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Abstract

The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on
antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While
methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model
combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and
EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer
the sites and target residues that were likely subject to directional selection, using either codon or protein sequences.
Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be
involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional
selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives.
This suggests that episodic directional selection is a better description of the process driving the evolution of drug
resistance.

Citation: Murrell B, de Oliveira T, Seebregts C, Kosakovsky Pond SL, Scheffler K, et al. (2012) Modeling HIV-1 Drug Resistance as Episodic Directional
Selection. PLoS Comput Biol 8(5): e1002507. doi:10.1371/journal.pcbi.1002507

Editor: Christophe Fraser, Imperial College London, United Kingdom

Received September 22, 2011; Accepted March 16, 2012; Published May 10, 2012

Copyright: � 2012 Murrell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Europeaid Grant number SANTE/2007/147-790 from the European Commission; BM is supported by the same
Europeaid Grant. TdO’s work on this paper was funded by the same Europeaid grant, by the Africa Centre for Health and Population Studies Wellcome Trust Core
Grant 082384/Z/07/Z and the grant entitled Swiss-Prot/South Africa: Protein Bioinformatics Resource Development for Important Health-related Pathogens’’
under the Switzerland-South Africa Collaborative Research Program. Funding for the UCSD computing cluster has been provided by the Joint DMS/NIGMS
Mathematical Biology Initiative through Grant NSF-0714991 and the National Institutes of Health grants AI47745 and AI74621. HyPhy custom script development
was supported by the National Institute Of General Medical Sciences (grant GM093939). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kscheffler@ucsd.edu

Introduction

Among positively selected evolutionary changes, a distinction

can be made between diversifying selection, where any nucleotide

substitutions that change the amino acid are favored, and directional

selection, where only substitutions towards a small number of target

amino acids are selected for. Detection of genes or sites evolving

under positive selection [1–6] has been dominated by methods

which explicitly or implicitly assume diversifying positive selection.

This assumption allows evolution to be modeled as a continuous-

time Markov process without assuming that any particular residue

is the preferred target of substitutions at any sites. For most models

of diversifying selection, apart from a single rate governing amino

acid change, the process is no different from one site to the next.

By contrast, models have been proposed in which specific residues

do have special status at specific sites. In models of toggling

selection [7], substitutions away from a site-specific ‘‘wild type’’

amino acid are likely to be followed by reversions to that amino

acid. Models of directional selection [8,9] allow substitution rates

towards a site-specific ‘‘target’’ amino acid to be accelerated. By

making a distinction among all possible targets of a substitution,

such models allow the detection of positive selection favoring

mutations towards one amino acid, even at sites where the overall

rate of amino acid change is decreased by purifying selection. For

a review of codon models of selection, see [10].

A second distinction is that between selective pressure that is

constant over time, and selective pressure that changes over time,

possibly instantaneously – we shall refer to the latter as episodic

selection. Several authors have studied models that allow evolution-

ary rates to change over time, including models in which the

selective pressure is different on different branches [11–14] as well

as various models [15–17] in which the rate of evolution at any site

may change at any point in time. We are specifically interested in

the former type of model, under which rate changes occur

simultaneously at a particular set of sites - as would be expected

under an external change in selective pressure, i.e. episodic

selection. This type of selection is applicable to countless real world

scenarios that have been studied extensively: examples include the

evolution of lysozyme in response to diet changes [18], the

adaptation of HIV to different host populations [14], the evolution

of the rhodopsin pigment following changes in habitat [19], and

the adaptation of HIV-1 [20,21] and Influenza A Virus (IAV) [22]
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genes following zoonosis events. For a review on the evidence for

episodic selection in large numbers of protein sequences, see [23].

Here, we consider the evolution of drug resistance in HIV-1

following the treatment of a subset of the host population. We expect

that selective pressure will be both episodic, with drug-induced

adaptive amino acid changes occurring only in patients receiving

therapy, and directional, with site-specific target residues increasing

in frequency over time in the treated subset. HIV-1 experiences a

variety of other selective pressures, most prominently due to host

immune response (e.g. [14,24]), but because such response is nearly

unique in each host, we expect that the majority of concerted

selective changes in subjects on treatment will be drug-induced.

Previous approaches to detect positive selection driving

treatment resistance have had variable success. Crandall et al.

[25] showed that normalized ratios of non-synonymous to

synonymous substitution counts (dN=dS ) obtained by the counting

method of Nei and Gojobori [1] failed to show consistent

evidence of selection, despite obvious resistance associated

substitutions occurring in parallel in many patients. Chen et al.

[26] used a contingency-table counting method to characterize

positive selection towards specific amino acids in a sample of

approximately 40000 sequences. However, their approach

ignored the phylogenetic relationships between samples which

can cause selection to be conflated with founder effects [22,27].

Lemey et al. [28] used the branch-site model of Yang and Nielsen

[12] – a model of episodic diversifying selection – to analyze the

evolution of drug resistance over a transmission chain. A number

of sites were inferred to be under positive selection, of which some

were associated with drug resistance. Seoighe et al. [8] modeled

the evolution of reverse transcriptase between pre- and post-

treatment samples from 300 patients. They successfully detected

some of the major drug resistance mutations with few false

positives.

In this paper we aim to demonstrate that explicitly modeling the

directional and episodic character of the evolution of drug

resistance increases the power and accuracy to detect drug

resistance sites. We introduce a codon-based Model of Episodic

Directional Selection (MEDS) and a model of protein evolution

called Episodic Directional Evolution of Protein Sequences

(EDEPS), and show that both models outperform models that

lack either the episodic or directional components.

Models

MEDS
Our codon model of episodic directional selection assumes that

branches on the phylogenetic tree can be partitioned into fore-

ground (F) and background (B) subsets a priori. Evolution along

background branches is described by a standard codon model (QB,

see below). In the model for foreground branches (QF ), directional

selection is incorporated via an elevated rate of substitutions towards

a target amino acid.

MEDS extends two previously proposed models of coding

sequence evolution: 1) the episodic component of MEDS is

structurally identical to the Internal Fixed Effects Likelihood

(IFEL) model proposed in [14], although IFEL is used to detect

diversifying selection along internal branches only, and, 2) the

directional component is introduced in a manner similar to that in

the model of directional selection proposed by Seoighe et al. [8].

We used MG94|REV [29] as our baseline codon model: it

combines a general time-reversible (GTR) model of nucleotide

substitution with separate synonymous (a) and non-synonymous

(b) rates. To facilitate reading, table 1 summarizes the properties of

each model.

Following Seoighe et al. [8] we add a directional selection

parameter vT to modulate the rate of substitutions to the target

residue T in the model assigned to foreground branches. If

AA(x) represents the amino-acid encoded by codon x, then the

instantaneous rates of change between codons i and j (i=j) are

given by:

Author Summary

When exposed to treatment, HIV-1 and other rapidly
evolving viruses have the capacity to acquire drug
resistance mutations (DRAMs), which limit the efficacy of
antivirals. There are a number of experimentally well
characterized HIV-1 DRAMs, but many mutations whose
roles are not fully understood have also been reported. In
this manuscript we construct evolutionary models that
identify the locations and targets of mutations conferring
resistance to antiretrovirals from viral sequences sampled
from treated and untreated individuals. While the evolu-
tion of drug resistance is a classic example of natural
selection, existing analyses fail to detect the majority of
DRAMs. We show that, in order to identify resistance
mutations from sequence data, it is necessary to recognize
that in this case natural selection is both episodic (it only
operates when the virus is exposed to the drugs) and
directional (only mutations to a particular amino-acid
confer resistance while allowing the virus to continue
replicating). The new class of models that allow for the
episodic and directional nature of adaptive evolution
performs very well at recovering known DRAMs, can be
useful at identifying unknown resistance-associated muta-
tions, and is generally applicable to a variety of biological
scenarios where similar selective forces are at play.

Table 1. Summary of models described in this manuscript.

Model Data Baseline model Site variation Lineage variation Selection test Citation

MEDS Codon MG94|REVa Fixed effects Episodic Directional This paper

FEEDS Codon MG94|REV Fixed effects Episodic Diversifying [14]b

DEPS Protein HIV-Betweenc Random effects Constant Directional [9]

EDEPS Protein HIV-Between Random effects Episodic Directional This paper

a[29].
bFEEDS has the same structure as a model called IFEL in that paper, but the use here is novel.
c[37].
doi:10.1371/journal.pcbi.1002507.t001

Episodic Directional Selection
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QF
i,j~

0,when i and j differ at more than one position, otherwise :

h(i,j)|a|pij when AA(i)~AA(j)

h(i,j)|bF |pij when AA(i)=T&AA(i)=T&AA(i)=AA(j)

h(i,j)|bF |vT|pij when AA(i)=T&AA(j)~T

h(i,j)|bF |1=vT|pij when AA(i)~T&AA(i)=T

8>>>>>><
>>>>>>:

ð1Þ

for the foreground and

QB
i,j~

0,when i and j differ at more than one position, otherwise :

h(i,j)|a|pij when AA(i)~AA(j)

h(i,j)|bB|pij when AA(i)=AA(j)

8><
>:

ð2Þ

for the background branches. We assume that a does not change

significantly between foreground and background branches.

Indeed, available evidence (e.g. [30–32]) suggests that synonymous

rate variation among sites is due to biological processes which

change slowly, e.g. RNA secondary structure, transcriptional or

translational efficiency, relative to the nearly instant change in the

selective environment due to the presence of ARV. In principle,

the model can readily handle such variation. bF and bB can be

inferred independently. h(i,j) is the GTR-based rate of the

underlying nucleotide substitution from codon i to j, shared

between QF and QB. Equilibrium frequency parameters pij are

derived with the corrected F3|4 estimator [33]. While the same

pij values are used for background and foreground models, when

vT=1 the equilibrium frequencies of QF will depart from those

dictated by pij , although we do not need to calculate these new

equilibrium frequencies explicitly. This feature is essential because

directional evolution changes the character frequencies at a site.

We also experimented with a version of the model where the factor
1

vT

in the last line of Equation 1 was omitted – this had essentially

no impact on the results. To ensure that Q defines a valid Markov

process generator, along the diagonal of Qwe set:

Qi,i~{
X
j,j=i

Qi,j : ð3Þ

Model fitting proceeds in two stages: (a) estimating the

parameters shared across sites, and (b) site-wise analysis [6,34].

The branch lengths and QF and QB, without the directional

component (i.e. vT~1), are first optimized over the entire

alignment to obtain gene-wide parameter estimates in the presence

of potentially ubiquitous purifying or diversifying selection. The

nucleotide rate parameters (h(i,j)) and relative branch lengths are

then fixed for subsequent analyses. From then, the analysis

proceeds site by site. We define the null model by setting vT~1, a

special case of the alternative directional model (vT is free to vary),

and equivalent to IFEL [14]. The null model has 3 free parameters

per site: a (synonymous substitution rate), bF (non-synonymous

substitution rate along foreground lineages) and bB (non-synon-

ymous substitution rate along backfround lineages). The alterna-

tive model has a single additional parameter, vT , biasing

substitutions towards T . To test for selection towards amino acid

T at a specific site, we obtain maximum likelihood scores for the

null and alternative models and perform a likelihood-ratio test

(LRT) with one degree of freedom based on the asymptotic x2

distribution of the likelihood-ratio statistic.

The above test treats nucleotide substitution rates and branch

length parameters at a single site as known, even though these are

estimated across sites under a simpler model. It is possible that this

could affect inference if these estimates were substantially biased.

Our simulations suggest that the test performs well in spite of this

computational shortcut, and using different models to infer these

parameters does not substantially affect the test results on the

empirical data we analyze here. Additionally, the x2 asymptotic

approximation implicit in MEDS relies on the intuition that when

the number of sequences increases, the number of branches in the

tree will increase, so that substitutions on those branches will

constitute different (although dependent) realizations of the

process. We note that the asymptotic approximation for our test

requires not only many branches but also many foreground

branches. While theoretical results justifying our use of the x2

approximation are currently lacking, our simulations (see below)

suggest that the use of the x2 appears to lead to a conservative test

for the conditions we have examined.

Scanning a site for selection towards any possible amino acid (T )

involves testing 20 hypotheses, and we employ Bonferroni

correction [35] to control the site-wise Type I error rate. For

computational efficiency, we skip invariant sites and restrict

potential values of T to those observed at a given site. Because

these reductions are informed by the data, we still employ the 20-

test Bonferroni correction at each site.

FEEDS
To assess the importance of the directional component of

MEDS, we adapt IFEL to test for episodic diversifying selection

along foreground branches and use it as a benchmark for

MEDS. As the branches of interest are mostly terminal, the

name, IFEL, is no longer appropriate, and we rename the

model FEEDS, for ‘Fixed Effects Episodic Diversifying Selec-

tion’. The alternative model for FEEDS is identical to the null

model for MEDS, allowing a, bF and bB to vary for each site.

To test for non-neutral selection along foreground branches, we

set up a null model with bF ~a, and use an LRT (one degree of

freedom) to determine whether the alternative model fits better

than the null model. If bF
wa results in a significant likelihood

improvement, we have evidence for diversifying selection along

foreground branches. This test for episodic diversifying selection

has three features that distinguish it from the popular branch-

site model of Yang and Nielsen [12] and Zhang, Nielsen and

Yang [36]: 1) it uses a sitewise likelihood-ratio test [5], otherwise

known as a fixed effects likelihood [6] approach, 2) it allows site-

to-site synonymous rate variation, which has been shown to be

ubiquitous and can cause spurious detection of diversifying

selection if ignored [29] and 3) it allows diversifying selection on

the background branches in both the null and alternative

models. MEDS shares these properties, allowing us to attribute

any performance differences specifically to the directional

component of MEDS.

DEPS
Throughout the analyses we also compare our results against

DEPS (full results in tables S1 to S3), a method for detecting non-

episodic directional selection proposed by Kosakovsky Pond et al.

[9]. DEPS identifies sites with increased substitution rates towards

specific amino acids, but it differs from MEDS in three ways: 1)

DEPS models directional selection at the amino acid level rather

than the codon level, 2) DEPS uses a Random Effects Likelihood

(REL) framework to bias selection towards target amino acids

across all sites, relying on an empirical Bayes analysis to identify

sites of interest and 3) in DEPS, directional selection affects all

branches of the phylogeny.

ð1Þ

ð2Þ

Episodic Directional Selection
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Episodic DEPS
It is a straightforward exercise to modify DEPS to incorporate

the episodic nature of MEDS – namely, we restrict accelerated

substitutions towards a target residue T (and retard substitutions

away from it) to foreground branches, while background branches

always evolve according to the baseline protein substitution model

specific to HIV-1 [37]. The entire testing framework of DEPS, as

described in Kosakovsky Pond et al. [9], applies without change. It

is well known that amino acid substitution rates depend on the

residues involved (e.g. see [38]), and specifying a baseline model

which includes unequal substitution rates provides a qualitative

advance over MEDS. Conversely, because DEPS works with

protein sequences, the natural proxy of approximately neutral

evolution (the rate of synonymous substitutions) is not available.

All models and their accompanying LRTs are implemented in a

HyPhy Batch Language script [39], and all code and test datasets

are available on the MEDS section of the HyPhy wiki (www.

hyphy.org) and included in the latest HyPhy distribution (version

2.0020101225 or later).

Datasets
We analyzed three HIV-1 datasets obtained from the South

African mirror of the Stanford HIV Drug Resistance Database

(HIVdb) [40,41]. Synthetic datasets were generated by simulation

to investigate the power and false positive rate of MEDS. The

primary goal of this paper is to show that MEDS and EDEPS

perform well on medium-sized datasets constructed under a

variety of conditions. Every empirical dataset includes sequences

sampled from both treated and untreated patients, but we varied

the inclusion criteria from one dataset to the next. An ideal dataset

for detecting drug resistance would include pre- and post-

treatment samples from the same patients (as in our reverse

transcriptase dataset), but often such data are not available, e.g.

when sequences are obtained from patients experiencing regimen

failure. To evaluate the performance of MEDS and EDEPS when

pre- and post-treatment sequence pairs were not available (our

protease and integrate datasets), we selected pre-treatment

sequences using heuristic measures of proximity to the post-

treatment samples, as one would be forced to do under such

circumstances. Exactly which factors are responsible for perfor-

mance variation is left as a topic for future research. The objective

of each analysis was to detect sites (and corresponding amino

acids) that are involved in drug resistance. For validation, we used

the curated list of drug resistance associated mutations (DRAMs)

which is available from the Stanford HIVdb (http://hivdb.

stanford.edu). This list is produced every year and approved by

the International AIDS Society (http://www.iasusa.org/

resistance_mutations/). These mutations have been rigorously

validated with genotype-phenotype and genotype-clinical data and

are known to confer varying levels of resistance to one or more

antiretroviral agents – they can therefore be used as a ground truth

for evaluating the performance of our methods.

We screened each sequence for evidence of recombination

(known to have a biasing effect on selection detection, e.g. [42])

using SCUEAL [43] and excluded any sequences showing w90%
support for either inter- or intra-subtype recombination, and using

the Rega HIV-1 Subtyping tool Version 2.0 [44], excluding any

sequences with clear inter-subtype recombination.

Reverse transcriptase. The first dataset comprises pairs of

reverse transcriptase (RT) isolates obtained before and after the

initiation of highly active anti-retroviral therapy (HAART) from

241 patients (482 sequences). The data were obtained from the

Stanford HIVdb using a query that retrieved paired samples from

the same patient, filtered on the earlier sample being Reverse

Transcriptase Inhibitor (RTI) naive, and the later sample taken

during therapy with at least one Non-Nucleoside RTI (NNRTI)

and at least one Nucleoside RTI (NRTI). The topology of the

phylogeny was estimated using PhyML [45] (settings for all

datasets: REV model with tree search by Nearest Neighbor

Interchange and Subtree Pruning and Regrafting), and all

terminal branches leading to post-treatment sequences were

selected as foreground (see Figure S1). As an artifact of older

sequencing assays [14], a large number of sequences were missing

data at the beginning and end of RT, hence we analyzed the

region from codon 40 to 250. Six sequences were excluded from

our analyses because they displayed evidence of recombination.

Protease. A dataset consisting of 49 protease isolates (from 37

patients), sampled post-Protease Inhibitor (PI) treatment was

retrieved from HIVdb (query: Number of PIs = 3, Subtype = C).

Additionally, the entire collection of treatment naive protease

isolates was obtained, and all full length sequences were searched

for two sequences nearest (under the Hamming distance) to each

of the 49 post-treatment sequences. The final dataset was

constructed by combining the post-treatment and closely related

naive sequences: a total of 122 sequences, as some naive sequences

were closely related to more than one post-PI sequence. Since

protease is only 297 nucleotides long, we were concerned that

convergent evolution due to drug resistance might inflate the

apparent relatedness between some of the treatment resistant

sequences [46], hence we excluded the major resistance sites

before reconstructing the phylogeny, using PhyML. As there are

many instances where a number of post-treatment sequences were

sampled from a single patient, we adopted a recursive branch

labeling strategy for the internal branches. All terminal branches

leading to post-PI and PI-naive isolates were labeled as foreground

and background respectively, and internal branches were labeled

Figure 1. The maximum-likelihood phylogeny for the protease
dataset. Foreground branches are marked in red. All terminal
foreground branches lead to sequences obtained from patients who
had been receiving antiretroviral therapy. See text for details of how we
determined which internal branches were assigned to foreground.
MEDS and EDEPS allow the presence of a directional component along
the foreground branches where antiretroviral therapy exerts selective
pressure.
doi:10.1371/journal.pcbi.1002507.g001

Episodic Directional Selection
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as foreground if both child branches were foreground, and

background otherwise (See figure 1). This labeling ensures that

drug resistance selection occurs only on foreground branches.

Because there may be portions of foreground branches not under

drug selection, the effect of potential mislabeling is to dilute the

signal along foreground branches and reduce the power of the test.

No sequences showed evidence of recombination.

Integrase. The post-treatment sequences for the final empir-

ical dataset were 83 integrase isolates sampled from 40 patients

after Integrase Inhibitor (II, Raltegravir) therapy. 1237 II-naive

isolates were obtained from the Stanford HIVdb, and the final

Raltegravir dataset was made up of 315 sequences: the 83 post-II

isolates, plus the union of the 25 II-naive isolates nearest to each of

the 83 post-II isolates under the HKY85 distance [47]. The

topology of the phylogeny was again estimated using PhyML, and

the foreground region was labeled in the same fashion as the

protease dataset (see Figure S2). 20 sequences were excluded for

showing evidence of recombination.

Power simulations. We investigated the power of MEDS

by simulating alignments over a balanced 64-taxon phylogeny

(see Figure S3 for an example). All parameters were varied (see

Text S1 for complete details). Of particular interest, we simulated

under 4, 8, 16 or 32 foreground branches and, selecting a

random target amino acid T for each site, the directional

selection parameter vT took values of 2, 5, 10, 100 and 1000.

These vT values are in a reasonable range: in our three empirical

datasets, the 25%, 50% and 75% percentiles of the maximum-

likelihood estimates of vT values for detected substitutions are

32:2, 629:9 and 5544:3. 400 sites were simulated for each vT

value, for each number of foreground branches, yielding 8000
simulated sites. To assist in understanding the effects of vT and

the size of the foreground subset, we also recorded the number of

Table 2. Sites under episodic directional and episodic diversifying selection in reverse transcriptase.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

41 L 0:00259 1937 (280.06) -e - NRTIf

62 V - - - 313 NRTI

64 K 0:00244 11:99 (5.58) 0:0067 -

77 L - - - 211 NRTI

98 S 0:00488 w1000 (w1000) - -

100 I v0:0001 w1000 (524.49) - w105 NNRTIg

102 ?h - - 0.0025 -

103 N v0:0001 629:9 (466.73) v0:0001 w105 NNRTI

104 Y 0:00244 w1000 (90.81) - -

115 F - - - 3110 NRTI

116 Y 0:00319 w1000 (179.80) - - NRTI

151 M v0:0001 w1000 (186.13) - w105 NRTI

151 Q 0:00023 13:96 (7.04) - -

162 S - - - 1772

165 L v0:0001 w1000 (w1000) - 2245

174 R - - - 105

181 I v0:0001 w1000 (118.72) - w105 NNRTI

184 V v0:0001 25:82 (16.68) - w105 NRTI

188 L v0:0001 377:93 (32.42) 0:0002 w105 NNRTI

188 Y v0:0001 17:61 (11.15) - -

190 S v0:0001 75:85 (26.09) - w105 NNRTI

200 ? - - v0:0001 -

215 F 0:00282 160:65 (10.36) - 2727 NRTI

215 T 0:00035 15:19 (6.69) - -

228 R 0:00029 72:2 (14.09) - 1401 NRTI accessory

230 L 0:00297 w1000 (44.6) - w105 NNRTI

245 ? - - 0.0006 -

286 A 0:00085 w1000 (w1000) - -

aMEDS versus FEEDS LRT, testing for directional selection.
bthe lower bound of the approximate 99% confidence interval calculated from profile likelihood.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e‘-’: not significant.
fNucleoside reverse-transcriptase inhibitor.
gNon-nucleoside reverse-transcriptase inhibitor.
h?: detected only by FEEDS which does not identify a target AA.
doi:10.1371/journal.pcbi.1002507.t002

Episodic Directional Selection
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substitutions towards the target amino acid that occurred along

foreground branches.

In real evolving systems, the modeling assumption of selection

towards a single target amino acid could be violated. We

investigated how such deviations would impact the power of the

model by simulating directional selection towards two target

amino acids, with substitutions towards one target accelerated on 8
foreground branches, and substitutions towards another acceler-

ated on a different 8 foreground branches. The parameters were

varied in the same manner as the single-target power simulation,

and 1600 sites were simulated for each vT value, again yielding

8000 sites in total.

False positive simulations. We used exactly the same

simulation configuration and parameters to asses the rates of false

positives under the null model (vT~1). We simulated 400 sites for

each of 4, 8, 16 or 32 foreground branches.

In evolving proteins, each site could have its own site-specific

selective constraints governing amino acid distributions. MEDS

assumes that background equilibrium frequencies are the same for

all sites, and a potential concern is that deviations from this

Table 3. Sites under episodic directional and episodic diversifying selection in protease.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

10 ?e -f - 0.0005 - PIg accessory

12 T v0:0001 28:88 (8.58) - -

13 V 0:0059 490:2 (138) - 145 PI accessory

35 D 0:0035 8:56 (1.99) - -

54 ? - - 0.0026 - PI

60 E v0:0001 w1000 (w1000) - - PI accessory

61 E v0:0001 w1000 (w1000) - -

71 V - - 0.0011 257 PI accessory

74 S 0:0007 19:93 (4.08) 0.0013 - PI accessory

82 A - - v0:0001 w105 PI

84 V 0:00798 890:3 (248.19) - w105 PI

90 M v0:0001 w1000 (986.17) v0:0001 w105 PI

93 L 0:0078 w1000 (6.36) - - PI accessory

aMEDS versus FEEDS LRT, testing for directional selection.
b99% lower confidence interval calculated from the likelihood profile.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e?: detected only by FEEDS which does not identify a target AA.
f‘-’: not significant.
gProtease inhibitor.
doi:10.1371/journal.pcbi.1002507.t003

Table 4. Sites under episodic directional and episodic diversifying selection in integrase.

Site Target MEDS p-valuea vT (Lower 99% CI)b FEEDS p-valuec EDEPS Bayes Factord Resistance

72 I 0:0095 w1000 (533.76) -e - INIf accessory

97 A 0:0028 337 (105.52) v0:0001 w105 INI accessory

140 S v0:0001 w1000 (w1000) 0:0003 w105 INI

143 R 0:0015 23:5 (3.83) v0:0001 w105 INI

148 H v0:0001 35:5 (14.53) v0:0001 w105 INI

155 H v0:0001 w1000 (w1000) 0:0006 w105 INI

163 R - - - 1143 INI accessory

221 Q - - - 107

227 ?g - - 0.0064 -

230 ? - - 0.0048 - INI accessory

aMEDS versus FEEDS LRT, testing for directional selection.
b99% lower confidence interval calculated from the likelihood profile.
cbF wa LRT, testing for diversifying selection.
dEmpirical Bayes analysis, testing for directional selection on protein data.
e‘-’: not significant.
fIntegrase inhibitor.
g?: detected only by FEEDS which does not identify a target AA.
doi:10.1371/journal.pcbi.1002507.t004
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modeling assumption could lead to excessive false positives. To

investigate this, we simulated data under a version of the null

model where each site’s amino acid equilibrium frequencies were

sampled from a symmetric Dirichlet distribution with density

f (qp; a)* P
20

p~1
qa{1

p ð4Þ

The concentration parameter a took values 0.005, 0.05, 0.5 and 5,

varying the equilibrium frequency distributions from extremely

peaked to relatively flat. Each sampled amino-acid frequency qp

was evenly distributed among all codons encoding p and a version

of QB with the Goldman-Yang parameterization of equilibrium

frequencies [4] was employed to simulate codon sequence data.

Results

Reverse transcriptase
MEDS detected twenty substitutions at seventeen sites under

significant directional selection at pƒ0:01, after correcting for

multiple tests (see tables 2 and S4). Of these, five are known NRTI

drug resistance associated mutations (DRAMs) (41L, 116Y, 151M,

184V and 215F) and six are known NNRTI DRAMs (100I, 103N,

181I, 188L, 190S and 230L). Additionally, 228R is listed as an

accessory NRTI mutation. The eight detected substitutions that

have not been experimentally or clinically associated with drug

resistance are 64K, 98S, 104Y, 151Q, 165L, 188Y, 215T and

286A. Interestingly, at three of these sites (151, 188 and 215)

selection was detected both towards the wildtype and towards

resistant residues. EDEPS agreed with MEDS on eleven sites,

detected additional DRAMs 62V, 77L and 115F, missed two

MEDS-reported DRAMs (41L and 116Y), and found episodic

selection at 162S and 174R which are not known to confer drug

resistance.

Remarkably, FEEDS detected only six sites under diversifying

selection (table S5), two of which are known resistance mutations,

strongly supporting the inclusion of a directional component in the

model. A continuous directional selection model (DEPS) detected

46 sites under directional selection with Bayes factors w100 (see

table S1), only ten of which are on the HIVdb list. This indicates

that focusing our attention on branches where the evolutionary

environment shifts is advantageous for finding evidence of

adaptive response to such shifts.

Protease
MEDS detected nine substitutions under directional selection at

pƒ0:01 (tables 3 and S6). Of these, two are major DRAMs (90M

and 84V). Three are accessory polymorphic mutations (13V, 60E

and 93L) under selective pressure from the drugs. 74S is a non-

polymorphic accessory mutation. EDEPS agreed with MEDS on

three (13V, 84V and 90M), detected one more major mutation,

82A, and an accessory mutation at 71V. Interestingly, 60E and

61E found by MEDS involve substitutions (D?E and Q?E)

which, in HIV, are much more frequent than the mean

substitution rate [37]. Because MEDS sets the background rate

of non-synonymous substitutions to the same value for all pairs of

residues, it could use vT to compensate for the overall underes-

timation of rates that are much greater than the mean rate.

FEEDS identified six sites involved in diversifying selection

(table S7), with all six listed on HIVdb. In addition to two sites

already detected by MEDS (74 and 90), sites 10 and 71 are listed

as accessory mutations, while 54 and 82 are major resistance

mutations. DEPS appeared to be much more conservative on this

dataset, detecting four sites under directional selection, two of

which are listed on HIVdb (see table S2).

Integrase
MEDS detected six substitutions under significant directional

selection at the 1% level (see tables 4 and S8). Four (140S, 143R,

148H and 155H) appear on the HIVdb list of mutations associated

with a w5{10 fold decrease in Raltegravir susceptibility. Two are

listed as mutations selected by Raltegravir (72I and 97A). EDEPS

confirmed five DRAMs (97A, 140S, 143R, 148H and 155H),

together with a 163R accessory substitution and a 221Q mutation

which is not a known DRAM.

FEEDS found seven sites under diversifying selection (table S9),

six of which are known resistance mutations. 230 is the only

correctly identified resistance site in the integrase dataset that is

detected as being under diversifying selection by FEEDS, but not

directional selection by MEDS. 230 R and N are listed as selected

by Raltegravir. DEPS detected 39 substitutions under directional

selection (see table S3), nine of which appear on the HIVdb list.

Comparing methods
Comparing the fit of FEEDS and MEDS on known resistance

sites in all three datasets, LRTs reject a null model of FEEDS in

favor of MEDS on 24 sites, with FEEDS being favored on five

(four from protease and one from integrase). Note that FEEDS

might still be useful for detecting these sites, but the LRT

demonstrates that MEDS is a better model of the process. This

suggests that episodic directional selection is, in most cases, a

better characterization of the evolution of drug resistance. Overall,

FEEDS detects fourteen true positives, while MEDS and EDEPS

detect 24 each (although not the same 24). Where FEEDS appears

to have a reasonably low rate of false positives but misses a large

number of true positives, DEPS detects a large number of true

positives but with a very high false positive rate. This is expected as

DEPS will detect substitutions under selection along background

branches that are not related to drug resistance.

Power simulations
The power of MEDS, like that of other codon methods, strongly

depends on the information content of the sequences, specifically

on the number of times that substitutions toward the target occur

along the foreground lineages. For example, even when vT is

1000, no substitutions towards T occur on half the sites simulated

on the phylogeny with sixteen foreground branches. The primary

reason for this is that vT affects only the instantaneous substitution

rate from a codon to its direct neighbors; if none of the direct

Table 5. Single target power simulations: power as a function
of vT .

# FG
branches vT

2 5 10 100 1000

4 0 (8)a 0 (16) 0 (37) 0.31 (110) 0.79 (155)

8 0 (11) 0 (18) 0.04 (62) 0.51 (129) 0.73 (170)

16 0 (31) 0.018 (54) 0.036 (83) 0.59 (177) 0.71 (201)

32 0.02 (62) 0.03 (71) 0.16 (116) 0.68 (223) 0.80 (282)

aNumbers in brackets are the number of times at least one substitution towards
the target occurred along foreground branches: i.e. the denominator for the
proportion of detections.
doi:10.1371/journal.pcbi.1002507.t005
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neighbors of T are visited along a foreground branch, a change in

vT will not affect the process.

Hence, we tabulate MEDS results only for sites with at least one

substitution towards the target on any foreground branch. Table 5

shows that the power is positively correlated with vT . MEDS

appears to be quite powerful, even when the number of

foreground branches is small, achieving, for example, 51% power

with vT~100 with only eight foreground branches. Table 6

displays the power of MEDS conditioned on the number of

substitutions towards the target on foreground branches. With

only one substitution there is almost no power, but moderate

power (&30%) occurs with two substitutions towards T , and with

five or more substitutions towards T , the power is almost 100%.

For data simulated with two target residues, each on eight

foreground branches, the occurrence of at least one substitution

towards both targets is infrequent. From 4800 sites simulated with vT

values of 2, 5 and 10, this occurs only 58 times, and is never detected.

From 1600 sites simulated with vT~100 for both targets, substitutions

to both targets occur 174 times. MEDS detects substitutions to at least

one target in 47% of such sites, but only detects substitutions to both

targets in 5% of such sites. With vT~1000, we see 306 of 1600 sites

with substitutions to both targets, and MEDS detects substitutions to at

least one target in 86% of these sites, and to both targets in 31%.

Table 7 shows how the power increases with the number of

substitutions towards both targets on the foreground branches.

Since there too many possible combinations and too few

observations, we display power in a cumulative manner (i.e. §N
substitutions towards both targets).

False positive simulations
MEDS behaves conservatively. With data simulated under the

null model, far fewer sites are identified as under episodic

directional selection than would be expected from the nominal

p-value thresholds. Across all four foreground configurations, only

one false positive detection (pv0:01, with Bonferroni correction)

occurs on the 32 foreground branch phylogeny, and none on the

others. With pv0:05, with 4, 8, 16 and 32 branches, we have false

positive rates of 0, 0.0025, 0.0075 and 0.01; with pv0:1, we have

0.005, 0.005, 0.0125 and 0.02, respectively. This is most likely due

to FEL methods being generally conservative [6] as well as the

conservative nature of Bonferroni correction. The effect of the

correction is compounded because increasing the frequency of one

amino acid reduces the frequency of the others, and thus the

twenty tests are not independent. Table 8 shows the false positive

rate for alignments simulated under site specific equilibrium

frequencies. MEDS is still conservative under this scenario, and

the false positive rates do not appear to be influenced by the

concentration parameter.

Discussion

We have proposed a codon (MEDS) and a protein (EDEPS)

model of episodic directional selection, and demonstrated their

performance on three HIV-1 datasets, where drug-induced

directional episodic selection is expected to operate. We have also

proposed a model of episodic diversifying selection (FEEDS), to

rigorously evaluate the importance of modeling the directional

component of natural selection. As expected, on all datasets, our

episodic directional tests strongly outperform a test for continuous

directional selection (DEPS) for detecting drug resistance sites. The

assumptions of DEPS are inappropriate for the analysis of episodic

selection, where selection is limited to specific regions of the

phylogeny, because DEPS assumes uniform selection over the

whole phylogeny. This serves as a caution against using

suboptimal models, rather than a criticism of DEPS.

We tested MEDS with extensive simulations. MEDS is a

conservative test, even when strong constraints on the amino acid

state space are introduced in the form of site-specific equilibrium

frequencies. Under the alternative model, good power is achieved

even when relatively few substitutions towards target amino acids

take place along foreground branches. When we deviate from the

alternative model and elevate the substitution rate towards several

target residues, the power to detect both targets is lower than it

would be assuming independence. This reduction in power is

Table 7. Dual target power simulations: power as a function of number of substitutions to two target AAs.

Substitutions to both targetsa: §1 §2 §3 §4 §5 §6 §7 ~8

MEDS detects at least one target: 0.64 0.81 0.89 0.92 0.95 0.98 1 1

MEDS detects both targets: 0.19 0.36 0.48 0.52 0.63 0.76 0.78 0.81

Total sites: 538 288 214 179 132 99 69 32

aSubstitutions along foreground branches. Each target has 8 foreground branches along which changes towards it were accelerated.
doi:10.1371/journal.pcbi.1002507.t007

Table 6. Single target power simulations: power as a function
of number of substitutions to target AA along foreground
branches, pooling over vT .

# FG
branches # substitutions to target AA

0 1 2 3 4 §5

4 0 (1674)a 0 (119) 0.2 (58) 0.77 (48) 0.99 (111) N/A

8 0 (1610) 0 (146) 0.23 (53) 0.69 (26) 1 (21) 0.99 (144)

16 0 (1454) 0 (200) 0.34 (92) 0.49 (39) 0.79 (34) 0.97 (181)

32 0 (1246) 0.03 (234) 0.4 (107) 0.41 (70) 0.70 (46) 0.97 (297)

aNumbers in brackets are the number of times that many substitutions towards
the target occurred along foreground branches: i.e. the denominator for the
proportion of detections.
doi:10.1371/journal.pcbi.1002507.t006

Table 8. False positives with site specific equilibrium
frequencies as a function of the concentration parameter a
and the nominal p-value of the test.

a parameter: 0.005 0.05 0.5 5

p~0:01 0.005 0.0025 0.0025 0.0075

p~0:05 0.02 0.0175 0.02 0.015

p~0:1 0.0325 0.0325 0.035 0.0375

doi:10.1371/journal.pcbi.1002507.t008
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expected: as the number of targets along foreground branches

increases, the directional nature of the process is lost.

Hughes [48] argues that diversifying selection is only appropri-

ate for modeling pathogen-host co-evolution, and that the

constantly shifting environment is required for the standard

diversifying selection model to be appropriate. Our results

highlight that models of diversifying selection also serve as

reasonable approximations in instances where selective constraints

allow escape to many different residues, such as codon 54 in

protease, which has V, T, A, L and M as major drug resistant

residues. However, at most sites conferring drug resistance,

directional models better approximate reality – positive selection

acts only on one or a few specific mutations, while the rest are

suppressed by purifying selection. The simulations presented in

Table 7 illustrate how much power MEDS can be expected to

have in cases such as site 54 in protease. This example also

suggests a future extension of MEDS, where instead of considering

one target residue at a time, substitution rates could be elevated

towards classes of target residues.

Another interesting property of directional models is exempli-

fied by a substitution in the protease dataset. 93L is a polymorphic

mutation selected for by protease inhibitors. Despite L already

being the most common residue in subtype C, the model detects

selective pressure towards it – the proportion of L residues is

indeed lower in nave sequences. At the population level this

appears as purifying selection: the most common amino acid

increases in frequency. This is nevertheless detected by our test.

Far from being problematic, such information could be useful for

directing treatment, if it turns out that patients with I at position

93 are more susceptible to PI therapy. Such observations should,

of course, be directly verified with clinical data.

There are clear differences in organism-wide amino acid

exchangeabilities in HIV-1 [37], yet the null model of MEDS

(and the vast majority of other codon-models) posit that the non-

synonymous substitution rate does not depend on the residues. We

evaluated the effect of this assumption by comparing MEDS with

an episodic version of DEPS – a test that specifically incorporates a

heterogeneous exchangeability matrix in the evolutionary model.

With a few exceptions, MEDS and EDEPS return overlapping sets

of directionally evolving residues and identify the same targets.

There are several sites in protease and integrase, where MEDS

may be misclassifying non-uniform exchangeabilities as directional

selection, hence another extension of MEDS would be to

incorporate multiple non-synonymous substitution rates [38].

MEDS and EDEPS were designed with HIV-1 drug resistance

in mind, but should be applicable wherever episodic directional

selection occurs along multiple lineages. To use the models, two

specific conditions must be met: 1) Lineages expected to be under

directional selection must be known a priori, at least approximately.

This is necessary to partition the phylogeny into foreground and

background regions. 2) A rich collection of background sequences

are needed. With HIV-1, this translates to requiring treatment

naive sequences. Variety in these sequences is also important. If all

the background sequences were so closely related that the

foreground and background regions were separated by a single

branch, if would be difficult to separate directional selection from

founder effects, which would result in a loss of power. If the

background sequences are spread about the phylogeny, however,

founder effects are rendered unlikely and the test for directional

selection should be well powered.

With HIV-1 drug resistance datasets, the foreground labeling

strategy might prove important. On the RT dataset, branch-

labeling was straightforward, as we had access to pre-treatment

sequences for each patient. This is not the case for most real-world

datasets, and other approximate labeling schemes, as well as the

robustness of the results to these differences, should be investigated.

Another consideration is the rooting of the tree. With directional

models, the expected amino acid frequencies change across the

phylogeny, and the position of the root becomes important [9].

With MEDS and EDEPS, the directional component only affects

foreground branches. Consequently, the tree can be rooted on any

background branch and the likelihood will be unaffected [49].

Amidst growing concerns about an epidemic of circulating drug

resistant HIV-1, the WHO and SATuRN are recommending a

scale-up of drug resistance surveillance [41,50]. This is to ensure the

long-term success of the world’s largest antiretroviral treatment

programs, located in Africa. We see improved models of the

sequence evolution playing a role in characterizing local differences

in treatment resistance patterns, perhaps driven by different

treatment regimens, adherence and transmission dynamics, and

possibly identifying new resistance mutations.
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