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Abstract

We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human
listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific
relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the
speech signal. We applied a novel modulation filtering technique to recorded sentences to restrict acoustic information
quantitatively and to obtain a joint spectrotemporal modulation transfer function for speech comprehension, the speech
MTF. For American English, the speech MTF showed the criticality of low modulation frequencies in both time and
frequency. Comprehension was significantly impaired when temporal modulations ,12 Hz or spectral modulations ,4
cycles/kHz were removed. More specifically, the MTF was bandpass in temporal modulations and low-pass in spectral
modulations: temporal modulations from 1 to 7 Hz and spectral modulations ,1 cycles/kHz were the most important. We
evaluated the importance of spectrotemporal modulations for vocal gender identification and found a different region of
interest: removing spectral modulations between 3 and 7 cycles/kHz significantly increases gender misidentifications of
female speakers. The determination of the speech MTF furnishes an additional method for producing speech signals with
reduced bandwidth but high intelligibility. Such compression could be used for audio applications such as file compression
or noise removal and for clinical applications such as signal processing for cochlear implants.
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Introduction

Human speech, like most animal vocalizations, is a complex

signal whose amplitude envelope fluctuates timbrally in frequency

and rhythmically in time. Horizontal cross-sections of the speech

spectrogram as in Figure 1A describe the time-varying envelope

for a particular frequency while vertical cross-sections at various

time points show spectral contrasts, or variation in the spectral

envelope shape (Audio S1). Indeed, the structure in the

spectrogram of speech is not characterized by isolated spectro-

temporal events but instead by sinusoidal patterns that extend in

time and frequency over larger time windows and many frequency

bands. It is well known that it is these patterns that carry important

phonological information, such as syllable boundaries in the time

domain, formant and pitch information in the spectral domain,

and formant transitions in the spectrotemporal domain as a whole

[1]. In order to quantify the power in these temporal and spectral

modulations, the two-dimensional (2D) Fourier transform of the

spectrogram can be analyzed to obtain the modulation power

spectrum (MPS) of speech [2,3]. In this study, first we repeated this

analysis using a time-frequency representation that emphasized

differences in formant structure and pitch structure. Then we used

a novel filtering method to investigate which spectral and temporal

modulation frequencies were the most important for speech

intelligibility. In this manner we obtained the speech modulation

transfer function (speech MTF). We were then able to compare the

speech MTF with the speech MPS in order to interpret the effect

of modulation filters on perception of linguistic features of speech.

Our study both complements and unifies previous speech

perception experiments that have shown speech intelligibility to

depend on both spectral and temporal modulation cues, but to be

surprisingly robust to significant spectral or temporal degradations.

Speech can be understood with either very coarse spectral

information [4–8] or very coarse temporal information [9–11].

Our goal was to unify spectral and temporal degradation

experiments by performing both types of manipulations in the

same space, namely, the space of joint spectrotemporal modula-

tions given by the speech MPS. The approach makes advances in

the rigor of signal processing, in the specificity of the manipula-

tions allowed, and in the comparison with speech signal statistics.

First, the approach depicts visually and quantifies the concomitant

effects that temporal manipulations have on the spectral structure

of the signal, and that spectral filtering has on temporal structure.

Second, the technique offers the possibility of notch filtering in the

spectral modulation domain, something which has not been done

before. Whereas degradation by low-pass filtering can reveal the

minimum spectral or temporal resolution required for compre-

hension, notch filtering can distinguish more limited regions of

spectrotemporal modulations that differ in levels of importance for

comprehension. Third, the modulation filtering technique can be

used to target specific joint spectral and temporal modulations. In

this study, this advantage was exploited in a two-step filtering
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procedure to measure the effects of precise temporal and spectral

degradations in the range of modulations most important for

intelligibility. In this procedure, we first removed potentially

redundant information in higher spectral and temporal modula-

tions, and then we applied notch spectral or temporal filters within

the remaining modulation space. Finally, we were able to compare

the results of the speech filtering experiments to the MPS of

speech, in order to make an initial characterization of the speech

MTF in humans. As far as we know, this is the first such

comparison using a linear frequency axis and a modulation

transfer function obtained directly from speech intelligibility

experiments. The resultant speech MTF could be used to design

more optimal speech compression such as that required by

cochlear implants.

Neurophysiological research on animal perception of modula-

tions inspired our study. While the cochlea and peripheral

auditory neurons represent acoustic signals in a time-frequency

decomposition (a cochleogram), higher auditory neurons acquire

novel response properties that are best described by tuning

sensitivity to temporal amplitude modulations and spectral

amplitude modulations (reviewed in [12] and [13]). By designing

human psychological experiments using the same representations

used in neurophysiological research, we can begin to link brain

mechanisms and human perception.

Speech signals carry information about a speaker’s emotion and

identity in addition to the message content. As a final thrust of

investigation, we tested whether modulations corresponding to

acoustic features embedded in the speech signal enabled listeners

to detect the gender of the speaker. Vocal gender identity has been

shown to depend on some spectral features in common with, and

some distinct from, the spectral features conferring speech

intelligibility [14,15].

Results

Spectrotemporal modulations underlying speech intelligibility

and gender recognition were assessed in psychophysical experi-

ments using sentences in which spectrotemporal modulations had

been systematically filtered. Since our psychophysical experiments

were in large part inspired by our analysis of the spectrotemporal

modulations of speech, we begin by reporting the resulting

modulation space. We will describe the characteristics of the MPS

of speech and emphasize which characteristics are general to

natural sounds, which are general to animal vocal communication

signals, and which ones are more unique to human speech. The

goal of the psychophysical experiments was to determine the

subset of perceptible modulations that contribute exceptionally to

speech intelligibility.

Modulation Power Spectrum of Speech
The MPS of American English (Figure 1C) was calculated from

a corpus of 100 sentences (see Materials and Methods). This

speech modulation spectrum shares key features observed in other

natural sounds. As in all natural sounds, most of the power is

Figure 1. Component spectrotemporal modulations make up
the modulation spectrum. (A) Spectrogram of a control condition
sentence, ‘‘The radio was playing too loudly,’’ reveals the acoustic
complexity of speech (Audio S1). All supporting sound files have been
compressed as .mp3 files for the purpose of publication; original .wav
files were used as stimuli. (B) Example spectrotemporal modulation
patterns circled in the sentence (A) can be described as a time-varying
weighted sum of component modulations. (C) The MPS shows the
spectral and temporal modulation power in 100 sentences. The outer,
middle, and inner black contour lines delineate the modulations
contained in 95%, 90%, and 85% of the modulation power, respectively.
Down-sweeps in frequency appear in the right quadrant, whereas
upward drifts in frequency are in the left quadrant. Slower temporal
changes lie near zero on the axis, while faster changes result in higher
temporal modulations towards the left and right of the graph.
doi:10.1371/journal.pcbi.1000302.g001

Author Summary

The sound signal of speech is rich in temporal and
frequency patterns. These fluctuations of power in time
and frequency are called modulations. Despite their
acoustic complexity, spoken words remain intelligible after
drastic degradations in either time or frequency. To fully
understand the perception of speech and to be able to
reduce speech to its most essential components, we need
to completely characterize how modulations in amplitude
and frequency contribute together to the comprehensi-
bility of speech. Hallmark research distorted speech in
either time or frequency but described the arbitrary
manipulations in terms limited to one domain or the
other, without quantifying the remaining and missing
portions of the signal. Here, we use a novel sound filtering
technique to systematically investigate the joint features in
time and frequency that are crucial for understanding
speech. Both the modulation-filtering approach and the
resulting characterization of speech have the potential to
change the way that speech is compressed in audio
engineering and how it is processed in medical applica-
tions such as cochlear implants.

Modulation Transfer Function of Speech
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found for low modulation frequencies and decays along the

modulation axes following a power law [3]. Moreover, as typical of

animal vocalizations, the MPS is not separable; most of the energy

in high spectral modulations occurs only at low temporal

modulation, and most high temporal modulation power is found

at low spectral modulation [3,16]. This characteristic non-

separability of the MPS is due to the fact that animal vocalizations

contain two kinds of sounds: short sounds with little spectral

structure but fast temporal changes (contributing power along the

x-axis at intermediate to high temporal frequencies), and slow

sounds with rich spectral structure (found along the y-axis at

intermediate to high spectral frequencies). In normal speech, this

grouping of sounds corresponds roughly to the vocalic (slow

sounds with spectral structure, produced with phonation) and non-

vocalic acoustic contrasts (fast sounds with less spectral structure,

produced without phonation). Animal vocalizations and human

speech do have sound elements at intermediate spectrotemporal

modulations, but these have less power (or in other words are less

frequent) than expected from the power (or average occurrence) of

spectral or temporal modulations taken separately, reflecting the

non-separability of the MPS.

An additional aspect of human speech is that modulations

separate into three independent areas of energy along the axis of

spectral modulation, at low temporal modulation (Figures 1C and

2). First, the triangular energy area at the lower spectral

modulation frequencies corresponds to the coarse spectral

amplitude fluctuations imposed by the upper vocal tract, namely

the formants and formant transitions (labeled in Figure 2B). The

other two areas of spectral modulation energy, found at higher

levels, correspond to the harmonic structure of vocalic phones

produced by the glottal pulse; this energy diverges into two areas

because of the difference in pitch between the low male voice

(highest spectral modulations) and the higher female voice (more

intermediate spectral modulations). The lower register of the male

voice produces higher spectral modulations because of the finer

spacing of harmonics over that low fundamental. Equivalent

pitches corresponding to the spectral modulations are labeled

parenthetically in white on the y-axis of Figure 2. The MPS can

also be estimated from time-frequency representations that have a

logarithmic frequency axis (see Materials and Methods, and Figure

S1). Although log-frequency representations are better models of

the auditory periphery, the linear-frequency representation is

more useful for describing the harmonic structure present in

sounds. For example, the separation of the spectral structure of

vocalic phones into three regions is a property that is observed

only in the linear frequency representation (Figure S1).

Thus, in the speech MPS with linear frequency, not only do

vocalic and non-vocalic sounds occupy different regions within the

modulation space, but the spectral modulations for vocalic sounds

corresponding to formants and male and female pitch occupy

distinct regions. Also, human speech is symmetric between positive

and negative temporal modulation frequencies, showing that there

is equal power for upward frequency modulations (Figure 1C, left

quadrant) and downward frequency modulations (right quadrant).

Psychophysical Experiments in Spectrotemporal
Modulation Filtering

Our modulation filtering methodology allowed us not only to

rigorously degrade speech within its spectral and temporal

structure but also to relate the results from the degradation to

acoustic features of the signal that are important for different

percepts, as described above. Our psychophysical experiments are

organized in three sections. We first report results from the two

sets of modulation filters applied to the whole spectrotemporal

modulation spectrum of speech—low-pass filters and notch

filters—which indicated a subset of modulations that are critical

for speech understanding, thereafter designated the ‘‘core’’

modulations. Subsequently, we report results from notch filters

applied to sentences containing only core modulations, further

refining our identification of crucial spectrotemporal modulations.

Low-pass modulation filtering. We scored the number of

words reported correctly from sentences with low-pass filtered

spectral or temporal modulations (see Materials and Methods for

the modulation filtering procedure) at cutoff frequencies roughly

logarithmically distributed across the speech MPS (Figure 3).

Sentences were embedded in noise and played back at 3 different

levels of signal-to-noise ratio (SNR). Comprehension dropped off

significantly at around 4 cycles/kHz low-pass cutoff spectral

frequency, and at 12 Hz in the temporal domain, with a further

significant decrease at 6 Hz. Gray shading in the thumbnails of the

modulation spectrum show the modulations of speech that were

low-pass filtered spectrally (Figure 3A), or temporally (Figure 3B).

The line graphs (Figure 3C and 3D) show mean6s.e. performance

on the sentence comprehension test for the spectral and the

temporal conditions, at the three SNRs. Spectrograms of the

example sentence from Figure 1 show extreme spectral (0.5 cycles/

kHz, Figure 3E, Audio S2) and temporal smearing (3 Hz,

Figure 3F, Audio S3), in addition to the spectral smearing (4

cycles/kHz, Figure 3G, Audio S4) and temporal smearing (12 Hz,

Figure 3H, Audio S5) conditions at which comprehension

decreased significantly in comparison to control.

Together, the results from the spectral and temporal domains

suggested that there exists a region, or ‘‘core’’, of modulations

below ,4 cycles/kHz and ,8 Hz that are essential for

comprehension. Sentences containing only these core modulations

served afterwards as a control condition and as starting material

for further notch filtering. In a separate experiment, we also

applied low-pass spectral filtering using spectral modulations

obtained from a logarithmic frequency axis in the time-frequency

representation (see Figure S1). Those data show that spectral

modulations below 2 cycles/octave are important (for a center

frequency of 500 Hz, 2 cycles/octave = 4 cycles/kHz). Finally, we

also examined the effect of low-pass modulation filtering on

nuclear vowel (h/V/d) and consonant discrimination (/C/a).

Vowels were less affected by temporal filtering and consonants

were less affected by spectral filtering (data not shown).

Notch modulation filtering. Next, we tested the effect of

notch filters on speech comprehension. The widths of the notch

filters were designed to be logarithmically proportional because

the modulation power in the signal decreases following a power

law from the origin in both the spectral and temporal dimensions

[3]. Also, psychophysical experiments suggest that the Q factor of

the human temporal modulation filter is constant for frequencies

up to 64 Hz [17], and comparative judgments of auditory

duration follow Weber-Fechner’s law [18,19]. All notch filtering

experiments were performed at the intermediate SNR level of

+2 dB.

As in Figure 3, thumbnails of the modulation spectrum in

Figure 4 depict filtered areas layered in transparent gray. Note that

temporal notch filters removed both positive and negative

modulations, appearing as symmetric grayed areas (Figure 4B).

Bar graphs (Figure 4D and 4E) show average6s.e. word

comprehension. Light gray bars in these graphs denote the control

condition (spectrogram inversion without modulation filtering) and

the core condition in which inessential modulations were removed,

by first low-pass filtering at 3.75 cycles/kHz and then at 7.75 Hz

(Figure 4C and 4G). Dark gray bars in the graphs show the

performance for each of the five spectral (Figure 4A; see one

Modulation Transfer Function of Speech
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example in Figure 4F, Audio S6) and five temporal notch

modulation filters (Figure 4B).

Comprehension of core modulations was 75% word recognition

(example sentence spectrogram in Figure 4G, Audio S7). Of the

spectrally delimited filtering, only the removal of modulations

below 1 cycles/kHz significantly decreased sentence comprehen-

sion relative to control performance (Figure 4D). In the temporal

domain, the 7–15 Hz notch filter caused a small but significant

decrease in intelligibility, yielding performance that was at a level

similar to the core condition (Figure 4E). More importantly, the

removal of intermediate temporal modulations (either from 1–

3 Hz or from 3–7 Hz) produced a significantly greater decrement

in performance (Figure 4E and 4F).

Notch filtering of the ‘‘core’’ modulations. Since the

initial low-pass filtering experiment had revealed that spectral

modulations below ,4 cycles/kHz and temporal modulations

below ,8 Hz are essential for comprehension, we limited

modulations to this core spectrotemporal range (,3.75 cycles/

kHz and ,7.75 Hz) and further applied notch filters to test which

core modulations contribute most to comprehension. This dual

filtering allowed us to remove potentially redundant information

found at modulations outside of the core.

Figure 4C shows the core of modulations (right thumbnail is a

zoom-in of left thumbnail; the magnified scale is used in the

thumbnails of Figure 5A and 5B). Sentences limited to the core

modulations provided the control condition since in this

experiment the notch filters were applied to them (Figure 5A

and 5B) instead of to sentences without any of the perceptible

modulation spectrum previously removed (as in the other

experiments; Figure 3A and 3B). As explained above, the

grayed areas in the thumbnail modulation spectra (Figure 5A

and 5B) show which modulations were removed in each

condition. Notch boundaries were again logarithmically spaced.

There were only four spectral notches because the core

modulations are already more limited in the spectral than the

temporal domain.

Notch filters removing any of the core spectral modulations

resulted in a decrease in intelligibility but this was especially true

for the notch at the lowest modulation frequency (below 0.25

cycles/kHz) (Figure 5C). In the temporal dimension, any of the

three temporal modulation notch filters above 0.75 Hz resulted in

a decrease in performance, but in this case the effect was greater

for higher temporal modulations (above 1.75 Hz), significantly

decreased comprehension (Figure 5D).

Figure 2. Spectral modulations differ in male and female speech. (A,B) The MPS of the 50 corpus sentences spoken by males (A), and of the
50 spoken by females (B), with black contour lines as in Figure 1. White parenthetical labels on the y-axes of (A) and (B) show related frequencies
demarcating the male and female vocal registers; they correspond to spectral modulations based on harmonic spacing. (C,D) Modulation filters that
resulted in misidentification of the speaker’s gender. (C) the speech MPS for female speakers is overlapped with the boundaries of the low-pass
spectrotemporal filter. In this condition, speaker gender was misidentified in a quarter of the sentences, with 91% of those errors being females
misidentified as male. (D) the same female speech MPS overlapped with a notch filter that removed modulations from 3 to 7 cycles/kHz. Of the 21%
gender errors in this condition, 95% were female speakers misidentified as male.
doi:10.1371/journal.pcbi.1000302.g002
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The results of the notch filtering experiments show firstly that

intermediate temporal modulations between 1 and 7 Hz are

critical for speech intelligibility, whereas lower or higher temporal

modulations are less critical. Secondly, the very low spectral

modulations that we tested appeared to be critical. The human

speech intelligibility transfer function appears therefore to show a

band-pass tuning in the temporal domain and a low-pass tuning in

the spectral domain.

Gender Identification
Subjects reported the gender of the speakers of the notch-

filtered sentences. Even though sentences having modulations

restricted to the ‘‘core’’ (Figures 4D and 5C) were well

comprehended, gender identification of the speakers of these

sentences fell to 77%, where chance would be 50%. Of the gender

errors, 91% occurred when the speaker was female. When

modulations outside the core were spared, the notch-filter of

spectral modulations between 3 and 7 cycles/kHz (Figures 2C and

4F) significantly decreased gender identification (to 79%). Of these

misidentified speakers, 95% were female. Both the core condition

and this spectral notch condition lacked modulations in the 3–7

cycles/kHz range, where female speech has more power (core

spectral modulations are below 3.75 cycles/kHz). Male speech has

more power shifted to higher spectral modulations (6–11 cycles/

kHz). Thus, spectral modulation filters in the uniquely male range

produced no significant decrease in gender identification. These

results can be explained by the fact that whenever the filtered

sentences lacked spectral modulation information unique to the

female vocal register, subjects guessed that the speaker was male.

Discussion

This study attempts to use dynamic properties of sound, rather

than the traditionally stereotyped cues of acoustic phonetics, to

refashion a parsimonious account of speech perception. Specifi-

cally, we used a novel filtering technique to remove spectro-

temporal modulations from spoken sentences in order to isolate

the acoustic properties critical for identifying linguistic features

and for recognizing gender as a personal attribute of the voice.

We first systematically degraded sentences by filtering specific

temporal and spectral modulation frequencies and then examined

the effect on the number of words comprehended. As we will

discuss in more detail below, our study replicates, but also has

several advantages over, previous degradations performed in the

temporal or spectral domain alone. First, it provides a rigorous

mathematical framework to precisely quantify what is being

removed from the speech signal. Second, the framework unifies

manipulations across two lines of research that are otherwise

described orthogonally, namely AM and FM filtering [20]. Finally,

we can make a direct connection between the acoustical space we

manipulated and the information-bearing features of speech

distributed in each particular region [21].

In the MPS of American English (our prototype for human

speech), the distinctive non-separable distribution of energy—

namely, close to the x and y axes—corresponds roughly to a

division between vocalic and non-vocalic sounds [3,16,21]. Non-

vocalic phones in speech tend to be rapid and to have little spectral

structure whereas vocalic phones are longer and have more

spectral structure. Our categorization of speech sounds along the

spectral and temporal axes of the MPS remains, of course, rather

coarse. For example, voicing is associated with multiple acoustic

properties and is only one of the linguistic features (e.g., place of

articulation, manner, rounding) needed in order to categorize

phonemes [22]. A more detailed analysis of the MPS of individual

phonemes or simple combinations of phonemes would further

illustrate the usefulness of this methodology for speech analysis

[21].

Within the spectral structure especially associated with vocalic

sounds, we also found a clear separation between pitch

information and phonetic information (formants and formant

transitions). The separation of the formant spectral frequencies

from the pitch spectral frequencies had been described before and

is one reason that cepstral analysis works well for the determina-

tion of formant frequencies [23]. In the discussion that follows, we

will relate performance on the comprehension task to the acoustic

features of speech we filtered from the MPS.

Our low-pass spectral-modulation filtering experiment shows

that speech intelligibility begins to degrade significantly when

modulations below 4 cycles/kHz are removed. Not surprisingly,

this definitive point corresponds to the upper extent of the area in

the speech MPS occupied by energy associated with formants

(Figures 1 and 2). The separation between formant peaks in

English vowels is greater than 500 Hz (or 2 cycles/kHz) [24], but

finer spectral resolution (up to 4 cycles/kHz) would be beneficial to

capture further the overall spectral shape of the formant filters and

to detect formant transitions.

There is a large literature on how spectral degradation affects

speech comprehension, the most similar studies being those of

Shannon and Dorman and colleagues [5,6] who have investigated

speech intelligibility with very limited spectral resolution as one

would experience with a cochlear implant. Shannon et al. [6]

reported that speech intelligibility in a noise-free setting was fully

preserved with spectral structure present in only 4 frequency

channels below 4 kHz. These spectral bands would correspond in

our implementation to a low-pass filter cutoff of approximately 1

cycles/kHz, or 1.7 cycles/octave, which is below the level needed

for fully resolving formant spectral peaks and considerably below

our cutoff of 4 cycles/kHz (or 2 cycles/octave as shown in Figure

S1). However, when noise is present, Friesen et al. have shown that

intelligibility increased with additional spectral channels [25]. In

that study, for 0 dB SNR, 16 channels spaced below 6 kHz (or

approximately 3.75 cycles/kHz) yielded significant additional

comprehension over that of more degraded speech with fewer

frequency channels. Our results are consistent with that result, and

Figure 3. Comprehension of low-pass modulation filtered sentences. (A,B) Grayed areas of thumbnails show spectrotemporal modulations
removed by low-pass modulation filtering in the spectral (A) or temporal (B) domain. Units and axis ranges are the same as in Figure 2. Each
thumbnail represents a stimulus set analyzed in (C,D). (C,D) Mean6s.e. performance in transcribing words from the low-pass modulation filtered
sentences. Cutoff frequencies on the x-axes of the two graphs are presented in units appropriate to the spectral or temporal domain, but could
equally well be viewed on one continuous scale in either unit. Symbols show SNR levels. Dashed line shows control performance at +2 dB SNR;
dotted line shows control performance at 23 dB SNR. Points at cutoff frequencies which share no capital letters in common (above line plots) are
significantly different (repeated measures ANOVA, Bonferroni post-hoc correction, p,0.0008) at the +2 dB SNR condition. (E and G) Spectrograms of
an example sentence (same as in Figure 1) with the most extreme spectral modulation filtering (with a low-pass cutoff of 0.5 cycles/kHz; Audio S2)
and the spectral modulation filtering at which comprehension became significantly worse (4 cycles/kHz; Audio S3), respectively. LP = Low-pass. (F and
H) Spectrograms of the example sentence with the most extreme temporal modulation filtering tested (having a low-pass cutoff of ,3 Hz; Audio S4),
and the temporal modulation filtering at which comprehension became significantly worse (cutoff 12 Hz; Audio S5).
doi:10.1371/journal.pcbi.1000302.g003
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our study brings several additional insights to this analysis. First,

the notch filtering experiments unequivocally demonstrate that the

spectral MTF is truly low-pass. Removing lower (or intermediate)

spectral modulations while preserving higher spectral modulations

results in significant decreases in speech intelligibility. In other

words, there does not appear to be information that is redundant

between the spectral modulations below 4 cycles/kHz and higher

spectral modulations (further details of the notch filtering results

are discussed below). Second, our comparison between the speech

MTF and the speech MPS offers an obvious explanation for the

critical spectral frequency cutoff: it corresponds to the modulation

power boundary of formants and formant transitions. Finally, by

examining how much modulation power was removed in the

filtering operations, we can also say that the crucial modulation

areas are not simply the ones with the higher power in the speech

MPS. For example, the region of the core notch filter between

0.25 and 0.75 cycles/kHz contributes less to intelligibility than the

0–0.25 cycles/kHz area, although the former contains higher

power. Humans appear to be particularly adept at detecting very

low modulations in the spectral envelope and at using that

information for speech intelligibility.

In the temporal dimension, we showed that filtering the

amplitude envelope of the speech signal below 12 Hz results in

significant intelligibility deficits. Our results are similar to

experiments in which the temporal envelope of speech was low-

pass filtered or degraded. For Dutch, English and Japanese, it was

shown that the region below 8 Hz is critical for speech

comprehension [9–11]. This critical modulation is somewhere

between the temporal modulations corresponding to the rate of

syllables, at around 2 to 5 Hz [22], and those corresponding to

phonemes, at around 15–30 Hz [26–28]. In the MPS, we observe

that frequencies below 10 Hz account for approximately 85% of

all the spectrotemporal modulation power. Examining the

temporal modulation spectrum as a function of frequency bands

(rather than as a function of spectral modulations, as shown in the

MPS), Greenberg and Arai showed that the peak in power lies

between 4 and 6 Hz [29]. By preserving frequencies below 8 Hz,

one therefore retains most of the power in the temporal

modulation spectrum. Qualitatively, the speech sounds that were

heavily temporally filtered (below 5 Hz) sounded like reverberated

speech, consistent with the observation that it is the higher

temporal modulation frequencies that are affected in reverberant

environments [30].

Interpreting which modulations proved crucial in the low-pass

spectral or temporal filtering results is problematic because each

relative lowering of the cutoff frequency removed increasingly

more modulations. Furthermore, comparisons between low-pass

cutoffs do not exclude the possibility that higher intelligibility

could be achieved with isolated regions of the MPS. To obtain

something akin to a modulation transfer function (MTF) for

speech intelligibility, low-pass filtering manipulation must be

complemented with high-pass filtering. Alternatively, a transfer

function can be obtained directly from notch filtering experiments.

We chose the latter approach and based the design of our notch

filters on the results from the low-pass experiments. The

combination of notch filtering and low-pass filtering also allowed

us to examine areas in the speech MPS that carry redundant

information.

Two conclusions can be made from the notch filtering

experiments. First, the results show a low-pass spectral tuning

with most of the gain between 0 and 1 cycles/kHz, and a band-

pass temporal tuning with most of the gain between 1 and 7 Hz.

Second, the results show the high level of redundancy in the

speech signal. The intelligibility of most notch-filtered stimuli

remained excellent. This is even more remarkable considering that

tests were done with a SNR of 2 dB. Redundancy is evident also

when one examines the difference in results obtained from the

low-pass and notch filters. Notably, the low-pass cutoff spectral

frequency of 2 cycles/kHz significantly reduced performance as

compared to the 4 cycles/kHz condition, whereas the 1–3 and 3–7

cycles/kHz notch filters straddling that range of modulations

produced no significant decrease in performance. This discrepan-

cy suggests that some of the information about formant structure

in the 1–4 cycles/kHz range can also be found at higher spectral

modulation frequencies. For this reason, we conducted the second

notch filter experiment that operated on the core modulations

(modulations below ,4 cycles/kHz and ,8 Hz). This second

notch experiment allowed us to obtain a more detailed MTF.

The final speech MTF was obtained by combining the results of

the spectral and temporal notch filters applied to the whole MPS.

For this purpose, we calculated the average percentage error in

word comprehension, and divided by the average control

comprehension. Then we multiplied the normalized comprehen-

sion errors from the spectral notch filters (Figure 6A, vertical

stripes), and the temporal notch filters (Figure 6A, horizontal

stripes). The resulting color plot indicates which MPS areas are

more important (red) for speech comprehension, and which are

less important (blue). For comparison, we also generated a

summary plot from the low-pass spectral and temporal modulation

filters (Figure 6B). In this case, the subsequent increases in error

caused by each lowering of the cutoff modulation frequency were

used. A similar analysis of the notch filters applied to sentences

containing only core modulations (Figure 6C, redness indicates

importance for comprehension) gave an overall impression in

general agreement with the respective areas of Figure 6A.

It should be noted that, to generate this initial speech MTF, we

assumed that spectral and temporal degradations affect the speech

signal independently, which allowed us to multiply the normalized

comprehension errors. We know, however, from the discrepancy

between the comprehension after notch-filtering of core modula-

tions, and the comprehension after notch-filtering of all modula-

tions (namely, removal of intermediate spectral modulations is

more detrimental to performance if higher spectral modulations

have been removed as well), that there must exist some spectro-

temporal interdependence. We also assumed that the MTF is

symmetric along positive and negative modulation frequencies, in

other words, that the gain in the MTF for joint spectrotemporal

modulations corresponding to down-sweeps equals the gain for up-

sweeps. Although we have not further explored the interdepen-

dence of the spectral and temporal modulations, our joint

Figure 4. Comprehension of speech with notch-filtered modulations or ‘‘core’’ modulations. (A–C) The speech modulation spectrum
with filtered modulations denoted by grayed areas as in Figure 5A. (A) Spectral notch modulation filters. (B) Temporal notch modulation filters. (C)
Core modulations most essential to comprehension in Figure 5 are depicted in full and zoomed-in thumbnail plots. Stimuli for the core condition
were obtained by low-pass filtering in both the spectral and temporal modulation domains. (D,E) Mean6s.e. comprehension when either spectral (D)
or temporal (E) modulation filters were applied to the sentences, along with control sentences (lighter gray bars) containing all or only core
modulations (C). Stimulus conditions which share no lower case letters (above plots) in common are significantly different, as in Figure 5 (repeated
measures ANOVA). (F) Spectrogram of the example sentence after spectral modulations between 3 and 7 cycles/kHz were filtered out (Audio S6). (G)
Spectrogram of the example sentence containing only the core of essential modulations below 7.75 Hz and 3.75 cycles/kHz (Audio S7).
doi:10.1371/journal.pcbi.1000302.g004
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spectrotemporal modulation filtering technique opens the door to

future studies directly assessing the degree of interdependence and

potential asymmetry.

The shape of our final speech MTF (temporally band-pass and

spectrally low-pass) approximately matches the shape of a

psychophysical MTF that was obtained from detection thresholds

for broadband moving ripples (corresponding to a single point in

the MPS) in white noise [2], but with some important differences.

Chi et al. found that the human MTF was low-pass for spectral

and temporal modulations, with increases in threshold detection

for modulations greater than 2 cycles/octave and 16 Hz

(Footnote: Chi et al. state that their MTF is low-pass in the

temporal domain but their psychometric function does show that

detection at the very low temporal modulations is somewhat more

difficult than at the low intermediate temporal modulations). In

comparison, if we examined only our low-pass filtering results, we

would find modulation cutoff values around 4 cycles/kHz and

12 Hz. (Note that 4 cycles/kHz corresponds to 2 cycles/octave for

center frequencies of 500 Hz, and that we too obtained a cutoff

value of 2 cycles/octave using log frequency as shown in Figure

S1). The estimation of these upper boundaries is therefore very

similar between the two studies. However, our complete speech

MTF based on the combination of notch and low-pass filters

shows a much more restricted area of high gain. For example,

while the MTF of Chi et al. is relatively flat all the way to 2 cycles/

octave, our speech MTF shows that the lowest spectral

modulations (,0.25 cycles/kHz) play a more important role than

the higher ones (.0.5 cycles/kHz). There are therefore important

differences between the MTF obtained by measuring detections of

ripple sounds in noise and the one obtained by performing notch

filtering operations on speech. While humans might be equally

good at detecting low and intermediate spectral modulations, the

Figure 5. Comprehension of ‘‘core’’ modulations in speech with notch filtering. (A,B) Notch filters in the spectral (A) or temporal (B)
modulation domain removed modulations from sentences that contained only core modulations after having been low-pass filtered in both
domains. As depicted in Figure 4C, x- and y-axes are 0 to 67.75 Hz and 0 to 3.75 cycles/kHz, respectively. (C,D) Comprehension when spectral (C) or
temporal (D) notch filters were applied to sentences containing only core modulations. See Figure 6C for a thumbnail of the core modulations. As in
Figures 5 and 6, conditions which share no lower-case labels in common are significantly different (repeated measures ANOVA).
doi:10.1371/journal.pcbi.1000302.g005
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lower ones carry more information for speech intelligibility. The

intermediate modulations should carry more information for other

auditory tasks such as pitch perception.

While animal models of speech perception remain a stretched

analogy, models of animal sensitivity to relevant modulations hold

more immediate potential. The shape of our speech MTF also

resembles the MTFs that have been obtained for mammalian [31]

and avian [32] high-level auditory neurons. This correlation

between the power of the spectrotemporal modulations in speech

(the speech MPS), the MTF resulting from tests of speech

intelligibility, the MTF derived from detection of synthetic sounds

[2], and the tuning properties of auditory neuron ensembles

suggests a match between the speech signal and the receiver. The

most informative modulations in speech, and in other animal

communication signals, occur in regions of the modulation

spectrum where humans show high sensitivity and where animals’

high-level auditory neurons have the highest gain [13,33,34].

We also examined the role of modulations in the task of

recognizing the gender of a speaker. The MPSs of male and

female speech differ in the frequency rate at which power is

concentrated in the higher spectral modulations (Figure 2). In our

MPS representation, the pitch-associated spectral frequencies of

Figure 6. Combination of results from low-pass and notch modulation filtering. (A,B) To combine the spectral and temporal results from
low-pass (A) and notch (B) modulation filtering, we calculated the average percent error in word comprehension, and divided by the average control
comprehension. Then we multiplied the normalized errors from the spectral and temporal notch filters. Black lines indicate the contours of
modulation power, as in Figure 1. Red areas are more important for speech comprehension than blue. The summary plot of the low-pass spectral and
temporal modulation filters used the additional error caused by each subsequent lowering of the cutoff. Notch and low-pass experiments had
somewhat different results in the spectral domain. The notch filtering implicated modulations closer to the origin, but still intermediate in temporal
modulation, as most crucial. This discrepancy suggests a non-linearity in the relative contribution of modulations: the removal of intermediate
spectral modulations matters more when higher spectral modulations are missing as well. (Dropping the low-pass cutoff spectral frequency from 4 to
2 cycles/kHz significantly reduced performance, but the 1–3 and 3–7 cycles/kHz notch filters straddling that range produced no significant
difference.) (C) Schematic of modulations underlying comprehension and gender identification. The summary cartoon shows a region of low spectral
and intermediate temporal modulations is of the greatest importance for speech intelligibility (red), while a separate band of higher spectral
modulations (blue) make a speaker sound female. Yellow outlines the modulations that did not significantly contribute to sentence comprehension
in any experiment. (D) Sentence modulation transfer function. When compression design, speech recognition by machines, and cochlear implant
applications impose constraints on the bandwidth of a speech signal, modulation filtering could reduce a speech signal to only the modulation
components needed for comprehension (red area). Depending on the bandwidth permitted, increasingly more of the orange and then yellow areas
of the modulation spectrum could be included to add to the perception of vocal source characteristics.
doi:10.1371/journal.pcbi.1000302.g006

Modulation Transfer Function of Speech

PLoS Computational Biology | www.ploscompbiol.org 10 March 2009 | Volume 5 | Issue 3 | e1000302



male and female speakers showed a bimodal distribution: the two

modes correspond to the glottal action of the vocal cords pulsing at

,150 Hz in adult male speakers and at above 200 Hz in females

[22]. The spectral notch filter that removed the high spectral

modulation power unique to the female voice confused listeners’

percept of gender, such that half of the female stimuli notch

filtered between 3–7 cycles/kHz sounded male to subjects. Control

stimuli containing only the core modulations, which likewise lack

the female-specific modulation power, similarly confused listeners.

We conclude that modulations between 3 and 7 cycles/kHz give

rise to the percept of female vocal pitch. It is interesting that

removal of the modulations underlying the male vocal register did

not appear to detract from perception of speaker masculinity.

Although fundamental frequencies provide the basis for gender

recognition particularly in vowels [35], it has also been shown that

the fundamental and the second formant frequency are equally

good predictors of speaker gender [36]. Therefore the lower

spectral modulations could carry additional gender information,

but the acoustic distinction fails to explain the bias for male

identification. Alternatively, the perception of vocal masculinity

could depend more on gender-specific articulatory behaviors

which account for social ‘‘dialectal’’ gender cues distinguishing

even pre-pubescent speakers [37].

Our results have implications for speech representation

purposes including compression, cochlear design, and speech

recognition by machines. In both speech compression applications

and signal processing for cochlear design, the redundancy of the

speech signal allows a reduction in the bandwidth of a channel

through which the signal is represented. For this purpose, limiting

spectral resolution has been a favorite solution both because of the

robustness of the signal to such deteriorations [6,29] and because

of engineering design constraints for cochlear implants. However,

in noisy environments, additional spectral information results in

significant speech hearing improvement [20,25]. Our approach

provides a guided solution: after determining the speech MTF, one

can selectively reduce the bandwidth of the signal by first

representing key spectral modulations and then systematically

including the most important adjacent spectrotemporal modula-

tions to capture the greatest overall space within constraints, as

illustrated in cartoon form in Figure 6 (see also [2]). Our initial

experiment with gender identification, together with research in

music perception [38], shows that the most advantageous solution

will depend on the task and the desired percept. Finally, the speech

MTF could also be used as a template for filtering out broadband

noise: a modulation filtering procedure can be used to emphasize

the modulations important for speech and to de-emphasize all

others. Both the speech compression and the speech filtering

operation require a decomposition of the sound in terms of

spectrotemporal modulations, as well as a re-synthesis. These are

not particularly simple operations (see Materials and Methods),

but with advances in signal processing they will become possible in

real time. After all, a similar operation appears to happen in real

time in the auditory system [12,21,39].

Materials and Methods

Ethics Statement
Subjects gave written consent as approved by the Committee for

the Protection of Human Subjects at University of California,

Berkeley.

Subjects
Native American-English speakers of mixed gender (20 in the

low-pass experiment, aged 18–34 yr; and 17 in the notch

experiment, age range 18–36 yr) volunteered to participate in

the study. Audiograms showed that their hearing thresholds were

normal from 30 to 15,000 Hz; one subject was excluded due to

high-frequency hearing loss.

Stimuli Materials
Acoustically clean recordings of spoken sentences were obtained

from the soundtrack of the Iowa Audiovisual Speech Perception

videotape [40]. The soundtrack was digitized at 32 kHz sampling

rate in our laboratory using TDT System II hardware. This corpus

consists of 100 short complete sentences read without emotion by

six adult male and female American-English speakers. See Figure 1

for the spectrogram of one example, ‘‘The radio was playing too

loudly.’’ The corpus has been used by previous studies of speech

perception [5,6]. The original speech sentences were normalized

for power. The synthetic degraded speech signals were generated

from this original set by a novel filtering procedure performed on

the log spectrogram, as described below.

The Modulation Power Spectrum
The modulation power spectrum (MPS) of a sound is the

amplitude spectrum of the 2D Fourier Transform of a time-

frequency representation of the sound’s pressure waveform [3].

The MPS can be estimated for a single sound (e.g. one sentence) or

for an ensemble of sounds (e.g. 50 sentences from adult male

speakers). In our analysis, the time-frequency representation is the

log amplitude of a spectrogram obtained with Gaussian windows.

Gaussian windows are used because of their symmetry in time-

frequency and because they result in time-frequency representa-

tions that are more easily invertible [41]. As in cepstral analysis

[23], the logarithm of the amplitude of the spectrogram is used to

disentangle multiplicative spectral or temporal modulations into

separate terms. For example, in speech sounds, the spectral

modulations that constitute the formants in vowels (timbre)

separate from those that constitute the pitch of the voice

(Figure 2B). The MPS is then the amplitude squared as a function

of the Fourier pairs of the time and frequency axis of the

spectrogram of the log amplitude of this spectrographic represen-

tation. We call these two axes the temporal modulations (in Hz)

and the spectral modulations (in cycles/kHz). One of these two

axes must have positive and negative frequency modulations to

distinguish upward frequency modulations (e.g., cos(vsf-vtt)) from

downward modulations (e.g., cos(vff+vtt)). By convention, we use

positive and negative temporal modulations. The time-frequency

resolution scale of the spectrogram (given by the width of the

Gaussian window) determines the upper bounds of the temporal

and spectral modulation in an inverse relationship as a result of the

uncertainty principle or time-frequency tradeoff. The time-

frequency scale must therefore be chosen carefully so that

modulation frequencies of interest are considered. The choice of

time-frequency scale can be made in a somewhat systematic

fashion by using a value for which the shape of the modulation

spectrum does not change very much. At these values of time-

frequency scale, most of the energy in the modulation spectrum

would be far from the boundaries determined by the time-

frequency tradeoff [3]. For analyzing our original and filtered

signals, we used a time-frequency scale given by a Gaussian

window of 10 ms in the time domain or 16 Hz in the frequency

domain st~
1

2psf

� �
. For obtaining the MPS of sound ensem-

bles, sounds in their spectrographic representation were divided

into segments of 1 s and the MPS for each segment was estimated

before averaging to obtain a power density function. The

boundaries of the modulation spectrum at the time-frequency
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scale of 10 ms–16 Hz are 50 Hz and 31 cyc/kHz. At this time-

frequency scale, approximately 90% of the power in the

modulation spectrum was found for temporal modulations below

25 Hz and for spectral modulations below 16 cycles/kHz,

justifying the choice (Figure 1). Moreover, the temporal and

spectral modulation cutoffs correspond approximately to the

critical modulation frequency at which amplitude modulated tones

and noise start to promote a pitch percept [33]. Thus, when we

use this particular time-frequency scale, the temporal modulation

frequencies analyzed are perceived predominantly as temporal

changes, while higher temporal modulations (those above 50 Hz)

which would mediate a percept of pitch are found along the

spectral modulation axis. Using wider frequency filters might cause

spectral modulation power that is plotted high on the ordinate

(e.g., 5 cycles/kHz corresponding to a 200 Hz pitch) to appear

instead at a correspondingly high temporal modulation (200 Hz)

on the abscissa.

For the modulation filtering operation described below we used

other time-frequency scales which were adapted to the filter’s

cutoff frequencies and thus improved the required spectrogram

inversion step in that process.

The MPS can be obtained from a time-frequency decomposi-

tion with a linear frequency axis (resulting in spectral modulations

in units of cycles/kHz), or from a decomposition with a log

frequency axis (resulting in spectral modulation in units of cycles/

octave). The log frequency axis is a better model of the

decomposition that occurs in the auditory periphery, but we

found that the linear-frequency scale is a better decomposition for

describing sounds that have harmonic structure. We suggest that

higher level neurons may be equally well described as representing

either linear or log scale frequency [42]. In any case, both

representations are useful. To be able to compare our results to

other published work, we additionally obtained the speech MPS

and psychometric curves using the log-frequency representation.

These results are shown in Figure S1.

Synthesis of Degraded Speech
The sentences were degraded by a novel modulation filtering

procedure. In brief, the sound is first represented in its

spectrographic representation using a log-spectrogram calculated

with Gaussian windows as described above. Then a new log-

spectrogram is obtained by a 2D filtering operation. This filtering

operation is performed in the Fourier domain of the modulation

amplitude and phase in the following way. First the 2D FFT of the

log spectrogram is calculated. Then the amplitudes of specific

temporal and spectral modulations that we want to filter out are

set to zero. The inverse 2D FFT yields the desired filtered log-

spectrogram. After exponentiation, the spectrogram is then inverted

using an iterative spectrogram inversion algorithm [43]. We then

verified the procedure by calculating the spectrogram and MPS of

the filtered sound. For a measure of the errors introduced by

spectrogram inversion, we squared the differences between the

desired spectrogram and the spectrogram obtained, and divided by

the desired spectrogram power, summing the resulting values over

time and frequency. Across the 100 stimulus sentences in the control

condition, the residual error at the end of 20 algorithm iterations

averaged 2.5%. When the 100 sentences were low-pass filtered in

one step to create stimuli with only the core modulations, the

average residual error after the 20 algorithm iterations was 6.3%.

The modulation filtering was written in Matlab using modified code

from Malcolm Slaney’s Auditory Toolbox for the spectrogram

inversion routine [44]. The complete program is available upon

demand. The iterative method improves upon earlier overlap-and-

add methods that had to compensate for the retention of phase

information that unintentionally preserves some spectral informa-

tion targeted for removal [7,8].

For the low-pass modulation filtering procedure, the time-

frequency scale of the spectrogram was adjusted depending on the

desired modulation frequency cutoffs of the modulation filter. For

example, if the amplitude of spectral modulation frequencies

above 2 cycles/kHz was to be set to zero, then using a time-

frequency scale where spectral modulations were represented only

up to values approaching 2 cycles/kHz gave better results. In this

example, one could use a time-frequency window in the

spectrogram of 1.25 ms–128 Hz to obtain a MPS with boundaries

at 402 Hz and 3.9 cycles/kHz. Such adjustments made the

inverting process much more efficient. Moreover, for low-pass

filtering only, one could take this procedure to the extreme and

calculate the spectrogram at a time-frequency scale that

corresponds exactly to the modulation frequency cut-off of the

filter. In that case, the spectrogram would not require any

additional filtering and the spectrogram inversion routine can be

by-passed altogether. One can instead directly obtain the filtered

sounds by using the amplitude envelopes in each frequency band

of the spectrogram and using these to modulate a set of

narrowband signals of the same bandwidth and center frequency

but unitary amplitude. These unit-amplitude narrowband signals

can be obtained from Gaussian white-noise that is decomposed

through the same spectrographic filter bank [45] or, equivalently,

by generating them directly using an analytic signal representation

[46]. In the analytical representation the amplitude is set to 1 and

the instantaneous phase is random but band limited so that the

instantaneous frequency remains within the band. In this study,

this direct method was used to generate the low-pass modulation-

filtered sentences. The modulation filtering that involved notch or

band-stop filtering was done with the complete spectrogram

filtering and inverting procedure. In the direct methods, the

frequency cutoff for temporal frequencies is inversely related to the

frequency cutoff for spectral frequencies but the conjugate

boundary was always far from the limits being considered here.

For example, a 49 Hz low-pass temporal filter had a conjugate

spectral frequency cutoff of 32 cycles/kHz and any temporal

filtering with cutoff frequencies below 49 Hz has spectral

modulations cutoffs higher than 32 cycles/kHz (Figure 3A and

3B). Because of this relationship the panels C and D of Figure 3

could be merged into one plot that would show a unimodal

(inverted U) psychometric curve as a function of a spectrotemporal

cutoff (as in Figure S1). More details on these sound synthesis

procedures and on time-frequency scale effects can be found in

[46] and [3]. A control (unfiltered) speech sentence was obtained

by inverting the unfiltered log-spectrogram obtained with the

10 ms–16 Hz time-frequency scale (low-pass experiment) or 5 ms–

32 Hz scale (notch experiment). The control sentences sounded

very similar to the original sentences and yielded high levels of

intelligibility.

Errors calculated during resynthesis depend on the bandwidth

of the time-frequency scale. Residual errors in the control case of

spectrogram inversion without filtering would barely be affected

by changing the time-frequency scale from 5 ms–32 Hz to

1.25 ms–128 Hz (2.92% vs. 2.52% after 20 iterations, averaged

over all 100 sentences). Similarly, in the case of temporal and

spectral low-pass filtering leaving only core modulations, this time-

frequency change would make a minimal improvement in the

residual errors (5.49% vs. 6.29%). However, in the case of low-pass

spectral modulation filtering with a 2 cycles/kHz cutoff, the

128 Hz time-frequency scale would double residual errors

(12.18% vs. 6.41%). Using the 128 Hz time-frequency scale for
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temporal low-pass filtering with a 6 Hz cutoff would similarly

increase residual error (5.64% vs. 2.02%).

Experimental Procedures
All sounds were presented through headphones (Sennheiser

HD265 Linear) to subjects who sat in a sound attenuated

chamber. An audiogram from 30 Hz to 15 kHz was obtained

initially for each subject, using an adaptive staircase procedure

(Tucker Davis Technologies software PsychoSig) and subjects who

had thresholds of 20 dB above normal were excluded.

For the comprehension test, the sentences were embedded in

Gaussian white noise (0–20 kHz). The white-noise lasted 6 sec-

onds and the sentences (filtered and control) started at random

times between 300 ms and 2 s after the onset of the noise. The

white noise was played at a level of 65 dB SPL (B&K Level Meter,

A-weighting, measured with headphone coupler from B&K). The

modulated speech sentences were played at 3 different levels:

72 dB, 67 dB, and 62 dB SPL (B&K level meter, A-weighting,

peak level with slow integration, headphone coupler). The 5 dB

attenuation steps were obtained using a programmable attenuator

(Tucker Davis Technologies). The signal to noise ratios (SNR)

calculated from the SPL measurements of the speech and noise

signals were therefore +7, +2 and 23 dB. We also calculated the

SNR in terms of the RMS values of the sound pressure waveform

of the noise and speech and found almost identical values (6.7 dB,

1.7 dB and 23.3 dB). These SNRs were chosen in pilot data to

yield complete sigmoidal psychometric tuning curves in the low-

pass filtered conditions, and almost perfect speech intelligibility for

the control condition [47]. Furthermore, these SNRs cover the

3 dB SNR level that presents little difficulty for normal listeners

but reduces comprehension in the hearing impaired [48,49].

Subjects listened to the sentences at their own pace, pressing a

button to elicit the next stimulus. They were instructed to type

whatever words they heard followed by whether they perceived the

speaker’s gender to be male or female. Subjects were asked to guess if

necessary, but not to force sentences into making sense if any words

did not make sense together. The typed response files were scored for

the percentage of words reported correctly, with an algorithm to

compensate for small spelling errors. Baseline performance under

control conditions and with +2 dB SNR was around 90%.

During an experiment each subject heard all 100 sentences in

the corpus without repetitions, so that each sentence was

pseudorandomly assigned only to one normal (control) or filtered

condition at one level. The SNR levels and the filtering conditions

were presented in pseudorandom order. The notch-filtered

sentences were presented only at +2 dB SNR.

Supporting Information

Audio S1 Example sentence under control condition. Mp3 file

after conversion from the original wave file of an example stimulus

sentence in Figure 1A. No modulation filtering was performed

under this condition controlling for spectrogram inversion.

Found at: doi:10.1371/journal.pcbi.1000302.s001 (0.09 MB

MPG)

Audio S2 Low-pass modulation filtering at 0.5 cyc/kHz. Mp3 of

an example sentence (Figure 3E) with the most extreme spectral

modulation filtering (with a low-pass cutoff of 0.5 cyc/kHz).

Found at: doi:10.1371/journal.pcbi.1000302.s002 (0.09 MB

MPG)

Audio S3 Low-pass modulation filtering at 3 Hz. Mp3 of the

example sentence with the most extreme temporal modulation

filtering tested (having a low-pass cutoff of about 3 Hz; Figure 3F).

Found at: doi:10.1371/journal.pcbi.1000302.s003 (0.09 MB

MPG)

Audio S4 Low-pass modulation filtering at 4 cyc/kHz. Mp3 of

the example sentence with the spectral modulation filtering at

which comprehension became significantly worse (cutoff 4 cyc/

kHz; Figure 3G).

Found at: doi:10.1371/journal.pcbi.1000302.s004 (0.09 MB

MPG)

Audio S5 Low-pass modulation filtering at 12 Hz. Mp3 of

example sentence with the temporal modulation filtering at which

comprehension became significantly worse (cutoff 12 Hz;

Figure 3H).

Found at: doi:10.1371/journal.pcbi.1000302.s005 (0.09 MB

MPG)

Audio S6 Example sentence with core modulations. Mp3 of the

example sentence containing only the core of essential modula-

tions below 7.75 Hz and 3.75 cyc/kHz (Figure 4G).

Found at: doi:10.1371/journal.pcbi.1000302.s006 (0.09 MB

MPG)

Audio S7 Spectral notch filter producing gender misidentifica-

tion. Mp3 of the example sentence after spectral modulations

between 3 and 7 cyc/kHz were filtered out (Figure 4F). Listeners

misreported the gender of about half the female speakers.

Found at: doi:10.1371/journal.pcbi.1000302.s007 (0.09 MB

MPG)

Figure S1 Modulation power spectrum and performance with

linear time-frequency scale. (A) The top panels in the figure

show the modulation power spectrum (MPS) of speech

(American English) calculated from a time-frequency represen-

tation of the sound using a logarithmic frequency filter bank

(log-f). The modulation spectrum is shown for male and female

speakers. As was the case for the modulation spectrum estimate

with a linear frequency filter bank (Figures 1 and 2), the log-f

speech modulation spectrum shows a power law distribution of

energy and some degree of non-separability between spectral

and temporal modulations. However, in the linear modulation

spectrum, the spectral modulations in cycles/Hz distribute into

clearly separate regions corresponding to pitch and formant

energy (Figure 2), whereas in the log-f modulation spectrum the

corresponding modulations overlap in a single triangular region

below 4 cycles/octave. In addition, in this speech corpus at this

time-frequency scale, the harmonic structure of women’s vocalic

sounds creates a repeated pattern of spectral modulations. The

log-f spectrogram was obtained with logarithmically-spaced

Gaussian filters with a bandwidth of 0.0138 octaves. (B) The line

graph replots on a linear spectral modulation axis the

comprehension of sentences after log-f low-pass filtering. The

resulting psychometric curve includes low-pass filter cutoffs from

1/4 cycles/octave to 256 cycles/octave, but these can be

interpreted as low-pass spectral filtering on the left side of the

peak and low-pass temporal filtering on the right side of the

peak, as follows. The sound pressure re-synthesis of these

sentences used the direct method, where the filtered amplitude

was obtained by decomposing the sound into a set of

narrowband signals with the frequency bandwidth given by

the modulation frequency cutoff, and the filtered phase was

obtained from Gaussian white-noise that is decomposed through

the same filter bank [40,41]. For high modulation frequency

cutoffs, because of the time-frequency tradeoff, this method

effectively low-pass filters the amplitude envelope. In a log

frequency representation, the temporal frequency cutoff de-

pends on the center frequency. We show the corresponding
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temporal cutoff for the frequency band centered at 1 kHz in

parentheses under the relevant x-axis labels. The left side of the

figure can therefore be compared to the psychometric curve

shown in Figure 3C, and the right side to Figure 3D. The left

side shows that speech comprehension remains very good with

representations having filter bands as wide as 0.25 octaves (the

sigma parameter corresponding to 2 cycles/octave cutoff [14])

but that it degrades rapidly with wider frequency bands,

particularly in noisy conditions. As in our interpretation of the

linear frequency results, this steep decline occurs when spectral

modulations that correspond to formants and formant transi-

tions are filtered out. On the right side of the curve, the critical

temporal modulation cutoffs are approximately twice as large in

this plot as in the linear frequency plot, suggesting that humans

cannot easily use the faster temporal information that is present

in filters above 500 Hz to compensate for the loss of that

information in the lower frequency bands.

Found at: doi:10.1371/journal.pcbi.1000302.s008 (4.37 MB TIF)
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