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Many natural and artificial networks contain overrepresented subgraphs, which have been termed network motifs. In
this article, we investigate the processes that led to the formation of the two most common network motifs in
eukaryote transcription factor networks: the bi-fan motif and the feed-forward loop. Around 100 million y ago, the
common ancestor of the Saccharomyces clade underwent a whole-genome duplication event. The simultaneous
duplication of the genes created by this event enabled the origin of many network motifs to be established. The data
suggest that there are two primary mechanisms that are involved in motif formation. The first mechanism, enabled by
the substantial plasticity in promoter regions, is rewiring of connections as a result of positive environmental selection.
The second is duplication of transcription factors, which is also shown to be involved in the formation of intermediate-
scale network modularity. These two evolutionary processes are complementary, with the pre-existence of network
motifs enabling duplicated transcription factors to bind different targets despite structural constraints on their DNA-
binding specificities. This process may facilitate the creation of novel expression states and the increases in regulatory
complexity associated with higher eukaryotes.

Citation: Ward JJ, Thornton JM (2007) Evolutionary models for formation of network motifs and modularity in the Saccharomyces transcription factor network. PLoS Comput
Biol 3(10): e198. doi:10.1371/journal.pcbi.0030198

Introduction

One of the most fundamental questions in biology is how
incremental evolutionary changes lead to the observed
complexity in biological systems. The advent of genome
sequencing and associated functional genomic technologies
have provided the first evidence for the origins of complexity
on an organism-wide scale. Modularity is an emergent
property of biological networks that has been observed in
metabolic [1], protein–protein interaction [2], and tran-
scription factor networks (TFNs) [3]. Several explanations
have been put forward for the evolution of modular
biological systems, which include robustness to mutational
[4] and environmental perturbations [5], insulation against
cross-reactivity between alternative signalling cascades [6],
and selection for survival in multiple environments [7].

Parallel studies of small, artificial TFNs have demonstrated
that alterations in network topology and components can be
used to create a wide range of dynamic properties such as
bistability and oscillations. However, relatively few local
topologies are widely observed in natural networks [3,8].
For example, although a circuit composed of two inhibitory
transcription factors (TFs) arranged in a feedback loop has
been shown to act as a stable memory element in the lambda
phage virus and artificial systems [9], this topology is
uncommon in both the Escherichia coli and Saccharomyces
cerevisiae transcriptional networks so far uncovered [3,8]. An
outstanding question is whether the absence of these and
other local topologies is a result of mechanistic or functional
constraints on network evolution.

In this article, transcription regulatory interactions in the
yeast S. cerevisiae were defined using the large-scale chromatin

immunoprecipitation (ChIP-on-chip) dataset of Harbison et
al. [10] These interactions were used to define a network with
nodes representing genes and directed edges binding of a
protein encoded by a TF gene to the promoter of a target
gene. We begin by investigating several growth models for the
formation of bi-fan motifs, which involve a pair of TFs that
bind the promoters of two target genes, as shown in Figure 1.
The bi-fan motif is typically embedded in extended structures
that we term the bi-fan array, involving a pair of TFs that
both regulate a larger number of common target genes.
Figure 1 illustrates how the number of bi-fan motifs within an
array grows quadratically as target genes are added. In later
sections, we demonstrate a specific structural relationship
between bi-fan arrays and the feed-forward loop (FFL) motif,
and a common origin for many of these network structures.
The topology of the bi-fan motif suggests several evolu-

tionary mechanisms for its formation, including duplication
of either TFs or target genes [11]. It is also possible that the
motifs could have arisen from rewiring of regulatory
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interactions as a result of cis-sequence evolution in genic
promoter regions or the trans-evolution of the protein
sequences encoding TFs. The cis-sequence evolution refers
to mutations in noncoding regions that alter the binding
affinity of TFs for a particular promoter, thus affecting the
expression of genes in close proximity on the chromosome
[12,13]. Conversely, trans-evolution typically involves muta-
tions in the sequences encoding TFs that alter, for example,
their DNA-binding specificity. These trans-changes have the
potential to alter the expression of large numbers of genes
[12,13]. In this article, the relative contributions of these
mechanisms are investigated by defining a common evolu-
tionary origin for pairs of genes using the whole-genome
duplication (WGD) event that occurred in S. cerevisiae after its
divergence from Kluyveromyces waltii [14,15].

Results

Bi-Fan Motifs Are Organised in Arrays
We investigated the organisation of bi-fan motifs in the

yeast TFN using two algorithms that have been used
previously for detecting motifs in directed networks [3,8].
These algorithms fix both the in-degree and out-degree of
each node and then randomly replace the edges in the
network. This approach can then be used to detect motifs
that occur more frequently in the native network than a large
ensemble of random networks (see Methods for further
details). Although the original methods for detecting network
motifs involved exhaustive enumeration of all small (typically
2- to 6-node) subgraphs in the network, previous work [3,16]
suggests that bi-fan motifs are embedded in larger structures
within the yeast and E. coli TFNs. In fact, it is possible to show
(see Methods for details) that the overrepresentation of bi-fan
motifs in any directed network is associated with the array
structures shown in Figure 1.

Bi-fan arrays were identified in the yeast TFN by searching
for pairs of TFs with a number of shared targets that
exceeded the number found in the randomized networks with

p , 10�4. A description of the p-value calculation is included
in the Methods section. A total of 442 bi-fan arrays were
identified at this strict significance threshold. These arrays
account for a total of 1.25 3 105 (68% of the total) bi-fan
motifs compared with an expected number of 7.33103 under
the null model. The overrepresentation of bi-fan motifs in the
Saccharomyces TFN (shown in Table 1) can therefore be
attributed to a relatively small number of bi-fan arrays that,
on average, regulate a large number of target genes. The
following two sections investigate the influence of gene
duplication on formation of the bi-fan array structure.

Effect of Gene Duplication on the Formation of Bi-Fan
Arrays
Two approaches were used to identify genes that have

arisen from duplication. The first method involves using
genes that were created from the most recent WGD in the
evolution of S. cerevisiae [14,15]. These data are likely to be of
very high fidelity because of the requirement for genes to
reside in regions of doubly conserved synteny with the K.
waltii genome [15]. Another advantage of defining common
origin using WGD data is that duplication of all genes
occurred simultaneously, and duplicates initially possessed
very similar promoter regions. This provides a means to
estimate the relative cis- and trans-conservation rates upon
gene duplication, as shown in Table 2.
Table 2 shows that the trans-conservation rate is relatively

high, which is caused by nine of the 17 WGD duplicates
forming statistically significant bi-fan arrays. These arrays
contain a substantial proportion of the network’s bi-fan
motifs. Conversely, the cis-conservation rate for all promoters
duplicated by WGD is low, with relatively few bi-fan motifs
arising from conserved interactions. In the case of promoters
of genes that are diverging rapidly, the conservation rate is
only slightly above that expected for randomly selected
promoters and indicates substantial plasticity in promoter
binding.
It is also possible to rule out more recent single-gene

duplications as a significant source for bi-fan motifs, as these
have been estimated to occur very infrequently in S. cerevisiae,

Figure 1. The Bi-Fan Motif and Its Extension to Bi-Fan Arrays

Genes that encode TFs are coloured red, and genes that do not encode
TFs are coloured blue. Accumulation of n common target genes
(additional connections are represented by dotted lines) leads to
formation of a bi-fan array containing n(n � 1) / 2 bi-fan motifs.
doi:10.1371/journal.pcbi.0030198.g001
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Author Summary

Networks are a simple and general way of representing natural
phenomena that range in scale from the social interactions between
people to the organization of circuits on a microchip. Many
networks have been found to contain repeated patterns of
connections between small groups of nodes. These patterns,
termed network motifs, are thought to be involved in controlling
the flow of information through the network. This article
investigates the processes that led to the formation of the two
most common types of motif in the network controlling gene
expression in baker’s yeast. Around 100 million y ago, yeast’s
ancestor underwent a whole-genome duplication, which resulted in
the organism containing four copies of each gene rather than the
usual two. The duplicated genes that remain in the yeast genome
are used to infer the two mechanisms that give rise to network
motifs. These are rewiring of interactions between genes, and the
duplication of proteins that control gene expression (transcription
factors). These two processes are complementary with the rewiring
mechanism enabling duplicated transcription factors to regulate the
expression of different genes. It appears likely that these two
processes are involved in enabling the increases in complexity that
are associated with multicellular life.

Evolutionary Models of Motifs and Modularity



at a rate k¼ 1–63 10�5 per gene per million y [17]. An upper
bound for the number of single-gene duplications that have
occurred since the divergence of S. cerevisiae from K. waltii can
be calculated by assuming that the rate of duplication is at the
upper limit and that the rate of loss is zero. The number of
gene duplications is then given by the exponential growth
model

ND ¼ NGðekt � 1Þ; ð1Þ

where NG¼3,500 is the approximate number of single-copy
genes in S. cerevisiae, and T ¼ 100–150 million y is the time
since WGD [17]. Equation 1 suggests that the number of
single-gene duplications that have occurred since WGD, NG, is
less than 35. Conservation at the levels shown in Table 2
would not result in a large number of bi-fan motifs
originating from target gene duplication.

Effects of Ancient Gene Duplication Events
WGD is a feature in the evolution of most known eukaryote

organisms, including chordates [18]. However, fewer than
10% of yeast proteins originated from the latest WGD in the
Saccharomyces lineage. More ancient gene duplications account
for the majority (90%) of proteins encoded in the yeast
genome [19]. For this reason, we identified duplicates with a
more ancient common origin using domain assignments from

the Pfam HMM library [20] (see Methods for further details).
The results shown in Table 2 have demonstrated that the
promoter-binding patterns of duplicate target genes are
likely to have diverged on time-scales longer than 100–150
million y, so the analysis is restricted to TFs with common
origin identified with the structure of their DNA-binding
domains. These results indicate that a total of 27 bi-fan arrays
involve TFs with structurally similar DNA-binding domains,
accounting for a total of 14.4% of the bi-fan motifs. 239 bi-
fan arrays containing 49.2% of the motifs involve two
nonhomologous TFs with the remainder involving at least
one TF with an unknown structure. This suggests that more
ancient TF duplications have also contributed to the
formation of bi-fan motifs in the network (see Figure S1).
In summary, the redundancy of duplicated TFs results in

the formation of bi-fan arrays, although the majority of these
network structures do not arise directly from gene duplica-
tion. Conversely, the duplication of target genes does not
appear to contribute greatly to formation of bi-fan arrays
because the network is subject to greater cis-plasticity. This
difference also arises from the different statistical properties
of the (compact) in-degree distribution and the (power-law)
out-degree distributions [21]. Taken together, these results
suggest that the two major processes that contribute to the
formation of bi-fan motifs are duplication of TFs and the
accumulation of common target genes, as depicted in Figure
2A–2B.
The colocalization of nonhomologous TFs at genic pro-

moters is likely to involve a combination of two physical
mechanisms. The first mechanism involves the presence of
binding sites for the two TFs that occur independently in the
same set of genic promoters [22]. This process could also
enable cooperative binding if a TF displaces nucleosomes
that occlude the binding site of a second TF [23]. The
plasticity in the promoters of duplicated genes, shown in
Table 2, suggests that bi-fan arrays could have arisen from
mutations in promoter regions and subsequent selection for
TF binding at numerous dispersed loci. The second mecha-
nism involves protein interactions between the TFs that
enable cooperative binding to DNA. For example, mitogen-
activated protein kinases without intrinsic DNA-binding
affinity are localised to actively transcribed genes during

Table 2. Network Properties of Genes Originating from Duplication

Gene Nodes Edges Conservation Rate Expected Conservation Bi-Fan Motifs

cis WGD 900 1,802 0.15 0.04 87

cis Slow 96 253 0.36 0.04 22

cis Normal 546 1,029 0.13 0.04 59

cis Fast 258 520 0.08 0.04 6

cis Recent 40 107 0.47 0.04 24

trans 34 3,217 0.27 0.09 11,740

The second and third columns represent the overall number of nodes and edges that are involved in calculations of motif frequencies. The cis-conservation rate is defined as the overall
fraction of TFs bound to genic promoters that are conserved in both duplicate genes. The trans-conservation rate is defined as the overall fraction of common targets for the 17 pairs of TF
proteins originating from the WGD event that occurred in Saccharomyces around 100 million y ago. The final two columns represent the expected conservation rate, and the number of bi-
fan motifs that arise directly from conserved interactions between pairs of duplicated genes. All differences between the observed and expected conservation rates are statistically
significant at the p , 0.01 level using the bootstrap network randomizations described previously. cis-Conservation rates are presented for all WGD pairings, and are also grouped
according to their rate of divergence [15]. ‘‘Slow’’ refers to proteins that are diverging from each other at a slower rate than from their common K. waltii orthologue (i.e., show evidence of
gene conversion [17]). ‘‘Normal’’ and ‘‘Fast’’ refer to proteins that are diverging at a similar or accelerated rate compared with their common orthologue. ‘‘Recent’’ describes the cis-
conservation rate for proteins duplicated with respect to other sensu stricto yeast species, which were identified by Gao and Innan using chromosomal location [17].
doi:10.1371/journal.pcbi.0030198.t002

Table 1. Summary of Statistical Significance of Network Motifs
under Several Randomization Procedures

Procedure Bi-Fan Motif Feed-Forward Loop

Network Mean SD Z-Score Network Mean SD Z-Score

All 184,127 94,500 2,146 41.8 2,898 1,575 73 18.1

Target 94,100 2,119 42.5 1,816 41 25.7

Regulator 175,800 432 19.3 1,589 125 10.5

Network refers to the frequencies of the two motif types in the Saccharomyces TFN. The Z-
score represents the deviation of the yeast TF network from the null model under the
assumption of normality. A Z-score greater than 2 implies p , 0.05 and rejection of the
null hypothesis. In all randomization procedures, the true network has a statistically
significant difference from the ensemble of randomized networks.
doi:10.1371/journal.pcbi.0030198.t001
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the stress response in yeast via interactions with other
proteins [24]. It has also been shown previously [8] that
protein–protein interactions tend to occur between pairs of
TFs that form bi-fan motifs, and we have confirmed that this
property also applies to the bi-fan array structure (Figure S1).
In the following section, we investigate how gain and loss of
protein–protein interactions could cause duplicated TFs with
similar DNA-binding specificities to bind different targets in
vivo.

Higher-Order Effects of TF Duplication and the Generation
of Novel Expression States

The existence of bi-fan arrays involving nonhomologous
TFs suggests that TF duplication could also increase the
frequency of these network features. For example, duplica-
tion of a TF that forms a regulatory complex would create
two further bi-fan arrays, as depicted in Figure 2C. These
network features appear as triplets of TFs that form bi-fan
arrays with each other, and where two members of the triplet
are related by WGD. The network includes 39 of these
triplets, containing a total of 2.47 3 104 bi-fan motifs.

The statistical significance of the triplets of bi-fan arrays
involving a pair of TFs originating from WGD can be

computed by constructing a null model where the 442 bi-
fan arrays are fixed and the 17 WGD relationships are added
randomly to the network. This approach can then be used to
compare the frequency of these network topologies to that in
a large number of randomized networks. The expected
number of triplets in the random model is 2.96 with p ,

10�6, demonstrating that these network features are a
statistically significant property of the network. Further
details are provided in Figure S2. Since the WGD duplications
occurred simultaneously [14], can be identified with high
confidence [15], and were not succeeded by a large number of
subsequent duplications [17], it is possible to assign half of the
bi-fan motifs in these arrays to trans-regulatory interactions
that were conserved after gene duplication. This accounts for
a further 9.9% of the bi-fan motifs, and suggests that almost
one-fifth of the motifs in the 442 bi-fan arrays can be
attributed to a single WGD event.
A notable feature of the TFs duplicated by WGD is their

very similar consensus DNA-binding specificities. Examples
include the TFs MSN2p and MSN4p, which bind the stress
response element AGGGG [25] and the leucine zippers YAP1p
and YAP2p, which both bind the canonical sequence
TTAGTCAGC. These are not isolated examples; almost all
pairs of TFs that originate from WGD have similar DNA-
binding motifs where these are known [10]. It is therefore not
surprising that binding cross-reactivity causes duplicated TFs
to occupy similar sets of promoters with the associated
conservation of common bi-fan arrays. A more pertinent
question is therefore which physical mechanisms enable these
TFs to bind different targets in vivo.
The most likely mechanism for the divergence of promoter

occupancy is that one of the duplicated TFs binds DNA
cooperatively with another TF or cofactor via protein–
protein interactions [26] or the modification of chromatin
structure [23]. The second TF, which lacks such an inter-
action, cannot bind these promoters with high affinity. A
specific example is provided by the forkhead TFs FKH1p and
FKH2p, which bind overlapping sets of promoters and have
identical DNA-binding preferences in vitro. It has been
shown experimentally that differential promoter occupancy
is achieved in vivo by FKH2p binding DNA cooperatively with
the second TF, MCM1p [27]. This process is recapitulated by
our analysis, which indicates that FKH2p forms a bi-fan array
withMCM1p, but that this interaction is not shared by FKH1p.
Our analysis also implicates the cell-cycle regulator SWI6p as
being involved in creating the differential promoter occu-
pancy between the two forkhead TFs.
The processes by which the TFs diverge in promoter

binding propensities can be understood in terms of conven-
tional models for the functional divergence of gene dupli-
cates [28,29]. Immediately after duplication, the derived TFs
are involved in an identical set of bi-fan arrays to the
ancestral TF. The gain of an interaction that enables
cooperative DNA-binding in one member of the pair is
known as neofunctionalization, with subfunctionalization
involving the loss of such interactions, depicted in Figure
2D. Of the two mechanisms for functional divergence,
subfunctionalization is likely to be the dominant source of
binding diversity, since the loss of a protein interaction may
involve only a few degenerative mutations in one of the TFs,
whereas gain requires formation of a novel interaction and
subsequent accumulation of target genes [28–30]. This is

Figure 2. Growth Models for Formation of Bi-Fan Arrays

Nodes originating from gene duplication are connected by green
undirected edges. Black undirected edges represent protein–protein
interactions, and dotted edges/nodes represent network components
gained with respect to time.
(A) Simple gene duplication scenario results in formation of bi-fan array
regulated by homologous TFs.
(B) Nonhomologous TFs form bi-fan arrays by accumulation of common
target genes. A low-affinity protein–protein interaction between the TFs
allows combinatorial control of targets.
(C) Duplication of one component of a regulatory complex leads to
creation of two regulatory complexes. Conservation of protein–protein
interactions creates nonhomologous bi-fan arrays originating from gene
duplication.
(D) The loss of one of the protein–protein interactions between
duplicated TFs and their common binding partner in (C) has the
potential to create binding diversity in homologous TFs.
doi:10.1371/journal.pcbi.0030198.g002
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supported by the rates of sequence evolution [15] in
duplicated TFs. In the two pairs of whole-genome–duplicated
TFs that have accelerated evolutionary rates compared with
their K. waltii orthologue (the cell-cycle regulators FKH1p and
FKH2p, and the stress response genes SKN7p and HMS2p), the
faster-evolving proteins are involved in bi-fan arrays with
fewer partner TFs than the more slowly evolving paralogue
(see Table S3).

In summary, many bi-fan motifs in the Saccharomyces TFN
originate from WGD. We have provided evidence that the
functional divergence of duplicated TFs, which is likely to be
involved in the generation of novel expression states, can be
understood in terms of the patterns of gain and loss of bi-fan
motifs within the overall structure of the network. The
following section investigates the influence of WGD on the
formation of FFL motifs.

FFL Motifs Are Formed by Elaborations on Bi-Fan Arrays
Having suggested putative evolutionary models for the

formation of bi-fan motifs in the S. cerevisiae TFN, we now
turn our attention to the FFL. Although the FFL has a
topology that appears distinct from the bi-fan motif, the
presence of bi-fan arrays suggests another simple mechanism
for formation of large numbers of FFL motifs. This process is
depicted in Figure 3. In total, there are 43 stastically
significant bi-fan arrays that form at least one regulator–
regulator interaction, accounting for a total of 1,773 (61.2%
of the total) FFL motifs in the TFN. Since these pairs of
transcription regulators are expected to be involved in only
36 FFLs, these network features are sufficient to explain the
deviation from the null model. The yeast WGD data indicate
that four FFL arrays arise directly from WGD containing 334
(18.8%) FFL motifs. A further 11 FFL arrays, containing 299
(16.8%) FFL motifs, involved one of the bi-fan arrays
conserved after TF duplication. In none of these cases were
the FFL-forming interactions conserved between duplicated
TFs.

We investigated whether FFLs were a statistically signifi-
cant feature of the network given its bi-fan structure by
randomizing edges between transcription regulators while
holding interactions between transcription regulators and
nonregulators constant (see Methods). This procedure fixes
the vast majority of edges present in bi-fan arrays but involves
rewiring of the regulatory interactions between TFs that
could give rise to FFLs. Table 1 and Figure 4 show that the

FFL topology remains statistically significant under this null
model. Figures 4 and 5 show the frequencies of FFLs and bi-
fan motifs as pairs of directed edges are swapped randomly,
and demonstrate the sensitivity of the number of FFLs to
rewiring of a small number of regulator–regulator interac-
tions. Figure 5 confirms that the number of bi-fan motifs is
affected only weakly by randomization of interactions
between transcription regulators.
The majority of FFL motifs in the yeast TFN result from

one or two direct regulatory interactions existing between
TFs that form a statistically significant bi-fan array. Although
experiments involving randomization of edges between TFs
while other parts of the network are fixed suggest that the
FFL motif remains overrepresented in natural networks,
independently of the presence of bi-fan arrays, it is also
possible that the FFL-forming edges could arise from some
other nonselective process such as gene duplication. To
investigate this question, we used a generalized linear model
[31] to fit the probability of a directed regulatory interaction
between TF, a, and a second TF, b, as a function of several
local network properties (see Methods for full list). This
statistical model was used to identify the network variables
that are informative in predicting whether such an inter-
action occurs.
The final model indicates that the probability of forming a

regulatory interaction increases with the out-degree of node
a and the number of targets shared by the pair of TFs (i.e., the
size of the bi-fan array), but that interactions are suppressed
if the second TF b directly (auto-) regulates its own
transcription. Figure 6 shows a measure of the error of
optimized linear models involving subsets of these variables,
and indicates that the out-degree has the greatest influence
on the probability of forming a regulator–regulator inter-
action. This would be expected under a neutral model;
however, the importance of the second term indicates that

Figure 3. Formation of FFLs

(A) Bi-fan array containing three individual bi-fan motifs.
(B) Formation of a regulatory interaction between the two transcription
regulators generates a feed-forward array containing three FFL motifs (a
single example is highlighted in bold).
doi:10.1371/journal.pcbi.0030198.g003

Figure 4. Frequency of FFL Motif under Different Randomization

Conditions

The curves were generated by starting with the observed network and
swapping randomly selected pairs of edges. The green curve corre-
sponds to randomization of all edges, the red curve includes random-
ization of regulatory connections between TFs, and the blue curve
randomization of edges between TFs and genes with kout¼ 0, which are
referred to as target genes.
doi:10.1371/journal.pcbi.0030198.g004
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there is a propensity toward formation of FFLs from bi-fan
arrays in the yeast TFN. This supports there being positive
selection toward formation of the FFL motif and the signal-
processing properties associated with this topology [32].

Contribution of Duplicative Bi-Fan Arrays to the
Formation of Modular Network Structures

The previous sections have demonstrated that network
motifs are typically organized in larger structures that are
likely to have originated from two specific growth models. In
this section, we investigate whether network motifs originat-
ing from duplication of TFs also contribute to more global
properties of the network such as its overall modularity [33].
This feature of the TFN was investigated by using a divisive
algorithm for partitioning the network into densely con-
nected groups of nodes, which constitute modules, with
sparser connections between groups [34]. The network was
partitioned into 18 modules with an overall modularity score
Q¼ 0.50, which suggests significant community structure [33].

The dendrogram in Figure 7 shows a representation of the
division path of the algorithm and enriched functional
annotations associated with all genes in the extant modules
(see Text S1). The algorithm defines a hierarchy of modular
structures, with the more ‘‘coarse-grained’’ solutions also
representing relevant network structures [34]. In this case, the
five coarsest granularity partitions represent the broad
functional classes of small molecule transport, cell cycle/
reproduction, protein synthesis, protein degradation, and
metabolism. Figure 7 also shows enrichment of structural
families within each module, and indicates that members
from several structural families of DNA-binding protein are
not distributed uniformly.

The most recent WGD in Saccharomyces can be used to
investigate whether duplicated TFs diverge from the ancestral
network module, and whether the duplication has contrib-
uted to the overall modularity of the network. This latter
property is quantified by calculating the change in the
modularity upon deletion of each node, which allows
identification of modular (DQ . 0) and nonmodular TFs.

Of the 15 pairs of TFs where both members bind a significant
number of promoters under the conditions assayed by
Harbison et al., 11 are members of the same module (p ,

0.01 under permutation of module labels). In nine of the
pairings, both TFs contribute positively to the modularity of
the network, suggesting that gene duplication is involved in
the formation of modular networks (the scores are tabulated
in Table S3).
There are three further pairs of duplicated TFs in which

the sign of DQ differs between the duplicates, and in which
the membership of bi-fan arrays has diverged asymmetrically.
If subfunctionalization, which in this context involves the loss
of common bi-fan arrays, is the dominant source of func-
tional divergence [30], these examples suggest that the TF that
retains the majority of the ancestral functions remains a
global (nonmodular) regulator, and that the mutations lead to
specialization of its duplicate. Interactions between TFs that
lead to creation of FFL arrays also tend to increase network
modularity, since the majority (31 out of 43) involve intra-
module connections (p , 0.01).

Discussion

We have shown that the overrepresentation of bi-fan
motifs in any directed network is associated with bi-fan array
structures rather than individual network subgraphs. This
property has been observed empirically in the original article
describing network motifs in E. coli, which showed that bi-fan
motifs are organised in dense overlapping regulons which
consist of small numbers of TFs and operons that have
particularly dense connectivity, and which also have few
connections to the rest of the network [3]. Other work in E.
coli has shown that clustering individual bi-fan motifs by
overlap of any of their components leads to recovery of the

Figure 6. Error of Generalized Linear Models When Used to Fit the

Probability of a Transcriptional Regulatory Interaction between a TF and

a Second TF

‘‘all’’ refers to models trained on the out-degree, the number of targets
shared by the pair of TFs (‘‘array’’), and a binary variable representing the
presence of an autoregulatory interaction in the target TF (‘‘auto’’). A
comparison is shown with linear models trained on subsets of these
three variables.
doi:10.1371/journal.pcbi.0030198.g006

Figure 5. Frequency of Bi-Fan Motifs in the TFN under Different

Randomization Conditions

doi:10.1371/journal.pcbi.0030198.g005
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network’s largest fully connected component, and that a
similar property can be observed for FFLs [16].

Many of the bi-fan arrays and the motifs within them can
be attributed to the WGD event that occurred recently in the
evolution of Saccharomyces, with the overwhelming majority of
these structures arising from duplication of TFs. These
represent a subset of the duplicative bi-fan arrays within
the network, suggesting that many more of these network
structures may also arise from divergent mechanisms of
network evolution. It is possible that structural or sequence
similarity could be used to detect more complex bi-fan
architectures arising from ancient TF gene duplications.
However, this is complicated by the rapid sequence diver-
gence of TFs [15,17,35] and the potential for a particular
network topology to be created by several alternative
combinations of TF duplication and edge rewiring. It is
clear, however, that the TFs arising from WGD have a larger
number of shared targets and conserved network motif
properties than more ancient duplicates. An outstanding
question is whether this property is caused solely by the late
occurrence of WGD in Saccharomyces or is also affected by the
different effects of gene dosage in single-gene duplication
and WGD events [36].

Although many bi-fan arrays originate from TF duplica-
tion, there is evidence that this topology also arises from
environmental selection via the accumulation of DNA-bind-
ing motifs in promoter regions [22] or protein–protein
interactions between TFs [8,24]. A mixture of these two
effects is known to be a feature of mechanisms for
combinatorial control of gene expression [26,37]. This article
has also provided evidence that the cooperative binding of
TFs to DNA is also likely to be involved in creating the
functional divergence of duplicated TFs, as depicted in
Figure 2C–2D. This mechanism may be particularly impor-
tant for enabling increases in regulatory complexity to occur
in unicellular organisms where redundant duplicate proteins
cannot persist in the genome as a result of genetic drift [38],
and consequently the fixation rate of single-gene duplications
is very low [17].
The analysis of target genes indicates that the conservation

of the TFs bound to duplicated promoters is related to the
rate of sequence divergence of their associated genes,
independently of molecular clock–based assumptions of the
age of the duplication event [39,40]. This analysis also
demonstrates that the cis-conservation is typically low and is
restricted either to recent duplicates or the small number of

Figure 7. Tree Representation of the Division Path of the Network Clustering Algorithm, and Enrichment of TF Families within Each Module

Enrichment is calculated using log-odds and includes families with more than two members in each module. The pie charts show the frequencies of the
major families of transcription regulator in the Harbison et al. dataset and the number of homologous bi-fan motifs involving members of these
families. Asterisks denote families that have statistically significant common module membership at the p , 0.05 level under a permutation test.
doi:10.1371/journal.pcbi.0030198.g007
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genes that are stabilised by gene conversion [15,17]. Target
gene duplication does not therefore make a substantial
contribution to the formation of network motifs in the yeast
TFN, contrary to other studies of Saccharomyces TFN evolution
[11].

The rapid divergence in the promoters of duplicate genes
is in agreement with other studies showing that gene
expression evolves much more rapidly than an organism’s
gene content [12,13]. This result provides an explanation for
a recent study of motif evolution [41], which found that the
protein constituents of individual network motifs do not tend
to co-occur across several very divergent yeast species. It was
thus suggested that the motifs themselves are nonconserved
and therefore not critical to the functionality of the network.
However, the rapid cis-changes presented in Table 2 and the
presence of positive selection toward motif formation suggest
that the motif structures may be present in the comparison
genomes, although their identity is likely to have changed on
these relatively long time-scales. This is supported by the
convergent evolution of similar network structures across
diverse organisms, such as that observed between the human
embryonic stem cell regulators SOX2, OCT4, and NANOG
[42].

FFL motifs arise from a small number of regulatory
interactions between TFs that form statistically significant
bi-fan arrays. Our analysis indicates that there is likely to be
positive environmental selection for the high/low-pass filter-
ing properties of the FFL motif [3, 32] independently of the
bi-fan array topology. As a result, FFL motifs could act as
both a source and a consequence of duplicative bi-fan arrays
in the course of network evolution. An outstanding question
concerns the chronology of FFL formation, as it is not clear
to what extent the existence of an FFL-like topology
accelerates the accumulation of target genes or whether FFLs
arise from existing bi-fan array structures, as depicted in
Figure 3.

The static representation of the yeast TFN, representing a
union of DNA-binding interactions across numerous envi-
ronmental conditions, can be partitioned into modules that
represent specific biological functions. Some structural
families of DNA-binding proteins are not distributed
uniformly across the network modules and are also involved
in a larger number of bi-fan arrays with members of their
own family. There are two potential causes for this
observation. The WGD data indicates that TFs duplicated
by WGD tend to occupy the same network module and share
far more common targets than more ancient duplicates. It is
therefore possible that proteins within a particular family
underwent lineage-specific expansions more recently than
other families. This appears to be the case for the YAP TFs, of
which between two and three TF pairs originate from WGD
[15,43]. The other possibility is that constraints on the
diversity of binding sites available to a particular family of
TFs [44,45] lead to a slower divergence of promoter binding,
as exemplified by the GATA-binding family of Zinc-finger
TFs.

In summary, the TFN contains many features that reflect
the evolutionary history of the organism (i.e., divergent
evolution), suggesting that its structure does not necessarily
reflect an optimal ‘‘design’’ [46], and that evolutionary
constraints contribute to both the modularity and network
motifs that are present in the network. However, there is also

strong evidence for the involvement of natural selection in
the formation of network motifs beyond the neutral
duplication–divergence model. The motif concept also
provides a framework for understanding the mechanisms
that have enabled increases in regulatory complexity to occur
in a simple eukaryote, and which are also likely to apply to
higher organisms.

Methods

Raw data. The TFN was generated using the original gene-mapped
ChIP-on-chip data from Harbison et al. [10]. The raw binding profiles
were thresholded at a p-value of 10�3. TFs were classed as bound to an
intergenic region if the binding profile was below the threshold in
any of the assays carried out under alternative growth conditions.
This included around 11,000 unique interactions between regulators
and promoter regions.

Network randomization procedures. Randomization of the net-
works was carried out using modified versions of the two algorithms
used in [3,8]. Both these methods ensure that the networks’ degree
distributions remain unchanged by fixing both kin and kout for each
node [47] while randomly rewiring edges. One of the algorithms
involves repeatedly swapping nonisomorphic pairs of directed edges
until the network is sufficiently randomized. The second algorithm
involves specifying a set of in and out stubs for each node. Directed
edges are then added from each out stub to a randomly selected in
stub while again preserving the networks’ in- and out-degree
distributions. The two algorithms for generating null networks were
found to produce identical results, provided that a sufficient number
of iterations were carried out in the edge-swapping algorithm.

Organization of bi-fan motifs in directed networks. The number of
bi-fan motifs within the TFN, fbi-fan, can be rewritten in an alternative
form, which suggests that this particular motif is, in general,
associated with array structures such as that shown in Figure 1

fbi�fan ¼
1
2

XNT

i¼1

XNT

j¼iþ1
kovðxi; xjÞ½kovðxi; xjÞ � 1� ð2Þ

where the summations are over the NT TFs, or nodes with nonzero
out-degrees, and where k(xi, xj) is the number of targets shared by TFs
xi and xj. Equation 2 implies that for bi-fan motifs to be over-
represented in the network, there must be pairs of TFs (xi, xj) that
have a greater number of shared targets than under an equivalent
null model of the network.

The standard approaches to generating null network models
[3,8,47] involve randomization of directed edges while preserving the
in- and out-degree of each node. This null model provides an
additional constraint on Equation 2

XNT

i¼1

XNT

j¼iþ1
kovðxi; xjÞ ¼

1
2

XN
i¼1

kiinðkiin � 1Þ ð3Þ

where kiin is the in-degree of node i and N is the total number of
nodes in the network. Intuitively, Equation 3 represents the
frequency of ‘‘mono-fans’’ in the network (i.e., two TFs binding to
the same target). The left-hand side of Equation 3 represents the
frequency of ‘‘mono-fans’’ in terms of the number of shared targets
for each pair of TFs, which may vary in different randomizations of
the network. The right-hand side represents this quantity in terms of
the (fixed) in-degree sequence.

The constraint in Equation 3 indicates that a high degree of
overlap for a subset of the TFs, required for overrepresentation of bi-
fan motifs, implies a lower number of shared targets for other pairs of
TFs. This suggests that bi-fan motifs are characteristic of networks
with a modular or community structure [3,33].

Detecting bi-fan arrays. Bi-fan arrays were identified by searching
for pairs of TFs with a number of shared targets that exceeded the
number found in 9,995 of the randomizations of the network. Figure
8 indicates the number of bi-fan arrays identified at the highest
significance thresholds. Since there are a total of 176 TFs with kout 6¼ 0
in the ChIP-on-chip dataset [10], there are a total of 1.54 3 104

comparisons. A total of 595 arrays were recovered at this threshold,
with an expected number of 15.4 for a random network.

The number of targets shared by pairs of TFs in the randomized
networks is well approximated by a Poisson distribution, which was
used to estimate p-values for the bi-fan arrays identified to be
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significant from the bootstrap estimates (see Text S1). A total of 442
of the bi-fan arrays were significant at the threshold, which is the
stringent threshold used in further analyses. A total of 297 bi-fan
arrays were found at the p , 0.05 threshold after a Bonferroni
correction for the multiple hypotheses tested.

Domain assignments. The Pfam domain assignments were verified
using the Saccharomyces Genome Database (http://www.yeastgenome.
org), which also provided annotations for three additional TFs
(INO4p, XBP1p, and CUP1p) that were missed by Pfam. The basic
leucine zipper predictions were manually subdivided into the YAP
and AP-1 families using definitions from the literature [48]. The two
largest families of TFs in yeast, the classic Zinc-finger and the Zn-Cys
binuclear cluster domain, are short, ancient domains that typically
form one of many contact points between the TF and DNA [49,50].
Consequently, the shared presence of these domain types is not
necessarily indicative of recent divergence or similar DNA-binding
specificity. These families were therefore subdivided using sequence
clustering. The BLASTclust program was used with sequence identity
set to 25% and the alignment length parameter set to 0.25. This
procedure may result in more distant duplicates being missed but
increases the statistical significance of any homologous bi-fan arrays
identified from analysis of the yeast TFN (groupings can be found in
Text S1).

Statistical modelling of the formation of FFL arrays. Several
generalized linear models [31] were used to fit the probability of a
regulatory interaction between a pair of TFs, f(pi), as a function of
local network properties.

f ðpiÞ ¼ b9xi þ a ð4Þ

where xi¼ [x1, x2, . . ., xj] is the vector of network properties, b and a
are the parameters of the model, and f(�) is the link function. Several
link functions, including linear, logistic, and log–log, were compared
using the deviance and the Hosmer-Lemshow criterion [31]. The log–
log model provided the best fit under both measures and was used to
model the full set of network variables.

The initial set of variables were the out-degree of node a, kaout, the
out-degree of node b, the number of targets shared by the pair of TFs,
kabarray, the expected number of shared targets, and binary variables
representing a feedback or autoregulatory interaction at node a,
autoregulation at node b (kbauto), transcription regulation of node a by
node b, homology, and genome duplication. Backward stepwise
elimination was then used to remove uninformative variables (see
Text S1 and Figures S3 and S4 for further details), and resulted in the
following model,

log½�logpab� ¼ �0:00286kaout � 0:0181kabarray þ 0:124kbauto þ 1:78; ð5Þ

indicating that the probability of forming a regulatory interaction
between TFs increases with the out-degree of node a and the number

of targets shared by TFs a and b. Conversely, interactions are
suppressed if the second TF b directly regulates its own transcription.

Modularity in biological networks. The modularity of the network
is defined using the criterion Q, which is defined for undirected
networks, but can be applied to the Saccharomyces TFN by considering
each edge as undirected [33],

Q ¼ 1
L

XNm

s¼1
ls �

d2s
4L

� �
ð6Þ

where the sum is over the number of identified modules, Nm, L is the
number of edges in the network, ls is the number of intramodule
edges, and ds is the sum of the degrees of the nodes in module s.
Intuitively, a cluster contributes a large DQ to the network’s overall
modularity if the number of intramodular connections is much larger
than the number expected in an equivalent network with edges
placed at random (a null model that corresponds exactly to the
randomization procedures used in this article [47]).

The standard approach to module identification is to seek a
partition of the network such that the modularity, DQ, is maximised.
In this study, a spectral module detection algorithm [34] is used,
which involves solving a series of eigenvector problems on a
characteristic modularity matrix. The algorithm divides the network
recursively into disjoint binary partitions until no further increase in
the modularity is recovered. The division of the network can then be
used to calculate the sensitivity of Q to the deletion of nodes from the
network, DQ.

Supporting Information

Figure S1. Frequency of Common Homology Relationships as Bi-Fan
Arrays Are Added to the Network According to Their Statistical
Significance

The solid green curve represents common DNA-binding domains; the
black curve, TFs originating from WGD; and the red curve, TFs that
have a curated protein–protein interaction in the BioGrid database
(http://www.thebiogrid.org). The dotted lines represent the expected
frequencies under random addition of bi-fan arrays.

Found at doi:10.1371/journal.pcbi.0030198.sg001 (22 KB EPS).

Figure S2. Frequency of Three-Node Bi-Fan Cliques Containing a
Pair of WGD Duplicates as Three-Node Cliques Are Formed by
Addition of Edges to the Network

Found at doi:10.1371/journal.pcbi.0030198.sg002 (18 KB EPS).

Figure S3. Likelihood Ratio of Regulator–Regulator Interactions as a
Function of the Number of Shared Targets of a Pair of Transcription
Regulators

Found at doi:10.1371/journal.pcbi.0030198.sg003 (9 KB EPS).

Figure S4. Likelihood Ratio of Regulator–Regulator Interactions as a
Function of the Sum of the Out-Degrees of the Pair of Transcription
Regulators

Found at doi:10.1371/journal.pcbi.0030198.sg004 (11 KB EPS).

Table S1. The Number of Proteins from Major Families of TF within
the Yeast Proteome

Found at doi:10.1371/journal.pcbi.0030198.st001 (29 KB DOC).

Table S2. Properties of TFs Originating fromWGD in the Ancestor of
S. cerevisiae
The p-values represent the probability of recovering more than the
observed number of targets from a randomized replicate of the
network.

Found at doi:10.1371/journal.pcbi.0030198.st002 (46 KB DOC).

Table S3. Fates of Duplicate TFs

The columns represent, from left to right: bi-fan arrays participated
in by each TF, the number of bi-fan arrays that are shared by the pair
of TFs, the modules each TF is assigned to by the network clustering
algorithm, and the sensitivity of the modularity parameter to deletion
of each TF (DQ). The duplicate marked in bold is the putative
orthologue (i.e., retains the majority of the ancestral functions).

Found at doi:10.1371/journal.pcbi.0030198.st003 (62 KB DOC).

Text S1. Supplementary Material

Found at doi:10.1371/journal.pcbi.0030198.sd001 (51 KB DOC).

Figure 8. Histogram Representing Bootstrap-Estimated p-Values for Bi-

Fan Array

doi:10.1371/journal.pcbi.0030198.g008
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