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Abstract

While many models of biological object recognition share a common set of ‘‘broad-stroke’’ properties, the performance of
any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number
of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such
parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is
high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities
of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or
because the correct ‘‘parts’’ have not been tuned correctly, assembled at sufficient scale, or provided with enough training.
Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in
stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3’s IBM Cell Processor). In analogy to high-
throughput screening approaches in molecular biology and genetics, we explored thousands of potential network
architectures and parameter instantiations, screening those that show promising object recognition performance for further
analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object
recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature.
As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly
accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.
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Introduction

The study of biological vision and the creation of artificial vision

systems are naturally intertwined—exploration of the neuronal

substrates of visual processing provides clues and inspiration for

artificial systems, and artificial systems, in turn, serve as important

generators of new ideas and working hypotheses. The results of

this synergy have been powerful: in addition to providing

important theoretical frameworks for empirical investigations

(e.g. [1–6]), biologically-inspired models are routinely among the

highest-performing artificial vision systems in practical tests of

object and face recognition [7–12].

However, while neuroscience has provided inspiration for some

of the ‘‘broad-stroke’’ properties of the visual system, much is still

unknown. Even for those qualitative properties that most biolog-

ically-inspired models share, experimental data currently provide

little constraint on their key parameters. As a result, even the most

faithfully biomimetic vision models necessarily represent just one of

many possible realizations of a collection of computational ideas.

Truly evaluating the set of biologically-inspired computational

ideas is difficult, since the performance of a model depends

strongly on its particular instantiation–the size of the pooling

kernels, the number of units per layer, exponents in normalization

operations, etc. Because the number of such parameters (explicit

or implicit) is typically large, and the computational cost of

evaluating one particular model is high, it is difficult to adequately

explore the space of possible model instantiations. At the same

time, there is no guarantee that even the ‘‘correct’’ set of principles

will work when instantiated on a small scale (in terms of

dimensionality, amount of training, etc.). Thus, when a model

fails to approach the abilities of biological visual systems, we

cannot tell if this is because the ideas are wrong, or they are simply

not put together correctly or on a large enough scale.

As a result of these factors, the availability of computational

resources plays a critical role in shaping what kinds of

computational investigations are possible. Traditionally, this

bound has grown according to Moore’s Law [13], however,

recently, advances in highly-parallel graphics processing hardware

(such as high-end NVIDIA graphics cards, and the PlayStation 3’s

IBM Cell processor) have disrupted this status quo for some classes

of computational problems. In particular, this new class of modern

graphics processing hardware has enabled over hundred-fold
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speed-ups in some of the key computations that most biologically-

inspired visual models share in common. As is already occurring in

other scientific fields [14,15], the large quantitative performance

improvements offered by this new class of hardware hold the

potential to effect qualitative changes in how science is done.

In the present work, we take advantage of these recent advances

in graphics processing hardware [16,17] to more expansively

explore the range of biologically-inspired models–including models

of larger, more realistic scale. In analogy to high-throughput

screening approaches in molecular biology and genetics, we

generated and trained thousands of potential network architec-

tures and parameter instantiations, and we ‘‘screened’’ the visual

representations produced by these models using tasks that engage

the core problem of object recognition–tolerance to image

variation [10–12,18,19]. From these candidate models, the most

promising were selected for further analysis.

We show that this large-scale screening approach can yield

significant, reproducible gains in performance in a variety of basic

object recognitions tasks and that it holds the promise of offering

insight into which computational ideas are most important for

achieving this performance. Critically, such insights can then be

fed back into the design of candidate models (constraining the

search space and suggesting additional model features), further

guiding evolutionary progress. As the scale of available computa-

tional power continues to expand, high-throughput exploration of

ideas in computational vision holds great potential both for

accelerating progress in artificial vision, and for generating new,

experimentally-testable hypotheses for the study of biological

vision.

Methods

A Family of Candidate Models
In order to generate a large number of candidate model

instantiations, it is necessary to parameterize the family of all

possible models that will be considered. A schematic of the overall

architecture of this model family, and some of its parameters, is

shown in Figure 2. The parameterization of this family of models

was designed to be as inclusive as possible–that is, the set of model

operations and parameters was chosen so that the family of

possible models would encompass (as special cases) many of the

biologically-inspired models already described in the extant

literature (e.g. [1–4,7,9]). For instance, the full model includes

an optional ‘‘trace’’ term, which allows learning behavior akin to

that described in previous work (e.g. [4,20–22]). While some of the

variation within this family of possible models might best be

described as variation in parameter tuning within a fixed model

architecture, many parameters produce significant architectural

changes in the model (e.g. number of filters in each layer). The

primary purpose of this report is to present an overarching

approach to high-throughput screening. While precise choices of

parameters and parameter ranges are clearly important, one could

change which parameters were explored, and over what ranges,

without disrupting the integrity of the overarching approach. An

exhaustive description of specific model parameters used here is

included in the Supplemental Text S1, and is briefly described

next.

Model parameters were organized into four basic groups. The

first group of parameters controlled structural properties of the

system, such as the number of filters in each layer and their sizes.

The second group of parameters controlled the properties of

nonlinearities within each layer, such as divisive normalization

coeffients and activation functions. The third group of parameters

controlled how the models learned filter weights in response to

video inputs during an Unsupervised Learning Phase (this class includes

parameters such as learning rate, trace factors, etc.; see Phase 2:

Unsupervised Learning below). A final set of parameters controlled

details of how the resulting representation vectors are classified

during screening and validation (e.g. parameters of dimensionality

reduction, classification parameters, etc.). For the purposes of the

work presented here, this class of classification-related parameters

was held constant for all analyses below. Briefly, the output values

of the final model layer corresponding to each test example image

were ‘‘unrolled’’ into a vector, their dimensionality was reduced

using Principal Component Analysis (PCA) keeping as many

dimensions as there were data points in the training set, and

labeled examples were used to train a linear Support Vector

Machine (SVM).

Each model consisted of three layers, with each layer consisting

of a ‘‘stack’’ of between 16 and 256 linear filters that were applied

at each position to a region of the layer below. At each stage, the

output of each unit was normalized by the activity of its neighbors

within a parametrically-defined radius. Unit outputs were also

subject to parameterized threshold and saturation functions, and

the output of a given layer could be spatially resampled before

being given to the next layer as input. Filter kernels within each

stack within each layer were initialized to random starting values,

and learned their weights during the Unsupervised Learning Phase (see

below, see Supplemental Text S1). Briefly, during this phase,

under parametric control, a ‘‘winning’’ filter or filters were selected

for each input patch, and the kernel of these filters was adapted to

more closely resemble that patch, achieving a form of online non-

parametric density estimation. Building upon recent findings from

visual neuroscience [18,23,24], unsupervised learning could also

be biased by temporal factors, such that filters that ‘‘won’’ in

previous frames were biased to win again (see Supplemental Text

S1 for details).

It should be noted that while the parameter set describing the

model family is large, it is not without constraints. While our

model family includes a wide variety of feed-forward architectures

with local intrinsic processing (normalization), we have not yet

included long-range feedback mechanisms (e.g. layer to layer).

While such mechanisms may very well turn out to be critically

important for achieving the performance of natural visual systems,

the intent of the current work is to present a framework to

Author Summary

One of the primary obstacles to understanding the
computational underpinnings of biological vision is its
sheer scale—the visual system is a massively parallel
computer, comprised of billions of elements. While this
scale has historically been beyond the reach of even the
fastest super-computing systems, recent advances in
commodity graphics processors (such as those found in
the PlayStation 3 and high-end NVIDIA graphics cards)
have made unprecedented computational resources
broadly available. Here, we describe a high-throughput
approach that harnesses the power of modern graphics
hardware to search a vast space of large-scale, biologically
inspired candidate models of the visual system. The best of
these models, drawn from thousands of candidates,
outperformed a variety of state-of-the-art vision systems
across a range of object and face recognition tasks. We
argue that these experiments point a new way forward,
both in the creation of machine vision systems and in
providing insights into the computational underpinnings
of biological vision.

High-Throughput Search for Visual Representations
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approach the problem. Other parameters and mechanisms could

be added to this framework, without loss of generality. Indeed, the

addition of new mechanisms and refinement of existing ones is a

major area for future research (see Discussion).

Parallel Computing Using Commodity Graphics
Hardware

While details of the implementation of our model class are not

essential to the theoretical implications of our approach, attention

must nonetheless be paid to speed in order to ensure the practical

tractability, since the models used here are large (i.e. they have

many units), and because the space of possible models is enormous.

Fortunately, the computations underlying our particular family of

candidate models are intrinsically parallel at a number of levels. In

addition to coarse-grain parallelism at the level of individual model

instantiations (e.g. multiple models can be evaluated at the same

time) and video frames (e.g. feedforward processing can be done in

parallel on multiple frames at once), there is a high degree of fine-

grained parallelism in the processing of each individual frame. For

instance, when a filter kernel is applied to an image, the same filter is

applied to many regions of the image, and many filters are applied

to each region of the image, and these operations are largely

independent. The large number of arithmetic operations per region

of image also results in high arithmetic intensity (numbers of

arithmetic operations per memory fetch), which is desirable for

high-performance computing, since memory accesses are typically

several orders of magnitude less efficient than arithmetic operations

(when arithmetic intensity is high, caching of fetched results leads to

better utilization of a processor’s compute resources). These

considerations are especially important for making use of modern

graphics hardware (such as the Cell processor and GPUs) where

many processors are available. Highly-optimized implementations

of core operations (e.g. linear filtering, local normalization) were

created for both the IBM Cell Processor (PlayStation 3), and for

NVIDIA graphics processing units (GPUs) using the Tesla

Architecture and the CUDA programming model [25]. These

implementations achieve highly significant speed-ups relative to

conventional CPU-based implementations (see Figure 1 and

Supplemental Figure S1). High-level ‘‘outer loop’’ coordination of

these highly optimized operations was accomplished using the

Python programming language (e.g. using PyCUDA [26]), allowing

for a favorable balance between ease of programming and raw

speed (see Supplemental Text S2). In principle, all of the analyses

presented here could have been performed using traditional

computational hardware; however, the cost (in terms of time and/

or money) of doing so with current CPU hardware is prohibitive.

Figure 1 shows the relative speedup and performance/cost of

each implementation (IBM Cell on Sony’s PlayStation 3 and

several NVIDIA GPUs) relative to traditional MATLAB and

multi-threaded C code for the linear filtering operation (more

details such as the raw floating point performance can be found in

the Supplemental Figure S1). This operation is not only a key

component of the candidate model family (see below) but it’s also

the most computationally demanding, reaching up to 94% of the

total processing time (for the PlayStation 3 implementation),

depending on model parameters (average fraction is 28%). The

use of commodity graphics hardware affords orders-of-magnitude

increases in performance. In particular, it should be noted that the

data presented in this work took approximately one week to

generate using our PlayStation 3-based implementation (222x

speedup with one system) on a cluster of 23 machines. We estimate

that producing the same results at the same cost using a

conventional MATLAB implementation would have taken more

than two years (see Figure S1).

Screening for Good Forms of Representation
Our approach is to sample a large number of model

instantiations, using a well-chosen ‘‘screening’’ task to find

Figure 1. Performance and cost of various CPU and GPU implementations of a critical component of our model family. Our
implemented performance speed-ups for a key filtering operation in our biologically-inspired model implementation. Performance and price are
shown across a collection of different GPUs, relative to a commonly used MATLAB CPU-based implementation (using a single CPU core with the filter2
function, which is coded in C++). We contrast this standard implementation with a multi-core MATLAB version, a highly-optimized C/SSE2 multi-core
implementation on the same CPU, and highly-optimized GPU implementations. We have implemented speedups of over thousands of times with
GPUs, resulting in qualitative changes in what kinds of model investigations are possible. More technical details and a throughout discussion of the
computational framework enabling these speedups can be found in Supplemental Figure S1 and Supplemental Text S2. * These costs are based on
multi-GPU systems containing four GPUs in addition to the quad-core CPU (Q9450). ** These costs include both the hardware and MATLAB yearly
licenses (based on an academic discount pricing, for one year).
doi:10.1371/journal.pcbi.1000579.g001

High-Throughput Search for Visual Representations
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promising architectures and parameter ranges within the model

family. Our approach to this search was divided into four phases

(see Figure 3): Candidate Model Generation, Unsupervised

Learning, Screening, and Validation/Analysis of high-performing

models.
Phase 1: candidate model generation. Candidate model

parameter sets were randomly sampled with a uniform distribution

from the full space of possible models in the family considered here

(see Figure 2 and Figure S2 for a schematic diagram of the models,

and Supplemental Materials for an exhaustive description of

model parameters and value ranges that were explored;

Supplemental Text S1).
Phase 2: unsupervised learning. All models were subjected

to a period of unsupervised learning, during which filter kernels

were adapted to spatiotemporal statistics of a stream of input

images. Since the family of models considered here includes features

designed to take advantage of the temporal statistics of natural

inputs (see Supplementary Methods), models were learned using

video data. In the current version of our family of models, learning

influenced the form of the linear kernels of units at each layer of the

hierarchy, but did not influence any other parameters of the model.

We used three video sets for unsupervised learning: ‘‘Cars and

Planes’’, ‘‘Boats’’, and ‘‘Law and Order’’. The ‘‘Law and Order’’

video set consisted of clips from the television program of the same

name (Copyright NBC Universal), taken from DVDs, with clips

selected to avoid the inclusion of text subtitles. These clips

included a variety of objects moving through the frame, including

characters’ bodies and faces.

The ‘‘Cars and Planes’’ and ‘‘Boats’’ video sets consisted of 3D

ray-traced cars, planes and boats undergoing 6-degree-of-freedom

view transformations (roughly speaking, ‘‘tumbling’’ through

space). These same 3D models were also used in a previous study

[11]. Video clips were generated where an object would appear for

approximately 300 frames, performing a random walk in position

(3 degrees of freedom) and rotation (3 degrees of freedom) for a

total of 15,000 frames. Examples are shown in Figures 4A and 4B.

Figure 2. A schematic diagram of the system architecture of
the family of models considered. The system consists of three
feedforward filtering layers, with the filters in each layer being applied
across the previous layer. Red colored labels indicate a selection of
configurable parameters (only a subset of parameters are shown).
doi:10.1371/journal.pcbi.1000579.g002

Figure 3. Experimental flow. The experiments described here
consist of five phases. (A) First, a large collection of model instantiations
are generated with randomly selected parameter values. (B) Each of
these models then undergoes an unsupervised learning period, during
which its filter kernels are adapted to spatio-temporal statistics of the
video inputs, using a learning algorithm that is influenced by the
particular parameter instantiation of that model. After the Unsupervised
Learning Phase is complete, filter kernels are fixed, and (C) each model is
subjected to a screening object recognition test, where labeled images
are represented using each model instantiation, and these re-
represented images are used to train an SVM to perform a simple
two-class discrimination task. Performance of each candidate model is
assessed using a standard cross-validation procedure. (D) From all of
the model instantiations, the best are selected for further analysis. (E)
Finally, these models are tested on other object recognition tasks.
doi:10.1371/journal.pcbi.1000579.g003

High-Throughput Search for Visual Representations
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For the sake of convenience, we refer to each unsupervised

learning video set as a ‘‘petri dish,’’ carrying forward the analogy

to high-throughput screening from biology. In the results

presented here, 2,500 model instantiations were independently

generated in each ‘‘petri dish’’ by randomly drawing parameter

values from a uniform distribution (a total of 7,500 models were

trained). Examples of filter kernels resulting from this unsupervised

learning procedure are shown in Supplemental Figures S3, S4, S5

and S6.

After the end of the Unsupervised Learning Phase, the linear filter

kernels were not modified further, and the resulting model was

treated as a fixed transformation (e.g. a static image is entered as

input, and a vector of responses from the units of the final layer is

outputted).
Phase 3: screening. Following the Unsupervised Learning Phase,

each ‘‘petri dish’’ was subjected to a Screening Phase to determine

which model instantiations produced image representations that

are well-suited for performing invariant object recognition tasks.

During the Screening Phase, individual static images were supplied

as input to each model, and the vector of responses from the units

of its final layer were taken as that model’s ‘‘representation’’ of the

image. The labeled, ‘‘re-represented’’ images were then reduced in

dimensionality by PCA and taken as inputs (training examples) for

a classifier (in our case, a linear SVM).

We used a simple ‘‘Cars vs. Planes’’ synthetic object recognition

test as a screening task (see [11] for details). In this task, 3D models

from two categories (cars and planes), were rendered across a wide

range of variation in position, scale, view, and background. The

rendered grayscale images (200 by 200 pixels) were provided as

input to each model, and a classifier was trained to distinguish car

images from plane images (150 training images per category).

Performance of each model was then tested on a new set of

unlabeled re-represented car and plane images (150 testing images

per category). This recognition test has the benefit of being

relatively quick to evaluate (because it only contains two classes),

while at the same time having previous empirical grounding as a

challenging object recognition test due to the large amount of

position, scale, view, and background variation [11] (see

Figure 5A).
Phase 4: validation. The best models selected during the

Screening Phase were submitted to validation tests using other image

sets, to determine if the representations generated by the models

were useful beyond the immediate screening task. For the present

work, four validation sets were used: 1) a new set of rendered cars

and planes (generated by the same random process that generated

the screening set, but with different specific examplars), 2) a set of

rendered boats and animals 3) a set of rendered images of two

synthetic faces (one male, one female, [10,12]), and 4) a modified

subset of the standard MultiPIE face recognition test set ([27]; here

dubbed the ‘‘MultiPIE Hybrid’’ set). In the case of the rendered

sets (sets 1–3), as with the screening set, the objects were rendered

across a wide range of views, positions, and scales.

For the ‘‘MultiPIE hybrid’’ set, 50 images each of two

individuals from the standard MultiPIE set were randomly

selected from the full range of camera angles, lighting, expressions,

and sessions included in the MultiPIE set. These faces were

manually removed from their backgrounds and were further

transformed in scale, position, planar rotation and were compos-

ited onto random natural backgrounds. Examples of the resulting

images are shown in Figure 5.

For all sets (as with the screening set) classifiers were trained

with labeled examples to perform a two-choice task (i.e. Cars vs.

Planes, Boats vs. Animals, Face 1 vs. Face 2), and were

subsequently tested with images not included in the training set.

While a number of standardized ‘‘natural’’ object and face

recognition test sets exist [28–34], we made a deliberate choice not

to use these sets. Previous investigations [10–12,35,36] have raised

concerns with many of these sets, calling into question whether

they appropriately capture the problem of interest. As a result, we

chose to focus here on image sets that include substantial image

variation by design, be they synthetic (as in our rendered set) or

natural (as in the MultiPIE Hybrid set) in origin.

Performance Comparison with Other Algorithms
‘‘V1-like’’ baseline. Since object recognition performance

measures are impossible to interpret in a vacuum, we used a

simple V1-like model to serve as one baseline against which model

performance can be compared. This V1-like model was taken,

without modification, from Pinto et al. [11], and was shown

previously to match or exceed the performance of a variety of

purpose-built vision systems on the popular (but, we argue, flawed

as a test of invariant object recognition) Caltech101 object

recognition set and a wide variety of standard face recognition

sets (ORL, Yale, CVL, AR, and Labeled Faces in the Wild

[10,12]). Importantly, this model is based on only a first-order

description of the first stage of visual processing in the brain, and it

contains no mechanisms that should allow it to tolerate the

substantial image variation that makes object recognition hard in

the first place [11,19]. Here, this model serves as a lower bound on

Figure 4. Example video frames used as input during the Unsupervised Learning Phase. (A) Sequences of a rendered car undergoing a
random walk through the possible range of rigid body movements. (B) A similar random walk with a rendered boat.
doi:10.1371/journal.pcbi.1000579.g004

High-Throughput Search for Visual Representations
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the amount of trivial regularity that exists in the test set. To be

considered promising object recognition systems, models should at

least exceed the performance of the V1-like model.

Comparison with state-of-the-art algorithms. To

facilitate comparison with other models in the literature, we

obtained code for, or re-implemented five ‘‘state of the art’’ object

recognition algorithms from the extant literature: ‘‘Pyramid

Histogram of Oriented Gradients’’ (PHOG) [37], ‘‘Pyramid

Histogram of Words’’ (PHOW) (also known as the Spatial

Pyramid [38]), the ‘‘Geometric Blur’’ shape descriptors [39], the

descriptors from the ‘‘Scale Invariant Feature Transformation’’

(SIFT) [40], and the ‘‘Sparse Localized Features’’ (SLF) features of

Mutch and Lowe [8] (a sparse extension of the C2 features from

the Serre et al. HMAX model [7]). In all cases, we were able to

reproduce or exceed the authors’ reported performance for each

system on the Caltech101 test set, which served as a sanity check

that we had correctly implemented and used each algorithm as

intended by its creators.

Each algorithm was applied using an identical testing protocol

to our validation sets. In cases where an algorithm from the

literature dictated that filters be optimized relative to each training

set (e.g. [38] and [8]), we remained faithful to the authors’

published descriptions and allowed this optimization, resulting in a

different individually tailored model for each validation set. This

was done even though our own high-throughput-derived models

were not allowed such per-set optimizations (i.e. the same

representation was used for all validation sets), and could therefore

theoretically be ‘‘handicapped’’ relative to the state-of-the-art

models.

Results

Object Recognition Performance
As a first exploration of our high-throughput approach, we

generated 7,500 model instantiations, in three groups of 2,500,

with each group corresponding to a different class of unsupervised

learning videos (‘‘petri dishes’’; see Methods). During the Screening

Phase, we used the ‘‘Cars vs. Planes’’ object discrimination task

[11] to assess the performance of each model, and the most

promising five models from each set of 2,500 models was

submitted to further analysis. The raw computation required to

generate, train and screen these 7,500 models was completed in

approximately one week, using 23 PlayStation 3 systems [41].

Results for models trained with the ‘‘Law and Order’’ petri dish

during the Unsupervised Learning Phase are shown in Figure 6A. As

expected, the population of randomly-generated models exhibited

a broad distribution of performance on the screening task, ranging

from chance performance (50%) to better than 80% correct.

Figure 6B shows the performance of the best five models drawn

from the pool of 2,500 models in the ‘‘Law and Order’’ petri dish.

These models consistently outperformed the V1-like model baseline

(Figure 7), and this performance was roughly maintained even

when the model was retrained with a different video set (e.g. a

different clip from Law and Order), or with a different random

initialization of the filter kernel weights (Figure 6C).

Since these top models were selected for their high performance

on the screening task, it is perhaps not surprising that they all show

a high level of performance on that task. To determine whether

the performance of these models generalized to other test sets, a

series of Validation tests were performed. Specifically, we tested the

best five models from each Unsupervised Learning petri dish on

four test sets: two rendered object sets, one rendered face set, and a

modified subset of the MultiPIE face recognition image set (see

Validation Phase in Methods). Performance across each of these

Figure 5. Examples of images from the validation test sets. (A) A
new set of rendered cars and planes composited onto random natural
backgrounds. (B) Rendered boats and animals. (C) Rendered female and
male faces. (D) A subset of the MultiPIE face test set [27] with the faces
manually removed from the background, and composited onto random
image backgrounds, with additional variation in position, scale, and
planar rotation added.
doi:10.1371/journal.pcbi.1000579.g005

High-Throughput Search for Visual Representations
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validation sets is shown in Figure 7 (black bars). While the exact

ordering of model performance varied somewhat from validation

set to validation set, the models selected during the Screening Phase

performed well across the range of validation tasks.

The top five models found by our high-throughput screening

procedure generally outperformed state-of-the-art models from the

literature (see Methods) across all sets, with the best model found

by the high-throughput search uniformly yielding the highest

performance across all validation sets. Even greater performance

was achieved by a simple summing of the SVM kernels from the

top five models (red bar, Figure 7). Of note, the nearest contender

from the set of state-of-the-art models is another biologically-

inspired model [7,8].

Interestingly, a large performance advantage between our high-

throughput-derived models and state-of-the-art models was

observed for the MultiPIE hybrid set, even though this is arguably

the most different from the task used for screening, since it is

composed from natural images (photographs), rather than

synthetic (rendered) ones. It should be noted that several of the

state-of-the-art models, including the sparse C2 features (‘‘SLF’’ in

Figure 7), which was consistently the nearest competitor to our

models, used filters that were individually tailored to each

validation test–i.e. the representation used for ‘‘Boats vs. Planes’’

was optimized for that set, and was different from the

representation used for the MultiPIE Hybrid set. This is in

contrast to our models, which learned their filters from a

completely unrelated video data set (Law and Order) and were

screened using an unrelated task (‘‘Cars vs. Planes’’, see Methods).

While even better performance could no doubt be obtained by

screening with a subset taken from each individual validation test,

the generalizability of performance across a range of different tasks

argues that our approach may be uncovering features and

representations that are broadly useful. Such generality is in

keeping with the models’ biological inspiration, since biological

visual representations must be flexible enough to represent a

massive diversity of objects in order to be useful.

Results for the 2,500 models in each of the other two ‘‘petri

dishes’’ (i.e. models trained with alternate video sets during

unsupervised learning) were appreciably similar, and are shown in

Supplemental Figures S7 and S8, using the same display

conventions set forth in Figures 6 and 7.

Discussion

We have demonstrated a high-throughput framework, within

which a massive number of candidate vision models can be

generated, screened, and analyzed. Models found in this way were

found to consistently outperform an experimentally-motivated

baseline model (a V1-like model; [10–12]), and the representations

of visual space instantiated by these models were found to be useful

generally across a variety of object recognition tasks. The best of

these models and the blend of the five best models were both found

to consistently outperform a variety of state-of-the-art machine

vision systems for all of the test sets explored here, even without

any additional optimization.

This work builds on a long tradition of machine vision systems

inspired by biology (e.g. [1–4,7,9]). However, while this past work

has generated impressive progress towards building artificial visual

systems, it has explored only a few examples drawn from the larger

space of biologically-inspired models. While the task of exploring

the full space of possible model instantiations remains daunting

(even within the relatively restricted ‘‘first-order’’ class of models

explored here), our results suggest that even a relatively simple,

brute-force high-throughput search strategy is effective in

identifying promising models for further study. In the parameter

space used here, we found that a handful of model instantiations

performed substantially better than the rest, with these ‘‘good’’

models occurring at a rate of approximately one in five-hundred.

The relative rarity of these models underscores the importance of

performing large-scale experiments with many model instantia-

tions, since these models would be easy to miss in a ‘‘one-off’’

mode of exploration. Importantly, these rare, high-performing

models performed well across a range of object recognition tasks,

indicating that our approach does not simply optimize for a given

task, but can uncover visual representations of general utility.

Though not conceptually critical to our approach, modern

graphics hardware played an essential role in making our

experiments possible. In approximately one week, we were able

Figure 6. High-throughput screening in the ‘‘Law and Order’’ petri dish. (A) Histogram of the performance of 2,500 models on the ‘‘Cars vs.
Planes’’ screening task (averaged over 10 random splits; error bars represent standard error of the mean). The top five performing models were
selected for further analysis. (B) Performance of the top five models (1–5), and the performance achieved by averaging the five SVM kernels (red bar
labelled ‘‘blend’’) (C) Performance of the top five models (1–5) when trained with a different random initialization of filter weights (top) or with a
different set of video clips taken from the ‘‘Law and Order’’ television program (bottom).
doi:10.1371/journal.pcbi.1000579.g006

High-Throughput Search for Visual Representations

PLoS Computational Biology | www.ploscompbiol.org 7 November 2009 | Volume 5 | Issue 11 | e1000579



to test 7,500 model instantiations, which would have taken

approximately two years using a conventional (e.g. MATLAB-

based) approach. While it is certainly possible to use better-

optimized CPU-based implementations, GPU hardware provides

large increases in attainable computational power (see Figure 1

and Supplemental Figure S1).

An important theme in this work is the use of parametrically

controlled objects as a way of guiding progress. While we are

ultimately interested in building systems that tolerate image

variation in real-world settings, such sets are difficult to create, and

many popular currently-available ‘‘natural’’ object sets have been

shown to lack realistic amounts of variation [10–12]. Our results

show that it is possible to design a small synthetic set to screen and

select models that generalize well across various visual classifica-

tion tasks, suggesting that parametric sets can capture the essence

of the invariant object recognition problem. Another critical

advantage of the parametric screening approach presented here is

that task difficulty can be increased on demand–that is, as models

are found that succeed for a given level of image variation, the

level of variation (and therefore the level of task difficulty), can be

‘‘ratcheted up’’ as well, maintaining evolutionary ‘‘pressure’’

towards better and better models.

While we have used a variety of synthetic (rendered) object

image sets, images need not be synthetic to meet the requirements

of our approach. The modified subset of the MultiPIE set used

here (‘‘MultiPIE Hybrid’’, Figure 5) is an example of how

parametric variation can also be achieved using carefully

controlled photography.

Future Directions
While our approach has yielded a first crop of promising

biologically-inspired visual representations, it is another, larger

task to understand how these models work, and why they are

better than other alternatives. While such insights are beyond the

scope of the present paper, our framework provides a number of

promising avenues for further understanding.

One obvious direction is to directly analyze the parameter

values of the best models in order to understand which parameters

are critical for performance. Figure 8 shows distributions of

parameter values for four arbitrarily chosen parameters. While in

Figure 7. Validation. Performance of the top five models from the Screening Phase on a variety of other object recognition challenges. Example
images from each object recognition test are shown in Figure 5. For each validation set, the performance (averaged over 10 random splits; error bars
represent standard error of the mean) is first plotted for V1-like and V1-like+ baseline models (see [10–12] for a detailed description of these two
variants) (gray bars), and for five state-of-the-art vision systems (green bars): Scale Invariant Feature Transform (SIFT, [40]), Geometric Blur Descriptor
(GB, [39]), Pyramidal Histogram of Gradients (PHOG, [37]), Pyramidal Histogram of Words (PHOW, [38]), and a biologically-inspired hierarchical model
(‘‘Sparse Localized Features’’ SLF, [8]). Finally, performance of the five best models derived from the high-throughput screening approach presented
in this paper (black bars), and the performance achieved by averaging the five SVM kernels (red bar labelled ‘‘blend’’). In general, high-throughput-
derived models outperformed the V1-like baseline models, and tended to outperform a variety of state-of-the-art systems from the literature. Model
instantiation 3281 and the blend of all five top models uniformly produced the best results across all test sets considered here.
doi:10.1371/journal.pcbi.1000579.g007
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no way conclusive, there are hints that some particular parameter

values may be more important for performance than others (for

quantitative analysis of the relationship between model parameters

and performance, see Supplemental Text S3, Figures S9 and S10).

The speed with which large collections of models can be evaluated

opens up the possibility of running large-scale experiments where

given parameters are held fixed, or varied systematically. Insights

derived from such experiments can then be fed back into the next

round of high-throughput search, either by adjusting the

parameter search space or by fundamentally adjusting the

algorithm itself. Such iterative refinement is an active area of

research in our group.

The search procedure presented here has already uncovered

promising visual representations, however, it represents just the

simplest first step one might take in conducting a large-scale

search. For the sake of minimizing conceptual complexity, and

maximizing the diversity of models analyzed, we chose to use

random, brute-force search strategy. However, a rich set of search

algorithms exist for potentially increasingly the efficiency with

which this search is done (e.g. genetic algorithms [42], simulated

annealing [43], and particle swarm techniques [44]). Interestingly,

our brute-force search found strong models with relatively high

probability, suggesting that, while these models would be hard to

find by ‘‘manual’’ trial-and-error, they are not especially rare in

the context of our high-throughput search.

While better search algorithms will no doubt find better

instances from the model class used here, an important future

direction is to refine the parameter-ranges searched and to refine

the algorithms themselves. While the model class described here is

large, the class of all models that would count as ‘‘biologically-

inspired’’ is even larger. A critical component of future work will

be to adjust existing mechanisms to achieve better performance,

and to add new mechanisms (including more complex features

such as long-range feedback projections). Importantly, the high-

throughput search framework presented here provides a coherent

means to find and compare models and algorithms, without being

unduly led astray by weak sampling of the potential parameter

space.

Another area of future work is the application of high-

throughput screening to new problem domains. While we have

here searched for visual representations that are good for object

recognition, our approach could also be applied to a variety of

other related problems, such as object tracking, texture recogni-

tion, gesture recognition, feature-based stereo-matching, etc.

Indeed, to the extent that natural visual representations are

flexibly able to solve all of these tasks, we might likewise hope to

mine artificial representations that are useful in a wide range of

tasks.

Finally, as the scale of available computational resources

steadily increases, our approach naturally scales as well, allowing

more numerous, larger, and more complex models to be

examined. This will give us both the ability to generate more

powerful machine vision systems, and to generate models that

better match the scale of natural systems, providing more direct

footing for comparison and hypothesis generation. Such scaling

holds great potential to accelerate both artificial vision research, as

well as our understanding of the computational underpinnings of

biological vision.

Supporting Information

Figure S1 Processing Performance of the Linear Filtering

Operation. The theoretical and observed processing performance

in GFLOPS (billions of floating point operations per second) is

Figure 8. Distributions of screening task performance, as a function of parameter values for four arbitrarily-chosen parameters. See
Supplemental Text S1 for an exhaustive description of the meaning of each parameter. The top five best performing models are plotted in red, with
the other models overplotted in semi-transparent blue. The parameters considered in (A) and (B) show hints of a relationship between parameter
value and inclusion in the top five. In (A) all of the five best models had the same value of the parameter, and in (B) best models were clustered in
lower ranges of parameter value. (C) and (D) show parameters where the best models were distributed across a range of parameter values. Such
examinations of parameter values are in no way conclusive, but can provide hints as to which parameters might be important for performance. See
also Supplemental Text S3, Figures S9 and S10.
doi:10.1371/journal.pcbi.1000579.g008
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plotted for a key filtering operation in our biologically-inspired

model implementation. Theoretical performance numbers were

taken from manufacturer marketing materials and are generally

not achievable in real-world conditions, as they consider multiple

floating operations per clock cycle, without regard to memory

communication latencies (which typically are the key determinant

of real-world performance). Observed processing performance for

the filtering operation varied across candidate models in the search

space, as input and filter sizes varied. Note that the choice of

search space can be adjusted to take maximum advantage of the

underlying hardware at hand. We plot the ‘‘max’’ observed

performance for a range of CPU and GPU implementations, as

well as the ‘‘mean’’ and ‘‘min’’ performance of our PlayStation 3

implementation observed while running the 7,500 models

presented in this study. The relative speedup denotes the peak

performance ratio of our optimized implementations over a

reference MATLAB code on one of the Intel QX9450’s core (e.g.

using filter2, which is itself coded in C++), whereas the relative

GFLOPS per dollar indicates the peak performance per dollar

ratio. Costs of typical hardware for each approach and cost per

FLOPS are shown at the bottom. * These ranges indicate the

performance and cost of a single system containing from one (left)

to four (right) GPUs. ** These costs include both the hardware and

MATLAB yearly licenses (based on an academic discount pricing,

for one year).

Found at: doi:10.1371/journal.pcbi.1000579.s001 (1.19 MB TIF)

Figure S2 A schematic of the flow of transformations

performed in our family of biologically-inspired models. Blue-

labeled boxes indicate the cascade of operations performed in

each of the three layers in the canonical model. Gray-labeled

boxes to the right indicate filter weight update steps that take

place during the Unsupervised Learning Phase after the

processing of each input video frame. The top gray-labeled box

shows processing steps undertaken during the Screening and

Validation Phases to evaluate the performance achievable with

each model instantiation.

Found at: doi:10.1371/journal.pcbi.1000579.s002 (0.95 MB TIF)

Figure S3 Examples of Layer 1 filters taken from different

models. A random assortment of linear filter kernels taken from

the first layers of the top five (A) and fifteen randomly chosen other

model instantiations (B) taken from the ‘‘Law and Order’’ petri

dish. Each square represents a single two-dimensional filter kernel,

with the values of each filter element represented in gray scale (the

gray-scale is assigned on a per-filter basis, such that black is the

smallest value found in the kernel, and white is the largest). For

purposes of comparison, a fixed number of filters were taken from

each model’s Layer 1, even though different models have differing

number of filters in each layer. Filter kernels are initialized with

random values and learn their structure during the Unsupervised

Learning Phase of model generation. Interestingly, oriented

structures are common in filter from both the top five models

and from non-top-five models.

Found at: doi:10.1371/journal.pcbi.1000579.s003 (3.71 MB TIF)

Figure S4 Examples of Layer 2 filters taken from different

models. Following the same basic convention as in Supplemental

Figure S3, a random assortment of portions of filter kernels from

Layer 2 of the top five (A) and fifteen other randomly-chosen

model instantiations (B) are shown in gray-scale to provide a

qualitative sense of what the linear filters (produced as a result of

the Unsupervised Learning Phase) look like. Note that since each

Layer 1 is itself a stack of kl = 1 two-dimensional planes (or ‘‘feature

maps’’) resulting from filtering with a stack of kl = 1 filters (see

Supplemental Text S1 and Supplemental Figure S6, each Layer 2

filter is actually a fs
l = 2 6 fs

l = 2 6kl = 1 kernel For the sake of visual

clarity, we here present just one randomly-chosen fs
l = 2 6 fs

l = 2

‘‘slice’’ from each of the randomly-chosen filters. As in

Supplemental Figure S3, there are signs of ‘‘structure’’ in the

filters of both the top five and non-top-five models.

Found at: doi:10.1371/journal.pcbi.1000579.s004 (3.76 MB TIF)

Figure S5 Examples of Layer 3 filters taken from different

models. Following the same basic convention as in Supplemental

Figures S3 and S4, a random assortment of portions of filter

kernels from Layer 3 of the top five (A) and fifteen other randomly-

chosen model instantiations (B) are shown in gray-scale to provide

a qualitative sense of what the linear filters (produced as a result of

the Unsupervised Learning Phase) look like. Note that since each

Layer 2 is itself a stack of kl = 2 two-dimensional planes (or ‘‘feature

maps’’) resulting from filtering with a stack of kl = 2 filters (see

Supplemental Text S1 and Supplemental Figure S6), each Layer 3

filter is actually a fs
l = 3 6 fs

l = 3 6kl = 2 kernel. For the sake of visual

clarity, we here present just one randomly-chosen fs
l = 3 6 fs

l = 3

‘‘slice’’ from each of the randomly-chosen filters. As in

Supplemental Figures S3 and S4, there are signs of ‘‘structure’’

in the filters of both the top five and non-top-five models.

Found at: doi:10.1371/journal.pcbi.1000579.s005 (3.72 MB TIF)

Figure S6 Example filterbanks from the best model instantiation

in the ‘‘Law and Order’’ Petri Dish. Filter kernels were learned

during the Unsupervised Learning Phase, after which filter weights

were fixed. Colors indicate filter weights, and were individually

normalized to make filter structure clearer (black-body color scale

with black indicating the smallest filter weight, white representing

the largest filter weight). The filter stack for each layer consists of kl

filters, with size fs. Because the Layer 1 filterbank for this model

includes 16 filters, the Layer 1 output will have a feature ‘‘depth’’

of 16, and thus each Layer 2 filter is a stack of 16 fs 6 fs kernels.

One filter (filter 61) is shown expanded for illustration purposes.

Similarly, since the Layer 2 filterbank in this example model

includes 64 filters, the output of Layer 2 will have a depth of 64,

and thus each filter in Layer 3 filterbank must also be 64-deep.

Found at: doi:10.1371/journal.pcbi.1000579.s006 (1.65 MB TIF)

Figure S7 High-throughput screening in the ‘‘Cars and Planes’’

Petri Dish. Data are shown according to the same display convention

set forth in the main paper. (A) Histogram of the performance of

2,500 models on the ‘‘Cars vs. Planes’’ screening task. The top five

performing models were selected for further analysis. (B) Perfor-

mance of the top five models (1–5). (C) Performance of the top five

models when trained with a different random initialization of filter

weights (top) or with a different set of video clips (bottom). (D)

Performance of the top five models from the Screening Phase on a

variety of other object recognition challenges.

Found at: doi:10.1371/journal.pcbi.1000579.s007 (0.21 MB TIF)

Figure S8 High-throughput screening and validation in the

‘‘Boats’’’ Petri Dish. Data are shown according to the same display

convention set forth in the main paper. (A) Histogram of the

performance of 2,500 models on the ‘‘Cars vs. Planes’’ screening

task. The top five performing models were selected for further

analysis. (B) Performance of the top five models (1–5). (C)

Performance of the top five models when trained with a different

random initialization of filter weights (top) or with a different set of

video clips (bottom). (D) Performance of the top five models from

the Screening Phase on a variety of other object recognition

challenges.

Found at: doi:10.1371/journal.pcbi.1000579.s008 (0.22 MB TIF)

Figure S9 Linear regression analysis of relationship between

parameter values and model performance. As a first-order analysis
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PLoS Computational Biology | www.ploscompbiol.org 10 November 2009 | Volume 5 | Issue 11 | e1000579



of the relationship between model parameters and model

performance, we performed a linear regression analysis in which

the values of each of the 52 parameters were included as predictors

in a multiple linear regression analysis. Next, p-values were

computed for the t statistic on each beta weight in the regression.

A histogram of the negative natural log of the p-values is shown

here, with the bin including significant p-values highlighted in

orange (each count corresponds to one model parameter). For

reference, the histogram is divided into three ranges (low-

nonsignificant, medium-nonsignificant, and significant) and a

listing of parameters included each significance range is printed

below the histogram. Each parameter listing includes a 1) verbal

description of the parameter, 2) its symbol according to the

terminology in the Supplemental Methods, 3) the section number

where it is referenced, and 4) whether it was positively (‘‘+’’) or

negatively (‘‘2’’) correlated with performance. In addition, the

parameters were divided into three rough conceptual groups and

were color-coded accordingly: Filtering (green), Normalization/

Activation/Pooling (red), and Learning (blue). Beneath the bin

corresponding to significantly predictive parameters, a bar plot

showing the fraction of each group found in the set of significant

parameters. The expected fraction, if the parameters were

distributed randomly, is shown as a dotted line. Activation/

Normalization/Pooling parameters were slightly over-represented

in the set of significantly-predictive parameters, but no group was

found to be significantly over- or under-represented (p = 0.338;

Fischer’s exact test).

Found at: doi:10.1371/journal.pcbi.1000579.s009 (2.28 MB TIF)

Figure S10 How similar are the top models? (A) Model

similarity on the basis of parameter values (L0 or Hamming

Distance). Each model is specified by a vector of 52 parameter

values. As a first attempt at comparing models, we generated an

expanded binary parameter vector in which every possible

parameter/value combination was represented as a separate

variable (e.g. a parameter v that can take on values 3, 5, and 7

would be included in the expanded vector as three binary values

[v= 3], [v= 5], and [v= 7]). The Hamming distance distance

between any two vectors can then serve as a metric of the

similarity between any two models. In order to determine if the top

five models taken from the ‘‘Law and Order’’ petri dish were more

similar to each than would be expected of five randomly selected

models, we computed the median pairwise Hamming distance

between the top five models, and between a random sampling of

100,000 sets of five models taken from the remaining (non-top-five)

models. The distribution of randomly selected model pairs is

shown in (A), and the observed median distance amongst the top

five models is indicated by an arrow. The top-five models tended

to be more similar to one another than to a random selection of

models from the full population, but this effect was not significant

(p = 0.136; permutation test). (B) Model similarity on the basis of

output (‘‘Representation’’ similarity). As another way to compare

model similarity, for each model we computed model output

vectors for a selection of 600 images taken from the Screening task

image sets. We then computed the L2 (Euclidean) distance matrix

between these ‘‘re-represented’’ image vectors as a proxy for the

structure of the output space of each model. A distance metric

between any two models was then defined as the L2 distance

between the unrolled upper-diagonal portion of the two models’

similarity matrices (this distance metric is similar to the Frobenius

norm). Finally, as in (A), the median distances between the top five

models and between a collection of 10,000 randomly drawn sets of

five models were computed. The histogram in (B) shows the

distribution of median distances from randomly drawn sets of five

models, and the arrow indicates the median distance observed in

the top-five set. As in (A), the top-five models tended to be more

similar to one another (lower distance), but this effect was not

significant (p = 0.082; permutation test).

Found at: doi:10.1371/journal.pcbi.1000579.s010 (6.31 MB TIF)

Text S1 Search Space of Candidate Models.

Found at: doi:10.1371/journal.pcbi.1000579.s011 (0.14 MB PDF)

Text S2 Technical Details of the Computational Framework.

Found at: doi:10.1371/journal.pcbi.1000579.s012 (0.08 MB PDF)

Text S3 First-Order Analyses of Model Parameters and

Behavior.

Found at: doi:10.1371/journal.pcbi.1000579.s013 (0.05 MB PDF)
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