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Abstract

The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with
its working memory. The working memory with sustained neural activity is described as a neural dynamical system
composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing a
fragment of information. Recent studies have revealed that the PFC not only represents multiple sets of information but also
switches multiple representations and transforms a set of information to another set depending on a given task context.
This representational switching between different sets of information is possibly generated endogenously by flexible
network dynamics but details of underlying mechanisms are unclear. Here we propose a dynamically reorganizable attractor
network model based on certain internal changes in synaptic connectivity, or short-term plasticity. We construct a network
model based on a spiking neuron model with dynamical synapses, which can qualitatively reproduce experimentally
demonstrated representational switching in the PFC when a monkey was performing a goal-oriented action-planning task.
The model holds multiple sets of information that are required for action planning before and after representational
switching by reconfiguration of functional cell assemblies. Furthermore, we analyzed population dynamics of this model
with a mean field model and show that the changes in cell assemblies’ configuration correspond to those in attractor
structure that can be viewed as a bifurcation process of the dynamical system. This dynamical reorganization of a neural
network could be a key to uncovering the mechanism of flexible information processing in the PFC.
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Introduction

The prefrontal cortex (PFC) is believed to play crucial roles in

flexible decision making and action planning that are essential for

adapting to an ever-changing real world. Prefrontal neurons hold

not only multiple sets of discrete information and parametric

magnitudes of stimuli in their working memory but also transform

online information to behaviorally relevant information that is

required under a given behavioral context [1,2,3,4,5,6,7]. Such

‘‘representational switching’’ is observed in PFC neurons when

subjects are undertaking various cognitive tasks, e.g., ‘‘what–

where’’ working-memory tasks [7], location–object comparison

tasks [6], two-interval discrimination tasks [5], duration-discrim-

ination tasks [1], and goal-oriented action-planning tasks [2,3,4].

These tasks usually require the holding of information as working

memory during delay periods and the appropriate processing of

information to guide behavior in a given context. For example, in

the goal-oriented action-planning task, many prefrontal neurons

initially encode a behavioral goal and then a part of these neurons

subsequently encodes a future action [2,4]. This dynamical

encoding by prefrontal neurons can be interpreted as the switching

of mapping between patterns of neural activity and sets of

information. We assume that a set of information (e.g., a set of

goals or a set of actions) is mapped onto an ensemble of neurons.

Initially, one functional mapping may be manifested in local

circuits and adaptively switched to another functional mapping

toward the end of delay periods of the task. The PFC is seated on

the highest level of a functional hierarchy of the sensation-action

process and represents abstract aspects of complex sensory and

action information [8]. The PFC contributes to planning and

generation of actions with its internal dynamics, rather than with

mere stimulus-response associations [9]. This ubiquitous adapt-

ability to different functions in various tasks, which has been

revealed by both electrophysiological and imaging studies, suggests

that the mechanism of adaptive neural coding in the PFC may be

general. However, little is known about the mechanism. In this

study, we investigate the mechanism of representational switching

by using a computational model of a prefrontal neural network.

The abovementioned tasks require the storage of information

in a delay period of a given task by using the working memory
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that is realized with sustained neural activity [10,11]. Stably

sustained neural activity can be theoretically characterized by

attractor dynamics [12] with a feedback mechanisms [13,14,15].

In a conventional attractor network, there generally exist multiple

attractors, each of which distinguishes one discrete set of

categories or information and shifts to another attractor by

external inputs or noise depending on the required task

[16,17,18]. However, such a state transition does not change

the structure of the attractors in the state space that reflects the

mapping between the attractors and information. Recent studies

show, on the other hand, the possibility that the generation of

representations is embedded in sequentially changing cell

assemblies with the modulation of synaptic efficacy [19,20,21];

however, the underlying theoretical mechanism and the roles of

this dynamical reorganization of cell assemblies in representa-

tional switching is still unclear.

In the present study, we propose a switching network model

based on the dynamical reorganization of attractor structure by

internal changes in synaptic connectivity. In particular we used

short-term synaptic plasticity [22,23,24,25,26] as a component of

the model network for representational switching because synapses

with short-term plasticity can facilitate global reorganization of

functional cell assemblies in networks. Furthermore, because of

gradual changes in synaptic efficacy, this network is able to hold

one set of information before representational switching and

another different set afterward, and endogenously generate

representational switching of neuronal activity in a flexible

manner. More specifically, we have developed a mathematical

model of a lateral PFC network that performs the goal-oriented

action-planning task (Figure 1A). In this task, the PFC encodes

dual information: goal positions and action directions as firing

rates of prefrontal neurons [2,3,4]. Representations of the two

different categories of information coexist and are endogenously

transformed in the middle of the delay period [2,4]. The present

model qualitatively reproduces these experimentally demonstrated

responses in the PFC.

Results

Representational Switching in Lateral PFC during Goal-
Oriented Action-Planning Task

Figure 1 shows the temporal sequence of the goal-oriented

action-planning task [2,3,4] and the responses of a lateral PFC

neuron that were recorded from a monkey who was trained to

move the cursor on the screen to a goal presented during a goal-

display period. Neural activity depends on the phase of the task,

the position of the goal, and the direction of the action. After the

cursor is displayed at the start position, the final goal position is

displayed during the goal-display period. If a prefrontal neuron

prefers the displayed goal position, the firing rate of the neuron

increases compared to that in the case when a non-preferred

goal was displayed (Figure 1B). Although the display of the goal

position disappears in the next delay period, the goal-position-

related activity in the prefrontal neuron persists until the middle

of the delay period. It should be noted that although some

neurons show goal-position-related activity in the entire period

of the task, we focus here on such neurons that show

representational switching from the goal mode to the action

mode [2,4].

After the delay period, the first movement-initiation signal (the

‘‘Go’’ signal) appears, and the monkey is required to move the

cursor stepwise to reach the goal. In this task, the neuron showed

representational switching in the middle of the delay period and

persistent activity depending on the action direction during the

remaining delay period. Note that the representational switching

precedes the Go signal [2,4], suggesting that the representational

switching is not triggered by an external signal or a sensory cue.

Representational switching is more clearly shown by the selectivity

measure (Figure 1C), which is obtained by multiple linear

regression analysis [4,27] (see Methods for details). The selectivity

measure indicates the switching from the goal-representation

mode to the action-representation mode.

Each neuron involved in the representational switching has a

preference for both of a goal position and an action direction as

shown in Figure 1D. In the goal representation mode, the activity

of the neuron becomes high for the preferred goal, while it

becomes low for the non-preferred goal. In the action represen-

tation mode, on the other hand, the neural activity becomes high

for the preferred action direction, while it becomes low for the

non-preferred action.

What can neural mechanisms be inferred from this result?

Each neuron shows large responses for one of goals and one of

actions, and switches its responsibility from the goal representa-

tion mode to the action representation mode in the middle of the

delay period. For simplicity, suppose that two goals and two

actions are involved in this task (see Figure 1E). Possible patterns

of neural activity in each representation mode are limited as in

Figure 1E. In the goal (action) representation mode, possible

combinations of sustained neural activity states are A&B or C&D

(A&D or B&C).

Considering mutual connections between simultaneously

activated neurons, the sustained neural activity in a specific

group of neurons is also understandable with the conventional

attractor framework. Mutually connected neurons form a cell

assembly and the active state corresponds to an attractor.

However, it is puzzling how the network dynamically reconfig-

ures patterns of neural activity and switches representation

modes. It is a natural idea that external stimuli trigger the

transition among attractors, but if so, then an equivalently

difficult problem of how such stimuli are generated by neural

networks remains as unsolved.

Author Summary

The prefrontal cortex plays a highly flexible role in various
cognitive tasks e.g., decision making and action planning.
Neurons in the prefrontal cortex exhibit flexible represen-
tation or selectivity for task relevant information and are
involved in working memory with sustained activity, which
can be modeled as attractor dynamics. Moreover, recent
experiments revealed that prefrontal neurons not only
represent parametric or discrete sets of information but
also switch the representation and transform a set of
information to another set in order to match the context of
the required task. However, underlying mechanisms of this
flexible representational switching are unknown. Here we
propose a dynamically reorganizable attractor network
model in which short-term modulation of the synaptic
connections reconfigures the structure of neural attractors
by assembly and disassembly of a network of cells to
produce flexible attractor dynamics. On the basis of
computer simulation as well as theoretical analysis, we
showed that this model reproduced experimentally
demonstrated representational switching, and that switch-
ing on certain characteristic axes defining neural dynamics
well describes the essence of the representational
switching. This model has the potential to provide unique
insights about the flexible information representations and
processing in the cortical network.

Network Model of Representational Switching
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Figure 1. Goal-oriented action-planning task and neuronal responses in prefrontal cortex (PFC). (A) Temporal sequence of events in the
task [2,3,4]. Each panel represents a maze that was displayed on a monitor. Green squares indicate current cursor positions and red squares indicate
goal positions. The yellow square represents the movement initiation signal. Short black arrows indicate cursor movements. Red and blue/purple

Network Model of Representational Switching

PLoS Computational Biology | www.ploscompbiol.org 3 November 2011 | Volume 7 | Issue 11 | e1002266



Conceptual Model of Dynamically Reorganizable
Attractor Network

We propose a neural network model in which cell assemblies

[19,28] that encode fragments of information are functionally

structured and the formation of cell assemblies can be dynamically

updated through the modulation of synaptic connections

(Figure 2A). The activity of the cell assemblies is triggered or read

out by other networks that encode specific input or output

information. If two sets of information such as goals and actions

are represented in the neural network, the network can be

characterized with two different formations of cell assemblies

before and after representational switching. Each formation of cell

assemblies corresponds to the formation of attractors that can be

described on two characteristic axes (Figure 2B). Each character-

istic axis indicates the ability to represent information by the

landscape. If two attractors coexist along the axis (bistability) and

are mapped onto different fragments of information, e.g., two

different goal positions, the characteristic axis is able to

discriminate between them. On the other hand, if the dynamics

is monostable, no information is represented on the characteristic

axis (see Figure S1). Therefore, we hypothesize that the formation

of cell assemblies in the PFC is updated depending on the task

context and that the switching of information representation on

the axes is produced with the reorganization of the attractors.

Dynamical Models
We have proposed that the representational switching is

achieved in the PFC by the abovementioned mechanism. In the

initial stage of the goal-oriented action-planning task, the PFC

network stays in the goal-representation mode and is ready to

discriminate which task-relevant goal will be displayed. When the

goal position is specified by a sensory input, PFC neurons maintain

this information as persistent activity of the goal-representation

mode in the neural network, and then, the state of the network is

switched to the action-representation mode due to short-term

plasticity to be explained below. Consequently, one of the action

directions is selected by the convergence of the network state into

one of the attractors in the action-representation mode. The

selected action in the PFC network will be read out by downstream

neurons, which may correspond to neurons in the motor cortex.

Here we assumed that the read-out neurons are activated when

the state of the PFC network has converged to the action

representing attractor, namely when most of neurons in the action

representing cell assembly are activated. The sequences of

capturing sensory information, maintaining goal information,

and transforming it into an action direction are executed as

dynamical processes in the PFC network.

In the prefrontal network, neuronal responses are relatively

diverse. Some neurons are involved in representing a specific goal

or action during the entire task period, and others are involved in

representing both of them and switching their representations

during the task. Thus in general, the combination of functional cell

assemblies may be more complicated (see Figure S2). However, in

the present study, we have focused on essence of the observed

phenomena and considered a minimal model. When one of the

goals is displayed in the action-planning task of Figure 1A, the

possible actions are actually limited to two directions. Therefore,

for simplicity, we consider a PFC network that selects an action

from the two possible actions cued by the displayed goal position.

We implemented this mechanism to the dynamically reorganiz-

able attractor network shown in Figure 2C. Each node in the

figure indicates a population of neurons in the PFC (A to D),

sensory neurons (G1 and G2), and read-out neurons (A1 and A2).

Four neural populations in the PFC (A to D) are assumed to be

mutually connected with three different types of excitatory

synapses with or without short-term plasticity: namely, facilitation,

depression, and constant synapses [22,23] (see Methods for the

detailed network structure). A given presynaptic neuron can form

depression synapses on one neuron and facilitation synapses on

another [22,23]. The amplitude of the excitatory postsynaptic

potential (EPSP) induced by a facilitation (depression) synapse

increases (decreases) with successive presynaptic spikes, whereas

constant synapses do not change the EPSP amplitudes. The

excitatory neurons in the network are mutually connected and

send excitatory output to a population of inhibitory interneurons

through constant synapses. These interneurons send inhibitory

synaptic outputs through constant synapses back to all excitatory

neurons.

We assume that, in the initial resting state of the network when

the synapses are still neither depressed nor facilitated, populations

A and B as well as populations C and D form cell assemblies with

relatively strong synaptic connections and encode two goal

positions (see Figure 2D). These cell assemblies are mutually

inhibiting via inhibitory interneurons, and thus the network should

be bistable with the two active states of these cell assemblies

[17,29], as shown in the left of Figure 2D.

The neurons in the nodes that form such a cell assembly are

assumed to be predominantly connected by synapses with short-

term plasticity such that when one of these cell assemblies of A&B

or C&D is selectively activated by the goal display, the cell

assembly temporally holds the displayed goal position as working

memory but subsequently loses its stability because of the dynamic

modulation in synaptic efficacy. We further assume that when a

cell assembly encoding a goal position becomes unstable, the

synaptic modulation reconfigures active cells such that a cell

assembly of A&D or B&C that encodes the action directions

emerges in the network as a dominant cell assembly in turn, as

shown in the right of Figure 2D [30]. Before and after the

reconfiguration of cell assemblies, the representational modes of

goals and actions are characterized by different patterns of bi-

stability among cell assemblies that are partially overlapped across

different modes. Therefore, the representational switching is not

simply a change of cell assemblies but rather a higher-ordered

reorganization of partially overlapped dominant cell assemblies

based on multiple stability in the neural network. We examined

plausibility of this dynamical mechanism with two types of

computational models, namely, a spiking neural network model

and its mean field model. Moreover, we evaluated several

connectivity patterns by combinations of depression, facilitation,

panels indicate the goal-display period and the preparatory period, respectively. (B) Discharge properties of a PFC neuron that first represents the
goal position followed by the action direction. The spike-density histograms of neuronal activity under task conditions are indicated by colored
curves, showing each combination of preferred (pr.) and non-preferred (np.) goal positions and action directions. (C) Time course of goal-position and
action-direction selectivity measures. The regression coefficient, calculated from the histograms in (B), is normalized and plotted for the goal position
(red) and the action direction (blue). (D) Properties of neural responses before and after the representational switching. In the goal (action)
representation mode, the activity of the neuron becomes high for the preferred goal (action), while it becomes low for the non-preferred goal
(action). Each neuron has the selectivity for one goal position and one action direction. (E) Inferred changes of possible patterns of neural activity in
the situation with two goals and two actions.
doi:10.1371/journal.pcbi.1002266.g001

Network Model of Representational Switching
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and constant synapses, and confirmed that the abovementioned

reorganization of cell assemblies is robustly realized in these

different connectivity patterns (see Methods).

Representational Switching in Spiking Neural Network
First, we consider a spiking neural-network model in which each

population of the excitatory neurons in Figure 2C is replaced with

200 noisy and leaky integrate-and-fire neurons. In each neuron,

the dynamics of the membrane potential and the three different

types of synapses are simulated. When a neuron receives many

excitatory inputs and its membrane potential reaches a threshold

value, the neuron generates a spike, and the synapses on the axon

terminals of the neuron are activated. If the neuron generates a

series of spikes, the efficacy of each synapse is modulated by the

amount of the available synaptic resources (x) and the utilization

parameter (u) that defines the fraction of resources used by each

spike [23,31]. The synaptic conductance induced by a synapse is

determined by these two variables and a constant absolute value of

Figure 2. Dynamically reorganizable attractor network model. (A, B) Conceptual diagrams of representational switching in a network that
represents multiple sets of information. Its representation modes are dynamically switched because of changes in synaptic connectivity. (A) The cell
assemblies that are formed with relatively strong connections, indicated by red and blue lines. (B) Schematic landscapes of attractors in the
characteristic axes that define the dynamics of each representation mode. If the stability along a characteristic axis is bistable with double wells, the
network is able to represent two fragments of information. However, if the stability is monostable with a single well, the network is unable to
represent this information (see Figure S1). (C) Network structure of the model. Each node of A, B, C, and D represents a population of excitatory
neurons in the prefrontal cortex. The smaller blue node (IN) represents a population of inhibitory interneurons. Node G1 (G2) is a population of
neurons that represents goal position 1 (goal position 2) and sends excitatory inputs to nodes A and B (C and D). A1 (A2) is a population of motor
neurons representing action direction 1 (action direction 2) and read-out activity of nodes A and D (B and C). (C right) Schematic time courses of
synaptic activities. Connections among population A, B, C, and D with a circle indicate the synapses which can be accompanied with facilitation or
depression. The synaptic connections between excitatory and inhibitory interneurons are assumed to be without any short-term plasticity for
simplicity (see Figure S2 for possible network structure for a higher-dimensional task). (D) Possible states in the model. Red (yellow) nodes indicate
the active (inactive) state of the neural populations. The relatively strong connections are indicated by solid lines, and form cell assemblies. The short-
term changes in synaptic connectivity result in reorganization of the cell assemblies and subsequent representational switching.
doi:10.1371/journal.pcbi.1002266.g002

Network Model of Representational Switching
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the synaptic efficacy. The differences in the three types of synapses

are based on the release probability of the neurotransmitter

[23,32,33], and modeled with the different recovery-time

constants of the available resources and the utilization parameter

(see Methods for details).

Figure 3A shows a typical response of the network consisting of

all the three types of synapses, namely, facilitation, depression, and

constant synapses when the goal position G1 was presented as a

sensory input at the beginning of the goal-display period. The

network shows a state transition from one active state of a cell

assembly (A and B) to another (A and D). After the state transition,

the activation of the cell assembly (A and D) can be read out,

which would activate motor neurons that encode the action

direction A1. In this network, goal and action encoding cell

assemblies are predominantly connected by depression and

facilitation synapses, respectively. During the goal-display period,

the synaptic connections between A and B in the cell assembly

activated by the goal display (see Figure 2C) were gradually

depressed (see the red curves in Figure 3A), and the connections

from A to D and from B to C in the cell assemblies that represent

actions were facilitated as shown in blue curves in Figure 3A. The

time-varying synaptic efficacy in a cell assembly is quantified with

the average peak synaptic conductance in a given cell assembly

(see Methods). Dominant cell assemblies that have greater synaptic

efficacy were switched from the goal-cell assembly A&B to action

cell assemblies A&D and B&C (see the red arrow in Figure 3A

bottom), and the active state that represents the goal position (the

cell assembly with A and B in Figure 3A) is disbanded and another

active state that represents the action (the cell assembly with A and

D in Figure 3A) is formed. Because the connections among

neurons in a cell assembly representing the action are facilitated,

this active state is stable. Note that this stable action-representation

Figure 3. Simulated representational switching in a dynamically reorganizable attractor network model with spiking neurons. (A)
Typical responses of the network consisting of all three types of synapses, namely facilitation, depression, and constant synapses (see Methods) when
the sensory neural population G1 activates populations A and B in the prefrontal network. Black curves indicate the firing rates (the left coordinate).
Blue (red) curves indicate the average facilitation (depression) ratios in the synaptic efficacy (the right coordinate). The ratios at the resting state are
indicated by dashed lines. Each gray dots shows the timing of firing (50 of 200 neurons are displayed). The activation of a population of neurons
induces facilitation and depression in these synapses and causes a state transition in the middle of the delay period. The bottom panel shows a
transition of the average synaptic efficacy on each cell assembly. The red arrow indicates timing of the transition. (B, C) These figures are in the same
format as Figures 1B and 1C. (B) Responses of a population of excitatory neurons for preferred (non-preferred) goals and actions. (C) Selectivity
measures that show representational switching from the goal-representation mode to the action-representation mode.
doi:10.1371/journal.pcbi.1002266.g003

Network Model of Representational Switching
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state can be reset to the initial goal-representation state by

decreasing the applied activation input.

Figures 3B and 3C show that the model qualitatively captures

the main features of the experimentally demonstrated responses

and the representational switching as shown in Figures 1B and 1C.

These results were obtained from average firing rates of

populations of excitatory neurons in 40 simulation trials, including

four possible patterns of state transitions consisting of all the

combinations of two goals and two actions. Some disagreement

between Figure 1B and 3B may be due to a diversity of the

response properties of neurons in the PFC (see also references

[2,4]), whereas we assumed uniform parameter values for model

neurons in the present model. This simulation was based on a

network consisting of all three types of synapses. We confirmed

that these simulation results that show the representational

switching can be also obtained from a network consisting of only

depression and constant synapses or of only facilitation and

constant synapses. Even in these networks consisting of a single

type of short-term plasticity, the switching of dominant cell

assemblies from a goal to an action is also observed (see Figure S3).

Next, we used a dimension-reduction formulation based on

principal component analysis, which resulted in a multivariate

trajectory of the population activity in the model transformed into

its first and second principal components (PCs) (see Text S1). The

trajectories of four different patterns of state transitions were

separated in PCs (Figures 4A–4C). The trajectories were

distributed along the first (second) PC axis before (after) the

representational switching (Figures 4B and 4C). This result

suggests that the first and second PCs can be regarded as the

characteristic axis of goal positions and that of action directions,

respectively.

How does the short-term synaptic plasticity contribute to the

representational switching? We confirmed that the representation-

al switching does not occur if the synaptic efficacy is fixed in the

network. In the absence of any short-term plasticity, a sensory

input triggered the activation of a cell assembly that encodes a goal

position; however, the network did not show a state transition to

another state that encodes an action direction (Figures 4D and 4E).

To examine the effect of the short-term plasticity on the

network stability as well as a possibility to control the timing of the

switching, we applied a small perturbation input to the network.

Then, the state transition occurred earlier due to the perturbation

input (Figures 5A and 5B). The interval between the perturbation

and the state transition was large immediately after the onset of the

goal display. In contrast, the interval was small when the

perturbation onset was close to the proper timing of the transition.

These responses indicate that after the activation of the goal-

encoding cell assembly, the network gradually lost stability and

became increasingly susceptible to fluctuations in the neural

activity. In real experiments, depending on the task, the delay

period can be varied and animals can follow this change,

suggesting flexible modification of the transition time. This

modification can be realized by the abovementioned perturbation

to the PFC network. Unexpected sudden appearance of the ‘‘Go’’

signal, for example, may affect the PFC network as a perturbation.

In addition, the transition time can be also modulated by the

common activation inputs. Greater activation inputs induced

delayed transitions (Figures 5C and 5D) because the inputs may

cause more stabilization in an already activated cell assembly.

In the above results, we considered a case in which the

connectivity in two cell assemblies encoding action directions are

symmetric, implying that the two possible action directions were

randomly determined with equal probability although a specific

goal position generally has the tendency to lead to a specific action

direction. We confirmed that such a general correlated tendency

of the state transition can be implemented with asymmetric

connectivity. If one of two action-representing cell assemblies has

greater mutual connections than the other, the tendency of

selection of this corresponding action is increased, and the

transition time is reduced with increasing the asymmetric

connectivity (Figures 5E and 5F).

Stability Analysis Based on a Mean Field Model
The results above are based on a network model composed of

spiking neurons, the dynamics of which is defined by thousands of

variables. Thus, it is difficult to analyze the underlying population

dynamics of this intricate spiking neural network. This difficulty

can be alleviated with a mean field approach. Therefore, we

considered the means of synaptic activity (s) and the variables that

define the short-term plasticity: namely, the available synaptic

resources (x) and the utilization parameter (u). In each neural

population in the model, the mean variables were dependent on a

population-averaged firing rate that is given as a function of the

conductance induced on the neural population (see Methods for

details).

The responses in the mean field model are qualitatively similar

to those in the spiking neural network (Figures 6A–6C); its

trajectories are smoothened owing to the absence of noise.

The underlying mechanism of the representational switching

and the subsequent change of the neural activity might become

clear by considering the stability that can explain the formation of

attractors. The timescales of the dynamics of the membrane

potential, the spike generation, and the synaptic activity are

relatively faster than those of the synaptic modulation with the

short-term plasticity. The time constants of the synaptic activity

are less than 100 ms. In contrast, the recovery-time constants of

the available resources and the utilization factors in the synaptic

modulation are approximately 500–1000 ms [22,23]. Therefore,

the fast dynamics is dominated by the slow dynamics of the

synaptic modulation variables that work as bifurcation parameters,

whereas the slow variables are also influenced by the fast

dynamics. We analyzed how the stability of the fast dynamics is

modulated by the slow dynamics. A dissipative dynamical system

like neural network models can be generally characterized by the

concept of attractors. We thus applied an equilibrium-finding

algorithm and stability analysis to a dynamical system of the

synaptic activity that is dominated by the synaptic modulation (see

Methods for details). On the coordinates of the first and second

PCs, we traced how the stability of the attractors is modified by the

synaptic modulation (Figures 6D and 6E).

Figure 4. Properties of the dynamically reorganizable attractor network model with spiking neurons. (A) The responses of 40
simulation trials in four populations of neurons and (B) those in the first and second principal components (PCs). The color code is based on the goal
positions (G1 and G2) and the action directions (A1 and A2). Goals and actions are separated in the first and second PCs, respectively. (C) A phase-
plane view of (B). Initially, the network was at the resting state, which is the origin of the phase plane. The state then moved to one of the active
states present on the first PC axis, which represents a goal. The state of the network stayed on the first PC axis for approximately 1 s (left). Then, the
state moved to one of the active states present on the second PC axis (center). Finally, the state converged to the active state, which represent an
action (right). (D, E) The responses without short-term synaptic plasticity in the same format as (A, B). If synaptic connections were fixed, the network
did not show any transition with representational switching.
doi:10.1371/journal.pcbi.1002266.g004
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Stable attractors were formed depending on the synaptic

modulation, and the state of the synaptic activity follows the

formation of the attractors. The system initially has three stable

attractors: the resting state located on the origin of the first and

second PC coordinates, and two attractors encoding the goal

positions (the red curves in Figure 6D). These two goal-encoding

attractors were situated on the first PC axis, and correspond to the

active state of populations A and B and that of populations C and

D, respectively. The resting state was destabilized by the sensory

input that reflects a goal position, and the state of the network

moves to the attractor that represents the displayed goal position.

When the state of the network approaches the goal-representation

attractor, the goal-representation attractor starts to become

unstable because of the synaptic modulation. Then, two stable

attractors appears on the second PC axis, which represent actions

(the blue curves in Figure 6D). The state of the synaptic activity

converges to an action-representation attractor and the attractor

was maintained. Thus, the information representation of the

network is ascribed to the dynamical formation of attractors,

which can be updated by a sequence of stabilization and

destabilization of the attractors due to the synaptic modulation.

Discussion

The PFC exhibits highly flexible representation of information.

Even a single neuron seems to encode multiple sets of information

and switch the representation dynamically and internally,

depending on the task context. We hypothesized that this

representational switching is based on the modulations of synaptic

connectivity and can be described as a bifurcation process of

attractors in the dynamical system that describes the nonlinear

dynamics of neural activity in the neural network model. In this

study, we proposed a dynamically reorganizable attractor network

model with short-term synaptic plasticity as a minimal model that

explains representational switching in the goal-oriented action-

planning task. Our results demonstrated that cell assemblies

encode the required information by forming multiple attractors

and that these cell assemblies are reorganized by synaptic

modulation with short-term plasticity such that the network is

able to encode other sets of information. The properties, obtained

by mathematical modeling with the spiking neural network and its

mean field version, are consistent with those of neural activity in

the monkey PFC during the goal-oriented action-planning task.

Figure 5. Changes of transition time from goal representation to action representation. (A, B) The responses to perturbation inputs. The
onset of the perturbation input expedites the transition. (B) The transition time as a function of the onset time of the perturbation input. (C, D) The
responses with different values of the common activation inputs. Increase in the common activation inputs leads to a delay in the transition time. (E,
F) The responses with asymmetric connections in action-representing cell assemblies. Greater connections within one of the action-representing cell
assemblies, which is composes of nodes A and D, advance the transition time and increases the tendency of transitions to this cell assembly with
nodes A and D. In (F), the square indicates the ratio of transitions to this cell assembly. Figures 5 A, C, and E show 20 simulation trials for three typical
parameters on the first and second principal components.
doi:10.1371/journal.pcbi.1002266.g005
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Underlying Mechanism of Representational Switching
Experimentally observed neural activity in the PFC implies that

fragments of information about goals and actions are represented

as sustained activity of PFC neurons and that possible patterns of

neural activity are limited depending on goal- and action-

representation mode (see Figure 1E). Representations with cell

assemblies dynamically vary with an internal mechanism of the

PFC network.

Conventional attractor frameworks can explain the representa-

tion of information with sustained neural activity [12,14,34].

Namely, an active state of a cell assembly constitutes an attractor

and represents a fragment of information. In most such

conventional views, the attractors structure is assumed to be static

or time-invariant. Although an active state of whole the network

shows a transition from one cell assembly to another one by

external stimuli or noise produced by neural spiking (see for

example [18]), the attractors structure and the encoded informa-

tion is invariant.

However, in the representational switching observed in the

PFC, a formation of cell assemblies and the encoded information

in these cell assemblies are varying spontaneously depending on

the task context without external signals. In the present model, the

formation of cell assemblies is dynamically reorganized with

synaptic modulation. In an initial stage of the task context, the

information required by the task context is mapped onto some cell

assemblies, the activity of which is triggered by a specific

population of sensory neurons. Then, the reorganization of

attractors with other cell assemblies is internally induced by the

synaptic modulation. Finally, the state of the network move to the

newly formed cell assemblies through bifurcations and its activity is

read-out by another population of neurons, e.g. motor neurons.

This dynamical reorganization of functional cell assemblies can

be interpreted as reorganization of ‘‘synapsemble’’ [19], or an

assembly of synapses. The activation of the cell assembly induces

depression of synapses in the cell assembly, and simultaneously

induces facilitation of synapses among other neurons that form

other cell assemblies. In this process, dominant cell assemblies

switch due to change of synaptic efficacy (see the red arrow in

Figure 3A bottom); this switching can be also achieved in networks

consisting of only depression and constant synapses or of only

facilitation and constant synapses as shown in Figure S3.

Accordingly, the initially required information is transformed to

another information by forming the subsequent representational

state, and this information is consecutively read out by another

population of downstream neurons.

These multiple representations of information are characterized

by the dynamical attractor landscapes shown in Figure 6E. The

synaptic modulation destabilizes initially required attractors and

then stabilizes other attractors required at the subsequent stages of

the task context. The positions of the attractors are situated, first

on the initial representation axis and then on the subsequent

representation axis. This functional degeneration of the dimension

and switching of the dynamics on the characteristic axes are the

essence of the representational switching. In contrast with the

conventional attractor framework where transitions among static

attractors are triggered by external stimuli or noise [18], we

proposed a new dynamical viewpoint that short-term synaptic

modulation causes changes in attractors structure of the state space

and that the state transition occurs through bifurcations on the

basis of the dynamically changing attractor structure. As a future

study, this mechanism should be verified with further experimental

data. Generally speaking, nonlinear dynamical systems exhibit

characteristic behavior just before the state transition by

bifurcations, e.g. increases in fluctuation and correlation [35].

There are possibility to evaluate this characteristic behavior with

further data collection and analyses.

In the present model, the representational switching of the

reorganization of cell assemblies relies on the inhomogeneous

connectivity of the depression and facilitation synapses (see

Methods for details about this connectivity). How is this

inhomogeneous connectivity acquired or learned from experience?

This can be achieved, for example, by Hebbian learning [18,36] as

well as reinforcement-based learning [37,38] in which synaptic

connections that contribute to achievement of rewardable

behavior are selectively strengthened. In the initial stage of the

learning, facilitation and depression synapses may constitute a

random network with a homogeneous distribution (see Figure S4).

Despite this homogeneous connectivity, the synaptic connections

between pairs of neurons vary in type of synaptic connection (i.e.,

depression or facilitation) and in the intensity of synaptic efficacy.

The neural network shows diverse responses for each trial even

under the same experimental condition because of the randomness

of the timing of spike generation. In the process of learning, when

the activities of a pair of neurons correlate with each other and

contribute to achievement of rewardable behavior, the synaptic

connections between this neuronal pair will be enhanced.

Correlated activity among neurons enhances the synaptic

connections between these neurons through Hebbian learning,

and further, reward-based synaptic modulation may lead to more

enhancements of synaptic connections through reinforcement

learning. For example (see Figure S4B), the goal encoding sensory

neurons G1 activate some neurons in the PFC (including

candidates of neurons in populations A and B in Figure 3). These

neurons have correlated activity due to simultaneous activation,

and thus the synaptic connections between them are enhanced by

Hebbian learning. These neurons may have relatively strong

connection to other PFC neurons (including candidates of neurons

in population C or D), which may be easily excitable due to these

strong connections. Further, some of these PFC neurons (e.g.,

neurons in candidates of the population D) may have reciprocal

synaptic connections to the PFC neurons that are directly

activated by the sensory input (i.e., a neuron in candidate of the

population A). Moreover, some of these PFC neurons have

connections to the read-out neurons that represent actions.

Activity of these neurons initiated by the sensory neurons G1

can be correlated, and thus the synaptic connections between

them tend to be enhanced by Hebbian learning. Furthermore, if

the activity of the neurons contributes to obtaining a reward,

namely, if facilitation synapses contribute to representation of

action with stable activation of cell assembly and if depression

Figure 6. The responses of the mean field model and stability analysis. (A) The time courses of synaptic activity in the populations of the
excitatory neurons, A to D, that are in the same format as in Figure 3A. (B, C) The properties of the synaptic activity and selectivity that are in the
same format as in Figures 1B and C. (D) The temporal evolution of stable attractors in the coordinates of the first and second principal components
(PCs), indicating the characteristic axes of goals and actions, respectively. (E) Schematic attractor landscapes with respect to the first and second PC
axes. Positions of the attractors are indicated by the valleys of the surfaces on the basis of the analysis in (D). The purple balls show the state of the
network and move following the attractor landscape. The attractors that contribute to the representation of goals (red curves) are situated on the
first PC axis, while those that contribute to the representation of actions (blue curves) are situated on the second PC axis.
doi:10.1371/journal.pcbi.1002266.g006
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synapses contribute representation of goal with temporal activa-

tion of cell assembly, reward-based learning will effectively

reinforce synaptic connections that have contributed to the

rewardable behavior, namely those connections that have been

activated at the moment of or just before the reward acquisition

[37,38,39,40]. Strengthened synapses with these learning rules

may contribute to the obtainment of more reward on subsequent

trials. Such learning rules in consecutive trials may result in the

formation of functional subnetworks with inhomogeneous con-

nectivity. Indeed, the abovementioned reciprocity with specific

types of synapses is observed in the PFC [22]. Moreover, the

timing of the representational switching is sensitive to the strength

of synaptic connections (e.g., Figure 5E). Thus, the appropriate

timing of the transition is also adjustable with these learning rules.

It should be noted that neural network models can reproduce

transitions from a retrospective to a prospective activity during a

delay period through Hebbian learning and fluctuation [18]. A

similar mechanism may also work to realize the representational

switching, for example, from the cell assembly of populations A

and B to that of A and D. In this sense, although our model

provides a new mechanism for the representational switching

based on a dynamical reorganization of the attractor landscape,

which is different from the well-known mechanism of transitions

among attractors in the static attractor landscape, detailed analysis

of learning and neural dynamics on representational switching in

the PFC still remains to be explored.

Roles of Representational Switching in Prefrontal Lobe
The self-organized transition demonstrated by our dynamical

model can help to understand recent studies on changes in the

information representation coded by cell activity in the cerebral

cortex [41,42,43], including the frontal cortex [2,4,29,44]. The

transition on the characteristic axes, which is an important aspect

of our model, seems to be particularly consistent with the aspect of

executive control of behavior, which is believed to be attributed to

the PFC [45,46,47]. Such a transition can serve as a fundamental

mechanism of the executive function that requires qualitative

transformation between different categories of information. For

example, the transition on the characteristic axes could correspond

to set-shifting in the Wisconsin Card Sorting Test (WCST). It

should be noted that representational switching in WCST is also

explained by a recurrent neural network model with neurons

randomly connected both to the recurrent network and sensory

inputs [48].

The prefrontal executive function might be a basis for our

creativity [49]. Creativity almost always involves emergence of a

novel axis or dimension in cognition and behavior, which is

impaired by frontal-lobe damage [50,51]. Such aspects behind

creativity can be the transition to a new representational axis

demonstrated in our dynamical model, which may serve as a

fundamental neuronal mechanism.

The PFC is thought to be on the top of the functional hierarchy

of voluntary actions and is making decisions about action

generation with their internal process rather than with an external

stimulus or with a signal from other parts of the brain. The

representational switching occurs without external cues as shown

in the present task (see Figure 1). If the representational switching

is assumed to be triggered by an attentional signal from other part

of the brain, it contradicts the fact that the PFC is on the top of the

functional hierarchy and requires that the decision is performed by

other parts of the brain.

The interval between occurrence of the state transition and the

Go signal onset (,1 s) is longer than time constants of the synaptic

activity and modulation. The timing of the state transition is

determined by the stability of the whole network dynamics rather

than by the dynamics of individual neuron or synapse. Generally

speaking, a nonlinear dynamical system becomes slowing down

and increases in sensitivity to small fluctuation just before the state

transition [35]. In the present model, the slowing down of network

dynamics and the fluctuation in the neural activity lead to large

deviation in the timing of the state transition and results in the

correlation tendency between the mean and the deviation in

timing of the state transition as shown in Figure 5. Further, state

transitions that occur with specific time delays from a cue onset

may contribute to a representation of interval timing. The

property of the timing of the state transition shown in the present

model has an agreement with the scalar property [52] in which the

mean and the standard deviation of the response time of an animal

covary in an interval-timing task.

Immediately before state transitions, nonlinear dynamical

systems generally become sensitive to small perturbations and

can easily trigger state transitions [35,53]. This idea has been

applied to modeling of dynamical aspects of brain functioning

[54,55] and is also demonstrated in our model (Figure 5A and

5B). However, the ‘‘trigger’’ should not be mere noise,

considering the nature of creativity or thought. Creativeness, or

devising a new viewpoint and dimension, involves finding

coherent relationship between internal and external information

represented in the mind [56], which may emerge as the transient

synchrony of neural activity [57,58]. This idea was also supported

by our previous study in which transient neuronal synchrony was

enhanced around the representational switching of behavioral

goals [2], which is consistent with the results provided by our

model (compare Figure 5B with Figure 5C of Sakamoto et al.,

2008). It is an important future problem to explore a

comprehensive view of neuronal dynamics, including transitions

and synchrony.

Further Future Studies
In the present study, we have focused on the short-term synaptic

plasticity as a component of the PFC network. However, the short-

term plasticity is only one of many time-dependent properties that

influence synaptic connectivity and have the potential to explain

the representational switching. Other influential modulations in

synaptic connections can be caused by monoaminergic neuro-

transmitters such as dopamine [34] and acetylcholine [59] as well

as spike-timing-dependent plasticity [60]. Possible mechanisms of

representational switching that include these components should

be investigated in future.

Here we have presented a minimal model to explain the

representational switching between only two sets of binary

information. In our hypothesis, the coexistence of multiple

representations in a single network relies on the dynamical

formation of cell assemblies. Thus, in principle, a single neural

entity is capable of becoming more flexible and encoding more

than two sets of information (see Figure S2).

The present model is limited on the representation of sets of

discrete information and an abstract aspect of sensory and motor

information. Besides the discrete information, the PFC represents

parametric information, e.g. intensity of a task related sensory

stimulus or a coordinate of an arm movement. Transformation

between such kinds of parametric information may contribute, for

example, to a visio-motor coordinate transformation, which may

be processed mainly on lower areas of the functional hierarchy of

the brain, e.g. motor cortex or cerebellum. Representations of

such parametric information may be achieved not only by

attractors but also by trajectories of transitions among attractors

[61]. The coordination between different areas of the functional
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hierarchy and between different kinds of discrete and parametric

information remain to be further investigated.

Moreover, the reorganization of functional cell assemblies can

sequentially occur among more than two modes of representation.

In our daily lives, we are required to handle many different

categories of information as well as the step-by-step switching

between them. Thus, our hypothesis should be further evaluated in

such usual situations.

Methods

Ethics Statement
The physiological experiments were performed on animals

cared for in accordance with the Guiding Principles for the Care

and Use of Laboratory Animals of the National Institutes of

Health, and the Guidelines for Animal Care and Use of Tohoku

University.

In the present study, we used two approaches for modeling

neural networks in PFC, which are depicted in Figure 2C. The

first approach is modeling with spiking neurons that simulate the

generation of spikes, the synaptic activity, and the synaptic

modulation with short-term plasticity, including their stochastic

properties. The other approach is a mean field model that

simulates the population averages of the variables and allows us to

analyze a skeleton of the underlying population dynamics.

Spiking Neural Network
To model the spiking network of PFC, we used noisy and leaky

integrate-and-fire neurons with dynamic synapses that undergo

synaptic plasticity. Each neural population from A to D and IN in

Figure 2C consisted of 200 integrate-and-fire neurons; in total,

1000 neurons were used. The membrane potential of each neuron

in each population of neurons Vk,i, (k [ fA,B,C,D,INg,
i~1, . . . ,N with N = 200) varies according to the following

equation [15]:

Cm
dVk,i

dt
~gL

:(EL{Vk,i)zgE
k,i(t)

:(EE{Vk,i)

zgI
k,i(t)

:(EI{Vk,i)zs:jk,i(t),

ð1Þ

where Cm is the membrane capacitance and gL is the conductance

that induces leakage currents. gE
k,i(t) and gI

k,i(t) are the

conductances on excitatory and inhibitory synapses, respectively,

induced by other presynaptic neurons and external inputs.

EL,EE , and EI represent the corresponding reversal potentials.

When Vk,i reaches the threshold value of the membrane potential

Vth, the neurons generate an action potential or a spike, and the

membrane potential is reset to the resting potential VR and

maintained at this potential level during the absolute refractory

period tR. jk,i(t) represents Gaussian white noise that is applied

for each neuron independently with mean 0 and standard

deviation s.

When a neuron generates a spike, synapses on the axon

terminals of the neuron are activated, and generate synaptic

currents on the postsynaptic membranes. This postsynaptic

current is modeled with a variable that represents the synaptic

activity, or the ratio of open receptor channels in the postsynaptic

terminal. The dynamics of the synaptic activity depends on

excitatory or inhibitory synapses and the types of properties of

short-term plasticity. In the present model, we used three types of

excitatory synapses, namely, facilitation, depression, and constant

synapses [22,23], the synaptic activity values of which are denoted

by sF
k,i(t), sD

k,i(t), and sC
k,i(t), respectively, where k and i are indices

of a neural population and a neuron to which the synapses belong,

respectively.

The conductance induced by a synapse is given as the product

of the weight of synaptic connection and the synaptic activity. We

assumed that the absolute magnitude of the conductance and its

synaptic type of short-term plasticity are common in all the

synaptic connections from one population to another population,

and that each neuron receives a constant bias input and a time-

varying external input. Thus, the conductance is defined by the

following equation:

gE
k,i(t)~

XPopulation

l

gk,l

XNeurons

j

s
X (k,l)
l,j (t{dk,l

i,j )zgE
k zgext

k (t): ð2Þ

In the first term on the right-hand side of equation (2), gk,l denotes

the weight of synaptic connection from population l to population

k. X (k,l) [ fF ,D,Cg specifies the type of excitatory synapses

connected from population l to k, where F, D, and C indicate

facilitation, depression, and constant synapses, respectively. dk,l
i,j is

the transmission delay from the jth neuron in population l to the

ith neuron in population k, which is uniformly distributed from

1 ms to 5 ms. In equation (2), the first and second summations run

over connected presynaptic neural populations and connected

presynaptic neurons in these neural populations, respectively. The

second term gE
k denotes the constant bias conductance. The third

term gext
k (t) is the time-dependent external input that describes

both activation and sensory inputs. Activation inputs are

commonly applied to the neural populations A to D in the form

of a piece-wise linear function after the onset of the goal display

during the task period. After the onset, the input magnitude

linearly increases from 0 to gE
A until time tA, and remains at gE

A

after tA. The activation input results in the active state of a goal-

representing cell assembly by destabilizing the resting state. The

sensory input is applied to a cell assembly representing one of the

goals (a pair of A and B or a pair of C and D) from the onset of the

goal display as a rectangular pulse with amplitude gE
SI and width

tSI .

The synaptic activity of an excitatory synapse is modulated by

short-term plasticity and modeled as follows. Each presynaptic

neuron triggers three types of synaptic activity. The synaptic

activity sX
k,i is set to a peak value ŝsX

k,i by a presynaptic spike, and

exponentially decreases to zero with a time constant tE [29] as

follows:

dsX
k,i

dt
~{

sX
k,i

tE

z(̂ssX
k,i(t){sX

k,i)
X

m

d(t{t
(m)
k,i ), ð3Þ

where d(t) is the Dirac delta function, and t
(m)
k,i denotes the time of

occurrence of the mth spike in neuron i in population k. In the case

of constant synapses, the peak value of synaptic activity is fixed at

unity. In contrast, the peak value of synaptic activity with either

facilitation or depression plasticity is time-dependent, and is given

by the product of the utilization factor uX
k,i(t) that defines the

fraction of resources used by each spike and the amount of

available resources xX
k,i(t) as follows [23,31]:

ŝsX
k,i(t)~

xX
k,i(t)

:uX
k,i(t) (X~F ,D),

1 (X~C):

�
ð4Þ

Variables uX
k,i and xX

k,i vary according to the following equations:
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duX
k,i

dt
~

UX {uX
k,i

tX
u

zUX :(1{uX
k,i)
X

k

d(t{t
(m)
k,i ), ð5Þ

dxX
k,i

dt
~

1{xX
k,i

tX
x

{uX
k,i
:xX

k,i

X
k

d(t{t
(m)
k,i ): ð6Þ

Equations (5) and (6) describe dynamics of the facilitation (X = F)

and depression (X = D) synapses. The difference in the types of the

short-term plasticity is determined by the resting state of the

utilization factor UX and the recovery-time constants from

depression and facilitation, tX
u and tX

x , respectively.

Regarding inhibitory synapses, all synaptic connections are

derived from the population of interneurons, the synaptic activity

of which is denoted by sI
IN,i(t), and the conductance induced by

the inhibitory neurons is given by

gI
k,i(t)~gk,l

XNeurons

j

sI
IN,j(t{dk,l

i,j ): ð7Þ

We assume that all inhibitory synapses are constant synapses for

simplicity, i.e., the peak value of synaptic activity is fixed at unity

as follows:

dsIN,i

dt
~{

sIN,i

tI

z(1{sIN,i)
X

m

d(t{t
(m)
IN ), ð8Þ

where tI is the synaptic time constant.

The synaptic efficacy in a cell assembly is defined as the average

of the peak conductance of excitatory synapses on neurons in the

cell assembly. The peak synaptic conductance in each neuron is

given by

ĝgE
k,i(t)~

XPopulation

l

gk,l

XNeurons

j

ŝs
X (k,l)
l,j (t): ð9Þ

Network Structure
Figure 2C shows the overall network structure. The populations

of neurons in the nodes of Figure 2C, which represent PFC

neurons (A to D and IN), are simulated with the spiking neuron

model as explained above. The PFC neurons are driven by a

sensory input that represents the goal positions (G1 and G2). The

activity of the PFC neurons is read out by the populations of the

neurons (A1 and A2). Although sensory and motor neurons are

depicted as neural populations (G1, G2, A1, and A2), their activity

was not explicitly simulated; the activity of G1 and G2 is

introduced by bias inputs for the PFC neurons and the activity of

A1 (A2) is given by summed activity of A and D (B and C). Each

population of neurons in the PFC network consists of 200

integrate-and-fire neurons. The neurons are sparsely connected

within and across the nodes. Suppose that the connectivity ratio c

is 0.2, and each neuron receives randomly selected cN presynaptic

connections from each presynaptic neural population. The weight

of a synaptic connection from population l to k is defined as

follows: gk,l~Gk,l=(cN), where Gk,l is the summed weight of the

connections from population l to k.

Mean Field Model
Based on the integrate-and-fire neuron model, we constructed a

mean field model that simulates the mean activity of a neural

population, and allows us to define the overall dynamics of many

populations of neurons and analyze changes in the stability. In the

present model, the mean firing rates of excitatory and inhibitory

neurons are denoted by ~rrE(gE ,gI ) and ~rrI (gE ,gI ), which are the

functions of excitatory and inhibitory input conductance gE and

gE , respectively. The input conductance can be approximated as

linear combinations of the excitatory and inhibitory conductances,

namely, the firing-rate response function can be approximated

with the coefficients bE and bI as follows [29]:

~rrE(gE ,gI )%�rrE(gE{bE
:gI ), ð10Þ

~rrI (gE ,gI )%�rrI (gE{bI
:gI ): ð11Þ

In the present study, the approximated form of the firing-rate

response function is given as the following Naka–Rushton

formula [62], which is generally used to fit intensity-response

curves:

�rrE(g)~
rE0

:gM=(HEzgM ) (gwgE0),

0 (gƒgE0),

�
ð12Þ

�rrI (g)~
rI0
:gM=(HIzgM ) (gwgI0),

0 (gƒgI0):

�
ð13Þ

The parameter values in equation (12) and (13) were determined

to respectively fit the responses in the abovementioned excitatory

and inhibitory spiking neurons. Using this formulation, the mean

firing rate of population k in the present network is given by

rk(t)~
�rrE(gE

k (t){bE
:gI

k(t)) (k~A,B,C,D),

�rrI (gI
k(t){bI

:gI
k(t)) (k~IN)

(
: ð14Þ

Similarly to equation (2), the excitatory conductance induced in

the kth population of neurons is

gE
k (t)~

XPopulation

l

Gk,l
:sX (k,l)

l (t)zgE
k zg

(ext)
k (t), ð15Þ

where sX
k (t) represents the mean synaptic activity that changes

depending on the type of synapses. The mean activity of constant

synapses was modeled as follows. When the neurons in a

population fire asynchronously, the mean synaptic activity in the

population should be almost stationary. When the mean synaptic

activity changes because of changes in the firing rate, the synaptic

activity will converge to the stationary value with a certain time

constant. If each neuron fires with firing rate r and if the peak of

the synaptic activity is unity, the temporal average of the synaptic

activity is (1{ exp ({1=(tE
:r))):tE

:r. Here we assume that the

mean synaptic activity converges to this value with the time

constant tE ,, i.e., the synaptic activity obeys the following

equation:
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dsk

dt
~{

sk

tE

z(1{e
{ 1

tE
:rk (t)):rk(t): ð16Þ

In the case of synapses that undergo modulation with short-term

plasticity, sX
k (t) can be denoted as a combination of the mean

synaptic activity of constant synapses sk(t) and a term of the

synaptic modulation by the short-term plasticity as follows:

sX
k (t)~

xX
k (t):uX

k (t):sk(t) (X~F ,D),

sk(t) (X~C):

�
ð17Þ

Similarly to equations (5) and (6), the means of the utilization

factor uX
k (t) and the available resources xX

k (t) change according to

the following equations [31]:

duX
k

dt
~

UX {uX
k

tX
u

zUX :(1{uX
k ):rk(t), ð18Þ

dxX
k

dt
~

1{xX
k

tX
x

{uX
k
:xX

k,i
:rk(t): ð19Þ

The inhibitory conductance and its synaptic activity are analogous

to equations (7) and (8) as follows:

gI
k(t)~Gk,IN

:sI
IN (t), ð20Þ

dsIN

dt
~{

sIN

tI

z(1{e
{ 1

tI
:rIN (t)):rIN (t): ð21Þ

The network structure of the meanfield model is the same as that

of the spiking neuron model. The absolute strengths of all

connections are denoted as the summed weight of connections, as

shown in equation (15).

In the mean field model, the dynamics of the synaptic activity sk

was defined by variables that indicate the synaptic modulation uX
k

and xX
k . We traced the changes in the dynamical system for sk by

identifying stable attractors. In each step of the numerical

integration of the model, an equilibrium-finding algorithm (the

Newton–Raphson method) and eigenvalue analysis were applied

to identify the stability of attractors [63].

Model Parameters
The differential equations were simulated by the Runge–Kutta

method with the time step Dt = 0.1 ms.

The following parameter values were used for the spiking neuron

[15]. For both excitatory and inhibitory neurons, Vth = 252 mV,

VR = 260 mV, EE = 25 mV, and EI = 275 mV. For excitatory

neurons, Cm = 0.5 nF, gL = 25 nS, EL = 270 mV, and tR = 2 ms.

For inhibitory neurons, Cm = 0.2 nF, gL = 20 nS, EL = 265 mV,

and tR = 1 ms [15]. The stochastic term jk,i(t) in equation (1) was

simulated by adding a random variable following the normal

distribution with mean 0 and variance s2:Dt at each integration

time step. We set s2~0:01 (nA)2=ms.

For excitatory synapses, we assumed a long time constant

tE = 100 ms for N-methyl-D-aspartate (NMDA) synapses, which

may be important to maintain the active state in the PFC network

[14,15] because this long time constant smoothens the destabiliz-

ing effect due to random spike activity. Although the dynamics of

NMDA synapses is characterized by the long time constant and

the membrane-voltage dependency, we used only the long time-

constant aspect of NMDA synapses for simplicity. For inhibitory

synapses, we set tI = 20 ms.

The magnitude of the constant bias input was set such that the

neuron stays just below the firing threshold or exhibits very low-

frequency firing: for excitatory neurons, gE
k = 8.35 nS, and for

inhibitory neurons, gI
k = 4 nS. For external inputs, the parameters

of the activation inputs are set to gE
A = 0.35 nS and tA = 200 ms,

and the amplitude and width of sensory inputs are gE
SI = 0.2 nS

and tSI = 200 ms, respectively. For the short-term synaptic

plasticity, we set UF = UD = 0.2, tD
u = 20 ms, tD

x = 600 ms,

tF
u = 600 ms, and tF

x = 100 ms.

We constructed the following three types of network structures.

The first consists of all the three types of synapses, and its

simulation results are shown in Figures 3–6. The second and third

types of networks consist of only depression and constant synapses,

and only facilitation and constant synapses, respectively; the results

with these networks are shown in Figure S3.

For the first type of networks, the summed conductance and types

of synapses are as follows. For connections among goal-representing

cell assemblies, GGoal:GA,B~GB,A~GC,D~GD,C = 3.2 nS, XGoal

:X(A,B) = X(B,A) = X(C,D) = X(D,C) = D. For connections among

action-representing cell assemblies, GAction:GA,D~GD,A~GB,C~
GC,B = 1.55 nS, XAction:X(A,D) = X(D,A) = X(B,C) = X(C,B) = F. For

self-recurrent connections, GSR:GA,A~GB,B~GC,C~GD,D =

1.7 nS, XAction:X(A,A) = X(B,B) = X(C,C) = X(D,D) = C. For connec-

tions from excitatory neurons to inhibitory interneurons, GEI:
GIN,A~GIN,B~GIN,C~GIN,D = 0.7 nS, XEI:X(IN,A) = X(IN,B) =

X(IN,C) = X(IN,D) = C. For connections from interneurons to excitato-

ry neurons, GIE:GA,IN~GB,IN~GC,IN~GD,IN = 5 nS, XIE:
X(A,IN) = X(B,IN) = X(C,IN) = X(D,IN) = C.

For the second type of networks in which the short-term

plasticity is driven only by the depression synapses, the summed

conductance and types of synapses are as follows: GGoal = 3 nS,

XGoal = D, GAction = 0.5 nS, XAction = C, GSR = 1.8 nS, XSR = C.

GEI = 0.7 nS, XEI = C. GIE = 5.5 nS, XIE = C.

For the third type of networks in which the short-term plasticity is

driven only by the facilitation synapses, the summed conductance

and types of synapses are as follows: GGoal = 0.8 nS, XGoal = C,

GAction = 3.1 nS, XAction = F, GSR = 1.9 nS, XSR = C. GEI = 0.7 nS,

XEI = C. GIE = 7.5 nS, XIE = C.

This model exhibits the representational switching in a wide

parameter range. Although the timing of switching is sensitive to

the strength of the synaptic connections and the parameters in the

dynamics of the short-term plasticity, the timing was easily

adjustable in an experimentally plausible range as shown in

Figure 5.

For the mean field model, the parameter values in the firing-rate

response curve were specified to fit responses in the population of

the integrate-and-fire neurons. We set M = 2 and obtained, for

excitatory neurons, bE = 0.4611, rE0 = 0.2561, gE0 = 8.560, and

HE = 12.81, and for inhibitory neurons, bI = 0.4611, rI0 = 0.2561,

gI0 = 8.560, and HI = 12.81. Note that the units are in kHz for the

firing rates and in nS for the conductances.

The parameter values of the dynamic synapses and the

connection strength are the same as those of spiking neurons,

except for GAction = 1.9 nS, because the spiking neural network

shows an earlier state transition compared with the mean field

model because of fluctuations in neural activity. Thus, we adjusted

the connection strength such that the mean field model shows a
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state transition in a similar time range. If the model is completely

symmetrical in its connectivity, the state of the network remains on

a saddle point and does not show any state transition. Therefore,

we applied very small perturbation inputs that induced state

transitions at the beginning of the goal-display period. The

perturbation input is applied to a cell assembly (a pair of A and D

or a pair of B and C) representing one of the actions as a

rectangular pulse with the amplitude of 0.01 nS and the width of

200 ms.

Measure of Selectivity
The selectivity is determined using the firing rate, the goal

position, and the action direction by the following equa-

tion:(Firing rate)~b0zb1(Goals)zb2(Actions), where b0 is

an intercept, and the coefficients b1 and b2 indicate the goal

and action selectivity, respectively. The regressors ‘‘Goals’’ and

‘‘Actions’’ indicated in parentheses are dummy variables [27] that

represent preference or non-preference of the neuron for goals and

actions. For example, in the case of the present model, there are

two goal positions and two action directions. These discrete

variables can be represented by dummy variables Z(G) and Z(A) as

follows:

Z(G)~
1 if the goal position is G2,

0 if the goal position is G1,

(

Z(A)~
1 if the action direction is A2,

0 if the action direction is A1:

(

The regression model with these dummy variables is given by

F~b0zb1
:Z(G)zb2

:Z(A), where F is the firing rate, and the goal

and action selectivity b1 and b2 are obtained by the least square

estimation with 40 simulation trials data at each time step.

Supporting Information

Figure S1 Changes in the stability of the simplified multistable

attractor network model. In each panel, each axis indicates the

summed synaptic activity in a subnetwork. The colored curves

indicate the nullclines that satisfy the requirement that the time

differential of variables on each axis be zero. Namely, in the upper

panels with the characteristic axes of the goal representation, the

green and orange curves satisfy _ssAz_ssB~0 and _ssCz_ssD~0,

respectively. In the lower panels with the characteristic axes of the

action representation, the cyan and purple curves satisfy

_ssAz_ssD~0 and _ssBz_ssC~0, respectively. The gray arrows indicate

the vector fields. The closed and open circles at the intersection of

the nullclines indicate stable and unstable equilibriums, respec-

tively. In the left panels, the dynamics on the goal-representation

axes is bistable (the goal-representation mode). On the other hand,

in the right panels, the dynamics on the action-representation axes

is bistable (the action-representation mode). See Text S1 for details

on the simplified model.

(PDF)

Figure S2 Possible network structure that performs higher-

dimensional representational switching. The model shown in the

main text is a simplified version of these networks. (A) A minimal

model that performs representational switching among four goals

and four actions. (B) A generalized model that performs

representational switching among many more fragments of

information belonging to different categories of information, and

a neuron may be shared by more than two cell assemblies.

(PDF)

Figure S3 Simulation results in networks consisting of a single

type of short-term plasticity. Each panel is in the same format as

Figure 3 in the main text. The networks consist of a single type of

short-term plasticity with either depression synapses (A–C) or

facilitation synapses (D–F). Details of the network structure are

described in Methods in the main text.

(PDF)

Figure S4 A schematic view of the possible learning mechanisms

of the functional network. (A) In the early stage of learning,

neurons are randomly connected with homogeneous distribution

of facilitation and depression synapses (blue and red dotted lines,

respectively) and with a diversity of synaptic weights. (B) In the

process of learning, when neurons coincidentally exhibit correlated

activity (small red circles) and contribute to reward acquisition, the

synapses between these neurons are selectively strengthened (blue

and red solid lines) (see the text for the description of the

mechanism). (C) These learning rules may finally lead to a

functional network with inhomogeneous connectivity.

(PDF)

Text S1 Dimension reduction using principal component

analysis, and dynamics of the multistable attractor model on

characteristic axes.

(PDF)
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