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Abstract

Scaffolding proteins that direct the assembly of multiple kinases into a spatially localized signaling complex are often
essential for the maintenance of an appropriate biological response. Although scaffolds are widely believed to have
dramatic effects on the dynamics of signal propagation, the mechanisms that underlie these consequences are not well
understood. Here, Monte Carlo simulations of a model kinase cascade are used to investigate how the temporal
characteristics of signaling cascades can be influenced by the presence of scaffold proteins. Specifically, we examine the
effects of spatially localizing kinase components on a scaffold on signaling dynamics. The simulations indicate that a major
effect that scaffolds exert on the dynamics of cell signaling is to control how the activation of protein kinases is distributed
over time. Scaffolds can influence the timing of kinase activation by allowing for kinases to become activated over a broad
range of times, thus allowing for signaling at both early and late times. Scaffold concentrations that result in optimal signal
amplitude also result in the broadest distributions of times over which kinases are activated. These calculations provide
insights into one mechanism that describes how the duration of a signal can potentially be regulated in a scaffold mediated
protein kinase cascade. Our results illustrate another complexity in the broad array of control properties that emerge from
the physical effects of spatially localizing components of kinase cascades on scaffold proteins.
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Introduction

In the context of signal transduction, cells integrate signals

derived from membrane proximal events and convert them into

the appropriate cell decision. Within the complex networks that

integrate these signals lies a highly conserved motif involving the

sequential activation of multiple protein kinases. Signal propaga-

tion through these kinase cascades is often guided by a scaffolding

protein that assembles protein kinases into a multi-protein

complex. Signaling complexes maintained by scaffolds are

intensely studied and have been shown to affect myriad cell

decisions [1–7]. Despite numerous advances in the understanding

of the signaling function of scaffold proteins [8–15], many

questions remain. For instance, although scaffolds are believed

to have profound effects on the dynamics of signal propagation

[6,9,10,16], the mechanisms that underlie how scaffolds regulate

signaling dynamics are not well understood.

One key factor in specifying a cellular decision is the duration of

a signal (i.e. the time over which a kinase remains active) [17,18].

Differences in signal duration have been implicated as the basis of

differential decisions in myriad cell processes. For example, it has

been suggested that decisions on growth factor induced cell

proliferation, positive and negative selection of T cells, apoptotic

programs, cell cycle progression, among many others, are

regulated by the duration of signaling [19–24]. Therefore, the

issue of how a signal output, such as the activity of extracellular

regulatory kinase (ERK) in a MAPK pathway, is distributed over

time, is of considerable interest.

There are many ways in which the duration of the output of a

kinase cascade can be controlled. Regulation of signaling dynamics

can arise from processes upstream of the cascade [25]. For

example, degradation of upstream signaling components such as

the surface receptors [26] and differential kinetics of GTPase

regulators [27,28] can be essential in regulating MAPK signaling

dynamics [25]. Also, multisite phosphorylation is predicted to

influence signal duration [29]. It has been also been shown that

differential modes of feedback regulation that are manifested

under different conditions within the same cascade can regulate

signal duration [30]. Scaffold proteins have also been implicated as

key determinants in the regulation of signal duration [9,10,31].

Because the many factors that control scaffold mediated

signaling are difficult to systematically control in a laboratory

setting, a precise understanding of how scaffold proteins affect the

dynamics of signal transduction has proven elusive. Computation-

al models have been useful in understanding some of the many

complex ways in which scaffolds influence signal transduction

[16,32–34]. However, it is currently impossible to model

theoretically all aspects of any biological signaling process—

computational models ultimately require that many gross

simplifications be made. Our aim is, therefore, not to attempt to

simulate every detail of a specific biochemical pathway but rather

investigate the consequences that emerge from a simple scenario of
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scaffold mediated signaling whereby a model cascade assembles

onto a scaffold. In modeling this scenario in itself, we hope to learn

more about the functional and mechanistic consequences that

these specific physical constraints, imposed by assembling

components of a biochemical cascade onto a scaffold, confer to

signaling pathways. In parsing these effects from the myriad others

that are undoubtedly important, our hope is that our results can

serve as a framework for understanding the extent to which these

effects are important in specific biological contexts such as the

Mitogen Activated Protein Kinase (MAPK) pathway.

One theoretical analysis of scaffold mediated cell signaling

revealed the presence of non mononotic behavior in signal output

as a function of scaffold concentration [34]. If scaffolds are

required for signaling, then too few scaffolds will be detrimental to

signaling. On the other hand, if scaffolds are present in excess,

signaling complexes become incompletely assembled and the

signal output is attenuated. As a consequence of this ‘‘prozone’’

effect, scaffolds were shown to also differentially affect the kinetics

of signaling.

The observation that scaffolds can differentially affect signaling

dynamics leads to many questions. How do scaffold proteins

control the time scales involved in signal propagation? An

important metric of cell signaling is the time it takes for a

downstream kinase to become active [35,36]. As signal transduc-

tion is stochastic in nature, the more precise question is: what is the

distribution of times characterizing the activation of a downstream

kinase? How do scaffolds affect this distribution, and what might

be the biological consequences of changes in this distribution as a

result of signaling on a scaffold? We compute first passage time

distributions [37] using a stochastic computer simulation method

to investigate these questions.

Specifically, we use a kinetic Monte Carlo algorithm. We have

previously used such methods to study a different question

concerning the regulation of signal amplitude by scaffold proteins

[33]. It is also possible that a differential equation model that

considers mean-field kinetics could be used to study the first

passage time distribution [37]. However, such an approach would

require the imposition of absorbing boundary conditions that can

make the numerical analysis difficult.

Our simulation results suggest that, depending on physiological

conditions, scaffold proteins can allow kinase cascades to operate

in different dynamical regimes that allow for large increases and

decreases in the speed and characteristic time scale of signal

propagation. Furthermore, and perhaps more importantly,

scaffolds are shown to influence the statistical properties of the

times at which kinases are activated in complex ways. Scaffolding

protein kinases cascades can allow for broadly distributed waiting

times of kinase activation, whereas in the absence of a scaffold, the

time it takes for a kinase to be activated is effectively characterized

by a single time scale. These stochastic characteristics of scaffold-

mediated kinase cascades are, to our knowledge, elucidated for the

first time and may have diverse biological consequences that

pertain to how signal duration is regulated. It is also our hope that

our results provide a framework for achieving a deeper qualitative

understanding of how scaffolding proteins can regulate the

dynamics of cell signaling and the statistical properties of signal

transduction.

Results

Model of a Protein Kinase Cascade
For our study, we considered a model three tiered protein kinase

cascade such as the MAPK pathway [38]. Since our aim is to study

the effects of spatially localizing protein kinases on signaling

dynamics, we considered a minimal description of a model kinase

cascade. Many factors that are undoubtedly important in

regulating signaling dynamics were not considered. These factors

include feedback regulation within the cascade, allosteric and or

catalytic functions provided by the scaffold, and the effects of

multiple phosphorylations of each kinase [11,25,26,30,39,40].

In our model, signal propagation occurs in a three step

hierarchical fashion: an initial stimulus (S) activates a MAP3K

(A) that in turn, activates a MAP2K (B), that subsequently can

activate its MAPK (C) substrate—phosphatases can deactivate

each activated species and this deactivation occurs regardless of

whether or not the active kinase is bound to a scaffold. A

schematic is presented in Figure 1A that illustrates the basic

processes that are allowed in our model. A steady-state ensemble is

considered. That is, simulations are allowed to first reach a

dynamic steady-state and once this state is reached, dynamics are

studied. We do not consider dynamics from the starting time that

requires propagation through a hierarchical cascade.

Recent work has studied the statistical dynamics of kinase

activation that result from the hierarchical organization of a kinase

cascade; in that study, it was shown that the hierarchical structure

of the cascade gives rise to broad waiting time distributions of

cascade activation. In the regime that we study here, these effects

are absent since activation of the cascade requires that an inactive

C protein encounter an active B protein; our motivation is thus to

investigate how the dynamics of kinase activation can be affected

by assembling components of the cascade onto a scaffolding

protein that localizes single complexes. Therefore, we do not

emphasize how the hierarchical structure of a signaling cascade

effects signal propagation and instead focus on how assembly of

the cascade onto a scaffold affects signaling dynamics. We also

underscore the notion that in our approach, many undoubtedly

important effects such as the hierarchical structure of protein

kinase cascades, the influence of feedback loops, differential

enzymatic mechanisms and allosteric control by scaffolds are

neglected. Again, by excising these effects, we restrict our attention

to a hypothetical scenario that aims only to investigate the

Author Summary

Signal transduction is the science of cellular communica-
tion. Cells detect signals from their environment and use
them to make decisions such as whether or when to
proliferate. Tight regulation of signal transduction is
required for all healthy cells, and aberrant signaling leads
to countless diseases such as cancer and diabetes. For
example, in higher organisms such as mammals, signal
transduction that leads to cell proliferation is often guided
by a scaffold protein. Scaffolding proteins direct the
assembly of multiple proteins involved in cell signaling
by providing a platform for these proteins to carry out
efficient signal transmission. Although scaffolds are widely
believed to have dramatic effects on how signal transduc-
tion is carried out, the mechanisms that underlie these
consequences are not well understood. Therefore, we used
a computational approach that simulates the behavior of a
model signal transduction module comprising a set of
proteins in the presence of a scaffold. The simulations
reveal mechanisms for how scaffolds can dynamically
regulate the timing of cell signaling. Scaffolds allow for
controlled levels of signal that are delivered inside the cell
at appropriate times. Our findings support the possibility
that these signaling dynamics regulated by scaffolds affect
cell decision-making in many medically important intra-
cellular processes.

Scaffold-Mediated Signaling Dynamics
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consequences of assembling components of a cascade onto a

scaffold protein.

The key quantities computed and parameters used are discussed

below in Table 1 and Figure 1B. Additional details are provided in

the Methods section.

The Concentration of Scaffold Proteins Sets Time Scales
for Signal Propagation Through a Kinase Cascade

To set the context, consider the consequences of signaling in

two limiting cases in our model. When the binding affinity of the

kinases to the scaffold, E, is low (defined here to be close to the

thermal energy, E,kBT; kB is Boltzman’s constant and T is the

temperature) and kinases disassociate rapidly from the scaffold,

few proteins on average are bound to a scaffold. Therefore,

signaling dynamics corresponds to that of a kinase cascade in

solution. For a very strong affinity, E&kBT all available binding

sites to scaffold proteins are occupied by kinases (on average). In

this case, signaling dynamics are controlled by the time required

for initial stimuli to encounter and interact with each fully

assembled complex.

Therefore, we consider cases in which kinases can disassociate

from their scaffolds and exchange with unbound kinases on time

scales pertinent to cell signaling processes. Such time scales

correspond to disassociation constants (Kd) on the order of 1–

10 mM and off rates, koff,1s21. Such Kd values correspond to free

energies of binding of roughly 7–9 kcal/mol, an energy scale

typical of protein-protein interactions in kinase cascades [41]. We

have used 12 kBT as the binding energy in our simulations which

corresponds to ,7.2kcal/mol. We also discuss the robustness of

our results with respect to changes in this value. Scaffold

concentration has been identified as a key variable that can

regulate the efficiency of signal propagation through a kinase

cascade [2,5,34]. For the set of parameters used in the simulations

(Table 1), signal output (defined as the average steady state value

of the final kinase in the cascade) has a non-monotonic

(biphasic) dependence on the relative concentration of scaffolds

f ( f: ½Scaffold�
½MAP3K �0

� �
, where [Scaffold] is the concentration of the

Figure 1. A model to study dynamical properties of a scaffold mediated signaling cascade. (A) Schematic of the events considered in the
scaffold mediated signaling cascade. Each kinase, if activated, can activate its downstream substrate when the two proteins are in close proximity.
Kinases can bind and unbind to the scaffold and phosphatases can, upon encountering an active kinase, deactivate it. Activation potentially occurs
both in solution and on a scaffold. Each forward and backward reaction is modeled as a elementary reactive collision with an energy barrier, E. Energy
barriers, E, were taken to be zero so that all kinetics are diffusion limited (B) Key variables and the main quantities computed are shown. f is the
dimensionless scaffold concentration. The concentration of scaffold proteins [Scaffold] is scaled to the density of the first kinase in the cascade

[MAP3K]0 (f: ½Scaffold�
½MAP3K �0

). The survival probability S tð Þ:Ss tð Þs 0ð ÞT, where s(t) is zero is a kinase has become active and one otherwise (brackets

denote an ensemble average); S(t) is the probability that the final kinase has been activated given that it was inactive at t = 0.
R tð Þ:fAS tð Þ~fASs tð Þs 0ð ÞT, where fA is the fraction of active kinases at steady state; R(t) is the integrated reactive flux of kinase activation. The
characteristic time scale of signal propagation t is defined by the relation S(t = t) = e21.
doi:10.1371/journal.pcbi.1000099.g001

Table 1. Notation and parameters used.

Index i Species Type Index j
Chemical
State

i = 0 Stimulus (S) j = 1 Unbound,
inactive

i = 1 MAPKKK (A) j = 2 Unbound, active

i = 2 MAPKK (B) j = 3 Bound, inactive

i = 3 MAPK (C) j = 4 Bound, active

i = 4 Phosphatase (P)

Parameter Used Description Value

Energy barrier for:

E1,3 , E2,4 Binding 0kBT

E3,1 , E4,2 Unbinding 12kBT

E1,2 , E3,4 Catalytic activation 0kBT

E2,1 , E4,3 Catalytic deactivation 12kBT

(keff)21 Reaction time scale 1

(Deff)21 Diffusion time scale 10

*All other values of Ej,j’ are taken to be infinite.
doi:10.1371/journal.pcbi.1000099.t001

Scaffold-Mediated Signaling Dynamics
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scaffold and [MAP3K]0 is the concentration of the first kinase in

the cascade) and peaks at an optimal value of f = 1 [33,34].

To quantify signaling dynamics, we consider a survival

probability S(t) (methods) that, as mentioned, can be viewed as a

type of autocorrelation function.

S tð Þ*Ss tð Þs 0ð ÞT,

where s(t) equals 0 or 1 depending upon the activity of the final

kinase within the cascade (methods) and the brackets indicate an

average over all kinases in the simulation averaged over many

simulations. This quantity gives the probability that the final

kinase in the cascade remains inactive at time t given that it was

inactive at time t = 0. Therefore, signaling dynamics can be

monitored by observing the decay of this function with

time.

In Figure 2A, S(t) is computed for different values of the relative

scaffold concentration, f. The intrinsic time of signal propagation,

t, is the value at which S(t) decays to e21 of its original value

(S(t = t) = e21). Upon increasing scaffold concentration, t increases.

At very high scaffold expression levels, signals propagate so

slowly that cell signaling is not observed on experimentally

measurable time scales which we take to be in our simulations

&106 Monte Carlo (MC) steps; 1 MC step,1 ms assuming a

lattice spacing of 10 nm and a diffusion coefficient of 10 mm2/s

[42]. The increase in t spans several orders of magnitude as is

observed in Figure 2B. Distinct stages are also observed in the

behavior of t, and are separated by an inflection point occurring

shortly past the optimal value of scaffold concentration (f,1). This

phenomenon suggests that different physical processes are

determining the signaling dynamics at different ranges of scaffold

concentration.

These results also suggest that the concentration of scaffold

proteins can in principle set an intrinsic time scale that determines

the speed of signal propagation. Such an intrinsic time scale arises

solely from changes in the concentration of scaffold proteins. This

time scale can span several orders of magnitude for biologically

relevant affinities and diffusion coefficients and increases mono-

tonically with increasing scaffold concentration.

Note that these calculations consider only the speed of signaling

and do not necessarily imply that signaling is more efficient when t
is small. To observe the total amount of integrated signal flux, the

survival probability is conditioned with the probability that a

kinase in the pool of signaling molecules is active in the steady

state. We compute R(t) defined as S(t) multiplied by the average

number of (the final downstream) kinases active at steady

state,

R tð Þ:fASs tð Þs 0ð ÞT,

where fA is the fraction of active kinases at steady state. The time

derivative, { d
dt

R tð Þ, can be thought of as a flux of activated

kinases being produced. In Figure 2C, R(t) is plotted as a function

of time. For low concentrations of scaffolds, the small amount of

signal, albeit quickly propagating, is rapidly quenched. As scaffold

concentration increases, both the amplitude and duration of the

signal increase up to an optimal value. Past the optimal value,

higher scaffold concentrations result in signals with small

amplitude but the duration of signaling is extended. The behavior

of the integrated reactive flux is a direct consequence of the

existence of an optimal scaffold concentration and ‘‘bell shaped’’

titration curve since the area under these curves is proportional to

the average signal output [33,34].

Scaffold Proteins Influence the Duration of Signaling by
Controlling How Kinase Activation Is Distributed Over
Time

Figure 2 emphasizes how the characteristic time for signal

propagation is influenced by changes in the relative scaffold

concentration. It also appears that the qualitative features of S(t)

change as scaffold concentration is varied. The decay of some

distributions appears highly concentrated at a particular time

while the decay of other distributions appears more broadly

distributed.

To further investigate this observation, we plotted the survival

probability as a function of the dimensionless time, t/t. If the

decay of S(t) is purely exponential, then S(t/t) will have the form

e2t/t. Figure 3 shows S(t/t) for different values of scaffold

concentration and a decaying exponential function is given as a

reference. One notices that S(t/t) is exponential at negligible

scaffold concentrations. As scaffold concentration increases, the

behavior of S(t/t) deviates from a single exponential decay. Near

f = 1, S(t/t) shows maximal deviation from purely exponential

kinetics. As scaffold expression increases past this point, the shape

of S(t/t) reverts back to an exponential form.

A deviation from exponential behavior can be quantified by

considering a stretched exponential function,

e{(t=t)b

,

and fitting S(t/t) to this form for different values of f. One

desirable feature of the stretched exponential function is the

minimal number of parameters, t and b, that are involved in the

least-squares fit; also, the values of these parameters can be

physically interpreted. t gives the characteristic time for one

overall timescale of signal propagation, and b is a measure of how

much the function, S(t), deviates from a single exponential and thus

how broadly distributed are the signaling dynamics. Figure 3B

shows how b depends on scaffold concentration. For these

simulations, b,1 for small and large values of scaffold concen-

trations indicating exponential behavior. For intermediate values,

b peaks at a minimum of b,0.6, a significant deviation from

purely exponential behavior.

In the limits of small and large scaffold concentrations, the

presence of a single exponential decay, b,1 indicates that signal

propagation, or the relaxation of S(t/t), occurs at one character-

istic time scale. In the intermediate regime, b shows significant

deviations from one, thus allowing for a broadly distributed signal.

When b is significantly less than one, signals can steadily propagate

over several decades. In this regime, the waiting time distribution

f(t),

f tð Þ:{
dS tð Þ

dt
~ b

t
t
t

� �b
e{ t=tð Þb ,

has a large tail and the activation of kinases is slowly maintained

over many time scales.

A Multistate Kinetic Mechanism Illustrates the
Competition Between the Many Time Scales Involved in
Scaffold-Mediated Cell Signaling

Why do we observe exponential and non-exponential behavior

under different conditions? Signal transduction in our model

occurs on a time scale that is much slower than the microscopic

time scales associated with diffusion, binding/unbinding, and

enzyme catalysis. We might therefore expect that some coarse-

graining exists whereby events at these fast, ‘‘microscopic’’ time

Scaffold-Mediated Signaling Dynamics

PLoS Computational Biology | www.ploscompbiol.org 4 June 2008 | Volume 4 | Issue 6 | e1000099



scales interact with other relevant biophysical parameters (e.g.

scaffold concentration) to give rise to emergent properties that

evolve on slower times scales. These processes are a manifestation

of the collective dynamics of the many processes that occur on

faster time scales. Understanding the factors that govern these

emergent time scales would then provide insight into the origin of

the different temporal characteristics that are revealed by our

simulations.

In order for a signal to propagate (i.e. for the last kinase in the

cascade to become active), a hierarchical sequence of phosphor-

ylation reactions among kinases must occur that leads to the final

kinase in the cascade being activated by its upstream kinases. The

activation process may occur either in solution or on a scaffold.

Also, in the course of signaling, kinases can exchange from a

scaffold. Some kinases are bound to a scaffold that contains an

incomplete assembly of the necessary signaling molecules, and are

not signaling competent. Ultimately, an inactive kinase can exist in

one of three states: in solution, bound to a complete complex, or

bound to an incomplete complex. Figure 4A contains a diagram of

such a minimal picture and arrows denote transitions between the

four states.

This minimalist description clarifies the behavior in Figures 3A

and 3B. For low scaffold concentrations (f%1), kinases predom-

inately exist in solution and signal transduction is dominated by

the time it takes for an upstream kinase to encounter its

downstream enzyme. Since a steady-state ensemble is used, the

rate limiting step for signal propagation is the diffusion limited

collision between an active B* molecule with an inactive C

molecule. For high scaffold concentrations (f&1), kinases

predominately exist in incomplete signaling complexes and signal

transduction is limited by a time scale that characterizes the

turnover of a signaling incompetent complex to one that is able to

signal. For intermediate concentrations, inactive kinases can exist

in each of three states and transitions between these states also

occur. Thus, the source of the nonexponential relaxation (i.e. b,1)

arises from the mixing of many time scales that are relevant for

Figure 2. The concentration of scaffold proteins sets time scales for signal propagation. (A) S(t) as a function of time for different values of

relative scaffold concentration, f (f: ½Scaffold�
½MAP3K �0

). f ranges from 0.005 to 2 times the optimal value. (B) The characteristic time scale t (S(t = t) = e21) is

extracted from the curves in (A), and its variation with f is shown. Two regimes are observed and are separated by an inflection point. (C) Integrated
signal flux R(t) for different values of f.
doi:10.1371/journal.pcbi.1000099.g002

Scaffold-Mediated Signaling Dynamics
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intermediate scaffold concentrations. Figure 4B illustrates this

minimal picture of the kinetics of signal propagation derived from

these physical considerations.

Also note that the sensitivity of our results to changes in model

parameters can be understood from this simple picture of scaffold

mediated signaling dynamics. For instance, changes in kinase and

scaffold concentrations result in changes in the relative amount of

kinases existing in the three states in ways that have been

previously characterized [33,34]. Changes to other parameters

such as the rates of activation and deactivation and the

concentration of phosphatases alter the rates of transitions between

these different states. For instance, if phosphatase concentrations

are very large, then activation in solution is very slow and occurs

predominantly on a scaffold. Also, slower rates of activation (and

larger rates of deactivation) result in a larger portion of signaling

originating from kinases that are bound to scaffolds. In general,

when the activation of kinases originates more (less) predominantly

from a particular state in the minimal model, b increases

(decreases). When multiple pathways to kinase activation contrib-

ute with comparable time scales, b is small, and signaling is

broadly distributed over many time scales. We have performed

many simulations with varying parameters to test the robustness

Figure 3. Scaffold proteins allow for signals to be distributed over many time scales. Variation of the survival probability with time scaled
to characteristic time scales, t. (A) S(t/t) (on a semi-logarithmic scale) for different values of f. Values of f are given in the legend. Large deviations of
exponential decay are observed near the optimal value of f (f = 1, red). (B) Survival probabilities were fit to a stretched exponential function
(S t=tð Þ*e t=tð Þb ). Values of stretching exponent b as a function of scaffold density f are shown. Two cases are considered: (1) kinases can be activated
only while bound to a scaffold (red) and (2) kinases can be activated while in solution and bound to a scaffold (blue). b deviates most from a purely an
exponential (b = 1) at the optimal value of scaffold density (f = 1) in both cases.
doi:10.1371/journal.pcbi.1000099.g003

Figure 4. Dynamics can be characterized by a multi-state kinetic mechanism. Important time scales in scaffold mediated signaling. (A)
Graph of multi-state kinetic model whose dynamics are governed by 8 transitions. Each kinase can transition between four states denoted with four
subscripts: in solution (S), bound to a signaling competent complex (C), bound to a signaling incompetent complex (I), and activated (A). (B) Diagram
depicting how the various processes occurring at fast time scales couple with scaffold concentration f to give rise to collective behavior occurring at
slower time scales.
doi:10.1371/journal.pcbi.1000099.g004

Scaffold-Mediated Signaling Dynamics
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and parameter sensitivity of our findings and find that that the

qualitative behavior of our results follow this simple, qualitative,

physical picture.

Additional insight can be gleaned from consideration of the

power spectrum of S(t). The power spectrum,

P vð Þ: C vð Þj j2

where,

C vð Þ~
ð

eivtS tð Þdt

, computed in the frequency domain, resolves the time scale

dependence of kinase activation. This approach has proven useful

in studying the dynamics of complex biochemical networks in

many contexts [43–45]. We first note that S(t) obtained from the

simulations fits well to the functional form e{(t=t)b

(x2 values small).

Thus, we use the parameters b and t that were extracted from the

fits at low (f = 0.001), optimal (f = 1.0), and high (f = 3.5) scaffold

concentrations to compute P(v) for these three cases.

In Figure 5, (topt)22 P(vtopt) is plotted versus vtopt where the

time topt is the characteristic time scale t for relaxation at the

optimal f = 1scaffold concentration. That is, time is rescaled to

units of topt. For each curve, at lowvtopt%1 frequencies P(vtopt) is

constant (P(vtR0)Rt2) signifying that kinase activation has

become uncorrelated. At high vtopt&1 frequencies, kinase

activation is correlated and a power law decay is observed for

each curve P(vtopt),v22. As a reference, note that for an

exponential decay, S(t) = e2t/t, the transition between these two

regimes occurs at vt,1 and is determined by the Lorentzian:

P vtð Þ~ t2

1z vtð Þ2
:

In Figure 5, for high (f= 3.5, blue) and low (f= 0.001, green)

scaffold concentrations power spectra closely resemble the

Lorentzian with the transition to P(vtopt),v22 behavior occurring

at different frequencies. At low f = 0.001 concentrations, the

inverse time scale or corner frequency at which kinase activation

decorrelates is determined by the diffusion limited rates of

activation and deactivation of the final kinase C*. The corner

frequency can be estimated from

S tð Þ*e{ t=tcð Þ,

where

tcð Þ{1
~ kzzk{ð Þ~O D Ntota½ � :

k+ and k2 are diffusion limited rates of activation and deactivation

and are given by a diffusion limited encounter rate that is on the

order of D Ntota where D is the diffusion constant used in the

simulation, Ntot is the number of proteins, and a is the size of a

protein taken to be the size of a lattice site. Substitution of the

numbers used in the simulation (Table 1 and Methods) achieves a

value for the relaxation time that is commensurate with the

relaxation time for f = 0.001 in Figure 2; i.e., tc,105 mcsteps.

Figure 5. Power spectra for kinase activation at high, low, and optimal scaffold concentrations. Plots of

P vð Þ~ C vð Þj j2 ; C vð Þ~
ð

eivtS tð Þdt where S tð Þ~e{ t=tð Þb , are considered. Three cases are considered: low concentration (f = 0.005, t = 1.96105

mcsteps, b = 1.03), high concentration (f = 3.5, t = 2.26107 mcsteps, b = 0.97), and optimal concentration (f = 1.0, t = 3.06106 mcsteps, b = 0.60). On the
x-axis, frequency is reported in units that are scaled to the characteristic time for the f = 1.0 case, topt = 3.06106 mcsteps. The y-axis contains values of
P(vtopt)/(topt)2.
doi:10.1371/journal.pcbi.1000099.g005

Scaffold-Mediated Signaling Dynamics

PLoS Computational Biology | www.ploscompbiol.org 7 June 2008 | Volume 4 | Issue 6 | e1000099



At high f = 3.5 concentrations, the corner frequency is

determined by rates of formation and disassociation of an intact

signaling complex. Furthermore, because of these many process

that comprise the relaxation rate in this case, a numerical estimate

of the corner frequency is difficult. In the case of the optimal

(f= 1.0, red) concentration, the transition from constant to

P(vtopt),v22 behavior occurs smoothly over many decades from

vtopt,0.1 to vtopt,10.0.

The plot in Figure 5 also resolves different frequency dependent

processes occurring in signal transduction. At high frequencies or

short times, vtopt,10.0, kinase activation is limited by the diffusive

motion of the kinases in the cascade. At intermediate frequencies,

0.1,vtopt,10.0, activation is dominated by transitions between

kinases assembled in competent, incompetent, and solution based

kinases. For low frequencies vtopt,0.1 or long times, kinase

activation decorrelates for each scaffold concentration.

Relationship Between Signal Duration and Computed
First Passage Time Statistics

To illustrate how computed values of S(t) and the distribution of

waiting times for kinase activation relate to conventional means of

defining signal duration, we consider a differential equation for the

time evolution of the activated form of the final kinase within the

cascade. In this picture, species become activated at rates derived

from the functional form that was fitted to the survival

probabilities that were computed from the simulations. The

waiting time or first-passage time distribution f(t) is used as a

forward rate and the activated final kinase then can be degraded

with a kinetics of degradation characterized by a rate constant, kw.

A kinetic equation describing this process is written as:

dx
dt

~
b t=tð Þb

t
e{ t=tð Þb

n o
{kwx:

x is the number of active species, t is the time constant of signal

propagation, and b is the stretching parameter that quantifies

deviations away from single exponential behavior. In this picture,

x(t) represents the average response to a stimulus f(t) that is

distributed temporally according to
b t=tð Þb

t
e{ t=tð Þb and subject to a

first order decay with characteristic time 1/kw.

The equation for x(t) can be solved and using the initial

condition, x(0) = 0:

x tð Þ~
Ðt
0

e{kw(t{t0){ t0=tð Þb b t0ð Þ{1
t0=tð Þbdt0:

x(t) was integrated numerically and is shown for different values of

b in Figure 6A. As seen in Figure 5A, decreasing values of b result

in the trajectories having longer tails and thus an extended

duration of signaling. Also, smaller values of b result in the signal

having a larger peak. This property directly follows from the decay

of S(t) that was shown in Figure 3A for different values of b. At

early times, S(t) decays more quickly when b is smaller; as a

consequence, more kinases are activated at these times, thus

resulting in a larger peak.

This concept of signal duration can be made more precise by

considering a threshold amount of signal, T, that is required for

the pathway to be considered active. With a chosen value of T, the

signal duration, u, is defined as the time it takes for the signal to

decay to some threshold value, T. That is, the equation

T~
Ðu
0

e{kw(u{t0){ t0=tð Þb b t0ð Þ{1
t0=tð Þbdt0:

is satisfied. Figure 6B shows the signal duration, u, as a function b
for values of b ranging from 0.5 to 1 for different values of T. For

smaller values of T, b,1 (i.e., scaffolds are present) results in a

large increase in signal duration compared to the case in which

b = 1. Therefore for a fixed value of t, the most broadly distributed

signal leads to the longest signal duration.

Discussion

We first showed that scaffold concentration is a key variable in

regulating the speed of signal transduction. Moreover, we showed

that the concentration of a scaffold protein can influence signaling

dynamics by controlling the distribution of times over which

kinases become active. This type of regulation may have many

important consequences that are related to the influence of signal

duration on cell decisions. Controlling the times over which

kinases are activated may also be useful in directing a specific,

robust response in a number of ways. Thus, the scaffold

concentration itself provides another variable for maintaining

signal specificity by controlling signal duration. This is consistent

with data from genetic studies involving KSR1 [9,10], where the

authors reported that the concentration of KSR1 can control a cell

decision involving commitment to adipogenesis.

Figure 6. Relation between first passage time statistics and
signal duration. (A) Trajectories of x(t) on a semi-log plot. The abscissa
represents time scaled by the characteristics time t. Trajectories for
three values of b are shown: b = 0.06 (blue), b = 0.8 (green), and b = 1.0
(red). kw = 5 for each curve. Smaller values of b result in larger values of
x(t) at longer times. (B) Values of signal duration as a function of b for
different choices of threshold, T (defined in text); values of T are
provided in the legend. For small values of T, b,1 (i.e., the presence of
scaffolds) markedly increases signal duration.
doi:10.1371/journal.pcbi.1000099.g006
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Our study focused solely on aspects of scaffold mediated

regulation of signal transduction and we only considered the times

at which kinases are active in the course of signal transduction.

Many other factors also control signal duration. For example, our

study does not consider the negative feedback loops that are often

associated with the upregulation of phosphatases [18,32]) or the

role of receptor downregulation in controlling signal duration.

Also we did not explicitly consider the role of positive versus

negative feedback loops in shaping signal duration which is

undoubtedly important [30]. It was our focus to study how

spatially localizing kinases on a scaffold protein influences signal

duration. We aimed to untangle this effect of scaffold proteins

from other essential features of kinase cascades such as allostery

and feedback regulation. Also, other theoretical studies have

investigated the first passage time statistics in signal transduction

cascades and have found interesting dynamics that result from, in

part, the sequential activation of multiple steps in a kinase cascade

[35,36]. Our studies of signaling through scaffold proteins

supplement these findings and, to our knowledge, provide the

first study that shows how scaffolds affect the statistics of signal

transduction.

Several predictions from our model of how scaffolds regulate

signaling dynamics can be tested. Measurements that monitor the

time course of signaling for different scaffold concentrations could

potentially resolve the differences in signaling dynamics that are

predicted. Also, single molecule or fluorescence correlation based

spectroscopic methods [46–48] could potentially probe the

statistics of signaling dynamics inherent in kinase cascades and

study how such statistics are related to reliable cell decisions. Such

techniques can monitor the propagation of a signal, at the level of

an individual molecule and thus directly measure how kinase

activation within a single cell is distributed over time.

Methods

Kinetic Monte Carlo Simulations
We simulate a model protein kinase cascade such as the

mitogen-activated protein kinase (MAPK) cascade (Figure 1A) in

the presence and absence of a scaffold with a kinetic Monte Carlo

algorithm [49,50], which allows us to monitor the relevant

stochastic dynamics. Since we are investigating phenomena that

occurs on the time scales of signal transduction, we course-grain

the system so that proteins are represented as discrete objects,

occupying a site on a lattice of dimensions 10061006100 lattice

spacings. Scaffold proteins are modeled as rigid, immobile objects

containing three binding sites that are each specific for a particular

kinase. When bound to a scaffold, kinases are tethered in nearest

neighbor positions that are proximal to their downstream

substrates. Allowing the scaffold and scaffold-bound species to

move does not affect the qualitative results. Reflecting, no flux

(i.e.Neumann) boundary conditions exist at each of the faces of the

cubic lattice. The system is not periodically replicated since our

simulation box is a size on the order a cell. Proteins can diffuse (i.e.

translate on the lattice in random directions), bind and unbind,

and undergo state transformations according to the prescribed

reaction network involving a three staged cascade of activation

and deactivation events (Figures 1A and 1B). Protein motion is

subject to excluded volume (steric) constraints in that no two

proteins can occupy the same site on the lattice. Chemical (state)

transformations and binding events are modeled as thermally

activated processes with energy barriers for activation, inactiva-

tion, binding and unbinding reactions. Parameters used are given

in Table 1.

We simulate the dynamics with a fixed time step Monte Carlo

algorithm. In a Monte Carlo step, n trials are attempted, where n

is the number of proteins in the simulation. For a given trial, a

protein is first chosen at random with uniform probability. A

displacement move in a uniformly random direction is attempted

with probability,

P(diffusion)~
1

2d
Deff minf1, exp ({E?)g

where d is the dimensionality of the simulation box, Deff is the

probability of attempting a diffusion move and sets an overall time

scale to diffuse the length of a lattice site. Excluded volume is

accounted for by imposition of an infinite energy barrier, E‘, for

hopping to sites containing other proteins; i.e.

E?~
0 ; site is empty

? ; site is occupied

� �
:

Upon considering all possible nearest neighbor interactions,

reaction moves, as determined by the network topology, are tried

with probabililty,

P(reaction)~keff minf1, exp ({Ej,j0 )g

where keff is the probability of attempting a reaction move; (keff sets

an overall reaction time scale), Ej,j9 is the energy barrier for the

j9Rj reaction scaled with respect to kbT (Boltzman’s thermal

energy). With this Monte Carlo move set, the simulations formally

evolve the dynamics of the probability P r
? jsi,j ; t
� �

that a chemical

species si,j of type i and state j at position r
?

at time t according to

the Master equation

L
Lt

P r
? jsi,j ; t
� �

~
X

r0
?

vi,j r
? j r0

?
� �

P r0
?
jsi,j ; t

� �

{
X

r0
?

vi,j r0
?
j r
?

� �2
4

3
5P r

? jsi,j ; t
� �

z
X

j0
a r

?
; jjj0

� �
D r

?
{ r

?
k

� �
P r

? jsi,j0 ; t
� �

{
X

j0
a r

?
; j0jj

� �
D r

?
{ r

?
k

� �" #
P r

? jsi,j ; t
� �

z
X

r0
?

X
j00

b r
? j r0

?
; jjj00

� �
H r0

?
; i0ji00; t

� �
P r

? jsi,j00 ; t
� �

{
X

r0
?

X
j00

b r
? j r0

?
; j00jj

� �
H r0

?
; i0ji00; t

� �
P r

? jsi,j00 ; t
� �

where vi,j r
? j r0

?
� �

is the transition probability per unit time for a

displacement from r!0 to r! of species si,j ;

vi,j r
? j r0

?
� �

~
Deff

2d
minf1, exp ({E?)g; a r

?
; jjj0

� �
is the per unit

time transition probability at r! for a species si,j9 to change to state
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si,j (e.g. binding and unbinding reactions) and is

a r
?

; jjj0
� �

~keff minf1, exp ({Ej,j0 )g, and D r
?

{ r
?

k

� �
imposes

the constraint that binding and unbinding occurs only at specified

binding sites on the scaffolds at positions r
?

k
( D r

?
{ r

?

k

� �
is zero

unless a scaffold is located at position r
?

~ r
?

k
; and

b r
? j r0

?
; jjj00

� �
~keff minf1, exp ({Ej,j00 ) is the transition proba-

bility per unit time for a species at r!0 to facilitate (i.e. catalyze) the

j0Rj transformation at site r!; and H r0
?

; i0ji00; t

� �
is zero unless the

site at r!0 is occupied by the appropriate catalyst (i.e. i9 = i0) in

which case it is 1; each summation indicates a sum over nearest

neighbors.

Parameters Used
The parameters used in the simulation were first constrained to

typical literature values. Energies of disassociation were taken to be

12kbT corresponding of a disassociation constant Kd of roughly 1 mM.

200 stimulatory molecules, S, 200 molecules of kinase A and a 1:1:5

ratio of A, B, and C kinases was used. If we assume a lattice spacing of

10nm, a typical diameter of a protein, the concentration of kinases in

our simulation box is roughly 1 mM for kinase A and kinase B and

,5 mM for kinase C. In a physiological context, assuming the radius

of the cell is about 10 mm, this approximately corresponds to ,105

molecules of kinases A and B and a copy number of ,56105 for

kinase C in our simulation. 600 generic phosphatases are also present.

These relative numbers are commensurate with reported kinase

concentrations in Yeast and other systems [51,52]. Chemical kinetics

were modeled in the simplest possible way by considering a single

elementary reactive collision; i.e.,

A�zB?A�zB�

where the asterisk (*) denotes an active species. For the purposes of

our simulations, saturation effects were ignored and the kinetics were

taken to be in a linear regime. Such a model is reasonable when

reactions are not limited by the availability of the enzyme. However,

relaxing this assumption does not affect the qualitative behavior of

our results provided that the times scales involved in the formation of

an enzyme-substrate complex and subsequent catalysis do not

compete with the diffusive processes in solution. If additional

processes associated with enzyme catalysis dominate over diffusive

motion of the proteins or binding and unbinding to and from the

scaffold, then these process would be observed in the autocorrelation

function and corresponding power spectrum. Given that catalysis

would incorporate additional processes into the mechanism of kinase

activation, such effects would serve to broaden the distribution at all

scaffold concentrations as we have observed in our simulations (data

not shown). We did not explore this scenario in its entirety since our

aim was to solely investigate the effects of scaffolding a kinase cascade.

As discussed in a previous study [33], an important variable that

determines the role of scaffolding a kinase cascade is the amount of

time required (tec) for an active kinase to encounter its downstream

target. For simple diffusion, in three dimensions, tec*
1

DC2=3

where D is the diffusion constant and C is a typical concentration

of kinases. Experiments indicate that tec is on the order of 1024s–

100 s [42]. Our studies focused on these experimentally relevant

conditions.

Steady-state values are reported. The system is first placed in a

random configuration and simulations are allowed to ‘‘equili-

brate’’ by letting the dynamics evolve to a time much larger than

the time it takes for a kinase to diffuse the length of the simulation

box. Kinases that are inactive at time t9 are tagged and waiting

times are observed at time t+t9 (i.e. statistics are collected for the

times at which the kinases become activated), and t9 is chosen to be

a time longer than the time required for equilibration of the Monte

Carlo trajectory.

Calculation of Statistical Quantities
Signaling dynamics can be defined microscopically as the

distribution of times at which an individual kinase among of pool

of available kinases becomes activated. Therefore, we quantify

signaling dynamics by first considering the survival probability S(t).

S(t) gives the probability that a particular kinase among the pool of

signaling molecules has not been activated at time t provided that

it was inactive at time t = 0. S(t) is a two time point autocorrelation

function:

S tð Þ~Ss tð Þs 0ð ÞT,

where the brackets denote an ensemble average and s(t) is a binary

variable indicating the state of a kinase; i.e.,

s tð Þ~
0 ; kinase is active

1 ; kinase remains inactive

� �
:

The survival probability is related to other dynamical

properties; for instance, it can be related to a waiting time

probability density function or first passage time distribution, f(t),

in the following way:

S tð Þ~
ð?
t

f t0ð Þdt0~1{

ðt
0

f t0ð Þdt0 and f tð Þ~{
d

dt
S tð Þ:

S(t) is the complement of the cumulative probability distribution

of the first passage time. S(t) is computed from the simulations by

integrating f(t). Such a calculation is analogous to the data

obtained from a single molecule experiment that measures the

statistics of enzyme dynamics [46]. This distribution of waiting

times underlies the intrinsic duration of signal propagation in a

protein kinase cascade—the decay of such a quantity is a measure

of how fast the signaling cascade responds to stimuli. Important to

note is that this quantity gives information only on the timing of

the signal and not on its final magnitude. We also consider the

product of the survival probability with the probability that a

kinase in the pool of signaling molecules is active in the steady

state,

R tð Þ~fASs tð Þs 0ð ÞT,

where fA is the fraction of active kinases at steady state. When

normalized, R(t) is a measure of how the activity of the total pool of

kinases is distributed over time, and can be thought of as an

integrated flux of activated kinases. {
d

dt
R tð Þ is seen as a reactive

flux in provides a measure of the rate at which downstream kinases
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are being activated. One can imagine that both quantities could be

biologically relevant. If conditions dictate that a biological

response requires that a certain number of kinases remain active

for extended amounts of time, R(t) may be the more relevant

quantity. On the other hand if the cellular decision requires a

count of kinases that become active over a specified time window,

then S(t) could be the relevant quantity since it provides a measure

of how the activation of individual kinases is distributed over time.

Both quantities may be used to integrate signals in different

contexts but since our study focuses on signaling dynamics we

primarily focus on the survival probability and its related

quantities.

Power spectra were computed numerically. Real and imaginary

parts of the Fourier transform were obtained from numerical

integration using the trapezoidal rule with a step size Dt = 0.001.

P(v) is calculated by squaring the real and imaginary parts of X(v)

P vð Þ~ ReX vð Þ½ �2z ImX vð Þ½ �2:

P(v) was sampled at N = 100 logarithmically spaced (i.e.,

vmax = v0 (10d(n21)); nM[1,100] so that d~
1

N{1
log

vmax

v0

	 

)

angular frequencies beginning at: v0~
2p

T
, where T is the total

length of the autocorrelation function.
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