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Abstract

We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs.
We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical
areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor,
limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide
the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital
groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential
roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for
decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in
integrating affective and rational information into a common framework.
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Introduction

The advent and application of modern anatomical tract tracing

methods has led to extensive mapping of connections between

architectonically defined areas of the macaque brain, resulting in

the generation of a massive amount of information on connectiv-

ity. Given the complexity of the cortex, however, this information

is often overwhelming, providing little insight in its complete detail

[1]. This raises the question of whether or not there is any

underlying structure in the connectivity that can be extracted by

the appropriate neuroinformatics tools. Several groups have

pursued this question, compiling a database of connectivity and

examining the statistical organization of brain networks, focusing

mostly on the organization of visual areas but also examining other

areas of the cortex [2–7]. These analyses have identified patterns

of global organization in sensory networks [4] as well as found

relations between clusters generated with anatomical and

physiological techniques [2].

In this study we focused on frontal networks, which are often

associated with reward and decision making processes. A wealth of

anatomical information is available about these networks, and

insight into the functional role of particular brain areas or clusters

of areas can be gained by understanding their dominant

anatomical inputs [8]. Thus we examined the clustering of areas

in the lateral, orbital and medial sectors of the frontal lobe, based

upon their inputs. We applied statistical hierarchical clustering

algorithms, based upon a branching Gaussian diffusion process, to

characterize these clusters. These tools have seen a long

development in the study of phylogenetic relationships between

species based upon measures of continuous traits [9–13], but have

not previously, to our knowledge, been applied to anatomy data.

This approach allowed us to define a statistically significant

hierarchically organized set of clusters. Based upon this hierar-

chical organization, we divided the frontal areas into 5 groups, and

examined the dominant inputs to each group.

Results

We began by accumulating a connectivity matrix for the frontal

cortex, including inputs from as many cortical and limbic areas as

possible. The frontal areas modeled included lateral frontal areas

rostral to the arcuate sulcus, medial cortical areas from 23 forward,

not including primary, lateral or medial premotor motor areas,

and the entire orbital cortex and the adjacent insular cortex. The

insular cortex was included due to its apparent functional role in

decision making, likely mediated by its interoceptive [14] and

chemosensory anatomical inputs.

The frontal areas not only have dense interconnectivity, but

they also receive information from every sensory modality

including multisensory areas of the temporal lobe, as well as

limbic and motor structures (Figure 1). The rich input and dense

interconnectivity gives these areas the signals they need to carry

out computation in support of decision making within any sensory

modality, combining both interoceptive and limbic information,

and the motor connections allow the expression of theses decision

making tasks in their ultimate goal, action.

Statistics of Interconnectivity
We began by examining descriptive statistics of the connectivity.

Although we mostly consider analyses based on inputs to each

area, here we briefly analyze some statistics of the outputs of the

areas. We found that, considering only the intermediate and
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strong connections, each frontal area sends outputs to an average

of 8.6 other frontal areas. There was, however, a fairly broad

distribution of numbers of outputs (Figure 2A). Although their

appeared to be a bi-modal distribution of connectivity strengths,

we did not find that it was related to any particular cluster of areas.

Specifically, foreshadowing some of our later results (see below),

we carried out an ANOVA analysis to see if clusters of areas

tended to have more outputs. Thus, we considered clusters of

dorsal medial (dmPFC), dorsal lateral (dlPFC), ventral medial

(vmPFC), ventral lateral (vlPFC) and caudal orbital (coPFC) areas.

Although we found that on average they tended to send more or

less outputs to other frontal areas (9.0, 9.2, 8.9, 6.7 and 9.4

respectively), these differences were not statistically significant in a

one-way ANOVA (p = 0.7503, main effect of cluster id, type III

sum-of-squares to control for unequal data at each factor level). It

is interesting to note, however, that areas 10d, 46v, 46d, 9m and

9l, which were spread across multiple clusters, but are closely

positioned on the cortical surface, all were highly interconnected

(i.e. 12 or 13 connections).

Given that each area connects to about 9 other areas with an

intermediate or strong connection, the number of areas n to which

a given input will flow is given by n = 9m, where m is the number of

steps. Given this, input information from sensory, motor and

limbic areas can reach everywhere within the frontal network (25

areas) within 2 steps (Figure 2B). Visual input appears to reach the

fewest areas in a single step. This is due to the fact that the areas

that receive intermediate and strong visual input (areas 12l and 45)

both have relatively few reported connections. This analysis also

predicts that there should be a temporal order to the flow of

information within frontal areas. Specifically, areas that directly

receive information from a specific modality, for example

gustatory information in caudal orbital prefrontal cortex, should

have responses to this type of stimulus before other areas.

We also found that connectivity within frontal cortex tended to

be dominated by anatomically local interactions, where neighbors

were defined as the spatial neighbors in our prefrontal map. Thus,

each area was directly connected with 94% of its direct (first

degree) neighbors, but only 57% of its neighbor’s neighbors (not

including its direct neighbors) and 32% and 19% of its third and

fourth degree neighbors. (Incidentally, beyond 4 degrees there

were no additional neighbors.)

Clustering of Areas Based Upon Inputs
We next examined the hierarchical clustering of areas. This

analysis clusters together areas that have similar inputs. A major

goal of our analyses was to show that we can not only identify

clusters, but that these clusters are statistically reliable, and reflect

an underlying clustered organization of the connectivity. To

achieve this we used a clustering algorithm which allowed us to

measure how well each tree modeled the actual data. The metric

of fit was the log-likelihood, which is similar to the R2, or more

specifically the residual sum of squares, in regression. By

comparing the distribution of this statistic for different trees, we

could find the best tree and see if certain trees fit the data

significantly better than other trees.

Although there are techniques for generating plausible trees,

there is no direct way to guarantee that one has the single best tree

for a particular dataset. Thus, we generated a set of 1001

candidate trees (see Methods) and assessed their fit to the data. We

sorted the trees based upon their fit (the log-likelihood), and

examined the fit of the best and worst of our candidate trees

(Figure 3). The distribution of the likelihood for the best and worst

trees that we identified showed overlap (Figure 3), but the best tree

(henceforth the ML tree) was clearly superior to the worst tree in

our candidate set. Next, we wanted to see whether or not the ML

tree captured a statistically significant portion of the variance in

our data. To do this, we compared the ML tree to a random tree

generated by scrambling the leaves on the ML tree (Figure 3;

Random leaves). This tree fit the data significantly worse than our

ML tree, or any of our candidate trees. Thus, we were able to

identify a single tree with the best fit to the data (Figure 4A), and

trees generated according to the null hypothesis that there was no

hierarchical structure in the connectivity fit the data significantly

worse.

The ML tree shows us which single tree fit the data best,

however, it does not tell us how well each of the individual clusters

in the tree were supported by the data. To estimate this, we fit a

consensus tree to the 50 trees with the highest likelihood, from our

set of candidate trees. The consensus tree contains the clusters

which occur most commonly among the 50 trees we used as input

and also tells us how often those clusters occurred. Thus, the

consensus tree provides insight into how robust the clusters were in

the ML tree. The more often a particular cluster occurs in the 50

best trees, the better supported that cluster is by the data. It is also

possible for the consensus tree to be very different from the ML

tree, in which case the entire ML tree would be poorly supported

by the data.

We found that the consensus tree (Figure 4B) was highly similar

to the ML tree (Figure 4A), and most of the clusters in the ML tree

occurred often in the consensus tree. In fact, all but one of the

major clusters were identical, showing that the trees that fit the

data well shared structure with the ML tree. The exception was

areas 10v and 10d, which clustered with dlPFC in the consensus

tree, but with vmPFC in the ML tree. The cluster that occurred in

the ML tree, however, occurred almost as often as the cluster

which was found in the consensus tree (10v/10d/32; 15 times).

Thus, it was almost as common as the most common cluster,

which put area 32 by itself, and clustered 10v/d with dlPFC 17

times. Interestingly, areas 10v/d are also at the spatial border

between the two groups to which they commonly cluster, and they

may represent an interface between these two clusters. Addition-

Author Summary

The anatomical input to a cortical area defines, to a large
extent, the functions that the area can perform. For
example, if an area has no visual inputs, it cannot carry out
computations on visual information. Therefore, under-
standing the inputs to a patch of cortex can provide
fundamental insight into the function of the area.
Anatomical tract tracing studies in macaque monkeys
have defined much of the connectivity between areas of
the macaque brain. We compiled the information on the
anatomical inputs to 25 cytoarchitectonically defined
frontal cortical areas. In its raw form, this connectivity is
immensely complex, and the dominant inputs to each area
cannot be clearly seen. To reduce the complexity, we
carried out hierarchical cluster analysis on the areas based
upon their inputs. We found a statistically robust
organization of the areas. Identified clusters corresponded
to anatomically contiguous groups, including orbital,
ventral-medial, dorsal-medial, ventral-lateral, and dorsal-
lateral areas. Using these groups, we were able to clearly
define the dominant inputs to each cluster. We found that
ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral,
and caudal-orbital groups were defined by exterosensory,
limbic, motor, exterosensory, and chemosensory inputs,
respectively. These inputs likely drive the physiological
responses found in each area.

Statistical Neuroanatomy
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ally, although the cluster defining areas 12l, 45 and 46v is attached

directly to the cluster of the insula, 12o and 13 in the ML tree, and

attached above the other groups in the consensus tree, the ML

algorithm assumes the trees are unrooted, so these two

architectures are equivalent with respect to the likelihood values,

i.e. these trees have the same fit to the data. Also, the particular

cluster containing all of these groups, as present in the ML tree,

occurred 9 times in the best 50 trees. Additionally, we

quantitatively compared the ML and consensus trees, by carrying

out our bootstrap analysis, and comparing the difference in the

Figure 1. Connectivity diagram showing interconnections of frontal reward and decision-making networks with sensory, limbic,
and motor systems. In this diagram, for clarity, only intermediate and strong projections to the frontal cortex are shown.
doi:10.1371/journal.pcbi.1000050.g001

Figure 2. Connectivity of frontal areas. (A) Histogram showing count of areas with projections to the indicated number of areas. (B) Fraction of
frontal areas that receive the signal from each modality as a function of the number of connectivity steps within frontal cortex. 0 indicates the areas
which receive a direct projection from the indicated modality, and 1 indicates the fraction of areas that would receive the signal after a single step
within frontal cortex. Mot, motor; Amy, amygdala; Hip, hippocampus; Vis, visual; SS, somatosensory; G/O, gustatory/olfactory; MS, multisensory; Aud,
auditory.
doi:10.1371/journal.pcbi.1000050.g002
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distribution of the likelihoods for the ML tree and the consensus

tree. We found that these distributions were statistically indistin-

guishable (p.0.05, K-S test). Thus, the ML tree not only fits the

data best, but its clusters are also common in the best 50 trees.

This also suggests that, if there is a tree that fits the data better

than the ML tree, its structure would likely not differ much from

the ML tree.

Tree Fit to Binary Data
While the matrix of weighted connectivity data contains the

most information, it is always difficult to accurately quantify

anatomical connectivity data. Therefore, it is also interesting to

examine clustering of areas based upon present/absent connec-

tions. To carry out this analysis we first converted all the data in

the matrix to 0’s and 1’s by thresholding connections which were

stronger than week (.33) to be a 1, and everything else (0–33) a

zero. We then subjected the data to the same clustering analysis

used to generate the tree fit to the weighted data. We identified the

tree which fit the binary data best (Figure 5A). This tree was highly

similar to the tree fit to the weighted data. In fact, the main clusters

identified in the tree fit to the full data were all the same, although

they were organized differently at higher levels of the tree. To see

whether or not this tree differed statistically from the tree fit to the

weighted data, we compared the fit of the binary tree to the fit of

the weighted tree on the weighted data. We found that although

the fits were similar (Figure 5B), they were significantly different

(K-S test, p,0.01). Thus, major clusters in the data were the same

whether we analyzed the weighted data or the binary data, but the

organization of these clusters at higher levels resulted in

significantly different fits to the weighted data.

Dominant Inputs to Each Cluster
The hierarchical cluster analysis does not suggest that there are

a specific number of clusters in the data. In fact, the hierarchical

structure does not define a specific number of clusters, but rather a

hierarchical relationship among sets of areas. Defining the number

of clusters in a dataset is a very difficult problem, and it is not clear

that it is meaningful in the situation we are studying here. We can,

however, examine the dominant inputs to hierarchically related

sets of areas, to gain insight into which variables particular sets of

areas are processing. Thus, we have divided the major clusters in

the ML tree into 5 groups, which we have labeled coPFC (caudal

orbital), vlPFC (ventral-lateral), dlPFC (dorsal-lateral), dmPFC

(dorsal-medial) and vmPFC (ventral-medial). These groups were

found in both the ML tree and the binary tree. Interestingly, these

areas correspond to mostly anatomically contiguous areas, except

areas 23a/b which cluster with dlPFC, although they cluster as

their own group within this cluster. Using these clusters we

calculated the inputs from sets of afferent areas grouped together

by functional significance. Ideally, this analysis would be based

upon the total number of neurons from each group of afferent

areas that projected into a cluster. However, this information is not

Figure 3. Log likelihood of trees. Distribution of log-likelihood values from 100 bootstrap datasets for most-likely tree, least most-likely (1001st)
tree, and a random tree, generated by shuffling the leaves of the most likely tree.
doi:10.1371/journal.pcbi.1000050.g003

Figure 4. Trees fit to the data. (A) Most likely (ML) tree (highest likelihood), generated from boot-strap analysis. Colors indicate clusters into which
we split the data for further analysis. (B) Consensus tree, generated from the 50 top most likely trees. Numbers at each branch point indicated how
many times each cluster occurred in the 50 most likely trees. The detached cluster below the tree (10v,10d,32), which was part of ML tree, was not
part of the consensus tree, although it occurred 15 times.
doi:10.1371/journal.pcbi.1000050.g004
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consistently and precisely available. Therefore, we carried out the

analysis using the sum, the max and the average across the inputs

from each set of afferent areas. Results for the sum and the max

were very similar, so only the results for the sum and the average

are shown.

Using the average, we found that the inputs to each cluster from

other frontal areas were dominated by the other areas within the

cluster (Figure 6B). This is consistent with the fact that connectivity

tends to be local as discussed above, and each cluster is composed

of a local group. The extrinsic inputs were also unique to each

cluster (Figure 6C), as is necessarily the case because the algorithm

separated the areas into clusters based upon their inputs.

Generally, coPFC was defined by chemosensory (gustatory/

olfactory) and interoceptive inputs, although it receives some

inputs from each of the groups, as indicated by its relatively less

peaked distribution of inputs. The vlPFC and dlPFC were both

defined by extero-sensory inputs (visual/somatosensory/auditory

and multisensory). The sensory inputs to the vlPFC and dlPFC,

however, tend to originate in different parts of the posterior brain.

Specifically, the dlPFC receives inputs from dorsal visual and

auditory areas [15–17], and the vlPFC receive inputs from ventral

visual and auditory areas [15,16,18]. Physiologically, however,

these signals appear to be integrated at the level of the single

neuron [19]. The dmPFC was defined by its motor input, and

vmPFC was defined by its limbic inputs (hippocampus and

amygdala). Thus, each cluster of areas had a unique anatomical

fingerprint.

When the analysis was based upon the sum (Figure 6B and 6C,

dashed lines) the results were generally similar to the results

obtained with the average, except in the case of the extrinsic inputs

to the coPFC and the intrinsic inputs to the dmPFC. When the

sum of the inputs was used, the coPFC had more limbic and

sensory inputs; in general the coPFC always had the most diverse

set of inputs of any of the clusters. Although the strongest inputs to

the dmPFC were still from dmPFC, this effect was smaller, and

inputs from dlPFC and vmPFC, both of which border dmPFC

were also strong.

Of course there is more detail in the connectivity of the areas

than what is represented in the clusters we chose as illustrative. We

could consider the distribution of inputs at finer levels of the

hierarchy. However, the clusters we chose do represent a

statistically robust characterization of the inputs, at a particular

level of clustering, and therefore it represents a justified

simplification. This connectivity profile is summarized in Figure 7

where it can be seen that the motor inputs to the dmPFC and the

chemosensory inputs to the coPFC areas follow the local

connectivity rule because the main inputs to these areas are from

adjacent areas.

Discussion

We carried out statistical analyses of the connectivity data for a

set of 25 prefrontal cortical areas. Our analyses identified several

salient features of the organization of connectivity. First, we found

that signals could propagate throughout the frontal cortex in just 2

steps. This was due to the fact that each frontal cortical area sent

projections to almost 9 other areas, on average. Furthermore,

connections tended to be predominantly local, with areas

connected to 94% of their spatial neighbors. Thus, there tends

to be a lot of local connectivity in frontal cortex.

Figure 5. Fit of binary tree. (A) Tree which best fit the binary data. (B) Comparison of fit of binary tree and tree fit to weighted data, on the
weighted dataset.
doi:10.1371/journal.pcbi.1000050.g005
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The main goal of our study was to identify the dominant

connections to the frontal cortical areas, in an effort to better

understand the function of each area. Ultimately, the computa-

tions which can be carried out by each area are limited by the

inputs to the area, and as such, understanding the inputs can give

insight into what the computations might be. We carried out

maximum likelihood hierarchical cluster analysis of the afferent

inputs of the frontal cortex, and found trees which provided a

concise description of the organization of the frontal cortical areas.

This analysis identified 5 groups of areas, each of which was

anatomically contiguous, and each of which had a unique set of

inputs. Because sets of clustered areas were anatomically

contiguous, we treated them each as a single cluster for the

analyses which examined the dominant inputs.

We also found that trees fit to binary data were similar, although

statistically distinguishable, from trees fit to weighted data.

Specifically, the membership at the level of clusters was similar,

whereas the arrangement of these clusters was different. At a

formal level, this occurs because the relative distances between

areas are the same within the clusters when computed with

weighted or binary data, whereas they are different between

clusters. This likely comes about because of the diverse signals

being processed in prefrontal cortex, and the large number of

areas (25) we were considering. As shown in the results, each

cluster of areas is defined by a dominant set of inputs (i.e. strong

inputs). The dominant inputs to each cluster come from different

modalities. For example, while dmPFC receives a strong motor

input, there is very little motor input to vmPFC or coPFC. Because

of this, converting the weighted data to binary data does not have

a large influence in the cluster membership. Furthermore, the fact

that the cluster analysis is similar for binary and weighted data,

suggests that the cluster membership is driven by these strong

connections. The weak connections, on the other hand, are less

important for defining the clusters, but perhaps more important

for defining the organization at higher levels. While this holds in

prefrontal cortex, it will not necessarily hold in other systems,

where graded connectivity is more relevant.

Functional Considerations
Given that clusters of areas are defined by a dominant set of

anatomical inputs, it is interesting to try to examine how these

inputs can further our understanding of the function of each area.

Broadly, we can consider a gradient of function starting from

coPFC and vmPFC to the more differentiated areas, dlPFC and

vlPFC. Evidence from several approaches has implicated the

orbital and medial areas in decision making when emotion,

primary rewards or conditioned reinforcers, all of which have

affective significance, are involved [20–28]. Given our analyses,

this is likely due to the representation within these areas of primary

rewards and drives, brought in via the anatomical projections

which bring chemosensory and interoceptive information into the

coPFC, and the emotional aspects of stimuli, via the limbic

projections to the vmPFC. The limbic inputs may represent

learned associations between primary rewards and sensory stimuli

on a longer time-scale [29], perhaps even innate associations.

Lesions in either structure would lead to deficits in decision

Figure 6. Profile of inputs characterizing each cluster of areas. (A) Clusters. (B) Intrinsic, frontal inputs. (C) Extrinsic inputs. All inputs were
normalized to sum to 1. Thus, the line indicates the proportion of inputs coming from each modality.
doi:10.1371/journal.pcbi.1000050.g006
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making because the affective information would not be available to

the rest of the frontal network, similar to the effect of destroying

early visual cortex on visual perception.

The role of the coPFC and the vmPFC in decision making

motivated by affect is also consistent with the fact that the vmPFC

provides the primary cortical input, along with some contribution

from the coPFC, to the hypothalamus, a structure with obvious

importance in emotions [30,31]. The vmPFC and the coPFC also

provide significant input to neuromodulatory systems including

projections to the cholinergic nucleus which projects back to the

cortex (CH4) [32,33] as well as the locus coeruleus which provides

the norepinephrine input to the cortex [34]. The vmPFC and

coPFC do not, however, appear to project to the dopamine

neurons in the macaque [35], and whether or not they project to

the serotonin neurons in the raphé nuclei is not well known [36].

Thus, two of the neuromodulatory systems which are important in

decision making derive their cortical inputs from the coPFC and

the vmPFC.

In contrast to the co/vmPFC the vlPFC and the dlPFC likely

play the dominant role in integrating the affective information

generated in the co/vmPFC networks with rational sensory

information generated in parietal and temporal sensory networks

[37], which are the main inputs to the vl/dlPFC from outside the

frontal networks. The rational information is important when

decisions have to be based upon the statistics of sensory stimuli,

where affective information plays a limited role [38–40]. This

would be important, for example, when one was trying to resolve a

road sign in a snow storm using the noisy visual input. The result

of the integration of affective and rational information in lateral

frontal cortex is the generation of a distribution over possible

actions [41], with each action weighted by its value or one’s belief

that it is correct, incorporating both the rational and the emotional

information. Thus, lateral frontal cortex carries out inference

across multiple information sources, for action.

Single cell neurophysiology and fMRI have implicated the

dmPFC in various aspects of reward guided action selection [42–

46] and action conflict monitoring [47,48]. This is consistent with

our data showing that the dmPFC, like other frontal areas, has

strong connection with its neighbors, which are the vmPFC and

motor areas. The dmPFC areas are also interesting in that they

have direct connections to the spinal cord and sub-cortical

oculomotor areas [49,50] giving them direct control over action.

Thus, one would expect a combination of motor and affective

responses. However, modulation of motor responses by expected

Figure 7. Summary of clusters of prefrontal areas and their dominant inputs.
doi:10.1371/journal.pcbi.1000050.g007
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reward have been found throughout the brain [51–57], making

the unique role of the dmPFC unclear. Recently, interesting lesion

data has suggested a role of the anterior cingulate portion of the

dmPFC in guiding actions based upon the history of reinforcement

[46], as well as mediating action avoidance based upon fearful

stimuli [28], which is generally consistent with the physiology.

Although it seems clear that the dmPFC plays some sort of role in

integrating action and reward, the specific role is not yet clear.

Conclusion
We found a statistically significant hierarchical organization of

clusters in the anatomical inputs to frontal cortex. Based upon this

organization, we examined the dominant inputs to each of 5

clusters. We found that the inputs to the areas within each cluster,

from other frontal areas, tended to be mostly from other areas

within the cluster. Furthermore, we found that each cluster had a

distinctive set of inputs from outside the frontal network.

Specifically, vlPFC and dlPFC were dominated by sensory inputs,

although from temporal and parietal cortex, respectively. The

vmPFC was dominated by limbic inputs, and dmPFC was

dominated by motor inputs. The inputs to coPFC tended to be

the most heterogeneous, but considering the average strength of

inputs from other areas, coPFC had a strong gustatory and

olfactory input. Thus, we have used the cluster analysis to define

statistically robust groups of areas in prefrontal cortex, and we

have shown that each set of areas has a dominant set of anatomical

inputs, which likely drives the functional role of that area.

Methods

Compilation of Connectivity Database
The matrix of connections was compiled primarily through a

direct search of the primary literature on anatomical tract-tracing

studies (see Text S1) and consultation of the CoCoMac database.

We focused on data using modern methods, most of which has

been published since 1980. Injections were only used to define

connectivity if they remained entirely within a single cyto-

architecturally defined area. Most of the data comes from

retrograde tracers injected into frontal cortical areas. Whenever

possible, the data in the matrix was coded with respect to the

strength of the connection, as this was often available. Different

studies divide the connections using more or less precision. We

have attempted to retain the amount of precision reported in the

original manuscript wherever possible, and recoded the informa-

tion into a scale of 0–100. Thus, connections described as absent

(0), weak (33), moderate (67) or strong (100) were coded

accordingly. In some cases in which specific strengths were not

given, we examined the published figures. In our analyses we

compare the results using both weighted connections, and

connections coded as only present or absent. Our main

conclusions are consistent with either perspective. Often a

particular connection was reported in several studies or with

multiple injections. Broadly speaking, most studies were in

agreement. We also focused on inputs to, as opposed to outputs

of, the frontal cortical areas, as these have been studied much

more extensively. In many cases in which it has been examined

connections are bi-directional. However, this is not always true.

The architectonic subdivisions we used were based mostly on

the map used by Barbas and Pandya [58], although we

distinguished between a lateral and orbital 12, as well as a dorsal

and ventral 10, a lateral and orbital 14, and a ventral and dorsal

46 as was done in some studies [59]. Thus, the parcellation scheme

we have used is somewhat gross, but it allowed us to integrate data

across studies consistently.

Fitting of Tree Models
We fit maximum likelihood (ML) trees [9,10,12,13] to the

distances between the afferents to each frontal area we considered.

These trees are based upon a branching diffusion process, and

they model the distance between a pair of nodes using a factored

multivariate Gaussian distribution, in which the variances are used

as estimates of the distances. The distances used were the sum of

the squared differences in inputs, calculated as:

d2
i,j~

XN

k~1

C k,ið Þ{C k,jð Þð Þ2 , ð1Þ

where N is the total number of input areas we considered (68

which had non-zero inputs to at least one of the areas), and C(i,j) is

the projection from area i to area j, (i.e. neurons in area i send

axons to area j). We considered the structure of 25 frontal areas, so

we calculated a 25625 symmetric distance matrix, with zeros

along the diagonal.

The ML trees allow us to do two things. First, estimate the

length of individual branches, which, for the present purposes

were of secondary interest, and second, estimate the likelihood of

the data, given the tree structure and the branch lengths. We

maximized the likelihood of the data, for a given tree T, by

changing the edge lengths l. Calculation of the likelihood was done

using the ‘‘pruning’’ algorithm of Felsenstein [9,10], and

optimization of the edge lengths is carried out with a combination

of pruning and ML estimation [9], which is formally an

expectation maximization (EM) algorithm. For details of the

procedure, readers are referred to the original papers. We provide

a sketch of the algorithm here. The PHYLIP package also contains

an implementation of this algorithm.

The pruning algorithm proceeds as follows. First, a pair of nodes

(l1 and l2) can be pruned by replacing the distance of the branch to

the pair’s parent (lp) by the following:

lp0~lpz
l1l2

l1zl2
: ð2Þ

The distance of the new primed node, p9, to the remaining leaves

and other primed interior nodes can then be calculated as

d2
p0,j~

l2

l1zl2
d2

1,jz
l1

l1zl2
d2

2,j{
l1l2

l1zl2
d2

1,2 : ð3Þ

This process can be repeated recursively, until the three branch

lengths of any interior node (i.e. parent and two children) of the

tree have been replaced by their primed lengths, by propagating

lengths in from the periphery. After this, one can estimate new

lengths for each of the primed branches of the interior node, using:

l̂l1~ d2
1,2zd2

1,3{d2
2,3

� �
= 2Nð Þ

l̂l2~ d2
2,3zd2

1,2{d2
1,3

� �
= 2Nð Þ

l̂l3~ d2
1,3zd2

2,3{d2
1,2

� �
= 2Nð Þ

ð4Þ

Equation 2 can then be used to re-estimate the actual interior

branch lengths. One then moves to a new node, and repeats this

process. After a few iterations through the tree, the estimates have

converged, and one can then calculate the likelihood of the tree.

The likelihood is calculated on the pruned nodes. Specifically,

after every pair of nodes is pruned, the likelihood of the node is
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given by

L djT ,lð Þ~2p{1=2 l1zl2ð Þ{N=2
exp

{d2
1,2

2 l1zl2ð Þ

 !
, ð5Þ

where primed values are used if it is an interior node. All of the

pruned nodes are independent, so the likelihood across pruned

nodes can be multiplied, to give the likelihood of the tree.

Once we found the edge lengths l which maximized the

likelihood for a given tree structure T, we had the maximum

likelihood estimate for the tree structure, subject to possible

problems with ending up in local minima. Initial values for the

lengths were taken from the agglomerative clustering algorithm.

Thus, they may have been close enough to the global ML value to

avoid local minima. The final likelihood was an estimate of how

well the tree structure, T, fit the data. In least-squares or linear

regression, for comparison, the likelihood is a function of the

unexplained variance. Thus, by comparing the likelihood of

different trees, we could see which tree structures better fit the

data.

The connections we analyzed, Cij, took on a discrete set of

values between 0 and 100, as noted above. The distribution of

connections was approximately exponential (Figure 8A), which

raises the question of whether or not the Gaussian likelihood

function we used was valid. First, it is important to point out that

sums of uncorrelated random variables, independent of their

individual distributions, tend to a Gaussian distribution, per the

central limit theorem [60]. This is the basis of many classical

statistical analyses, including the chi-square analyses of contin-

gency tables. Thus, because we were considering sums of distances

measured across many inputs, the true likelihood function would

tend to a Gaussian if we were considering an infinite number of

inputs areas [61]. However, we also examined whether or not our

Gaussian assumption was reasonable within our finite dataset,

given that we were only considering 68 input areas. By assumption

of our model, the distances given in Equation 1, divided by the

variance, should follow a Chi-square distribution, with 68 degrees

of freedom, as this is the distribution of the sum of the square of a

standard normal random variable. We examined the distribution

of d2
i,j values in our dataset by first bootstrap sampling the k

dimension, as we also did when finding candidate trees (see below)

1000 times, and computing d2
i,j for each bootstrap sampled dataset.

We then normalized these distributions for each connection i,j,

and computed the average distribution. It can be seen that the

data distribution is well fit by both a chi-square distribution

(p.0.05; Kolmogorov-Smirnov test), and the corresponding

Gaussian distribution, to which the chi-square distribution also

tends (Figure 8B). Thus, our distribution assumption is well

satisfied by our data.

Although the ML procedure gave us a tool for maximizing the

likelihood of a given tree structure, it did not tell us how to find the

optimal tree structure. In fact, with 25 leaves there are

4,861,946,401,452 different binary trees and 46,026,618 different

tree architectures if we ignore the assignment of areas to leaves.

Thus, we cannot search through the complete space of possible

trees and various heuristics have to be adopted. Our procedure

was as follows. First, we generated 1000 bootstrap datasets from

our original dataset, by sampling with replacement from

dimension k in Equation 1. Thus, each bootstrap dataset included

a resampled set of the inputs to each area. We then fit a tree to

each of these 1000 datasets, using the average linkage agglomer-

ative clustering algorithm in Matlab. We also added the tree

generated with the agglomerative clustering algorithm on the

original, unsampled dataset, to the 1000 bootstrap trees, resulting

in a set of 1001 trees. In pilot analyses we found the average

linkage algorithm gave reasonably robust and meaningful results,

and here we were only depending on it to generate a good set of

candidate trees. Interestingly, the tree fit to the un-sampled dataset

was ranked 49th in terms of likelihood when compared to the 1000

trees generated by the bootstrap analysis and thus the standard

agglomerative algorithm did not find the best tree on the full

dataset. We then searched through the 1001 trees to see if there

were any duplicates and found no duplicate trees. We also used

jack-knife resampling, in which we built 68 distance matrices by

excluding one of the inputs for each matrix. When we searched

through the jack-knife trees we found only 29 unique trees, with

the rest of the trees being duplicates. Because we wanted to start

with as rich a set of candidate trees as possible, we used the

bootstrap trees and not the jackknife trees.

To test the fit of each tree generated with our bootstrap analysis

we carried out a second stage bootstrap analysis. To do this we fit

each tree (T) generated in step 1 to 100 new bootstrap datasets,

and maximized the likelihood for each tree by adjusting the edge

lengths (l). This gave us a distribution of 100 likelihood values for

each of our 1001 bootstrap trees. We were then able to compare

the 1001 trees. As a null hypothesis, we also generated trees by

scrambling the leaves for a particular tree architecture, and

computing the likelihood in bootstrap samples.

We also fit consensus trees to subsets of the 1001 bootstrap

sampled trees. Consensus trees were fit with the Consense

program, which is part of the PHYLIP program for phylogenetic

Figure 8. Distribution of connections and distances. (A) Distribution of connection strengths in our dataset. (B) Distribution of distances.
doi:10.1371/journal.pcbi.1000050.g008
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inference. Consense searches through a set of trees and constructs

one tree which contains the most common clusters across the set.

We have used this program in the past to find consensus trees from

a set of trees fit to neural data [62].

Other clustering approaches to analyzing similar data have been

put forward [6]. Each approach is, however, appropriate for

different questions, and ours is most suited to answer the questions

we have set forth. Specifically, we were interested in clustering

defined in terms of inputs from outside the 25 areas we are

clustering, whereas previous approaches worked more specifically

with clustering based only upon connectivity within sets of areas.

Additionally, our approach allows us to do hypothesis testing, and

we have shown (Figure 8) that the distributional assumptions of

our model are met. Furthermore, our approach relies less on the

specific algorithm used to generate the trees, as we used an

agglomerative algorithm to generate a set of candidate trees, but

then found the best tree using the ML algorithm. We also show the

distribution over trees predicted by our dataset, using the

consensus analysis, which gives important information on how

well the specific tree that we show as the ML tree is supported by

the data. Thus, in many cases, and indeed in our case, there may

be many possible trees that are all well supported by the data (i.e.

have similar likelihood). Our analysis also shows individually

which clusters are best supported by the data, and how well they

are supported. Finally, previous authors have also used multi-

dimensional scaling (MDS) approaches on similar datasets [4].

These approaches may allow one to interpret the dimensions into

which the variables are projected. For example, one may find that

areas can be located on sensori-motor axes, where primary sensory

and motor areas lie at one end of the axes, and classically defined

association areas lie at another end. However, MDS forces one to

select a number of dimensions, usually 2, into which the data is

projected. This is a strong assumption, and it is difficult to check in

practice. Furthermore, visualization, which is a strength of 2-D

MDS, is difficult in 3-dimensions [63], and impossible beyond

that. The hierarchical clustering approach, on the other hand,

does not require one to assume a number of dimensions, or a

number of clusters. In practice, however, one may obtain

comparable results with MDS analyses. Specifically, one may find

that variables that are near each other in the MDS analysis form

clusters in the hierarchical cluster analysis. We prefer our

approach, however, as we were interested in finding clusters of

areas, and the Gaussian likelihood function allows us to do

hypothesis testing, as discussed above.

Supporting Information

Text S1 Supporting Information.

Found at: doi:10.1371/journal.pcbi.1000050.s001 (1.93 MB

DOC)
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