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Abstract

In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence,
metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However,
an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions
that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum
failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted
mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-
term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass
yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After
prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly,
the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these
results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to
be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally
observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence,
these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux
states, provided that the selective growth conditions favor yield optimization as the winning strategy.
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Introduction

The role of mathematical modeling in the study of microbial

physiology has increased considerably by the development of

genome-scale metabolic models [1,2]. For an increasing number of

microorganisms such a genome-scale metabolic model is available

(for review see [1]). These models can be used for a number of

purposes, and a large set of different methods, so-called constraint-

based modeling techniques, have been developed in the past years

to accommodate these goals [3]. Successful use of genome-scale

metabolic models have ranged from exploration of gene lethality

[4], definition of metabolic context for integrative bioinformatics

[5] and the study of pathway evolution [6], and for guidance in

metabolic engineering [7] as well as prediction of adaptive

evolution outcomes [8].

In many of these studies flux balance analysis (FBA) was used.

FBA uses optimization of an objective function to find a subset of

optimal states in the large solution space of possible states that is

shaped by mass balance and capacity constraints [3,9]. In a recent

study, different objective functions were tested to the extent that

they could predict actual flux states under different conditions

[10]. This study demonstrated that different objective functions

were needed to describe the flux states under different conditions.

Notably, under energy limitation, optimization of biomass yield

appeared to be the best objective function. This is in line with

earlier studies in which biomass formation was taken as objective

to predict functional states [11].

However, we have recently demonstrated that Lactobacillus

plantarum, a lactic acid bacterium that is found in nutrient-rich

niches such as decomposed plant material, does not conform to

this consensus [12]. Rather, even under energy-limited chemostat

conditions at relatively low growth rates (20% of maximal specific

growth rate), homolactic fermentation was still observed. Although

L. plantarum and most other lactic acid bacteria do not have a

functional TCA cycle and do not respire, they have an alternative

pathway that yields more ATP per glucose: mixed acid

fermentation (with acetate, ethanol and formate as main products).

FBA invariably predicted the mixed acid fermentation pathway

rather than homolactic fermentation, and hence predicted growth

rates were too high. Note that these are the conditions where

Schütz et al found good predictions with FBA for E. coli [10].

Clearly, this lactic acid bacterium is tuned to use glucose
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inefficiently, which we attributed to the evolutionary history of this

bacterium, being adapted to rich nutritional environments [12].

Moreover, many other microorganisms display inefficient (over-

flow) metabolism, especially under high-glucose conditions, but

even in glucose-limited chemostats above a certain critical dilution

rate, such as ethanol fermentation in Saccharomyces cerevisiae [13], or

acetate formation in Escherichia coli [14]. This behavior cannot be

predicted a priori by FBA; it can only be described when including

additional capacity constraints, e.g. on the oxidative phosphory-

lation pathways in the corresponding metabolic networks [15,16].

To fully appreciate these results, it is crucial to understand very

precisely what FBA assumes and what it predicts. Under many

conditions, especially in the laboratory and under adaptive

evolution protocols, growth rate is a good proxy for fitness. Thus,

an optimization with respect to growth rate seem an appropriate

modeling strategy, and that is what FBA does: it most often

optimizes the growth rate ([9], see Methods). However, genome-

scale metabolic models are stoichiometric models that can only

relate input rates and output rates [17]:

m~Y substrate
bio

:Vin,substrate ð1Þ

Where m is the specific growth rate (units h21), Vin,substrate is the

uptake rate of the growth substrate (units mmol h21 gDW21), and

Y is the yield of biomass with respect to the substrate (units

gDW mmol21). If in Eq 1 we want to predict the growth rate, we

have to specify the input rate. FBA simply finds the highest yield Y

such that the growth rate is maximal at the specified input rate. So,

even though a rate is maximized in FBA (m in Eq. 1), it is through

the yield Y that this is achieved. Indeed, maximizing yield or rate

using stoichiometric models is essentially the same, as illustrated in

Figure 1. This should make clear that, when applying growth rate

optimization in FBA to predict flux distributions, in practice the

underlying biological assumption is that metabolic efficiency (high

yield) is the strategy through which the organism reaches its

maximal growth rate.

There are potentially other strategies that lead to enhanced

fitness. These include a very fast (but metabolically inefficient)

consumption of substrates, closely related to high growth rates

[18]. An alternative is the production of toxic substances (toxins or

metabolic waste products such as ethanol or weak acids [19]),

which are often produced by low-yield (overflow) pathways. Thus,

both high growth rate and fast acidification of the medium, may

have been combined by lactic acid bacteria to colonize rich-

nutrient environments. Therefore, the validity of the assumptions

of FBA (with biomass yield as objective function) is strongly

organisms and condition specific [10,20].

In line with the above reasoning, we realized that even though

the behavior of L. plantarum cannot be predicted by FBA under the

Author Summary

Being able to predict the metabolic fluxes and growth rate
of a microorganism is an important topic in microbial
systems biology. One approach, constraint-based model-
ing, uses a reconstructed metabolic network and optimi-
zation techniques to make such predictions. Although
widely used, the success of this approach depends on a
number of important assumptions. First, it assumes that
evolutionary forces have shaped the metabolism towards
optimality of, in most cases, growth rate. Second, through
the nature of the modeling approach, it assumes that
microorganisms maximize the growth rate through
optimizing the yield on the growth substrate. Despite
successes of the approach in model organisms such as
Saccharomyces cerevisiae and Escherichia coli, we have
previously observed that the approach fails in Lactobacillus
plantarum, a lactic acid bacterium that clearly does not
optimize its yield on glucose but ‘‘wastes’’ glucose by
producing lactic acid. In the current study we provide
evidence that L. plantarum does optimize its yield when
grown under a poor carbon condition, i.e., when grown on
glycerol as its main carbon source. The study provides new
insight in when the application of in silico optimization
techniques can be expected to be predictive.

Figure 1. Principle of stoichiometric modeling and Flux Balance Analysis. (A) A stoichiometric network can be used, with FBA, for
optimization of maximal yield of biomass on a certain nutrient. (B) by providing an experimentally measured input rate (capacity constraint in
constraint-based modeling terms), FBA predicts a specific growth rate. The two situations are, however, exactly the same except for some scaling
factor (indicated in bold). In both cases, a flux distribution through the stoichiometric network will be found that maximized the yield of biomass on
the nutrient.
doi:10.1371/journal.pcbi.1000410.g001
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usual, sugar-rich conditions, we may be able to force L. plantarum to

choose a strategy of high yield by adapting it under poor nutrient

conditions. If so, FBA should become predictive. By serial dilution

of L. plantarum on a medium containing glycerol as main carbon

source, we selected strains that were able to grow an order of

magnitude faster than the wild type on glycerol. FBA analysis

proved to be able to predict the metabolic behavior of a selected

adapted strain as a function of the oxygen uptake rate. To gain a

more thorough insight into the characteristics of the observed

metabolic behavior, elementary flux mode analysis was applied

and it was shown that the organism was able to select the 3 optimal

flux modes out of almost 2700 possible modes to maximize the

ATP yield on the given substrates.

These results provide a thorough understanding of the

limitations to methods that predict flux states after adaptive

evolution based on FBA, but also provides handles (in the forms of

specific cultivation conditions) to overcome them.

Results/Discussion

Adaptation of L. plantarum to growth on glycerol
medium

Glycerol is a substrate that is not unknown to lactobacilli, but

often is co-fermented with a fermentable carbon source [21] or

undefined substrates present in complex media [22]. Growth of L.

plantarum with glycerol as main carbon source in chemically

defined medium has not been described, but our previously

developed genome-scale metabolic model predicted that growth

on such medium should be possible (using the Minimization of

Metabolic Adjustment (MoMA) algorithm. In this algorithm, the

state in the new situation (growth on glycerol) is sought that

minimizes the distance with the original state (growth on glucose),

thereby mimicking the immediate effect of a medium change [23],

results not shown). We tested growth under three different

conditions: anaerobic growth, aerobic growth, and respiratory

growth. Respiratory growth means that beside oxygen, the

medium is supplied with heme and menaquinone: this reconsti-

tutes a functional respiratory chain in which electrons donated to

NADH dehydrogenase result in proton translocation by a bd-

cytochrome oxidase [24].

When we tried to cultivate L. plantarum on glycerol medium, we

observed very slow growth under anaerobic conditions (OD600 of

0.1 after 48 h; growth rate too slow to be accurately measured).

Under aerobic or respiratory conditions, no growth was observed

at all. We attribute the failure to grow initially under aerobic

conditions to oxygen-related stress, the cost of which was

apparently higher than the potential benefit in terms of ATP

yield (we will come back to this later). By applying the widely-used

serial dilution protocol [25], we aimed at selecting mutant strains

that were able to grow faster and therefore would be able to take

over the population. Although we cannot rule out selective

pressure on other possible fitness attributes (e.g. during the

stationary phase and lag phase), growth rate is expected to be the

dominant fitness determinant under these conditions.

After two months and approximately 20 generations, the OD600

values increased substantially (from 0.1 at day 0 to 0.4, measured

after 48 h). At this point we tried to grow the adapted culture

again under respiratory conditions, and growth was now possible

and higher OD’s were reached (OD600 of 0.4 versus 0.8 for

anaerobic versus respiratory, respectively). Hence, from this point

on the adaptive evolution protocol was continued under

respiratory conditions. Figure 2 shows the final OD improvements

over time; growth rate increased during this period to a final

growth rate of 0.26 h21, which was more than a magnitude higher

Figure 2. Improvement of growth yield during the course of adaptive evolution, as a function of number of generations (main
figure) or time (insert). Closed circles represent the behaviour of the culture, the closed triangle shows the behaviour of the isolated strain
NZ1405. There is variability that seems related to the specific batch of medium, which is chemically defined but rather complex. Within one batch of
medium, the variability is indicated for strain NZ1405 (closed triangles, standard deviation of four replicates).
doi:10.1371/journal.pcbi.1000410.g002
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than the initial growth rate. After 150 days and approximately 500

generations, no further increase in final OD and growth rate was

observed. At this point single colonies were picked from the

adapted culture, and growth rate was assessed in the individual

strains. The variation in growth rate among different strains was

not different from that of a single one (data not shown). Moreover,

sequencing of the promoter region of the glpKDF-operon

(encoding the glycerol catabolic genes necessary for glycerol

usage) of six clones identified the same point mutation (results not

shown), indicating that the culture was homogeneous. We have

therefore picked one of these six colonies (designated NZ1405) for

further detailed physiological characterization. In Figure 2, the

final OD of the isolated strain NZ1405 is also plotted to show that

it behaved in line with the adapted culture.

Characterization of adapted strain NZ1405
We characterized growth and product formation in the original

shake-flask that was used for the adaptive evolution (Table 1).

However, to measure oxygen uptake rates accurately, NZ1405 was

also grown under controlled batch fermentation conditions. In the

shake flasks growth rates were slightly higher (0.2660.01 h21 and

0.2360.04 h21 for shake flask and fermentor, respectively). Based

on the fact that (i) the amounts of substrates consumed and

products formed per unit of biomass were very similar in both

settings, and (ii) the dissolved oxygen during the measurements in

the fermentor was above 20%, which is generally more than

enough for oxygen concentration not to be limiting for the oxygen

consumption rate, the oxygen uptake rate in the fermentor and the

shake flask should be very similar (see Table 1). Surprisingly,

despite aerobic conditions, lactate was still the main product

formed (90% of glycerol uptake), while acetate and minor amounts

of acetoin were also detected. Ethanol that was present in the

medium as solvent for menaquinone (see Methods) turned out to

be used as additional substrate, as was the citrate that is also

present in CDM. Amino acid uptake is detailed in Dataset S1.

Comparing experimental results with flux balance
analysis predictions

The endpoint of adaptive evolution as characterized above was

compared to optimal behavior predicted by the genome-scale

model under respiratory conditions. During the very first

simulations, however, we noticed that very high biomass yields

could be obtained, with concomitant production of only CO2 and

water as final products. The simulations implicated phosphoketo-

lase (PKL) in the reverse direction than usual, the usual direction

being cleavage of the xylulose 5-P as phosphoketolase is involved

in pentose catabolism in many lactic acid bacteria [26]. In a

detailed analysis provided in Text S1, it was shown in silico that

aerobically, glycerol can be completely converted to CO2 and

water, yielding as much as 3 moles of ATP per mole of glycerol by

substrate level phosphorylation alone. Clearly, the experimental

results do not comply with an active phosphoketolase cycle. The

observed behavior was therefore dismissed as an interesting future

target for perhaps synthetic biological improvements, and the

model was adjusted to prevent the phosphoketolase cycle from

running (see Table S1 for details of the genome-scale model

version 3.0 used in this study).

The complex medium that was used, created another problem

that needed to be solved: How to set reasonable constraints on the

many medium components present in the medium? When all

measured fluxes, including the amino acid fluxes, were set as

constraints and biomass yield was optimized, a growth rate of

0.324 h21 was found, which fits reasonably well with, but is clearly

higher than, the rate of 0.26 h21 found experimentally. There are

two possible reasons for the discrepancy. First, through the

adaptation, the (stoichiometric) efficiency of some metabolic

processes may have improved that have not been incorporated

in the model. These relate to possible changes in efficiency of

transport systems, to efficiencies in proton leakage and/or ATPase

stoichiometry (number of protons pumped per ATP molecule), or

to the assembly of biomass precursors into new cells (the growth-

Table 1. Amount of substrates consumed and products formed per gram biomass during mid-exponential growth in shake flask
or in controlled fermentor setting.

Uptake or production (mmol gDW21) Shake flask Fermentor Model constraints robustness analysis

Average 6 Stdev Average 6 Stdev LB UB

Growth rate (h21) 0.26 2 0.01 0.23 2 0.04 0 ‘

Glycerol 240.0 6 2.41 247.1 6 2.11 242.1a 238.0

citric acid 21.91 6 0.25 20.40 6 0.09 22.1 21.7

Lactate 33.5 6 1.40 30.7 6 0.89 0 ‘

Pyruvate 0.15 6 0.06 0.01 6 0.06 0 ‘

Formate 0 6 0 0 6 0 0 ‘

Acetate 5.83 6 0.51 4.76 6 0.78 2‘ ‘

Ethanol 24.27 6 0.53 25.35 6 1.22 2‘ ‘

Acetoin 0.74 6 0.02 1.14 6 0.10 0 ‘

Succinate 0 6 0 0 6 0 0 ‘

Oxygen ND 222.3 6 3.14 Robustness parameter

Data presented are yield data averaged over 2–4 independent experiments during growth between an OD600 of 0.2 and 0.7. Yield data are in mmol gDW21. Negative
values indicate uptake of the compound. The last two columns indicate the constraints used for the robustness analysis of Figure 3. Other constraints can be found in
Dataset S1.
ND not determined; LB lower bound; UB upper bound.
aPresented unit is in mmol gDW21 for comparison to measured fluxes. To get to flux constraints with unit mmol h21 gDW21 (as presented in Dataset S1) multiply with
the growth rate (0.26 h21).

doi:10.1371/journal.pcbi.1000410.t001
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related ATP coefficient). Improvements in these processes,

however, would lead to lower in silico growth rate predictions.

The second possibility is that the ATP requirement for

maintenance has changed. Based on the observation that

respiratory growth on glycerol was not possible for the wild type

(see above), we reasoned that the ATP maintenance under

respiratory conditions could be higher than the maintenance

measured previously [12] under anaerobic growth on glucose. An

ATP maintenance of 3.94 mmol h21 gDW21 was required to

obtain the observed growth rate of 0.26 h21 under experimentally

determined flux constraints. This maintenance coefficient is in the

same order as that measured for respiratory organisms, such as

5.87 mmol h21 gDW21 for E. coli [27]. With the higher

maintenance coefficient, we indeed predict with MoMA that wild

type (unadapted) L. plantarum cannot grow on glycerol (maximal

growth rate is zero, compared to 0.03 h21 at the original, lower,

maintenance coefficient).

Reassuring as this result may be, the main question is, whether

we can predict fluxes. Since we have so many input fluxes, the

issue is what the minimum set of input fluxes is that needs to be

fixed by experimental observations in order to prevent the system

from becoming unbounded. This issue has not been specifically

addressed before, as most studies have been performed on

organisms that grow on minimal salts media with one carbon

source [8,20]. In our case, however, 18 amino acids, oxygen,

glycerol, acetate, ethanol and citrate were present as substrates,

potentially influencing each other’s impact on optimal growth.

To tackle this problem, we first dismissed a major impact of

amino acid metabolism in the light of the smaller fluxes compared

to primary metabolism (Table 1 and Dataset S1, see also [12]).

Hence, the maximum uptake rate of amino acids was set by the

experimental data. To understand the impact and interdependen-

cies of the organic substrates and oxygen, we performed

elementary flux mode (EFM) analysis [28]. EFM analysis

calculates all possible pathways between defined sources and sinks

(called external metabolites) that are elementary, i.e. in which each

step in the pathway is essential [28]. EFM analysis was performed

for primary metabolism only, under the assumption that ATP

production by primary metabolism is determining growth yield

under these conditions. Thus, we assume that the improvement in

growth performance is caused by improvements in ATP

generation. This is by no means a generally valid assumption,

but reasonable in this particular case, as many biomass

components are taken up from the medium, and most of the

organic substrates are available for ATP generation rather than

biomass components.

We found 2669 EFMs and 531 different overall EFM

stoichiometries with net ATP production (see Text S2 for a

detailed analysis). Most modes required oxygen as a substrate,

which demonstrated the importance of oxygen uptake in ATP

production. However, there were also anaerobic modes that, if left

unconstraint, could yield unlimited amounts of ATP. Anaerobic

modes with either citrate or glycerol as sole substrates were found,

but not with ethanol or acetate as the only substrate. We therefore

concluded that it would be essential to constrain the input of

glycerol, citrate and oxygen in order to have bound the fluxes

through the metabolic network. The acetate and ethanol uptake

rates should be bounded by the constraints on these three fluxes.

Since most EFM’s were dependent on variable amounts of

oxygen we decided to fix the uptake rates of citrate and glycerol at

the measured values, leave the acetate and ethanol capacity

constraints unrestricted, and predict the growth behavior as a

function of the oxygen uptake rate (Figure 3). Flux variability

analysis was used to test the uniqueness of the product formation

predictions for each oxygen uptake rate. Product formation was

almost completely determined by the oxygen availability (i.e. no

flux variability was allowed in the optimal solution). At

unrestricted oxygen uptake rates, acetate would be the only end

product (result not shown).

Figure 3 shows that at the measured oxygen uptake rate of

5 mmol h21 gDW21, a good agreement between experimental

fluxes and model prediction was observed. Specifically, growth

rate, lactate, acetate and ethanol fluxes were close to the predicted

fluxes under maximization of the growth rate of FBA. It therefore

appears that the conditions under which L. plantarum was adapted,

promoted metabolic strategies with optimal yield, rendering FBA

predictive.

Initially, however, it was a surprise that FBA predicted lactate

formation as an optimal strategy, and not acetate (which at first

sight would yield more ATP). To understand this result from the

robustness analysis, we went back to the elementary flux modes.

We applied a constraint-based optimization on all 2669 EFMs to

ask which combination of EFMs would lead to the highest ATP

production yield, given the measured fluxes of oxygen, glycerol

and citrate as constraints (see methods). The analysis identified

three EFMs:

EFM2 flux 0:5ð Þ etohz3 adpz3 hz3 pizcit

~3 atpz3 h2oz2 aczsucc

EFM3 flux 5ð Þ etohzo2z3:5 adpz2:5 hz3:5 pi

~3:5 atpz4:5 h2o z ac

EFM174 flux 2:5ð Þ 3 adpzhz3 piz2 acz4 glyc

~2 etohz3 atpz5 h2oz4 lac-L

Thus, EFMs 2, 3 and 174 (numbered according to the table in

the Text S2 that provides all EFMs) are optimal for ATP yield.

Minimization and maximization of the flux through each EFM at

the maximal ATP production rate yielded ‘‘EFM variability’’ for

three more EFMs (EFMs 177, 178 and 179). The overall

stoichiometry of these modes, however, turned out to be linear

combinations of the modes 2, 3 and 174, thus providing no

different end products to produce maximal ATP production rates.

EFM2 uses the citrate, EFM3 the oxygen and EFM174 consumes

the glycerol. This analysis provides an explanation for the lactate

production being optimal under these conditions (found by FBA

and experimentally observed). When 1 mole of oxygen were

available, anaerobic conversion of glycerol into lactate (EFM174),

and conversion of the ethanol into acetate using the oxygen

(EFM3), yields more ATP than using the oxygen for the most

efficient glycerol conversion into acetate (EFM190: 1.5 o2+5 adp+4

h+5 pi+glyc = 5 atp+7 h2o+co2+ac). Please note that the fact that

lactate is predicted by FBA under respiratory growth is not in

contradiction with the inability of FBA to predict lactate under

anaerobic growth on glucose: the conditions are completely

different.

The anaerobic conversion of citrate and ethanol into acetate

and succinate (EFM2) was unexpected, since no succinate is being

formed experimentally. Rather, acetoin was formed, a well known

product from citrate metabolism implied in pH homeostasis [29].

There are, however, two anaerobic modes (EFM2258 and

EFM2383) that convert citrate into acetoin and acetate with a

slightly lower yield (2 atp per citrate compared to 3 atp for citrate

plus ethanol in EFM 2). Since in the optimization EFM2

contributes only 6% of the total ATP yield, the small difference

between EFM2 and EFM2258 or EFM2383 may have provided too

Predicting Adaptive Evolution in L. plantarum
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small a selection pressure to allow selection of a strain which

reprogrammed the network from acetoin to succinate production.

In summary, the constraint-based EFM analysis provided

valuable additional mechanistic insight in the many options that

the metabolic network had (as a function of the oxygen

consumption rate), and strikingly, the adapted strain selected out

of the 2669 possibilities the 3 EFMs that were (almost) optimal for

ATP production under oxygen uptake limitation. The use of

elementary flux modes to decipher the optimal use of multiple

nutrients is a new application of the EFM concept, underpinning

the optimality of the solution used by the adapted strain. Under

these relatively poor conditions, realizing an optimal yield appears

the best strategy to win the battle of fitness. However, this is

provided a restricted uptake of oxygen, and so one may argue that

yield maximization is still not predictive in our case, the optimum

being full oxidation to acetate. Indeed, the situation is analogous to

the suboptimal acetate production by E. coli grown on glucose

being predicted through a capacity constraint on oxygen uptake

[16]. For L. plantarum with predominantly anaerobic habitats, and

given the potential harm of oxygen metabolism, a limit in the

oxygen uptake rate should perhaps be expected. We feel therefore

that the match between optimality prediction (under this oxygen

limitation) and observed fluxes is striking and does strongly suggest

yield optimality under these conditions. In any case, yield

optimality was useful to interpret and predict the observed fluxes.

This study shows how rational design of the selection conditions

can be used to steer the strategy for fitness of an organism into a

desired direction. It appears, at first glance, that this conclusion was

reached before, especially by the studies of the Palsson group on E. coli

[8,20,30,31]. These studies demonstrated, however, that even though

in their experiments growth rate is always selected for, in silico

predicted maximal growth rates and corresponding optimal

consumption rates (in the form of the line of optimality, LO) do

not always fit the data. Although the authors discuss the observations,

they do not, however, provide an explanation when to expect a

deviation from optimality. The case of L. plantarum described in ref

[12] and in the current paper provides such an explanation by clearly

illustrating the essential difference between the objective of the cell

(fitness, here growth rate) and the strategy to reach it (one of which is

to maximize yield, the somewhat hidden assumption in FBA).

A clear understanding of the difference will be crucial in

appreciating the usefulness and limitations of optimization

techniques in systems and synthetic biology. For example, the

recently developed OptKnock strategy took the idea of being able

to predict adaptive evolution one step further by identifying

knockout targets that would result in the alignment of growth rate

Figure 3. Robustness analysis of in silico growth on glycerol as a function of the oxygen uptake rate and comparison with
experimental data (calculated from the data presented in Table 1). (A) Impact of oxygen uptake on optimal lactate (green), acetate (red) and
ethanol (black) fluxes. Dashed box indicate the oxygen consumption rate measured experimentally. Above and uptake rate of 13 mmol h21 gDW21

growth is no longer energy limited, resulting in variability in fluxes: the diverging lines indicate the maximum and minimum flux value at each oxygen
uptake rate. (B) Impact of oxygen uptake on the growth rate. (C) Experimentally derived fluxes are included for comparison.
doi:10.1371/journal.pcbi.1000410.g003
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and byproduct formation as optimization objective, thereby

forcing cells to increase fitness by increasing product formation

[32]. From the current study it is clear that this and other FBA-

based approaches will only be successful when maximizing growth

rate through optimal yield is the strategy used by the organisms in

the first place. Hence, in low-substrate fed-batch or chemostat

conditions this is more likely to work than in high-substrate batch

conditions (see also [10]); it is also more likely to work for poor

carbon sources such as glycerol or lactate, than it will be for sugars

such as glucose or maltose.

Methods

Strain and growth conditions
The bacterial strain used in this study was Lactobacillus plantarum

WCFS1. Cells were grown on Chemically Defined Medium

(CDM) as described previously [33], supplemented with 5 g/l of

the desired carbon source (glucose or glycerol). During the first two

months of this study the strain was grown under anaerobic

conditions at 37uC on CDM supplemented with 0.5 (m/v) %

glycerol. Full grown cultures were used to re-inoculate fresh media

(dilution 1:50). For respiratory growth, the culture was grown in

125 ml Erlenmeyer flasks containing 25 ml of CDM supplement-

ed with heme (3.07 mM, Sigma) and vitamin K12 (18 mM, Sigma,

dissolved in 10 ml ethanol) and incubated under aeration

(150 rpm) at 37uC. As the yield and growth rate increased the

amount of inoculum was changed to a dilution of 1:100. During

the adaptation process, cultures were regularly collected and

stored in 15% glycerol at 280uC. For preparation of Figure 2, the

glycerol stocks were revived on MRS medium, washed with CDM

containing glycerol, and cultured on CDM with glycerol. The

resultant overnight culture was used as inoculum to estimate

growth improvement (as OD600 reached in 24–48 hours).

At the end of the adaptation process, judged by no further growth

improvements, 96 single colony isolates were isolated from a CDM

agarose plate (CDM medium containing 1–1.5% Agar, LABM

Limited, Bury, UK) and grown overnight in a KC Junior, micro-

titer reader (Bio-Tek, Vermont) shaken with intermediate intensity

at 37uC. OD600 and growth rates were compared. Subsequently,

one isolate (NZ1405) was chosen for further characterization.

Physiological characterization of NZ1405
Strain NZ1405 was cultivated in Erlenmeyer shake flasks as

described above (4 independent experiments). At mid-log phase

(OD600 of 0.7), samples were collected for analysis of amino acids,

organic compounds and dry weight, as described previously [12].

To determine the oxygen consumption rate, NZ1405 was

cultivated in duplicate in a temperature - and pH-controlled

batch fermentor at 37uC, pH 5.5 (0.5 L volume in a 1 L

fermentor, Applikon, Schiedam, The Netherlands). The medium

was flushed with air (257 ml/min) at a stirring speed of 150 rpm.

The oxygen transfer rate (KLa) in this setting was determined

directly before inoculation of the fermentor by a switch to N2 gas

and back to air and recording the change in dissolved oxygen. The

determined value (11.460.4 h21) was used to calculate the oxygen

diffusion rate (which equals the oxygen consumption rate by the

cells at steady state) during growth:

Vdiffusion tð Þ~0:2094:KLa: 1{
DO tð Þ

DO100%

� �
ð2Þ

The average oxygen consumption rate during mid-exponential

growth (OD600 0.2–1) was used.

In silico computations
The previously developed genome-scale metabolic model of L.

plantarum WCFS1 was used, with minor modifications. Details of

the current model, version 3.0, is described in supporting Table

S1. All calculations were done with Simpheny software (Geno-

matica Inc, San Diego, USA), or with the COBRA Toolbox

described in [34]. For flux balance analysis, the optimization

problem is formulated as:

max Z

given :

S:v~0

biƒviƒci

Z~
P
k

nkvk

8>>><
>>>:

V vi[v

ð3Þ

with Z being the biomass equation, modeled as a sink of biomass

components fluxes vk with stoichiometric coefficients nk. Since

these stoichiometric coefficients have unit mmol gDW21, and all

fluxes v have unit mmol h21 gDW21, Z has unit h21 and

represent the specific growth rate. S represents the stoichiometry

matrix and v is the flux vector. The scalars bi and ci are the lower

and upper capacity constraints, respectively, for each flux vi.

The robustness analysis presented in Figure 2 was carried out by

varying the oxygen consumption rate between 0 and

15 mmol h21 gDW21, while fixing the amino acid, citrate and

glycerol consumption rates at their measured value (average6s-

tandard deviation, see also Table 1). Protons, water and CO2, as

well as acetate and ethanol were allowed to exchange freely,

whereas all other exchange fluxes were set at (b = 0, c = 99999), i.e.

the corresponding compounds could only be produced. At each

oxygen consumption rate, the growth rate was maximized

according to Eq 3. At the resultant maximal growth rate, the

exchange fluxes for lactate, glycerol, ethanol, acetate and citrate

were maximized and minimized to test for alternative optimal

solutions [35].

Elementary flux modes were calculated using Metatool 4.9 [36].

Primary metabolism, including respiration and proton-mediated

transport, was cut out of the large-scale metabolic network and the

proper internal and external metabolites were set as indicated in

the Metatool input file provided in Text S2. The constraint-based

EFM analysis was formulated as:

max Z

given :

Z~
P

i

ai
:natp,i

P
i

ai
:nglyc,i§{10

P
i

ai
:ncit,i§{0:5

P
i

ai
:nO2,i§{5

8>>>>>>>>><
>>>>>>>>>:

Here, ai is the flux going through EFMi, natp,i the yield of ATP of

EFMi (nglyc,i, ncit,i and nO2,i are defined accordingly for glycerol,

citrate and oxygen, respectively). The optimization procedure thus

provides the set of a’s that maximize the total ATP yield given a

set of capacity constraints on input fluxes (the summations). The
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optimizations were performed using glpk (http://www.gnu.org/

software/glpk/).

Supporting Information

Dataset S1 Model capacity constraints. This file contains amino

acid uptake rates and corresponding flux constraints used in the

model, and more details on model results.

Found at: doi:10.1371/journal.pcbi.1000410.s001 (0.24 MB

DOC)

Table S1 Model details. This file contains the abbreviations,

reactions and the gene-protein-reaction associations of L. plantarum

model v3 used in this study.

Found at: doi:10.1371/journal.pcbi.1000410.s002 (0.28 MB XLS)

Text S1 The phosphoketolase cycle. This file contains more

information on the phosphoketolase cycle that was discovered in

the network of L. plantarum.

Found at: doi:10.1371/journal.pcbi.1000410.s003 (1.60 MB

DOC)

Text S2 Elementary Flux Mode analysis. This file contains the

Metatool input file used for elementary flux mode analysis, and the

resulting EFMs.

Found at: doi:10.1371/journal.pcbi.1000410.s004 (0.66 MB

DOC)
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