D, Wurtele E (2002) Mining Medline: abstracts,

sentences, or phrases? Pac Symp Biocomput. pp 326–337.

62. Nedellec C (2005) Learning language in logic-genic interaction extraction
challenge. In: Proc. of the ICML05 workshop: Learning Language in Logic

(LLL’05). Bonn, Germany, volume 18. pp 97–99.
63. Miwa M, Sætre R, Miyao Y, Tsujii J (2009) Protein-protein interaction

extraction by leveraging multiple kernels and parsers. Int J Med Inform 18:

e39–e46.
64. Sætre R, Sagae K, Tsujii J (2007) Syntactic features for protein-protein

interaction extraction. In: Proc. Int Symp on Languages in Biology and
Medicine (LBM’07). Singapore.

65. Ravichandran D, Pantel P, Hovy E (2004) The terascale challenge. In: Proc. of
KDD Workshop on Mining for and from the Semantic Web (MSW-04).

Seattle, WA, USA, pp 1–11.

66. Joachims T (1999) Transductive inference for text classification using support
vector machines. In: Proc. of the 16th Int. Conf. on Machine Learning

(ICML’99). pp 200–209.
67. Saric J, Jensen LJ, Ouzounova R, Rojas I, Bork P (2006) Extraction of regulatory

gene/protein networks from medline. Bioinformatics 22: 645–650.

68. Hu ZZ, Narayanaswamy M, Ravikumar KE, Vijay-Shanker K, Wu CH (2005)
Literature mining and database annotation of protein phosphorylation using a

rule-based system. Bioinformatics 21: 2759–65.

Kernels for Protein-Protein Interaction Mining

PLoS Computational Biology | www.ploscompbiol.org 19 July 2010 | Volume 6 | Issue 7 | e1000837

