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Abstract

Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet
to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of
this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less
susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR
expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication
due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that
productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy
of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions,
are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model
that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit
a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable
treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied
simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a
CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that
integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify
treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to
dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment
options remain limited.

Citation: Bagheri N, Shiina M, Lauffenburger DA, Korn WM (2011) A Dynamical Systems Model for Combinatorial Cancer Therapy Enhances Oncolytic Adenovirus
Efficacy by MEK-Inhibition. PLoS Comput Biol 7(2): e1001085. doi:10.1371/journal.pcbi.1001085

Editor: Christopher V. Rao, University of Illinois at Urbana-Champaign, United States of America

Received June 27, 2010; Accepted January 18, 2011; Published February 17, 2011

Copyright: � 2011 Bagheri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the following grants from the NIH: R01 CA118545, R01 CA095701, U54 CA11297, and U54-CA112967. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Michael.Korn@ucsf.edu

. These authors contributed equally to this work.

Introduction

Therapeutic options for most patients with locally advanced or

metastatic cancer are limited. Surgery is often not an option for

these patients because the cancer has diffusely spread, and

currently available non-surgical treatments for most solid malig-

nancies have insufficient impact on survival rates. Therefore, novel

treatment strategies that incorporate the molecular composition of

individual tumors are urgently needed. Conditionally replicating

oncolytic adenoviruses are designed to target and lyse cells with

specific aberrations, showing promise as a new non-surgical

treatment strategy [1,2]. The selective replication of viruses in

cancer cells leads to destruction of infected cells by virus-mediated

lysis. Consequently, the released viral progenies spread through

the tumor mass by infecting neighboring cancer cells, resulting in

self-perpetuating cycles of infection, replication, and oncolysis

[3,4]. As this approach relies on viral replication, the virus can,

theoretically, self-amplify and spread in the tumor from an initial

infection of only a few cells.

ONYX-015 is an oncolytic adenovirus that lacks the E1B-55K

gene product required for p53 degradation and therefore was

predicted to selectively replicate in tumor cells with inactive p53

pathways [5]. Later studies revealed that p53-independent effects

may function as regulators of virus replication supporting the

therapeutic application of ONYX-015 not only in p53-defficient

tumors, but also in tumors with wild-type p53 [6,7]. ONYX-015 has

been tested extensively; evidence for specific oncolysis was found in

several clinical trials and in various tumors types [8–11], including

recurrent head and neck [12], colorectal [13], ovarian [14], and

hepatobiliary [11] cancers. Although clear antitumor activity was

demonstrated using ONYX-015 in murine models of cancer, both

in vitro and in vivo, its clinical efficacy in human trials has failed to

fulfill the high expectations that were based on animal model

studies. A potential explanation for limited activity is reduced

expression of the main receptor for adenoviruses, CAR, which is

required for efficient virus entry into target cells. Reduced

expression of the CAR protein on the cancer cell surface is possibly

a result of the epithelial-mesenchymal transition [15].
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In previously published work, we explored the possibility of

pharmacologically up-regulating CAR in colon cancer cell lines

through inhibition of signal transduction pathways involved in its

repression. We were able to demonstrate that inhibition of MEK, as

well as TGFb, up-regulates CAR expression in vitro and results in

enhanced adenovirus entry into the cells [15,16]. Although

disruption of signaling through the RAF-MEK-ERK pathway

restores CAR expression, it potentially interferes with the

replication of ONYX-015 due to G1-phase cell cycle arrest, since

the virus has demonstrated sensitivity to the cell cycle phase of

infected cells [17,18]. Thus, optimization of this combination

treatment strategy is difficult since the effects of MEK inhibitors, as

well as the interaction of adenoviruses with target cells, are highly

complex, dynamic, and non-linear processes. Through mechanistic

modeling of cancer cells subject to MEK-inhibition and ONYX-015

infection, we seek to characterize and predict system dynamics in

order to improve the efficacy of oncolytic adenovirus cancer

treatment by manipulating the timing of MEK-inhibitor treatment

and oncolytic adenovirus infection. Through successful test of model

predictions, our goal is to elucidate in vitro strategies that could offer

practical and effective means for minimizing cancer growth in vivo.

Our studies provide a paradigm for the development of optimized

combination therapies for cancer through experimentally validated

mathematical modeling of non-intuitive behavior of cancer cells.

Results

In vitro quantification of CAR expression, cell
proliferation, infection, cell viability, and viral replication
time courses motivate model development

In order to generate sufficient experimental data quantifying the

mechanistic behavior critical to predicting nonlinear dynamics, we

systematically assessed CAR expression, cell proliferation, infec-

tion, cell viability, and viral replication in the presence and

absence of MEK inhibitors (namely, CI1040). In agreement with

our previously published work [16], we found that disrupting the

MAPK signaling pathway through pharmacological inhibition of

MEK nearly doubles the number of CAR molecules per cell

relative to the control (DMSO-treated) cells. The largest increase

in receptor levels occurred 2 days after CI1040 treatment initiation

(Figure 1a). Such restoration also presented a tradeoff: MEK-

inhibition caused G1-phase cell cycle arrest (Figure 1b and 1c).

Previous studies indicated that cell cycle arrest inhibits production

of new virus particles and virus replication [17]. We therefore

hypothesized that effective oncolytic adenovirus infection requires

pre-treatment of cells with MEK inhibitor for a sufficient amount

of time, providing increased receptor expression at the cell surface.

To allow the cell cycle to proceed, treatment should be followed by

removal of the inhibitor at the time of infection. Thus, we pre-

treated cells with either CI1040 or DMSO for 2 days prior to

infecting cells at multiplicities of infection (MOIs) of 0.1, 1, 2, 5,

and 10. We observed increased infection (Figure 1d) and found

that viability of HCT116 cells pre-treated with CI1040 decreased

by 60% or 65% six days post infection following MOIs of 0.1 and

1 (respectively) when compared to the DMSO control (Figure 1e).

At higher MOI, pre-treatment with MEK-inhibitor accelerated

cell killing by as much as 3 days. In agreement with the observed

enhanced cell death upon CI1040 pre-treatment, virus production

also improved: virus titer increased 20-fold at MOI of 0.1 and 5-

fold at MOI of 1 when measured five days post-infection

(Figure 1f). Our findings suggest that treating cells with MEK-

inhibitor prior to infection increases CAR expression, arrests cells

in G1 cell cycle phase, and sensitizes cells to infection such that we

observe reduced viability and improved virus replication.

A nonlinear differential equation model characterizes the
combinatorial effect of MEK-inhibition and oncolytic
adenovirus infection on cancer cell populations

We sought to build a model that captures the key phenotypic

behavior of tumor cells responding to combinatorial therapy. We

fit an ordinary differential equation (ODE) model to measure-

ments of proliferation, infection, and relative cell viability,

characterizing how an in vitro cancer cell population responds to

MEK inhibition and ONYX-015 infection. Quantitative time

course data supported development of a 4-state nonlinear ODE

system with treatment- and infection-dependent parameter values

(Figure 1). In this context, state variables represent observable

tumor cell conditions in response to MEK-inhibition and/or

adenovirus infection.

d=dtC~s:C: 1{P=sat

� �
{arrest t; td ,twð Þ:Cz

release:CG1{b t; ti,MOIð Þ:C{bT t; td ,tw,ti,MOIð Þ:C
d=dtCG1~arrest t; td ,twð Þ:C{release:CG1{

bT :G1 t; td ,tw,ti,MOIð Þ:CG1

d=dtIC~b t; ti,MOIð Þ:C{d t; ti,MOIð Þ:IC

d=dtICT~bT t; td ,tw,ti,MOIð Þ:Cz

bT :G1 t; td ,tw,ti,MOIð Þ:CG1{dT t; td ,tw,ti,MOIð Þ:ICT

P~CzCG1zICzICT

System states are depicted in black bold capital font (Figure 2)

and reflect the nonlinear dynamic behavior of (i) uninfected cancer

cell density, C [cells/cm2], (ii) MEK-inhibition induced G1-phase

Author Summary

Novel cancer treatment strategies are urgently needed
since currently available non-surgical methods for most
solid malignancies have limited impact on survival rates.
We used conditionally replicating adenoviruses as cancer-
fighting agents since they are designed to target and lyse
cells with specific aberrations, leaving healthy cells
undamaged. Highly malignant cells, however, down-
regulate the adenovirus receptor, impairing infection and
subsequent cell death. We demonstrated that disruption
of the MEK pathway (which is frequently activated in
cancer) up-regulated this receptor, resulting in enhanced
adenovirus entry. Although receptor expression was
restored, disruption of signaling interfered with adenovirus
replication due to cell cycle arrest, presenting an opposing
trade-off. We developed a dynamical systems model to
characterize the response of cancer cells to oncolytic
adenovirus infection and drug treatment, providing a
means to enhance therapeutic efficacy of combination
treatment strategies. Our simulations predicted improved
therapeutic efficacy when drug treatment and infection
occurred simultaneously. We successfully validated pre-
dictions and found that a CAR-independent mechanism
may be responsible for regulating adenovirus production
and cell death. This work demonstrates the utility of
modeling for accurate prediction and optimization of
combinatorial treatment strategies, serving as a paradigm
for improved design of anti-cancer combination therapies.

Dynamical Systems Model of Combinatorial Therapy
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arrest cell density, CG1 [cells/cm2], (iii) untreated and infected cell

density, IC [cells/cm2], and (iv) MEK-inhibitor treated and

infected cell density, ICT [cells/cm2], where P reflects the total

cancer cell population [cells/cm2].

Corresponding parameter values govern the rate at which state

variables proliferate, arrest in (release from) the G1 cell cycle phase

as a result of MEK-inhibitor treatment (removal), infect, and lyse

(Figure 2). Specifically, parameter s governs the rate at which cells

proliferate until they reach 100% confluence at the threshold, sat

[cells/cm2]. Parameters bn govern the rate at which cells

irreversibly undergo ONYX-015 infection, where n denotes

whether these cells infect from a treated (n = T or n = T?G1) or

untreated (n = ‘blank’) state. Since pre-treatment with MEK-

inhibitor enhanced infection and cell killing, we presumed that

cells in the arrested CG1 state were more susceptible to infection

due to increased CAR expression, motivating the transition

directed by parameter bT?G1 (Figure 2). Experimental data

suggests, however, that a fraction of cells responding to MEK-

inhibitor do not undergo cell cycle arrest (Figures 1b and 1c).

Despite continued proliferation, this subpopulation might exhibit

increased CAR expression. For this reason, we incorporated

parameter bT, allowing a subpopulation of cells (assumed to have

increased CAR expression) to transition from the proliferating

state, C, to the infected treated state, ICT, upon MEK-inhibition

and ONYX-015 infection. Parameters dn govern the rate at which

cells undergo oncolysis.

Parameter estimation and model structure. Parameter

estimation involves changing the model’s parameter values until the

difference between the model output (i.e., simulation) and

experimental data is minimized as defined by the sum of squares

error, SSE, weighted by the measurement error associated with

each data point. The weight corresponds to the inverse standard

deviation of replicate measurements. If the standard deviation is

relatively small, our confidence in the measurement is high, so we

penalize the simulated error with greater magnitude. Weighted SSE

was employed when fitting proliferations kinetics since multiple data

replicates were available; standard SSE was employed when fitting

infection and viability kinetics (Text S1). Fitting system parameters

is nontrivial since their values can change with respect to the timing

of drug treatment and infection; parameters are not constant in

time. In most cases, they are defined as functions of the system’s

inherent control inputs: timing of MEK-inhibitor treatment

initiation, td; timing of MEK-inhibitor removal by media change,

tw; timing of infection, ti; and multiplicity of infection, MOI. In

addition to fitting dynamic parameters, we estimated the value of

time delays associated with infection and oncolysis.

We expect delays throughout the infection cycle: endocytosis,

viral replication, and lysis require a sequence of non-instantaneous

Figure 1. CI1040 up-regulates CAR, induces G1 cell cycle arrest, and sensitizes cells to infection. HCT116 cells were treated with MEK
inhibitor CI1040, DMSO, or alone. (A) Treatment was continuous for 4 days. CAR expression was measured 1–4 days post-treatment initiation by
FACS; error bars represent standard deviation of triplicate measurements. (B) Cells were treated with CI1040 for 1 day, 2 days, or 3 days, and
harvested 1–7 days following initial treatment. Cell density was determined (red and black data markers); error bars represent standard deviation of
triplicate measurements. Each time course was replicated. Solid blue lines correspond to simulated proliferation dynamics with respective CI1040
treatment. (C) Cell cycle phase was measured 1–3 days post treatment with CI1040 or DMSO through PI staining. (D–E) Cells were treated with
CI1040 or DMSO for 2 days, treatment is removed by media change, and cells were immediately infected with ONYX-015/GFP (D) or ONYX-015 (E) at
MOIs 0.1, 1, 2 (not shown), 5, and 10. GFP expression (determined by FACS analysis) and cell viability was measured 1–6 days post-infection. (F) Cells
were treated with CI1040 for 2 days, treatment was removed by media change, and cells were immediately infected with ONYX-015 at MOIs of 0.1
and 1. Virus replication was observed 1–10 days post infection.
doi:10.1371/journal.pcbi.1001085.g001
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sub-cellular events [4] that are typically omitted from cell-level

models. We accounted for the dynamics of these events by

introducing time delays. Specifically, we fit parameters to several

forms of the model and evaluated the accuracy of simulations.

While each system included parameters governing proliferation,

infection, and cell death, they differed on whether they contained

explicit time delays. For instance, some models stipulated that bn

and/or dn remain 0 until t$ti+delay. After fitting parameters to

each possible delay combination, we retained the model structure

that best fit the data (Text S1).
Simulated dynamics. Model parameters were estimated in

sequence to improve the biological relevance of fitted values while

emulating experimental conditions. Most resulting parameters

were defined as functions of the system’s inherent control inputs,

where the duration of treatment is set to 2-days: tw = td+2.

Proliferation-related values (namely, s and sat for the DMSO case,

and arrest and release for the CI1040 case) were fit first to a reduced

ODE system. Once each parameter was optimized, we quantified

the precision of resulting simulations by evaluating the average

normalized error of the time course. Resulting simulations were,

on average, within 8% (DMSO) and 6% (CI1040; Figure 1b) of

the mean of experimental data replicates. Upon setting s, sat,

arrest, and release, a second reduced model (characterizing C and

IC) was used to fit b, d, and corresponding delay terms to

experimental data quantifying virus uptake and cell viability

kinetics with DMSO treatment. Parameter estimation yielded four

unique values per MOI with corresponding simulations within 9%

of experimental measurements. Finally, with proliferation and

DMSO-related parameters fixed, the full 4-state model was used

to fit bT, bT?G1, dT, and corresponding delay terms to experimental

data quantifying virus uptake and cell viability kinetics with

CI1040 treatment. Parameter estimation yielded five unique

values per MOI with corresponding simulations within 8% of

experimental measurements. Please refer to Text S1 for details

concerning parameter estimation and resulting values.
Model assumptions. We made several assumptions to

simplify model development and supporting experiments. First,

we neglected state transitions between cell cycle phases and

characterized only the switch between proliferating cells and cells

arrested in G1-phase as a result of treatment with MEK-inhibitor.

Regarding enhanced infection and cell death, we presumed that

MEK-inhibition caused a switch-like sensitivity to infection instead

of a linear progression. Therefore, if 100% of cells were arrested in

G1-phase as a result of MEK-inhibition, prolonged treatment

would not further enhance infection. We neglected dose and

duration of treatment as system control variables and limited

simulated MOI between 0.1 and 10 to avoid error due to

extrapolation. We assumed cancer cell populations were spatially

uniform such that experimental measurements reflected a

deterministic (rather than spatial or stochastic) mean behavior.

Finally, we did not explicitly characterize virus titer. Instead, the

presumed effects of virus dynamics were consolidated into

estimated parameters.

Validation of simulated predictions reveals optimized
treatment sequencing protocols

We interpolated intermediate parameter values and used the

model to predict the extent of cell death as a function of the time of

CI1040 treatment initiation, the time of ONYX-015 infection, and

the MOI. We employed an exhaustive search algorithm to

simulate the effect of various treatment and infection protocols.

This algorithm systematically evaluated every possible sequence

combination of drug treatment and infection conditions (within a

defined interval), with the exception of media change, tw, which

was set to occur 2 days after treatment. We varied CI1040

treatment initiation between days 0–3 and infection between days

0–7. The MOI was also varied between 0.1 and 10. We evaluated

percent cell death on day 8 irrespective of the sequence protocol.

In this context, percent cell death is defined as the complement of

cell viability (the ratio of total cell density in a simulation consisting

of treatment and infection, relative to total cell density in an

independent simulation omitting infection). In Figure 3, we

highlight drug treatment and infection protocols that yielded over

50% cell death on simulated day 8. (Please refer to Text S1 for

additional MOI). Model simulations suggested that, at low MOI,

the greatest efficacy of virus-mediated cell death results from

MEK-inhibition that coincides with the time of infection. At

higher MOI, our model predicted maximal cell killing when

inhibitor treatment occurs at the time of, or soon after, infection.

To experimentally validate the predictive capabilities of the

model, we simulated (Figures 4a and 4b) and experimentally

Figure 2. Experimental observations motivate a nonlinear ordinary differential equation model for cancer therapy. System states
(shown in black bold capital font) represent the nonlinear dynamic behavior of (i) uninfected cancer cell density, C [cells/cm2], (ii) MEK-inhibition
induced G1 arrest cell density, CG1 [cells/cm2], (iii) untreated and infected cell density, IC [cells/cm2], and (iv) treated and infected cell density, ICT

[cells/cm2]. Parameter values (shown in red italic script) govern treatment/infection dependent state transitions (solid black arrows) that direct
proliferation (s), G1 cell cycle arrest/release, infection (bn), and lysis (dn), where n denotes whether these cells infect/lyse from a treated (n = T or
n = T?G1) or untreated (n = ‘blank’) state. Corresponding delay terms are shown in gray font. MEK-inhibition is described as a reversible process since
cells undergo G1 arrest via CI1040 treatment and release upon removal of MEK-inhibitor by media change, returning to the proliferating state
(dashed block arrow). Infection is an irreversible process that ultimately results in cell death (solid block arrow).
doi:10.1371/journal.pcbi.1001085.g002
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quantified (Figures 4c and 4d) cell viability for three distinct drug

treatment and infection protocols that employed MOIs not

included in the original training data: MOIs of 0.5 and 7.

Specifically, we compared (i) pre-treatment with the MEK inhibitor

on day 0 followed by media change and immediate infection on

day 2, (ii) simultaneous drug treatment and infection on day 0

followed by media change on day 2, and (iii) infection on day 0

followed by post-treatment initiation on day 2 and media change on

day 4. Cell viability was quantified daily post-infection until day 7.

The mean error between simulations and time course measure-

ments were promising: pre-treatment simulations were within 19% of

validation data for both MOIs; simultaneous treatment simulations

were within 8% and 12% of validation data for MOIs of 0.5 and 7,

respectively; and post-treatment simulations were within 14% and

19% of validation data for MOIs of 0.5 and 7, respectively. One

cause of disparity between predictions and experimental data

relates to modeling constraints. The ODEs are formulated such

that resulting simulations cannot yield more than 100% viability

post-infection. Some experimental measurements, however, re-

flected an initial increase in cell viability that was observed in

replicate measurements. This increase may result from viral

proteins that activate cellular factors and force cells to enter S-

phase and replicate. Despite this lack of correspondence,

experiments and simulations share similar qualitative and

quantitative time course dynamics, confirming that our model is

indeed predictive, and that simultaneous treatment and infection

significantly improves oncolysis.

Efficacy of MEK-inhibition mediated infection is inversely
correlated with cell confluency at the time of infection

To further investigate conditions that give rise to increased

therapeutic efficacy, we correlated simulated cell death profiles

with (i) cell confluency at the time of treatment, (ii) the proportion

of cells in CI1040 mediated G1 cell cycle arrest at the time of

infection, and (iii) cell confluency at the time of infection. Little

correlation between cell death and cell confluency at the time of

drug treatment was found by Pearson correlation analysis (R = .2;

p-value%0.001). Additionally, little correlation was found between

cell death and the proportion of cells in G1-phase arrest at the

time of infection, CG1/P (R = .3; p-value%0.001). Despite these

weak correlation coefficients, simulations suggest that cell killing is

inversely correlated with cell density at the time of infection

(R = 0.6; p-value%0.001). Thus, greater cell density at the time of

infection may decrease the efficacy of infection despite consistent

treatment/infection strategies. This result is reasonable since

standard protocols suggest that the confluency for infection be

approximately 70–80% [19]. We experimentally validated this

finding, in vitro, by measuring cell viability after infection of cells

that were seeded at low (,70%) and high (,100%) confluencies

(Figure 5). We found that a lower cell density at the time of

infection resulted in greater cell killing, supporting the notion that

cell confluency might regulate the efficacy of infection and

oncolysis.

MEK-inhibition offers CAR-independent amplification of
oncolysis and virus production in vitro

Model simulations and experimental validation confirm that

simultaneous treatment with MEK-inhibitor and infection is most

advantageous, suggesting that alternate (CAR-independent) regu-

latory mechanisms may be responsible for enhanced oncolysis.

Given the disproportionate increase in virus replication relative to

infection (Figure 1e), we hypothesized that enhanced CAR may

not be the key factor involved in amplifying virus replication and

cell death; MEK-inhibition might provide an alternate mechanism

responsible for greater efficacy of infection. Since MEK inhibitor

treatment leads to G1-phase cell cycle arrest in HCT116 cells, we

tested the impact of cell cycle distribution on oncolysis and virus

production in cells infected with various oncolytic adenoviruses.

HCT116 cells were arrested in the G1-phase of the cell cycle by

contact inhibition and released by re-seeding at sub-confluent

densities. We then quantified the change in cell cycle distribution

as cells transitioned from the G1-phase. At 7-hours after re-

seeding, 80% of the cell population remained in G1-phase. At 16-

hours, 80% of cells reached S-phase (Figure 6a). Meanwhile, CAR

expression remained unchanged throughout these cell cycle phase

transitions (Figure 6b). Despite constant CAR, we observed

significant differences in cell killing when infection occurred at

7-hours, 16-hours, and 24-hours after re-seeding. The greatest

lytic effect occurred when infection took place 7-hours after re-

seeding (Figure 6c), which coincided with greatest virus production

(Figure 6d). The marked increase in cell death and adenovirus

replication suggests that the G1-S phase transition mediates

Figure 3. Simulated predictions point to unexpected treatment protocols. Simulated percent cell death (CD) is evaluated on day 8 as a
function of the timing of MEK-inhibitor treatment initiation, timing of infection, and multiplicity of infection (MOI). Each Cartesian coordinate reflects
an independent simulation or treatment/infection protocol. The timing of ONYX-015 infection is varied on the x-axis; the timing of CI1040 treatment
initiation is varied on the y-axis. CI1040 removal by media change occurs 2 days post treatment irrespective of the timing of infection. MOI is held
constant in each subplot. Percent cell death is defined as the complement of cell viability. Treatment and infection protocols that yield over 50% cell
death are shown. Greater cell death is reflected by larger data points and an increasingly red color (see color bar). Empty data points depict protocols
that fail to kill at least 50% of the cellular population.
doi:10.1371/journal.pcbi.1001085.g003
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adenovirus replication. These observations were confirmed with a

variety of oncolytic adenoviruses, including Delta-24RGD, which

is characterized by an RGD motif on the fiber knob of the

adenovirus allowing for CAR-independent infection [20]. There-

fore, the expression of CAR molecules on the cell surface at the

time of infection does not appear to be the sole regulatory

mechanism governing the efficacy of oncolytic adenovirus therapy.

The detailed molecular mechanisms by which cell cycle distribu-

tion influences viral replication are currently under investigation.

Discussion

A growing number of studies make use of mathematical modeling

techniques to better analyze and predict increasingly complex,

dynamic data. While several groups have employed computational

approaches to optimize oncolytic virotherapy [21–25], only two

other groups have investigated the combinatorial dynamics that

govern MEK-inhibitor mediated oncolytic adenovirus therapy

[26,27]. Here, we report our findings on improved treatment

strategies for oncolytic adenovirus therapy, being the first to fully

integrate modeling and experiment in the same study.

We performed time course measurements that confirmed

previously observed CI1040-mediated CAR up-regulation and G1

cell cycle arrest [28]. Based on these findings, we postulated that

treating cells with CI1040 prior to infection, followed by its removal

at the time of ONYX-015 infection, would (i) maximize virus uptake

due to increased up-regulation of CAR, and (ii) maximize cell death

(and consequently viral replication) due to the release of cells from

G1-phase arrest. To explore this hypothesis, we developed an ODE

model that characterized the proliferation, infection, and relative

cell viability of a population of cancer cells subjected to MEK

inhibition and ONYX-015 infection. We simulated combinations of

different timings of MEK-inhibitor treatment initiation, timings of

infection, and multiplicities of infection to ascertain their combina-

torial effect on oncolysis. Surprisingly, our simulations suggested

that, at low MOI, the greatest efficacy of virus-mediated cell death

results from MEK-inhibition that coincides with the time of

infection. This scenario is particularly relevant from a clinical

perspective, since exposure to low MOIs is a likely limiting factor of

treatment efficacy in vivo, particularly following systemic virus

administration. At higher MOI, our model predicts maximal cell

killing when inhibitor treatment occurs at the time of, or

immediately after, infection. We confirmed our predictions

experimentally, showing that sensitizing cells via MEK-inhibition

prior to infection was less effective than treatment protocols that

maintained CI1040 treatment during and following ONYX-015

Figure 4. Simultaneous CI1040 treatment and infection protocols outperform pre-treatment with CI1040. HCT116 cells were treated
with CI1040 or DMSO, and infected with ONYX-015 at MOI = 0.5 or MOI = 7. The cell viability outcome of three different treatment protocols is
compared in each plot: pre-treatment, simultaneous treatment, and post-treatment. In the first case (depicted by square markers), cells are treated on
day 0, treatment is removed by media change on day 2, and immediately infected. In the second case (circle markers), cells are treated and infected
simultaneously on day 0, and treatment is removed by media change on day 2. In the third case (triangle markers), cells are infected on day 0, treated
on day 2, and treatment is removed by media change on day 4. Model simulations predicting the response of cells to infection at MOIs 0.5 and 7 are
shown in (A) and (B), respectively. Experimental validation of predicted cell viability for (C) MOI = 0.5 and (D) MOI = 7 was measured daily 7 days post
infection (for pre-treatment protocols) and 8 days post-infection (for simultaneous and post-treatment protocols). The figure legend is consistent
among all plots.
doi:10.1371/journal.pcbi.1001085.g004
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infection. Consistent with our findings, simulations from an

independent partial differential equation free boundary problem

model presented by Tao and Guo [26] suggested that greater tumor

treatment is achieved when oncolytic adenovirus infection and

MEK inhibitor treatment occur at the same time. Experimental

validation was not carried out in that study.

The accuracy between simulated time courses and validation

measurements (Figure 4) were striking given that validation

Figure 5. Efficacy of treatment/infection correlates to cell density at the time of infection. HCT116 cells were seeded at 2e4 cells/well (low
density) or 1e5 cells/well (high density) in 96-well plates. Low and high density cells were treated with DMSO or CI1040, and infected at an MOI of (A)
0.5 or (B) 7. Cell viability was quantified 3 days post infection.
doi:10.1371/journal.pcbi.1001085.g005

Figure 6. G1 arrested cells show more potent cell killing effect and virus production. HCT116 cells were density arrested and released
from synchronization. (A) Cell cycle distribution was quantified upon release at 0, 7, 16, and 24-hours. (B) The effect of cell cycle synchronization on
CAR expression was analyzed. (C) Cell viability and (D) virus production were measured 3 days after infection (MOI = 1) with WtD, ONYX-014, Delta-24,
and Delta-24RGD (denoted as RGD) at 7, 16, and 24-hours after release from density arrest. Error bars represent the standard deviation of triplicate
measurements for cell viability and duplicate measurements for virus production.
doi:10.1371/journal.pcbi.1001085.g006
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conditions were beyond the scope of training data. More

specifically, we predicted cell dynamics associated with MOIs

0.5 and 7; neither condition was considered in model develop-

ment. Data reflecting MOIs 0.1, 1, 2, 5, and 10 were used for

parameter estimation and subsequently interpolated to predict

intermediate values. Furthermore, model fitting was based on time

course measurements quantifying the effect of pre-treatment with

MEK inhibitors (or DMSO) followed by infection, yet we are able

to extrapolate cell viability dynamics for mechanistically unique

protocols. Specifically, the simultaneous and post-treatment protocols

involve experimental procedures that were unaccounted for in

model development. Simulations also assumed that the MOI of

the system remained unaffected upon removal of MEK-inhibitor

by media change. This theory is accurate when treatment occurs

prior to infection (as was the case in our training data). When

treatment occurs at the time of or after infection, it is reasonable to

imagine removal of MEK-inhibitor affecting virus titer, and hence

the MOI. Despite these differences, model simulations accurately

predict and extrapolate the nonlinear cellular response to

combinatorial treatment strategies.

Further investigations of simulated predictions identified critical

virus-host mechanisms responsible for enhanced combinatorial

therapy. In particular, we explored how cell cycle phase affected

oncolysis and virus production. Shepard and Ornelles [29]

demonstrated that ONYX-015 replicates more effectively in HeLa

cells when infection occurs during S-phase rather than G1-phase.

Later, Zheng et al. [30] found that adenovirus E1B55K is required to

enhance cyclin E expression; the failure to induce cyclin E expression

due to E1B55K mutation in ONYX-015 prevents viral DNA from

undergoing efficient replication in HeLa (and other non-permissive)

cells when infected during G0-phase. In contrast, cyclin E induction is

less dependent on the function encoded in the E1B55K of HCT116

cells whether the cells are in S- or G0-phase. This finding is consistent

in other cancer cells that are permissive for replication of ONYX-015.

As a result, we expanded our analysis to two additional oncolytic

adenoviruses: Delta-24, which carries a deletion in the E1A region;

and Delta-24RGD, which has an RGD-4C peptide motif inserted

into the adenoviral fiber [20]. The latter virus is able to anchor

directly to integrins, providing CAR-independent mechanisms for

infection. We found greater cell killing and virus production with

Delta-24RGD when cells were infected during G1 cell cycle arrest.

This result verifies the existence of a regulatory pathway that governs

virus production in a CAR-independent manner. The mechanism

underlying virus replication in G1-arrested cells remains unclear and

warrants further investigation.

Model development is an ongoing process that needs to be tightly

coupled with experiments in order to maximize mechanistic

relevance and reflect the nonlinear complex dynamics critical to

understanding and predicting biological function. However, it is

important to note that our current model does not fully encompass

the physiological complexities of malignant tumors in humans. It is

clear that factors influencing drug distribution and elimination play a

major role in this context. For example, the extent of vascular

leakiness observed in tumors will impact viral extravasation [31]. The

immune responses directed against oncolytic viruses or tumor cells

will also impact viral anti-tumor effects [25]. Interestingly, recent in

vivo experiments demonstrate that the efficacy and specificity of virus

replication in tumors modulate the immune response, highlighting

yet another layer of complexity [32]. Our aim is to develop multi-

scale models that account for the greater dimensionality of oncolytic

virus replication. Nevertheless, our current study demonstrates that

dynamical mathematical models of oncolytic virus replication, tightly

coupled with experimental studies, have the potential to optimize

central aspects of this therapeutic approach.

Materials and Methods

Cell lines
The colon cancer cell line, HCT116, was kindly provided by

Dr. B. Vogelstein (Johns Hopkins Cancer Center, Baltimore, MD).

HCT116 cells were cultured in McCoy’s 5A medium (UCSF Cell

Culture Facility, San Francisco, CA) supplemented with 10% fetal

bovine serum (Valley Biomedical Products, Winchester, VA).

Adenoviruses
Viruses included a wild-type adenovirus, WtD; an E1B-55K-

deficient adenovirus mutant, ONYX-015; an E1A-deficient

adenovirus, Delta-24 [33]; and a modified version of Delta-24

containing an RGD-4C peptide motif inserted into the adenoviral

fiber knob which allows the adenovirus to anchor directly to

integrins, Delta-24RGD [20]. Delta-24 and Delta-24RGD were

kindly provided by Dr. J. Fueyo (University of Texas MD

Anderson Cancer Center, Houston, Texas). Adenoviruses were

amplified in HEK-293 cells, purified using the Adenopure

Purification Kit (Puresyn, Malvern, PA) and their titers deter-

mined using the Adeno-X Rapid Titer Kit (Clontech, Mountain

View, CA). ONYX/GFP, a green fluorescence protein expressing

ONYX-015 was also used.

Signal transduction inhibitors
For inhibition of RAF-MEK-ERK signaling, the MEK inhibitor

CI1040 (Pfizer, Ann Arbor, MI) was used at a final concentration

of 5 mM. As a control, cells were treated with DMSO (0.1%).

CAR and GFP expression by flow cytometric analysis
For CAR staining, cells were treated with CI1040, DMSO, or

cell culture medium alone (as stated previously). Over the course of

4 days, the cells were harvested daily using 0.05% trypsin (UCSF,

Cell Culture Facility, San Francisco, CA). After media change in

PBS (UCSF), cells were incubated for 45 minutes at 4uC with the

mouse monoclonal anti-CAR antibody RmcB (1:50) [34]. After

washing, cells were incubated for 30 minutes at 4uC with a

secondary antibody conjugated to Alexa 488 (1:100, Alexa Fluor

488 F(ab)2 fragment of goat anti-mouse IgG, Invitrogen,

Molecular Probes, Eugene, OR). Propidium iodide (PI, Sigma-

Aldrich Co, St Louis, MO) was added to a final concentration of

1 mg/mL just prior to acquisition to exclude dead cells from flow

cytometric analysis. Stained cells were analyzed on a FACSCa-

libur cytometer (Becton Dickinson, Franklin Lakes, NJ). To

monitor virus replication in living cells, HCT116 cells were

treated with CI1040 or DMSO for 2 days and later infected with

ONYX-015/GFP at multiplicities of infection (MOI) of 0.1, 1, 2, 5

and 10 in infection medium; McCoy’s5A medium (UCSF) was

supplemented with 2% fetal bovine serum (Valley Biomedical

Products, Winchester, VA). The medium was replaced two hours

later. Cells were harvested 1 to 6 days post-infection using 0.05%

trypsin (UCSF) and washed once with PBS (UCSF) supplemented

with 5% fetal bovine serum (Valley Biomedical Products). GFP

expression was analyzed by a C6 Flow Cytometer (Accuri

Cytometer). Text S1 describes methodological details for the flow

cytometry experiments, including controls, in accordance with the

Minimum Information About a Flow Cytometry Experiment

(MIFlowCyt) protocol established by Lee et al. [35].

Cell cycle and proliferation
For cell proliferation, HCT116 cells were seeded in 6-well plates

and immediately treated with CI1040 or DMSO (as stated

previously) for 1, 2, or 3 days and harvested 1–7 days after

treatment. Cells were counted using a C6 Flow Cytometer (Accuri
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Cytometer). Treated cells were also analyzed for cell cycle

distribution (please refer to Text S1 for details concerning flow

cytometry experiments). After treatment, the cells were collected

by trypsinization, fixed in 70% ethanol, washed in PBSTB

(PBS+0.5% Tween 20 (National Diagnostics, Atlanta, GA) +0.1%

BSA (Sigma)), and re-suspended in 350ml of PBSTB containing

0.6 mg/mL RNase and 30 mg/mL PI. Cells were incubated in the

dark for 30 min at room temperature and then analyzed by a

FACSCalibur cytometer (Becton Dickinson). The data were

analyzed using ModFit LT (Verity Software House). Please refer

to Text S1 for additional details.

Cell viability
HCT116 cells were seeded in 96-well plates overnight and

infected with WtD, ONYX-015, Delta-24, or Delta-24RGD at

different MOI. Cell viability was measured by the CellTiter 96

Aqueous One Solution Cell Proliferation Assay (MTS) (Promega,

Madison, WI) 1 to 7 days post-infection. Cell viability was

expressed as percentage of the uninfected medium control (i.e.

MOI = 0). Therefore, any relevant toxic effects are normalized

from the relative viability measurements.

Cell-cycle synchronization
HCT116 cells were density-arrested by plating at 5e5 cells/cm2

for 2 days. Cells were released from arrest by re-plating at low

density, 1e5 cells/cm2. Cell cycle was analyzed by Propidium

Iodide (Sigma) staining as described above. CAR expression was

analyzed at 7, 16, and 24 hours after release from arrest using

RmcB antibody as described above. Synchronized cells were

infected with WtD, ONYX-015, Delta-24, or Delta-24RGD at an

MOI of 1 and subsequently measured for viability by adding

Propidium iodide (Sigma) to a final concentration of 1 mg/mL just

prior to acquisition to exclude dead cells and counting cell

numbers using a C6 Flow Cytometer (Accuri Cytometer). Cell

viability was expressed as percentage of the uninfected medium

control (i.e. MOI = 0).

Viral replication assays
Viral titers of harvested cells were determined by the Adeno-X

Rapid Titer Kit (Clontech) as described by Shiina et al. [36].

Parameter estimation
Parameters were fit to experimental measurements by mini-

mizing the sum of squares error (SSE) between the simulation and

the data using the genetic algorithm function in MATLAB. When

multiple data replicates were available, the SSE was weighted by

the inverse standard deviation of experimental measurements. A

gradient search algorithm, fmincon, was used post-estimation to

ensure convergence to a local minimum. Please refer to Text S1

for details concerning parameter estimation, convergence, model

fitness, and interpolation methods.

Supporting Information

Text S1 Contents: 1) parameter estimation; 2) parameter

convergence; 3) model fitness; 4) interpolation methods; 5) model

simulations; 6) MATLAB syntax for ordinary differential equation

model; 7) MIFlowCyt outline.

Found at: doi:10.1371/journal.pcbi.1001085.s001 (0.89 MB PDF)
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