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Abstract

Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically
identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and
duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The
dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a
delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex
formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate
how RNA polymerase pausing affects a gene’s transcriptional dynamics and gene networks. We show that pauses’ duration
and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to
reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing
events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase
pausing might be an important evolvable feature of genetic networks.
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Introduction

The stochastic fluctuations in the expression level of a gene

under constant environmental conditions [1], arises from the

stochasticity of the chemical reactions and other steps comprising

transcription and translation [2]. This is further enhanced by the

low amounts of RNA polymerases (RNAPs) and transcription

factors present in cells. This stochasticity affects cellular function-

ing [3–4], differentiation [5–6] and adaptability of organisms to

the environment [7–8], besides having implications in pathological

processes [2,9–10]. Better insight into the sources of this

stochasticity helps in understanding cellular dynamics and

generation of phenotypic diversity of genetically identical cells.

Most previous studies have focused on the noise in transcriptional

initiation [5,11–13]. However, transcriptional elongation has

recently been shown to be an important source of noise in

transcript levels [12,14–16].

Transcription elongation is not a constant forward process. The

noisy stepwise progress of RNAP through the DNA template is

further affected by pauses, arrests, pyrophosphorolysis, misincor-

porations and editing [17]. RNAP pausing is an important

regulator of transcription in both prokaryotes and eukaryotes,

including in genes associated with human breast cancer [18–20]. A

pause is defined here as an event where the RNAP is halted at a

nucleotide, according to the definition in [20–21]. We distinguish

such pauses, sometimes referred to as ‘‘ubiquitous pauses’’, from

other means of delaying elongation, such as arrests or backtracking

[20,22–23]. Pausing is spontaneously reversible, after which the

RNAP resumes movement [14]. Its duration varies, following an

exponential distribution [14]. Longer pauses, over ,20 s, appear

to occur at specific DNA template points, while most pauses last

less than 10 s [14].

Given their high frequency of occurrence, pauses ought to be

explicitly included in models of transcription at the single

nucleotide level [15]. This is of particular importance if multiple

RNAPs are on the DNA strand, as pauses enhance the probability

of collisions between RNAPs.

Promoter-proximal pausing has been estimated to occur at

above average rates in 10–20% of promoters in Escherichia coli,

suggesting that it is a commonly used regulator of gene expression

[24–25]. Dynamically, a pause is a kinetic pathway that competes

with elongation and other events at each nucleotide, and the

elongation-competent state to which an RNAP returns after

pausing is always the same [14]. Measurements suggest that pauses

are independent of factors such as the length of the growing RNA

[14]. In E. coli, the average rate of pausing is 0.55 s21 (i.e.,

approximately once in every 100 bases) [17,26] and their average

duration is 3 s [17]. Values vary widely from gene to gene, as

pause densities and lifetimes are sequence-dependent [14],

suggests that the pausing mechanism is evolvable at the single

gene level, e.g., by selecting in or out pause prone sequences.

While the high propensity of some sites to pauses is sequence-

dependent, pause propensity in other sites appears to be regulated

by molecules such as GreA and elongin complex that can suppress

pausing [27–28]. Such elongation factors might regulate the timely

expression of many genes, e.g., during development [25,29–30]. If
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so, these regulatory molecules might allow fast changes in pausing

propensity, e.g., as a response to environmental stress.

It should be stressed that not all pauses are sequence-dependent.

They can be random in the sense that they can arise solely due to

the probabilistic nature of stepwise elongation, or be rare but

unavoidable (i.e. certain to occur) such as when due to DNA

lesions [31].

Recently, a model of transcription in prokaryotes [15] that

includes explicitly the promoter open complex formation step and

models elongation at the nucleotide level was proposed and

successfully confronted with measurements of gene expression at

the single molecule level [32–33]. This model [15] is based on the

model proposed in [12] but additionally includes several

alternative pathways to elongation, namely pausing, arrest,

misincorporation and editing, pyrophosphorolysis, and premature

termination [15,17].

The analysis of the dynamics of this model suggested that

pausing is, potentially, one of the major enhancers of the

occurrence of collisions between RNA polymerases on the DNA

template [15] thus, of transcriptional bursting [32,34–35].

Collisions between RNAP molecules affect nonlinearly RNA

production intervals by enhancing what we refer to as ‘‘micro-

bursts’’, that is when two or more RNA molecules are completed

within an interval much smaller than the expected minimum

interval between consecutive transcription initiations [15]. While

the stochasticity of stepwise elongation causes some microbursts,

we show that pauses, within realistic parameter values intervals,

can significantly vary the probability of occurrence of these events.

Microbursting may affect cellular development, if used to cause

RNA levels to overcome thresholds for short time periods, so as to,

e.g., initiate differentiation cascades [25]. Since there are between

one and a few copies of most mRNAs in cells and since several

cellular processes can be initiated given a single or very few

molecules [36–37], pausing might be a viable mechanism for cells

to reach such thresholds.

Using the delayed stochastic model of transcription at the single

nucleotide level proposed in [15] we investigate how pauses’

average duration and rate of occurrence affect the dynamics of

transcription, translation, and a small gene network, the

repressilator. Focusing on the ‘‘mean rate and duration of pause’’

of DNA sequences and on sequence specific long pauses, we

address the following questions. Can the pausing rate and the

average duration of pauses, when varied within biologically

realistic values, be used to affect the transcriptional and

translational dynamics? Which features of transcriptional dynam-

ics are affected by pauses? Are the effects at the single gene level

relevant in the dynamics of genetic networks?

First, we describe the model of transcription at the single

nucleotide level. Next, we present our results regarding the effects

of varying pausing rate and average duration in the transcriptional

and translation dynamics of a gene. Finally, we present the effects

of RNAP pausing on the dynamics of the 3-gene negative feedback

loop; the repressilator [38]. In the end, we measure the effects of

specific long-pause sites on the dynamics of transcription. We show

that RNAP pausing, with biologically realistic values, has

important effects on the single gene and at the gene network

level, and therefore needs to be accounted for in models of

transcription.

Materials and Methods

The delayed stochastic simulation algorithm
Besides the stochasticity, another important feature of the

dynamics of gene expression is the time that some steps in

transcription and translation take to be completed once initiated.

E.g., the promoter open complex formation can take from a few

seconds to several minutes [39], and affects significantly the

dynamics of gene networks [13]. For that reason, stochastic

algorithms have been proposed to simulate chemical reactions

with time delays. In [40], a delay Stochastic Simulation

Algorithm (SSA) was proposed (from which the delayed SSA

[12] was later developed) that allows explicit delays in protein

production. A similar algorithm was independently proposed in

[41]. The algorithm proposed in [12] differs from these, in that it

can handle more than one delayed generating event for one

reacting event. Thus, we use the delayed SSA [12], which uses a

waitlist to store delayed output events and proceeds as follows

[42]:

Step 1) Initialize: set t = 0, tstop = stop time, set initial number of

molecules, set list of reactions, and create empty waitlist L for

delayed events.

Step 2) Generate an SSA step for reacting events to get the next

reacting event R1 and the corresponding occurrence time t+t1.

Step 3) Compare t1 with the least time in L, tmin. If t1,tmin or L

is empty, set: t = t+t1. Decrement all delays in L by t1. Update the

number of molecules by performing R1, adding to L both any

delayed products and the time delay for which they have to stay in

L..

Step 4) If L is not empty and if t1$tmin, set t = t+tmin. Update L,

by releasing the first element in L and decrement all delays in L by

tmin. Update the number of molecules according to the delayed

event.

Step 5) If t,tstop, go to step 2; otherwise stop.

Delayed events in reactions are represented as, e.g.: ARB+C(t).
When this reaction occurs at moment t, B is instantaneously

produced at t and C placed on a waitlist until it is released, at t+t
seconds. t can be drawn from a distribution each time the reaction

occurs.

Author Summary

Investigation on how phenotypic diversity of genetically
identical organisms is generated and regulated has
focused on noise in gene expression. It is unknown to
what extent noise in gene expression and genetic
networks is evolvable, and by which mechanisms it
evolves. The noise has several sources, e.g., noise in
transcription initiation and during elongation. We focus on
RNA polymerase (RNAP) pausing and show that it can
regulate, to some extent, noise in gene expression. RNAP
frequently pauses during elongation. The pausing fre-
quency and average duration are sequence-specific, thus
evolvable. The dependency of pause propensity on
regulatory molecules makes pausing a mechanism adapt-
able to rapidly changing environments. We study, in a
stochastic model of bacterial transcription at the single
nucleotide level that includes the promoter open complex
formation, pausing, arrest, misincorporation and editing,
pyrophosphorolysis, and premature termination, how
pausing affects the dynamics of gene expression and
gene networks. In a model of a genetic clock, with periodic
dynamics, pauses affect the period length but do not
disrupt the periodicity. We conclude that RNAP pausing is
an important evolvable feature of gene regulatory
networks, that can be used by organisms to adapt to
changing environments and regulate phenotypic diversity.

Effects of Pausing in Transcription
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Model of transcription at the single nucleotide level
Transcription is the reading of a gene in the DNA strand by an

RNA polymerase (RNAP) and forming it into an RNA molecule.

The RNAP unwinds and reads the DNA, producing the RNA by

adding matching nucleotides while going through the DNA strand.

Transcription has three main phases: initiation, elongation, and

termination. In initiation, the RNAP attaches to the promoter and

unwinds a portion of the DNA double helix to expose the template

DNA strand (promoter open complex formation). After that, the

RNAP starts moving on the DNA strand and elongation, forming

of the RNA molecule, begins. Behind the region where

ribonucleotides are added, the RNA chain is displaced and the

DNA double helix is reformed. In termination, a single-stranded

RNA molecule is released, ending the transcription process.

Recent models of transcription at the single nucleotide level

were proposed in [12,16]. The model proposed in [16] includes

backtracking and was used to study the distribution of elongation

times, showing the relevant role of backtracking. These and other

models [43] do not include, besides the promoter open complex

formation, several alternative pathways to elongation that have

been shown to play a role in transcription regulation (e.g., arrest)

[17,20]. For that reason, we use the delayed stochastic model of

transcription at the single nucleotide level proposed in [15] that

incorporates the promoter occupancy time, pausing, arrest,

misincorporation and editing, pyrophosphorolysis, premature

termination, and accounts for the range occupied by an RNAP

when on the DNA template [17,44]. As most measurements of

transcriptional dynamics are from E. coli, all parameter values in

the model are from E. coli.

This model of transcription is described in detail in [15]. Here

we present explicitly the reactions modeling the promoter open

complex formation (reaction (1)), stepwise elongation (reactions (2)

and (3)) where nucleotides are added one at a time to the growing

RNA molecule, pause events (4), and pause release (reactions (5),

(6) and (7)) which can occur by various means. A time delayed

reaction (1) models the formation of the promoter-RNAP complex

[39], to account for the time during which the RNAP is not

moving and occupies the promoter, preventing further transcrip-

tion initiations. In this reaction, RNAP.Pro, which represents the

complex of the RNAP bound to the promoter, has a delay toc,

represented by RNAP.Pro(toc), meaning that it takes toc seconds

for RNAP.Pro to be produced after the reaction occurs. Each time

the reaction occurs, the delay toc on the promoter release is

randomly drawn from a Gaussian distribution with a mean of 40 s

and standard deviation of 4 s, according to measurements on an

active unrepressed lacZ promoter [45–46], in agreement with

previous measurements [39]. In (1), Pro stands for the promoter

while kinit is the stochastic rate constant of the reaction which is set

to 0.0148 s21 [15]. We assume at all times 28 RNAP molecules

available for initiating transcription [47]:

ProzRNAP
kinit

RNAP:Pro(toc) ð1Þ

After the delay elapses and if the first 13 nucleotides are

unoccupied (due to the steric hindrance of a possible preceding

RNAP molecule), the RNAP can initiate elongation. When it does,

it occupies the first nucleotide and the promoter becomes available

for future reactions.

As mentioned, in elongation, at each nucleotide, the forward

movement of the RNAP is in constant kinetic competition with

other regulatory pathways [17], namely pausing and other

mechanisms that act at this stage [21,25] (e.g., arrests). Each

pathway has a propensity of occurrence and the choice is

probabilistic, biased by the propensities. The most likely event is

stepwise elongation if the RNAP is on a given nucleotide, in an

activated state.

Transcription stepwise elongation has two stages. First, the

RNAP moves from an activated nucleotide An (already tran-

scribed) to occupy the next nucleotide, providing there is no steric

hindrance from the succeeding RNAP (reaction 2) (where D= 12 is

half the number of nucleotides occupied by an RNAP) [15]. In (2),

the rate kmove is 150 s21 (to achieve an average elongation speed

75 nucleotides/s [17]). Let n be a nucleotide such that n = 1, …,

N, where N is the total number of nucleotides that the RNAP goes

through during elongation. Reaction (2) models one of the possible

chemical pathways that can be followed by the RNAP, namely

moving from nucleotide to the next nucleotide, once activated:

AnzUnzDz1

kmove
Onz1zUn{D ð2Þ

Once the RNAP occupies nucleotide On+1 (and frees nucleotide

U(n-D)), the most probable pathway is activation (reaction 3), after

which the RNAP can again move forward. In this step, a

complementary nucleotide is added to the growing RNA [15].

Onz1

kact
Anz1 ð3Þ

We set the activation rate, kact, to 150 nt/s, to attain an elongation

rate of 75 nt/s (the sum of kmove and kact) on average [17,44]. The

elongation rate can vary, e.g., with the growth rate of E. coli [48].

The value assumed here is consistent with a duplication time of

55 minutes of E. coli [33].

Elongation is frequently interrupted by pauses [14,20,49]

(reaction 4), where the RNAP is halted at a nucleotide [21].

Pause durations vary. For instance, longer pauses last over 20 s,

and are reported to be more sequence-specific than shorter ones.

This class of pauses can also be driven by the secondary structure,

such as the hairpin loop from the his operon. Most ‘‘ubiquitous’’

pauses last less than 10 s [14]. The average pausing rate is

kpause = 0.55 s21 [17]. Note that, in this model, reaction (4)

competes with (3), which is reflective of the ‘‘kinetic partitioning’’

of active and paused RNAP in the cell. The relative value between

their rates determines the fraction of times each occurs [50]. Since

kpause,kact/136, a pause event occurs, on average, every 136

activation events which, in a template of 2445 nucleotides (tsr-venus

gene [33]) is significant, causing collisions between RNAP

molecules at high expression rates.

On

kpause

Onpaused
ð4Þ

The paused complex is usually spontaneously released after a

certain time duration which follows an exponential distribution

[13] via reaction (5) (on average, after dpause = 3 seconds [14]). It

can also be released due to a collision (reaction 6) with the next

elongating RNAP [51]. The collision can instead cause the next

RNAP to pause as well (reaction 7) [51]. This is set empirically to

occur in 20% of collision events (reaction 7).

Onpaused

1=dpause

On ð5Þ

Onpaused
zAn-2D{1

0:8|kmove
OnzAn-2D{1 ð6Þ

Effects of Pausing in Transcription
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Onpaused
zAn-2D{1

0:2|kmove
Onpaused

zOn-2D{1paused
ð7Þ

This model of pausing, comprising four reactions [15], is similar

to the one proposed in [14], which matched experimental

measurements, but the events modeled by reactions (5) and (6)

are there modeled in a single reaction, not specifying the

mechanisms for the end of the paused state. Other events, such as

arrest, misincorporation and editing, pyrophosphorolysis, and

premature termination, can also occur at any nucleotide and are

modeled similarly to pauses, with rate constants extracted from

measurements. A complete description of the model (and

necessary references) can be found in [15]. Here, in Table 1 we

show the reactions modeling each of these events, and the rate

constants used in the simulations.

When the termination sequence is reached, the transcription

bubble collapses as the RNA-DNA hybrid disrupts, releasing both the

RNAP and the completed RNA molecule (‘‘R’’). Reaction (8) models

termination. When the last nucleotide is activated and the mature R

is released, the RNAP is also released, unoccupying (U) the last 12

nucleotides. The rate for the transcript release, kf, is 2 s21 [52]:

Anlast

kf

RzRNAPzUn½last,last-D� ð8Þ

In our model, translation is modeled as a multi-delayed reaction (9)

that accounts for variable time needed to complete a functional

protein, P, due to the time taken by translation, folding, activation, etc

[13,53]. The delay t3 associated to the production of a protein follows

a normal distribution (we choose the normal distribution since the

distribution has not yet been experimentally assessed, only mean and

variance have [13]).

RzRib
ktr

R(t1)zRib(t2)zP(t3) ð9Þ

In (9) Rib is a ribosome and the values for the delays were extracted

from measurements [33]. The length of the gene tsr-venus driven by a

Lac promoter studied in E. coli is 2445 nucleotides [33]. The post-

translational protein assembly process was observed to take

4206140 s in [33], thus t3 was set in accordance. The time of the

R clearance in translation initiation, t1, is set to 2 s [54], as translation

can begin again as soon as the ribosome binding site is available. The

average translation rate is 15 amino acids/s, thus we set

t2 = t1+2445 nt/(45 nt/s) = 56 s [13].

A note is needed regarding how translation is modeled (reaction

9). We use a multi-delayed reaction (from [53]) instead of a set of

reactions similar to transcription, at the single nucleotide level.

Because of this, translation only starts when a complete RNA

molecule is produced, rather than when the ribosome binding site

is complete. The use of the multi-delayed reaction is necessary due

to the computational complexity of having a translation model at

the single nucleotide level but hampers the possibility of initiating

translation when the ribosome binding site region of the RNA is

complete. However, it is noted that in our approximate model,

pauses still directly affect the bursting dynamics of proteins, and

similarly to how they would in a more detailed model. Namely,

pauses in transcription will enhance the broadening of the time

intervals between the completions of consecutive proteins as shown

in the results section.

In our model of translation, the delay (t3) associated to the

completion and release of the protein varies from one translation

event to the next. Thus, the model copes with variability in the

speed of translation and consequent different durations of

translation events in normal conditions. However, if many

collisions occur between ribosomes the model loses accuracy.

One case where, therefore, the model becomes less accurate is if,

during translation, long pauses occur. Thus, our model assumes

that there are no long pauses in the process of translation or, at

least, that these are very rare, in agreement with the measurements

from which the mean duration and variability of t3 were extracted

[33]. If, for some specific gene sequence, such pauses do occur

Table 1. Reactions and values of the rate constants of events during elongation other than pauses and stepwise elongation.

Event Reaction Rate constant

Promoter clearance
RNAp:Pr ozU½1,(Dz1)�

kmove
O1zPro

kmove = 150 s21

Elongation initiation
O(nz1)

kactfirst

A(nz1); nva, a= 10
kact first = 30 s21

Arrest
On

karrest
Onarrested

karrest = 0.00027 s21

Arrest release On

1=darrest

Onarrested
darrest = 100 s

Editing
On

kerror correct
Oncorrecting

kerror_correct = 0.00875 s21

Editing completion On

1=dcorrect

Oncorrecting
dcorrect = 5 s

Misincorporation
Anlast

kmis
RNAerroneouszRNAP

kmis = 0.05 s21

Pyrophosphorolysis
OnzUfn-(Dz1)g

kpyro

O(n-1)zU(nzD)

kpyro = 0.75 s21

Premature termination
On

kprem

RNAPzU½(n-D),(nzD)�
kprem = 0.00019 s21

‘‘n’’ is the index of the nucleotide.
doi:10.1371/journal.pcbi.1000704.t001
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frequently, it is likely that they will enhance the bursting in protein

levels.

When simulating the model, both RNA and proteins are subject

to degradation, modeled as first order reactions. Reactions (10)

and (11) model degradation of RNA and proteins, respectively:

R
degR

1 ð10Þ

P
degP

1 ð11Þ

Given that ktr = 0.00042 s21 [13], that there are 100 ribosomes

available for translation [13] and that, on average, there are 1.2 R

available for translation (given that R goes into the ‘waitlist’ when

reacting in a translation event), we set the protein degradation rate

degP to 0.0003 s21 (55 min21, using in vivo parameter values [13])

so that the mean level of proteins at equilibrium is ,150.

Similarly, degR (,0.1 s21) is set so as to impose a mean level of ,5

transcripts.

Results

In all simulations, single genes (and genes in networks) are

modeled from the model proposed in [15] of the gene tsr-venus

constructed in E. coli [33]. This in silico model was shown to match

in vivo measurements at the single RNA and protein level [15,33].

Here, starting from this model, we then test various values of kpause

(rate of occurrence of pauses) and dpause (average pause duration)

within a realistic range of values: 0,kpause,10 s21 and

0,dpause,100 s [14,17,26].

We first study the effects of varying pausing rate and duration in

all nucleotides. Next, we study the effects of short sequence-specific

pauses with long durations ($30 s), which only occur at specific

locations in the DNA sequence [20–21,55], on transcriptional

dynamics and RNA fluctuations. Parameter values used are

gathered in Table 2.

RNA polymerase pausing enhances the occurrence of
microbursts

The transcription model at the single nucleotide level used

here [15] exhibits transcriptional bursting as reported in [32]

(defined as the periods during which RNAs are produced, versus

what appear to be relatively long periods of inactivity of the

promoter). It was observed [15,32] that during the periods of

activity, there are sudden increases in the amounts of RNA

molecules. These ‘microbursts’ were shown to be due to the

completion of two or more RNA molecules within intervals

shorter than the average duration of the promoter open complex

formation [15], which in the model was set to follow a

Gaussian distribution with a mean of 40 s and a standard

deviation of 4 s [39,45]. Using the same model, we explore how

the occurrence and duration of pauses contribute to transcrip-

tional microbursting.

The movement of an RNAP molecule on the strand is stochastic

[2,39], thus, two or more consecutive RNAPs may shorten their

initial distance in the strand and complete transcription within an

interval shorter than the duration of the promoter open complex

formation (leading to RNA microbursts, as defined here). Several

events can enhance these bursts. For example, pyrophosphorolysis

can cause a gradual shortening of the distance between

consecutive RNAs, or the arrest of an RNAP can cause several

RNAPs to accumulate behind the halted one.

Pauses were shown be to a major enhancer of microbursts [15].

While a microburst is expected to, on average, transiently increase

the amount of RNA by only 2 or 3 units, this can affect a cell’s

functioning since, for many genes, the RNA level range from 1 to a

few [36]. Transient increases can affect, e.g., differentiation [2–3]

by overcoming thresholds that lead to a cascade of events.

Table 2. Values of the rate constants used in simulations.

Reactions Parameter Rate constant Reference

Initiation kinit 0.0148 s21 (openwetware.org, as of 15/07/2009)

Open complex formation toc m= 40 s. s= 4s [13]

Elongation kmove+kact 75 s21 [48]

Termination kf 2 s21 [52]

Pause rate kpause 0.55 s21, except when stated otherwise [17]

Pause duration dpause 3 s, except when stated otherwise [17]

Translation ktr 0.00042 s21 [13]

RNA clearance in translation t1 2 s [54]

Duration of translation t2 56 s [13]

Duration of posttranslational assembly t3 m= 420 s s= 140 s [33]

Degradation of RNA degR 0.1 s21 See text.

Degradation of protein degP 0.0003 s21 [13]

Repressilator model

Repression kr 0.1 s21 Tuned to match period length reported in [38]

Unrepression ku 1024 s2 Tuned to match period length reported in [38]

Degradation of protein bound to promoter kdp 0.01 s21 (*) Tuned to match period length reported in [38]

Protein degradation degp_r 0.01 s21 (*) Tuned to match period length reported in [38]

(*)In agreement with the fast degradation of the engineered proteins in [38].
doi:10.1371/journal.pcbi.1000704.t002

Effects of Pausing in Transcription
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We measured the interval between consecutive completions of

transcription events as we varied the pausing rate of occurrence

and average duration. Results are shown in Figures 1–3.

Transcription initiation rate was set to kinit = 0.0148 s21 [15].

We simulated 500 independent cells, each for 3300 seconds (the

lifetime of E. coli [33]), measuring the RNA level at a sampling

frequency of 0.1 s. While the DNA template is initialized without

RNAP molecules on it, the transient to reach a steady state flow of

RNAP molecules on the DNA is negligible in comparison to the

simulation time (,150 s, i.e. 4,5% of the simulation time).

Nevertheless, such transient has no effect on the results on the

interval between transcription completions.

Figures 1A and 1B show the time intervals between each pair

of consecutive transcription completions for, respectively, three

values of kpause and three values of dpause (within experimentally

observed ranges). It is noted that these intervals depend of the

value for kinit, of the number of RNAP available at each moment

(here kept constant for simplicity), and of toc. Namely, one expects

the mean time between transcription initiation events to be

,((RNAP*kinit)
21+toc), which equals, given our parameter values,

,42.4 s (this approximation neglects the first elongation step of

the RNAP, which releases the promoter, as it takes negligible time

[39]).

From Figure 1A, as kpause increases, the distribution of intervals

between completions changes from ‘‘Gaussian-like’’, to ‘‘exponen-

tial-like’’. Increasing dpause causes similar but stronger effects

(Figure 1B). This change implies that more pairs of RNAPs

complete transcription unevenly, separated by much shorter or

longer intervals than the promoter delay and interval between

transcription initiations, a consequence of the stochastic pause

events.

We next measured the number of microbursts as we increase

kpause and dpause (Figure 2). From the time series of the number of

RNAs measured at a sampling frequency of 1 second, we

calculated the fraction of times that two or more consecutive

RNAs are produced in an interval smaller than 5 seconds. This

interval is defined arbitrarily, excepted that in that it needs to be

smaller than the average duration of the promoter open complex

formation, according to the definition of microburst. We did not

find qualitative differences in the results using other interval

lengths.

We set kpause to 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100 s21

(kpause can range from 0.1 to ,1 s21 in vitro [17]), and then we set

dpause to 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, and 100 s (in vitro dpause

ranges from 0.1 to ,25 s [14]). When varying kpause we set dpause

to 3 s, and when varying dpause we set kpause to 0.55 s21 (mean

values [17]). We tested values of kpause above those experimentally

observed to better examine the decrease in microbursting.

For each set of parameter values, we simulated 10 independent

cells, each for 50 000 seconds, sampled every second (this

unrealistically long life time provides better statistics, but one

can equivalently measure more cells with shorter lifetimes as one is

approximately measuring ‘‘steady state statistics’’).

From Figure 2A, for 0,kpause,10, it is visible that the number

of microbursts increases with kpause. For a pause to occur, it has to

compete with several events such as arrests. The most probable is

Figure 1. Pausing effect on the intervals between the production of consecutive RNAs. Intervals of successive RNA completions for (A)
various rates of pausing and, (B) various average pause durations. The fraction of RNAs completed within intervals smaller than 5 seconds grows
especially when increasing pauses mean duration (the black peak in 1B).
doi:10.1371/journal.pcbi.1000704.g001

Figure 2. Pausing and the fraction of microbursts. Fraction of two or more consecutive RNAs produced within an interval smaller than
5 seconds for various values of (A) pausing rate (kpause) and, (B) pause duration (dpause). Note the different scales in the y-axis in 2A and 2B.
doi:10.1371/journal.pcbi.1000704.g002
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stepwise elongation (kmove = 150 s21) and subsequent activation

(kact = 150 s21). Since kpause is much smaller than these rates, it is

unlikely that two consecutive RNAPs will both pause. Interesting-

ly, for kpause.10 s21 the number of microbursts decreases. This is

due to kpause having the same order of magnitude as elongation,

leading to most RNAPs constantly pausing at each nucleotide,

without significant variation in the distance between consecutive

RNAPs. Importantly, this suggests that there similarly is a

maximum noise level in transcription attainable via selecting for

sequences prone to pauses. Also, as the reason for the decrease lies

in the relationship of the magnitudes of kpause and kmove, this result,

and the value of kpause for which it occurs, is independent of the

value of dpause, as the propensity of occurrence and duration of

pauses is identical in all nucleotides.

From Figure 2B, the effect of increasing dpause on microburst-

ing is different from varying kpause. Confronting the y-axis scales of

Figures 2A and 2B, one concludes that increasing dpause causes

significantly more microbursts and that this increase is not limited

as when increasing kpause. Notably, the average time between

completions does not vary with either kpause or dpause, since

increasing the number of microbursts necessarily is accompanied

by an increase in the number of consecutive RNAPs separated by

longer time intervals (Figures 1A and 1B). Thus, varying kpause

and dpause may tune the noise level of the RNA and proteins, but

mean levels are left unaffected.

We measured the number of RNAs in the largest microburst in

each simulation for each value of kpause and dpause and averaged it

over all cells with the same values of kpause and dpause (Figure 3).

From Figures 2 and 3 one can conclude that there is a strong

correlation between the number of microbursts and the size of

largest microburst. The size of the largest microburst increases

with dpause, while for kpause the result is more complex. Namely, for

0,kpause,10, the size of the largest microburst increases with

increasing kpause, and beyond these values (kpause.10) the size of

the largest microburst decreases with the increase of kpause.

Interestingly, for kpause.50, the maximum size is actually smaller

than for kpause,1, meaning that an increased frequency of pauses

can, in principle, be used as a means to decrease the occurrence of

microbursts.

Initial transient to reach the mean protein level
An important dynamical aspect of gene expression in a genetic

network is the time that it takes for a gene, initially repressed, to

reach its steady state protein expression level, once activated. This

transient time is a measure of the ‘‘speed of response’’ of that gene

to either an externally or an internally induced activation or

halting of repression. We measured this transient as a function of

kpause and dpause. We ran 100 simulations, each for 5000 s with a

sampling rate of 1 s, for each set of parameter values of kpause and

dpause described, except that for kpause the maximum value was

10 s21. The initial transient is defined here as the time it takes for

the protein level to be equal or higher, for the first time, than its

mean level over the total simulation time. We then averaged the

results of the 100 simulations for each set of parameter values of

kpause and dpause. The mean RNA level is ,5 in all simulations and

the mean protein level is ,150. The average transient length with

one standard deviation error bars is shown in Figures 4A and
4B.

The results suggest that increasing kpause only affects the transient

for values beyond 0.5 s21. Similarly, the increase in dpause only

increases the transient significantly for values beyond 5 s (impor-

tantly both values are within realistic intervals). This effect on the

transient has, as shown later, consequences on the dynamics of the

repressilator. Notably, the variance of the initial transient does not

vary significantly in the range of values tested of kpause, while for

dpause it only increases significantly for dpause.20 s explaining why,

later on, we observed that the robustness of the genetic repressilator

is not significantly affected by varying kpause and dpause.

Noise levels of RNA and protein production
We next study the effects of pauses on the noise of the RNA and

protein levels of a single gene, given that both RNA and proteins

are subject to degradation. Noise is quantified by the coefficient of

variation (CV), defined as the standard deviation over the mean

level over time.

Figure 3. Maximum microburst size as a function of the kinetics
of pausing. Average size of the largest RNA microburst, over 10 cells,
for various values of kpause (s21) and dpause (s).
doi:10.1371/journal.pcbi.1000704.g003

Figure 4. Pausing and the initial transient. Average initial transient with one standard deviation error bars (red bars) before reaching the
homeostasis level of protein production as (A) pausing rate, and (B) pause duration vary (x-axis in log scale).
doi:10.1371/journal.pcbi.1000704.g004
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The increase in kpause from 0 to 10 s21 causes a 20% increase in

RNA noise level (Figure 5A) and 15% in protein noise level

(Figure 5C). The increase in dpause from 0 to 100 s causes

increases of ,50% in RNA (Figure 5B) and of ,110% in protein

noise levels (Figure 5D). Thus, increases in the frequency and

duration of pausing leads to substantial increases in noise. It is

interesting to speculate, given these results, that pauses may be a

regulatory mechanism of transcriptional and translational noise.

Variations of this order of magnitude are likely to affect the

dynamics of genetic circuits. Nevertheless, it is noted that while the

increase in fluctuations of RNA levels is clear and in agreement

with studies on the effects of varying the distribution of time

intervals between transcription completions [56], one should be

careful when drawing conclusions regarding effects of pauses in the

protein noise levels, as many more variables and processes are

involved. E.g., proteins levels are also affected by post-translational

regulatory mechanisms such as phosphorylation or dephosphor-

ylation that are, in some cases, used to regulate degradation [57],

and that would affect protein noise level. Nevertheless, afterwards,

when observing effects on the dynamics of the repressilator, we

observe significant effects as kpause and dpause are varied in the

same range of values. The results agree with the effects of pausing

on microbursting.

The repressilator
To investigate how kpause and dpause alter the dynamics of

genetic circuit, we model a repressilator [58] Additionally to the

reactions (and parameter values) described for gene expression,

additional reactions are needed to model binding and unbinding

of monomeric repressor proteins to the promoter regions of genes

(reactions 12), to define the topology of the repressilator, and for

protein degradation when bound to the promoter (reactions 13)

and when free (reactions 14):

ProizPj /{{{{?
kr

ku

ProiPj ð12Þ

ProiPj

kdp
Proi ð13Þ

Pj

degp r

1 ð14Þ

In reactions (12) and (13), i = {1,2,3} and j = i-1, except for i = 1, in

which case j = 3. In reaction (14), j = {1,2,3}. The repression rate

kr is 0.1 s21, the unrepression rate ku is 1024 s21, and protein

degradation rate (degp_r) is 0.01 s21. Importantly, setting

kpause = 0.55 s21 and dpause = 3 s (the mean observed values)

causes the repressilator to have a period of ,7.000 s, similar to

measurements [58]. A precise matching can be achieved by, e.g.,

tuning the protein degradation rate.

Both kpause and dpause affect the period length, but not mean

protein levels or period robustness (Figures 6A and 6B).

Increasing either kpause or dpause increases the mean period, due

to the increase in transient to reach maximum expression level, as

in the case of individual genes.

Robustness of the periodicity was assessed by the 3-tuple

information-entropy (H) of the time series of (P1, P2, P3), binarized

with k-means [59], from a time series of 107 s sampled every 100 s.

Measures of periodicity robustness cannot be chosen according to

any fixed criteria, thus, in each case the measure yielding the most

Figure 5. Noise of protein and RNA levels. CV (standard deviation over the mean) of RNA and protein levels at homeostasis measured for
50000 s, 1 s sampling frequency: (A) CV of RNA when varying pausing rate, (B) CV of RNA when varying pause duration, (C) CV of proteins when
varying pausing rate, and (D) CV of proteins when varying pause duration. Note the different scales in the y-axis.
doi:10.1371/journal.pcbi.1000704.g005
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plausible results should be selected [60]. We aimed to measure the

robustness of the periodicity of the levels of the three proteins of

the repressilator. This behavior is robust if the period length is

constant over time and if there are no disruptions in the periodic

increase and decrease of each protein levels. Note that changes in

the period length, disruptions in the periodicity of the protein

levels fluctuations, and more high-frequency noise in each protein

level cause the 3-tuple H to be higher than otherwise. Let

(P1,P2,P3)(t) be the 3-tuple binarized states of the proteins levels at

moment t. There are 8 possible states (P1,P2,P3), namely, states

(0,0,0) to (1,1,1). From the entire time series, one can assume the

probability of being in each state to be, in approximation, the

normalized fraction of times that that state occurs. Let i = 1,…,8

be the index of the state and Pri be the probability to be in state i.

The 3-tuple information-entropy of the time series of the proteins

is then given by (15) [61]:

H(P1,P2,P3)~{
Xi~8

i~1

Pri
: log Prið Þ ð15Þ

The 3-tuple information entropy of the binarized states is ,1.2 for

all values of kpause and dpause tested (same range of values as in the

previous cases), indicating that the repressilator is robust to the

increase of noise in the temporal levels of each protein. In

accordance, in long time scales (107 s), the number of disruptions

in the periodic behavior is identical in the three models.

In Figures 7A, B and C, we show time series of the protein

levels of three repressilators: (A) with kpause = 0.55 s21 and

dpause = 3 s, (B) kpause = 10 s21 and dpause = 3 s, and (C)

kpause = 0.55 s21 and dpause = 100 s. As in the case of the individual

gene’s protein time series, the increase of kpause and dpause cause

stronger fluctuations in the protein levels in case (B), and even

more in case (C).

We also measured the noise level (CV) of the protein time series

(Figures 8A and B). The effect of the periodic oscillation on CV

is approximately removed by summing, at each time step, the

amounts of P1, P2 and P3 into a single quantity, here referred to as

Ptotal, of which we measure the mean and standard deviation of the

time series (CV).

Interestingly, an increase in noise level at the single gene level

does not significantly affect the robustness of the repressilator’s

periodicity. This is because the repressive interactions between the

genes via their proteins act as ‘noise filters’. The ‘tunability’ of

genetic clocks might be of key importance in varying environ-

ments, and the results suggest that pausing is a good candidate for

an evolvable mechanism to adapt to environmental changes by

tuning the period without affecting the robustness (Figures 6A
and 6B).

The length of the initial transient of a gene to reach its mean

expression level ‘at steady state’ increases with the increase of

kpause and dpause (Figures 4A and 4B). In a repressilator, the

expression level of each gene goes to zero periodically. The

increase in transient time (via increased kpause and dpause) of each

Figure 6. Pausing effects on the period of a genetic oscillator. Average period length of the repressilator as (A) pausing rate, and (B) pause
duration vary.
doi:10.1371/journal.pcbi.1000704.g006

Figure 7. Dynamical effects of pauses on the repressilator dynamics. Sample of the time series of the 3 proteins (Pi = 1,2,3) of the repressilator
from t = 20000 to 50000 s (sampling frequency of 1 s) for (A) kpause = 0.55 s21 and dpause = 3 s, (B) kpause = 10 s21 and dpause = 3 s, and (C)
kpause = 0.55 s21 and dpause = 100 s. Black line is P1, red line is P2, and blue line is P3.
doi:10.1371/journal.pcbi.1000704.g007
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gene to reach its maximum expression level causes the length of

the period of the repressilator to increase.

Effects of long-duration sequence-dependent pauses
So far, we have focused on the effects of short duration pauses

on gene expression. For simplicity, we have assumed an identical

probability of pause occurrence and an identical distribution of

pause duration at each nucleotide, irrespective of the sequence. In

this section, we examine the effects on gene expression of longer

pauses, which are known to exist in numerous organisms

[20,22,62], and that can last from 30 seconds to several minutes

[20,62]. Such long pauses are sequence dependent, thus, occur at

specific sites. One class of long pauses is stabilized by the formation

of a ‘‘pausing hairpin’’ in the newly transcribed RNA. Analysis of

the his leader pause site showed that the pause it causes has a half-

life of 47 seconds and occurs with a probability of 80%, and it was

suggested that it facilitates the synchronization of the RNAP and

ribosome movements during transcription of the his operon

[20,22].

Interestingly, it has been shown also that, depending on the

spacing of the hairpin loop from the RNA 39 end, and the nature

of the intervening RNA sequence, the hairpin can prolong pausing

or vary the chance of premature transcriptional termination [22]

(thought to be modulated by a direct interaction between a flexible

loop on RNAP and the hairpin). This effect, as it is sequence

dependent, is also likely to be subject to selection. Finally, hairpin

pausing is also known to play a key role in termination of

transcription, by halting RNAP at terminators until appropriate

factors, such as Rho-factor, are recruited and the elongation

complex is dissociated [63].

To study the effects of such long-duration pause sites in

transcriptional dynamics, we examine three hypothetical sequenc-

es of 400 nucleotides. These, referred to as A, B and C, are in all

ways identical except that we introduce, at nucleotide 200, a long-

pause in B and C with a 50% probability of occurrence for each

RNAP that reaches that nucleotide, and with a mean duration of

60 s. Additionally, in case C, there is a 25% chance of premature

termination at nucleotide 200, if a long pause occurs. Note that

each RNAP can pause only once at the long-pause site.

In Figure 9, the distribution of time intervals between

transcription completion events in the three scenarios A, B, and

C are shown. The effects of the probabilistic long-pauses and

premature termination at nucleotide 200 are visible comparing the

figures. We set a high transcription initiation rate so that, given the

promoter open complex delay, transcription events are separated

on average by 4064 s intervals.

When comparing cases A and B, it is apparent that the pause

site causes the distribution to convert from Gaussian like (case A)

to tri-modal (case B). By introducing a long duration pause with a

50% probability of occurrence two new peaks emerge in the

distribution. One is due to microbursting, and the other

corresponds to the pairs of consecutive RNAPs separated by long

time intervals. This separation of peaks was not observed when

examining short duration pauses (Figure 1), as the reduced pause

duration would not cause a significant interval of RNAP

separation. Note that a single pause event causes an increase in

both peaks, since the existence of a long interval demands the

existence of a short interval, given the approximately constant rate

of transcription initiation. A 50% probability of pause occurrence

explains the heights of the peaks at ,40 s and ,80 s, which are

half the height of the peak at ,40 for case A, since approximately

50% of the intervals between consecutive RNAPs are doubled due

to the pause site.

Given the change in the distribution of intervals between

completions, one can conclude that, assuming a first order

degradation rate of RNA, the existence of the long-pause site

causes higher noise in the RNA levels, due to the increase of

microbursting.

The effects of premature termination (case C) are also of

interest. A 25% chance of premature termination following a long

pause causes the number of consecutive RNAP pairs separated by

Figure 8. Pausing and the noise in protein time series in the repressilator. CV (standard deviation over the mean) of proteins of the
repressilator (P1+P2+P3) when varying (A) pausing rate, and (B) pause duration.
doi:10.1371/journal.pcbi.1000704.g008

Figure 9. Effects of a sequence-specific long-duration pause.
Time interval between the completion of consecutive RNA molecules in
a gene with 400 nucleotides in case (A) without long-duration pause
sites, case (B) with one long-pause site at nucleotide 200 where kpause is
half the value of the rate of stepwise elongation and dpause is 1 min, and
case (C), identical to case (B) but with a 20% chance that a long-paused
RNAP will lead to premature termination.
doi:10.1371/journal.pcbi.1000704.g009
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short intervals (,5) to decrease significantly but does not affect the

number of pairs of consecutive RNAP separated by long intervals

(,80 s, in comparison to the normal ,40 s). This is due to the fact

that a premature termination cannot cause two consecutive

RNAPs to shorten the distance between them, but decreases the

number of pairs of RNAPs separated by short distances in the

template as one of them falls off. Note that Figure 9 shows a

probability mass, not the total number of cases, which decreases

given the premature terminations by approximately 10% (given

equal simulation times). Interestingly, the premature terminations

diminish the noise level in comparison to case B, as it decreases

significantly the occurrence of microbursts. However, the noise is

still higher in case C than in case A.

As seen, the broadening of the distribution of intervals between

transcription completions results in higher noise in RNA levels

and, consequently, protein levels. Thus, sequence-specific long-

duration pause sites are likely to lead to increasing RNA and

protein noise levels.

Discussion

Several recent studies have focused on the stochasticity arising

from transcription initiation. Importantly, in elongation there are

several events also contributing to transcriptional noise, such as

pauses, arrests, or premature terminations. We studied the effect of

pauses in elongation on transcriptional dynamics using a delayed

stochastic model of transcription at the single nucleotide level that

includes the promoter open complex formation, pausing, arrest,

misincorporation and editing, pyrophosphorolysis, and premature

termination.

Our results show that varying pauses rate of occurrence and

duration, within realistic parameter value intervals, affects the

dynamics of transcription and protein levels, namely, bursting

dynamics and the noise in transcripts and proteins levels. As noise

in gene expression is subject to selection [64], and while there are

other mechanisms by which noise in RNA and protein levels can

be tuned, e.g. transcription initiation rate [8], it can be speculated

that the existence or absence of sequence-specific pauses is subject

to selection as they are a viable mean to regulate the noise level at

the single gene level and, consequently, in gene regulatory

networks. Interestingly, in agreement with our predictions that

pauses lasting more than 10 seconds significantly increase noise in

transcripts levels, measurements in E. coli of sequence-dependent

pauses dynamics suggest that most of these pauses last less than

10 seconds [14]. It should be noted that the measurements in [14]

were made in vitro, and unknown mechanisms may alter some of

these pauses lifetime in vivo.

Furthermore, there is evidence that cells use stochasticity in

gene expression to cope with fluctuating environments [7] and that

fluctuations in the levels of dosage-sensitive genes can be harmful

[65–66]. Given that RNAP pausing affects the noise in gene

expression and thus, the dynamics of genetic networks we suggest

that pauses are an evolvable mechanism by which cells adapt the

transcriptional noise of specific genes to cope with environmental

stresses and changes.

Pause rate of occurrence and duration affect size and number

of microbursts in transcription. Size of the largest microburst and

number of microbursts might have different and important roles

in cellular metabolism. While increasing the number of

microbursts increases noise of transcripts levels, increasing the

size of the microbursts allows overcoming thresholds in RNA

levels otherwise not reachable. The ability of RNAP pausing to

regulate microbursting in RNA levels suggests that it might be a

regulatory mechanism of cells’ sensitivity to external stresses, and

of probabilistic decision-making processes such as in cell

differentiation and phenotypic variability. Initiation of differen-

tiation usually requires reaching a protein concentration

threshold to switch between pathways, as depicted by the French

flag model [67] or the competence decision circuit of Bacillus

subtilis [4,6]. The ability of a gene to produce strong but sparse

bursts is of importance in this context. In agreement with this

hypothesis, it has been suggested that transcriptional promoter

proximal pausing, is crucial in the embryonic development of

Drosophila, by being a source of transcriptional bursts [25].

Sequence-specific long pauses were shown here to be an ideal

regulatory mechanism of bursts. Not only a single long-pause site

can drastically alter the distribution of bursts, but it can do so

without changing mean expression levels. Further, combining the

long pause site with higher premature termination rate, allows

making the distribution between completion of RNA molecules

sparser without increasing the number of bursts.

There are several evidences that noise in gene expression is

subject to selection [1–7,64] and that bursts in gene expression

play a key role in allowing the overcoming of thresholds in protein

concentrations otherwise unreachable [11,25]. The fact that long-

pause sites are tentative candidate regulators of transcriptional

noise might be one of the reasons for the widespread occurrence of

promoter proximal pausing in prokaryotes and eukaryotes

[25–26]. Another possible reason might be its ability to coordinate

transcription elongation with pre-mRNA processing [25], but one

usage does not exclude others, i.e., pauses might be used for

multiple purposes, one of these being the regulation of transcrip-

tional noise.

Our results further suggest that pauses are a likely regulatory

mechanism of gene networks dynamics. For example, altering the

rate and duration of pauses in the genes composing a

repressilator enables tuning the proteins’ time series period

length. Interestingly, even for rates of pausing exceeding

biologically observed values, the robustness of the periodicity

was not affected, unlike when using other methods to alter the

period length (e.g. decreasing transcription initiation). Also,

pausing may be used to, e.g., tune the switching frequency of a

genetic switch as switches are noise-driven, due to the effect on

individual genes’ expression noise.

Importantly, both the pausing rate and expected duration are

sequence-dependent [14], implying that this regulatory mecha-

nism of transcriptional dynamics is evolvable. The additional

dependence of the propensity to pause on regulatory molecules

suggests that pausing may also be a mechanism able to respond to

changes in the cellular environment. In this context, it of interest to

note that essential genes exhibit, in general, lower noise levels than

nonessential ones [68], suggesting evolvability in the noise level of

individual genes [64]. Due to the effects of pauses in transcrip-

tional noise and its sequence dependence, it is likely that this is one

of the evolvable mechanisms, to tune individual genes’ noise level

as a function of the gene’s task.

Finally, while the values of pausing rate and duration tested here

are within the range of biologically observed values, extending our

studies to values beyond these ranges might provide insights into

the potential applications of pausing in synthetically engineered

genetic networks.
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