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Abstract

Polyglutamine (polyQ) expansion in exon1 (XN1) of the huntingtin protein is linked to Huntington’s disease. When the
number of glutamines exceeds a threshold of approximately 36–40 repeats, XN1 can readily form amyloid aggregates
similar to those associated with disease. Many experiments suggest that misfolding of monomeric XN1 plays an important
role in the length-dependent aggregation. Elucidating the misfolding of a XN1 monomer can help determine the molecular
mechanism of XN1 aggregation and potentially help develop strategies to inhibit XN1 aggregation. The flanking sequences
surrounding the polyQ region can play a critical role in determining the structural rearrangement and aggregation
mechanism of XN1. Few experiments have studied XN1 in its entirety, with all flanking regions. To obtain structural insights
into the misfolding of XN1 toward amyloid aggregation, we perform molecular dynamics simulations on monomeric XN1
with full flanking regions, a variant missing the polyproline regions, which are hypothesized to prevent aggregation, and an
isolated polyQ peptide (Qn). For each of these three constructs, we study glutamine repeat lengths of 23, 36, 40 and 47. We
find that polyQ peptides have a positive correlation between their probability to form a b-rich misfolded state and their
expansion length. We also find that the flanking regions of XN1 affect its probability to form a b-rich state compared to the
isolated polyQ. Particularly, the polyproline regions form polyproline type II helices and decrease the probability of the
polyQ region to form a b-rich state. Additionally, by lengthening polyQ, the first N-terminal 17 residues are more likely to
adopt a b-sheet conformation rather than an a-helix conformation. Therefore, our molecular dynamics study provides a
structural insight of XN1 misfolding and elucidates the possible role of the flanking sequences in XN1 aggregation.
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Introduction

Similar to eight other neurodegenerative polyglutamine diseases

[1–5], Huntington’s disease (HD) is associated with a polygluta-

mine (polyQ) expansion in the huntingtin protein. In HD, the first

exon (XN1) of the huntingtin protein, which contains the polyQ

region, has been implicated as the pathogenic polypeptide [6–9]. It

is hypothesized that after it is cleaved from huntingtin, the XN1

polypeptides misfold and form lethal cellular aggregates or

inclusions in neuronal cells [1–5]. Evidence from in vivo studies

[6,7] indicates that XN1 polypeptides can form aggregates similar

to those observed in the neurons of afflicted patients. Despite

limited knowledge on the structure and function of XN1, some

information about its aggregation is known. The length of the

polyQ region in XN1 is inversely proportional to the age of onset

of symptoms [2,9]. Additionally, there is a threshold of

approximately 36–40 repeats, within which symptoms may or

may not develop [10]. However, beyond this threshold, lethal

symptoms eventually develop in the lifetime of the patient. These

symptoms develop earlier in the life of patients with longer repeat

lengths. In vitro kinetic studies of polyQ peptides have emulated this

clinical correlation between age and length [11,12]. Kinetic studies

of polyQ [13] aggregation suggested that the misfolding of a polyQ

monomer initiates the aggregation. Although other studies [14,15]

proposed more complex aggregation scenario, we hypothesize that

the misfolding of a polyQ monomer plays a critical role in the

formation of ordered amyloid aggregations. Similarly, the

aggregation of XN1 displays more complicated aggregation

behavior [16–18,19,20], it has been shown that the length-

dependent misfolding of polyQ sequence in the XN1 monomer

plays a critical role in the initial oligomerization and the later

formation of b-rich amyloid aggregates [20]. Here, we propose to

study the structure and dynamics of monomeric XN1, in hopes to

help illuminate the aggregation mechanism and help determine

the role of these aggregates.

Due to the structural complexity of XN1, previous experimental

and computational studies have focused on specific regions of XN1

(Fig. 1). First, by studying polyQ homopolymers (Qn), and similar

constructs, it has been shown that as the length increases, Qn

transitions from forming random coils in solution to b-sheets

[16,21–27]. Yet, at least one computational study finds no such

transition [28]. Other authors find the formation of a b-helix

[29–33], first proposed by Perutz [34]. Additionally, the polyQ

region has been shown to unfold neighboring regions [20,35–38],

which suggests the flanking regions should be included to better

model the behavior of XN1. Second, others [25,39–41] have

studied polyQ together with a polyproline domain, because XN1

has two polyproline (polyP) regions near the polyQ region (Fig. 1a).

Experimental studies of these models, indicate that the polyP

regions form polyproline type II (PPII) helices [3,40,41], which
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compete with the b-sheet structure of the polyQ region [40] and

possibly protect against aggregation [1,3,5,20,39,40,42–44]. Last,

recent models that include the first 17 residues (Nt17) of XN1 that

are N terminal to the polyQ region have been studied [20,42,

45–47]. By studying isolated Nt17 polypeptides, investigators have

found that this region is either a compact random coil [20], an a-

helix [42,45] or both [20,46], which resists aggregation [20,46].

However, an Nt17+polyQ chimeric polypeptide was found to be

highly prone to aggregation, more so than an unflanked Qn

homopolymer [20]. Thus, the structural role of the Nt17 region in

XN1 aggregation is still unclear. Although the polyQ region has

been individually shown to aggregate through studies on Qn, its

effects are unknown in the context of the XN1 flanking regions.

For example, it is uncertain whether the Nt17 region assists

[3,20,45] or hinders [1,46,48] aggregation, and perhaps separate-

ly, to what extent the polyP region prevents aggregation.

Therefore, it is necessary to study XN1 misfolding and aggregation

in the context of flanking regions.

Despite the structural information about each region, there still

lacks a complete picture of XN1 due to the non-additive effect of

interactions between different structural elements. Here, we

perform all-atom discrete molecular dynamics (DMD) [49–52]

simulations to systematically study structural dynamics of XN1

and its variants. DMD has been shown to have a higher sampling

efficiency than traditional molecular dynamics and has been used

to study protein folding thermodynamics and protein aggregation

[53]. All-atom DMD features a transferable force field and has

been successfully used to fold several small proteins ab initio [52]

and to study the folding and misfolding dynamics of Cu, Zn

superoxide dismutase [54]. We construct 12 polypeptides (Fig. 1)

categorized into three sets. In the first set, we study XN1 in its

entirety (Fig. 1a) in order to capture the interactions between the

Nt17, polyQ and polyP flanking regions simultaneously. In the

second set, we study XN1 without the polyP flanking regions, titled

XN1-P11-P10, (Fig. 1b) in order to determine the effect of the polyP

regions on XN1 in the context of naturally occurring flanking

regions. In the third set, we study polyQ homopolymers in the

absence of all flanking regions (Qn) as controls. In each set, four

different numbers of glutamine repeats are included: 23 (non-

pathogenic), 36 (threshold), 40 and 47 (pathogenic). As originally

suggested by Perutz [36] and expanded upon by others

[1,3,20,35,36,38,55], the sequence context for a polyQ region

can alter its aggregation mechanism; here, we find a more

complete view of how the context plays a significant role in the

secondary structure. In the context of XN1, the residues in the

polyQ region have a lower probability of adopting b-sheet

conformations, due to inhibition by the polyP regions. Surpris-

ingly, by increasing the number of glutamine repeats in the polyQ

region, the Nt17 region can be induced to fold into a b-strand.

Thus, we suggest that the polyQ and flanking regions in XN1 are

strongly coupled in XN1 folding and misfolding.

Results

For each of the 12 models (Fig. 1), we perform replica exchange

DMD simulations to efficiently sample the folding landscape of the

polypeptides [56–60]. In each simulation, we start from a

completely stretched conformation. We discard the first 0.5% of

the trajectories, which have drastic energy and structural changes,

to disregard the initial equilibration; we only use the equilibrated

parts of the trajectories for analysis. First, we model XN1 (Fig. 1a)

in its entirety to simultaneously study the interactions among all

flanking regions, such as the Nt17, polyQ and polyP regions.

Second, we model a mutant of XN1 that is missing the polyP

regions: XN1-P11-P10 (Fig. 1b) to study the structural effects of the

polyP regions, which have been shown to protect against XN1

Figure 1. Constructs studied. Diagrams of the organization of the sequence regions in the (a) XN1 and (b) XN1-P11-P10 constructs are shown. The
number of residues in each region is indicated below the region. For all three constructs (XN1, XN1-P11-P10 and the homopolymer Qn, not shown) we
vary the number of repeats modeled: n = 23, 36, 40, 47. In (a) XN1, the first N-terminal 17 residues are collectively referred to as the Nt17 region.
Following Nt17 is the polyQ region, which contains a variable n number of glutamine repeats. P11 and P10 are the regions of 11 and 10 proline repeats
respectively; they are referred to as the polyP regions. A region of 17 residues tethers the polyP regions together. Finally, there are 12 residues in the
C-terminus of XN1. The (b) XN1-P11-P10 construct is identical to XN1 with the exception that it does not contain the polyP regions. The XN1 sequence
is explicitly written in Fig. 4d. We use the title of ‘‘construct’’ to refer to either XN1, XN1-P11-P10 or Qn. A ‘‘model’’ is a specific polypeptide, such as
XN1Q23, which is a polypeptide of XN1 with 23 glutamine repeats. Thus a total of 12 models were studied, divided into 3 constructs with 4 different
glutamine lengths.
doi:10.1371/journal.pcbi.1000772.g001

Author Summary

Huntington’s Disease is a neurodegenerative disorder
associated with protein aggregation in neurons. The
aggregates formed are thought to lead to neurotoxicity
and cell death. Understanding the molecular structure of
these aggregates may lead to strategies to inhibit
aggregation. Exon 1 (XN1) of the huntingtin protein is
critical for aggregate formation. This polypeptide has a
naturally occurring polyglutamine sequence (polyQ),
which is elongated in patients afflicted with the disease.
The polyQ region in XN1 has several flanking sequences
with distinct physicochemical properties, including the N-
terminal 17 residues, two polyproline regions, and C-
terminal sequences, that may affect its overall structure
and aggregation. What is the overall structure of XN1, and
what structural effects do the neighboring sequences have
on each other and polyQ? We address these questions by
studying computational models of various polypeptides,
including XN1 and three mutant forms associated with
Huntington’s Disease. Certain neighboring sequences are
found to inhibit aggregation, while others may be
recruited by polyQ to form aggregates. Our results suggest
the role that the flanking sequences may play in XN1
aggregation and may subsequently guide future structural
models of XN1 aggregation.

Flanking Sequences Modulate Huntingtin Misfolding
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aggregation. By comparing the results from the XN1 models to the

XN1-P11-P10 models, we can determine the role of the polyP

regions. Lastly, as controls, we model Qn homopolymers in the

absence of all flanking regions.

XN1Qn are less stable than Qn and XN1Qn-P11-P10

We apply the weighted histogram analysis method (WHAM) to

analyze the folding thermodynamics of all simulated peptide

systems [61]. For each peptide model, we calculate the heat

capacity (CV) at different temperatures (Fig. 2). We find Q23

undergoes a non-cooperative folding transition from an extended

and unfolded state to a collapsed globule state, characterized by

the broad and shallow CV peak (Fig. 2a). Similar peaks, indicating

a coiled-globule transition of a polyQ system, have been

documented elsewhere [14]. As the length of Qn increases, the

heat capacity peak gets taller and narrower, suggesting an

increased folding cooperativity. In all three constructs (XN1,

XN1-P11-P10 and Qn) we find the transition temperature

corresponding to the CV peak (Fig. 2 and Table S1) is almost

unaffected by the length of the polyQ region. Since the transition

temperature is indicative of the polypeptide stability, our

simulation suggests that the length of the polyQ region does not

affect the stability of the polypeptides. Interestingly, we find that

the average transition temperature for the XN1 models (311 K) is

smaller than that of the Qn (322 K) and the XN1-P11-P10 (340 K)

models. The differences in transition temperatures indicate the

XN1-P11-P10 models are the most stable, followed by the Qn

models and lastly, the XN1 models are the least stable.

Qn transitions from random coil to b-sheet
As suggested by the Wetzel group and others [11,13,19],

misfolding of polyQ monomers might initialize the aggregation

and play a crucial role in the formation of amyloid fibrils. The

peptide of polyQ is naturally unstructured, and thus, the length-

dependent aggregation behavior can only be explained by the rare

and spontaneous misfolding of the peptide. Therefore, we focus on

the compact low-energy state from simulations (see Methods). The

compact low-energy state usually constitutes only 13–27% of the

total populations (Table S2). Among this subset of compact

structures, we find a representative structure using a clustering

algorithm (see Methods). These representative structures are not

definitive misfolded states, but rather represent common, acces-

sible compact states. We find that Qn is able to form a b-sheet for

all lengths modeled (Fig. 3d). As the length of Qn increases, the b-

sheet expands and contains more b-strands. Even the shortest

polypeptide, Q23, is capable of forming a small b-sheet (a b-

hairpin); although, this structure rarely forms during the

simulation (Fig. 3d). Additionally, we calculate the probability of

observing a given secondary structure for each residue (Fig. 3a,b,c)

in the compact state (see Methods). For example, we find that in

Q47 there are many segments of the polypeptide featuring high b-

conformation (Fig. 3c). Although the probability is computed for

each residue, a high probability of b-conformation for consecutive

residues indicates the formation of a b-strand (Fig. 3d). Further-

more, an overall perspective is gained when this probability is

averaged over multiple residues (Figs. 3a and 3b). We find the

compact states of Q23 to be primarily unstructured; a typical

residue in Q23 is a random coil 67% of the time. In contrast, the

residues in the long Qn models of Q36–47, have b-sheet dihedral

angles 40% of the time. That is, residues in the long Qn models

adopt b-sheet conformations almost 2.5 times more often than Q23

(Fig. 3a). The relatively high b-sheet probabilities do not

contradict the experimental observations of little to no monomeric

b-sheet structure [19,15,25], since the secondary structure

probability calculation is computed only for the small subset of

compact and low-energy states. Additionally, the structural

ensembles are constructed from the replica exchange simulations,

which cover a wide-range of temperatures (see Methods). As a

result, the distribution of conformations does not correspond to a

single experimental condition, and thus, cannot be compared with

experimental measurements. However, these ensembles can be

used to evaluate the structural propensities of various polyQ

constructs. From our calculations of the compact polypeptide, we

find that Qn residues tend to transition from random coil

conformations at short lengths, to b-sheet conformations at long

lengths.

PolyP hinders b-sheet formation of polyQ in XN1
In the XN1 model, the polyQ region is surrounded by multiple

flanking regions (Fig. 1), including the Nt17 and polyP regions. We

find that for n = 36, 40 and 47, the residues in the polyQ region

adopt b-sheet conformations approximately 10% less frequently

than residues in isolated Qn (Fig. 3a). Thus, the flanking regions

can lower the probability of the residues in the polyQ region to

adopt b-sheet conformations. Based on secondary structure

probabilities (data not shown) and the corresponding representa-

Figure 2. Thermodynamics of the peptides. Heat capacity and temperature curves are calculated with WHAM analysis of the simulation
trajectories. (a) Calculations of the Q23, Q36, Q40 and Q47 models indicate the folding transition peaks become taller and narrower for longer
glutamine lengths. (b) For the XN1Q23, XN1Q36 and XN1Q47 models, the transition temperatures are nearly identical (308K, 308K and 304K
respectively). However, the XN1Q40 model has a larger transition temperature around 325K. (c) The XN1Q23-P11-P10, XN1Q36-P11-P10, XN1Q40-P11-P10

and XN1Q47-P11-P10 models have varied transition peaks. The transition temperatures are 365K, 335K, 317K and 343K respectively. Detailed data on
the peak positions are found in Table S1.
doi:10.1371/journal.pcbi.1000772.g002

Flanking Sequences Modulate Huntingtin Misfolding
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tive structures (Figs. 4a, 4b), we find that the two polyP stretches in

XN1 consistently form PPII helices (Fig. 4c). It is unlikely that the

polyP regions fold into PPII helices due to interactions from

neighboring regions. This is because the PPII helices are

consistently found in every one of the compact structures; whereas,

the other regions have more variable secondary structures. Thus,

the polyP regions are likely forming PPII helices independently.

We hypothesize that the P11 and P10 regions dominate the fold of

XN1, by forming these PPII helices, and subsequently, the

remaining regions, including the polyQ region, are affected by

these two PPII helices.

In order to study the effect of the PPII helices on the polyQ

region, we perform simulations of XN1-P11-P10 polypeptides that

are sequentially identical to XN1 but lack the polyP regions

(Fig. 1b). We find that residues in the polyQ region of XN1-P11-

P10 models adopt b-sheet conformations 10% more often than

Figure 3. Secondary structure probabilities. Selected secondary structure probabilities of residues in the (a) polyQ region, the (b) Nt17 region
and (c) each residue of Q47. Lastly, (d) representative structures of Qn. (a) In the XN1 and XN1-P11-P10 models, polyQ residues have an almost constant
b-strand probability for varying number of glutamine repeats. For all lengths of polyQ in XN1, the polyQ residues have a 31%64% b-strand
probability. For all lengths of polyQ in XN1-P11-P10, the polyQ residues have a 42%61% b-strand probability. In the context of Qn, however, the
glutamine residues for long Qn lengths have an increase in b-strand probability and a decrease in the random coil probability (data not shown). On
average, for n = 36, 40 and 47, residues in the Qn polypeptides are 9% more likely to adopt b-strand conformations than the polyQ residues in the XN1
polypeptides. For the same polyQ lengths, polyQ residues in XN1-P11-P10 and all the residues in Qn have an average difference of less than 1% in b-
strand probability. (b) We show the a-helix and b-strand probabilities of the Nt17 residues as the length of the neighboring polyQ region increases.
For XN1Q23, we find the probabilities of forming an a-helix or b-strand are similar; the difference is less than 1%. However, when the polyQ length
increases (XN1Q36–47), the difference becomes more than 20% in favor of a b-strand. Contrarily, we find that the Nt17 residues in XN1-P11-P10 models
consistently prefer b-strand dihedral angles over a-helix dihedral angles; the difference is over 20% for each length of polyQ. (c) As an example, we
present the probability of each residue in Q47 to have a b-sheet conformation. There are continuous stretches of high probabilities: residues 2–8, 11–
17, 21–29 and 34–45. These stretches are likely the locations of continuous b-strands. The residues with surprisingly low b-sheet conformation are the
location of turns between b-strands. The periodic shape of the graph indicates a b-sheet similar to the one in panel d). The average of all these
probabilities is 42%; it is one data point in panel a). (d) These are representative structures of the Qn polypeptides determined through clustering. Q23

shows a b-hairpin, and although this structure is from the largest cluster, it represents only 6% of all the structures used for clustering (see methods).
Therefore, it is rare, but possible, for Q23 to adopt a b-hairpin conformation. The longer homopolymers are more likely to adopt a conformation
similar to the ones depicted here; Q36, Q40 and Q47 represent 50%, 23% and 40% of their respective clustered structures (Table S3). Most strands are
between 6 and 9 residues long. Intra-backbone hydrogen bonds are shown only for those residues forming b-strands. Secondary structures are
automatically calculated by PyMOL and are not used to calculate probabilities.
doi:10.1371/journal.pcbi.1000772.g003

Flanking Sequences Modulate Huntingtin Misfolding
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similar polyQ residues in the XN1 models (Fig. 3a). In fact, for

n = 36, 40 and 47, the polyQ residues in the XN1-P11-P10 and Qn

models have nearly equal b-sheet probabilities (Fig. 3a). Thus, the

decrease in the probability of the polyQ region to form b-sheets in

XN1 may be attributed to the polyP regions that form PPII

helices. This relationship is consistent with experimental observa-

tions which show the polyP regions inhibit polyQ aggregation and

toxicity [1,3,5,20,39,40,42–44].

Nt17 can be induced into a b-strand
It has been experimentally shown that the Nt17 region can be a

tight random coil [20,46] or an a-helix [20,45,46,48]. However,

once fused to the polyQ region, the Nt17 region promotes the

aggregation of polyQ [20,47]. To investigate the impact of the

Nt17 region in XN1 misfolding, we study the Nt17 region in the

context of XN1. From secondary structure probabilities of the

XN1 and XN1-P11-P10 models, we find the Nt17 residues adopt

random coil conformations over 50% of the time, regardless of the

polyQ length. This observation is consistent with the previous [20]

study in that the Nt17 region is most likely to be a random coil in

the context of XN1. We also characterize the a-helix and b-sheet

conformation probabilities for the Nt17 residues. For the XN1

models, we find that the likelihood of Nt17 residues forming an a-

helix or b-strand conformation is correlated with the length of the

neighboring polyQ region (Fig. 3b). In the shortest model,

XN1Q23, the residues in the Nt17 region are equally likely to

adopt an a-helix or b-sheet conformation. However for longer

models, XN1Q36–47, the Nt17 residues adopt a b-sheet confor-

mation at least six times more often than an a-helix conformation.

In fact, for the longest model, XN1Q47, the Nt17 residues sample

b-sheet dihedral angles 30 times more frequently than a-helix

dihedral angles (Fig. 3b). The representative structures of the

XN1Q23 and XN1Q47 models depict an example of this transition

from an a-helix to a b-strand (Figs. 4a and 4b). Thus, in the

context of XN1, we find that as the polyQ length increases, the

Nt17 residues significantly prefer a b-sheet conformation over an

a-helix conformation. That is, by elongating the polyQ region, the

Nt17 region can be induced into a b-strand.

In the absence of the polyP regions, the Nt17 residues have

different secondary structure probabilities. First, for all lengths of

polyQ, the Nt17 residues in the XN1-P11-P10 models show a

preference for adopting b-sheet rather than a-helix conformations.

Even for the shortest polyQ length, the Nt17 residues prefer b-

sheet dihedral angles (Fig. 3b). Thus, at least in the case of 23

glutamine repeats, the Nt17 region must be either directly or

indirectly affected by the polyP regions; such that, by removing the

polyP regions, the Nt17 region is more likely to form a b-strand.

Second, for n = 36, 40 and 47, the Nt17 residues are nearly equally

likely to adopt b-sheet conformations in either the XN1 or XN1-

P11-P10 constructs (Fig. 3b). Therefore, for long polyQ lengths, the

polyP regions in XN1 have little effect on the b-sheet probability of

the Nt17 region.

Figure 4. Representative structures of XN1. Structures that are representative of (a) XN1Q23 and (b) XN1Q47 are shown. A detailed view of the
polyP regions from the XN1Q23 structure is also presented (c). Pink residues are glutamines; blue residues are prolines, and all other residues are
colored green. The sequence for XN1 is shown (d) for n = 23 as in panel a). The coloring in the sequence matches the coloring of the polypeptide
backbones in both structures. The (a) XN1Q23 and (b) XN1Q47 structures respectively represent 37% of 1036 clustered structures and 17% of 1032
clustered structures (see methods and Table S3). From these example conformations, we see some structural correlations that complement the
secondary structure probability calculations (Fig. 3). First, no drastic change in the b-strand structure of the polyQ region is seen between the XN1Q23

and XN1Q47 structures. Second, the a-helix in the Nt17 region of (a) XN1Q23 has transformed into a b-strand in (b) XN1Q47. Third, the two polyP
regions form (c) PPII helices. The probability data (not shown) indicates that these PPII helices exist in 100% of the partially folded structures. The
intra-main chain hydrogen bonds are shown for those residues forming b-strands. As in Fig. 3d, the secondary structures are assigned by PyMOL. (d)
The sequence is divided into the same regions as outlined in Fig. 1a.
doi:10.1371/journal.pcbi.1000772.g004

Flanking Sequences Modulate Huntingtin Misfolding
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Discussion

The length dependence of Qn aggregation
One intriguing phenomena of glutamine expansion diseases is

the length dependence of disease onset [2,9]. It has been suggested

that both short and long Qn polypeptides can access similar

misfolded structures that lead to aggregation, but the frequency at

which this misfolded structure is visited depends on the length of

Qn [62]. That is, long Qn aggregate fast, because they misfold

frequently; contrarily, short Qn rarely misfold and thus aggregate

slow. Mounting experimental evidences support this model by

showing that, regardless of length, Qn polypeptides form

aggregates of similar structure [25,27,28,39,62], which suggests

the misfolded structures for all Qn are also similar. Additionally,

kinetic studies [16,21–27] verify the correlation between the length

of the Qn polypeptide and the rate at which it aggregates in

solution. The remaining question is to determine the common

misfolded structure that leads to aggregation. To this end, some

investigators [8,11,16–18] have suggested that early forms of Qn

aggregates have high amounts of b-sheets. In the previous

investigation by Wetzel’s group, [11] glutamine homopolymers

were capped by flanking lysine residues (K2QnK2) to increase the

peptide solubility [63]. It has been argued that the electrostatic

repulsion between flanking lysines might prevent the formation of

compact structures and alter the aggregation kinetics of the

peptide system [19]. As the length increases, the screening effect

reduces. Hence, despite the screening effect, the observation of

intrinsic b-sheets formation of polyQ peptides is still valid. Our

resulting extended b-sheet structures are prone to aggregation with

exposed hydrogen bond donors and acceptors found in the

polypeptide backbone [64]. By seeking to satisfy these bonds, the

polypeptides can form bonds with other polypeptides that similarly

have an exposed backbone, leading to the formation of large

aggregates.

Our simulations of Qn support a model, similar to one outlined

by [27], wherein a common, compact misfolded state is accessible

to most Qn monomers and rates of misfolding are length-

dependent. Accordingly, we find that partially folded monomers

of both short and long Qn polypeptides can have high amounts of

b-character (Fig. 3d). Additionally, we find that the residues in

long Qn models, with 36 or more repeats, are more likely to have

b-sheet conformations than short models, Q23 (Fig. 3a). The

secondary structure probability of each individual residue is

proportional to the probability of the overall polypeptide adopting

that secondary structure. Thus we find a positive correlation

between the length of the Qn polypeptide and its probability of

forming a b-sheet. Because previous studies [8,11,16–18] have

linked b-sheet formation to aggregation, we suggest that long Qn

polypeptides are therefore more likely to form aggregates.

The polyP regions protect XN1 from aggregation
Recent studies [1,3,5,20,39,40,42–44] indicate that the addition

of a polyP region can inhibit aggregation of the polyQ region; this

inhibition has been associated [40] with a PPII helix structure in

the polyP region. We are able to find a structural effect on the

polyQ region from the formation of PPII helices in the polyP

regions. We find that the polyP regions form PPII helices and

suppress the probability of polyQ residues in XN1 to adopt b-sheet

dihedral angles. This suppression is still present for long polyQ

lengths that are associated with disease. Upon removing these PPII

helices, we find the polyQ residues are more likely to adopt b-sheet

conformations; the likelihood is similar to that of the isolated

glutamine homopolymers: Qn (Fig. 3a). This similarity indicates

that the other flanking regions of XN1 have little effect on the

probability of the polyQ region to form a b-strand. Furthermore,

by considering that b-sheet formation has been linked to

aggregation, we find that our results reflect experimental results.

That is, because the polyP regions decrease the probability of

polyQ residues adopting b-strand conformations, these polypep-

tides have a slower rate of aggregation, which is seen in other

experiments [1,3,5,20,39,40,42–44]. Additionally, the polyP

regions greatly destabilize XN1 polypeptides (Fig. 2b and 2c).

Since unfolded polypeptides in the random coil state are unlikely

to organize as an aggregate, the presence of the polyP in the XN1

sequence prevent it from folding into the aggregation-prone state.

Therefore, we hypothesize that polyP regions protect XN1 from

aggregation in two ways: 1) destabilize the polypeptide, and 2) the

PPII helices formed by polyP inhibit formation of b-sheets.

Nt17 misfolding in monomeric XN1
Currently, the role of the flanking regions in XN1 and other

polyglutamine diseases is under debate [1,3,20,45–48]. One model

[3,47] suggests that aggregation is initiated by the flanking Nt17

region. That is, initially, these flanking regions misfold and form

oligomers; subsequently, there is an increase in the local

concentration of the polyQ region, which causes the polyQ

regions to misfold into protofibrils and ultimately mature, fatal

fibrils. Others, however, contend that the native structure of the

flanking regions is one that resists aggregation [1,46,48]. In a

recent study [20], the expansion of polyQ repeats in XN1 is found

to promote the misfolding of Nt17, which leads to rapid formation

of oligomers. In particular, the structure of the Nt17 flanking

region in XN1 is one part of this debate, which we discuss here.

We find a sharp decrease in the probability of the Nt17 residues

to adopt a-helix conformations as the length of the polyQ region

increased. Concurrently, however, these residues are more likely to

have b-strand conformations for longer polyQ repeat lengths

(Fig. 3b). Hence, our results indicate misfolding of the Nt17 region;

that is, the a-helical native structure misfolds into a b-strand in the

pathogenic associated XN1 models. Our simulation of the

XN1Q47 suggests that both the Nt17 and polyQ regions

simultaneously form b-strands (Fig. 4b). A possible future direction

would be to identify the temperature at which the Nt17 residues

transition from a-helical to b-sheet conformation; a similar

calculation has been done elsewhere [65]. In terms of the problem

of the aggregation mechanism of XN1, the next step is to

determine the role these two regions play in oligomerization of

XN1. Here, our computational study suggests that the polyQ

region also plays a critical role in the early stages of aggregation

[20].

Methods

Discrete molecular dynamics
Unlike traditional molecular dynamic simulations, we discretize

the spherically symmetric, pair-wise interaction potential in a

DMD simulation [49–52], where, the continuous potential

between any two atoms is reduced to a series of square well

potentials. Such a simplification considerably accelerates the

computation time because in square well potentials, the particles

do not experience any force except at the boundaries of the square

wells. Thus, the particles travel with constant momenta until a

boundary is reached; at such a boundary, the two particles

experience a force and are considered colliding. At a collision, the

momenta, angular momenta and energies of only the two colliding

particles are updated according to conservation laws. Thus, the

most computationally intense process is to sort the event list to

determine the next collision. Further details on the particular
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version of DMD used here, such as interaction strength between

atoms, are provided in reference [52]. Each polypeptide begins in

an extended conformation; to allow for equilibration, the first 500

time units wherein the polypeptide has drastic energy and

structural changes are discarded. We simulate each polypeptide

in a cube with periodic boundaries. The dimension of the box is

chosen to be large enough to fit the extended polypeptide.

All-atom models of Qn, XN1 and XN1-P11-P10

We model each polypeptide using an united all-atom approach,

which is explained in detail elsewhere [52]. Briefly, this approach

models all heavy atoms and polar hydrogen atoms in a

polypeptide; interactions between atoms are governed by the

Medusa Force Field [66]. The interactions include van der Waals

(VDW) based on CHARMM19, orientation-dependent hydrogen

bonding and implicit solvation EEF1 [67]. Because electrostatic

interactions at long distances are weakened due to solvent

screening, we currently do not model these effects in the all-atom

DMD. Salt bridges between side chains are captured partially

through the hydrogen bonding potential [52]. Despite the

approximation of electrostatic interactions, we were able to fold

six small proteins to their native state ab initio [52]. The sequence

used to model XN1 is taken as the first 90 residues in Human

Huntingtin Protein from NCBI [68] (Fig. 4d). There are charged,

polar and non-polar groups scattered throughout the sequence.

Additionally, the particular sequence, taken from NCBI, contains

23 glutamine repeats, which is a non-pathogenic length. The

sequence is not modified except to add glutamines in the polyQ

region as indicated or to remove the P11 and P10 stretches in the

XN1-P11-P10 models.

Replica exchange DMD simulations
To efficiently sample protein conformations, we use the replica

exchange simulation technique [56–60]. With this technique, we

are able to utilize multiple, parallel simulations of identical systems

called replicas. For each of the 12 polypeptides, we perform

simulations on eight replicas with the following set of tempera-

tures: {0.85, 0.75, 0.68, 0.64, 0.6, 0.57, 0.53, 0.5}. The

temperature units are in kcal/mol/kB, or about 500K. At a

regular time interval of 500 time units (approximately 25 ps), we

consider exchanging the temperature of two replicas. We only

allow an exchange for two replicas with neighboring temperatures,

for example 0.6 and 0.64. We use a Monte-Carlo based approach

to accept or reject an exchange. The simulation length of each

replica is 16106 time units (,50 ns).

Structure screening
Replica exchange simulations allow us to efficiently sample the

conformational space of XN1 and its variants by simulating a wide

range of temperatures. However, we focus only on the compact

structures of the polypeptides. To screen for these compact states,

we eliminate highly extended structures, which are those with a

large radius of gyration (Rg), and we include only those with low

energy. The former criterion eliminates the transient structures

explored during the early stages of folding when the polypeptide is

far from its favored structure. The latter criterion selects for

structures further along the folding pathway, because polypeptides

lose energy during folding. We determine both the Rg cutoff (Fig.

S1) and energy cutoff (Fig. S2) from a histogram of conformations

sampled during the simulation. Each simulation produces 800,000

structures (1 conformation per 10 time units per replica). From this

entire set, a subset of roughly 100,000–200,000 structures is

selected through this screening process (Table S2). The energy

cutoff is chosen to select for the lowest energy Gaussians.

Secondary structure probabilities
The probabilities calculated here are averages over the compact

ensemble, which is a small subset of the entire population (Table

S2). Thus, the calculations do not describe the polypeptides in

general. Instead, the secondary structure likelihoods describe the

polypeptides in a partially folded state, which estimates the

misfolded structure. For each of the compact structures, we can

calculate the backbone dihedral angles (Q & y) and the

corresponding secondary structure for each residue. Then from

the ensemble of compact structures for each polypeptide model,

we compute the probability of a given residue to adopt a-helix, b-

sheet, turn or random coil dihedral angles (Fig. 3c). Furthermore,

we also determine the secondary structure probability of a set of

residues, or a region, by averaging the secondary structure

probability over those residues (Figs. 3a, 3b). For example, a b-

strand probability of 0.3 in the polyQ region means that on

average, a given residue in the polyQ region has a 30% chance of

adopting b-strand dihedral angles. These probabilities are

calculated for individual amino acids regardless of neighboring

residues. However, consecutive residues with high amount of

calculated secondary structure probability will suggest the

probability of forming specific secondary structures. Thus, this

analysis method allows for comparison of secondary structure

tendencies for polypeptides based on the compact ensemble. To

calculate the error, we compute the standard error for each value;

where the number of events is the number of times the energy of

the trajectory crossed the energy cutoff (Fig. S3). In effect, this

method counts the number of times during the folding trajectory

that the polypeptide enters or exits the compact domain of its

folding landscape.

Clustering
For visualization purposes, we identify representative structures

for each polypeptide using an hierarchical clustering algorithm

[69]. The structures used for clustering are taken from the

simulation trajectories and are separated by at least 50ps. For most

of the models studied, roughly 1500–2000 structures are used for

clustering. As exceptions, the XN1Q23 and Q23 models include

only about 1030 structures. The number of clusters is different for

each polypeptide model and varied from 101–843. Similarly, the

population of the largest cluster also varied. A detailed summary of

these values for each polypeptide model is presented in the

supplemental materials (Table S3). In this clustering scheme, the

nodes are structures and the distance between a pair of nodes is the

root mean square distance (RMSD) between the two structures.

We use the single-linkage or minimum distance criterion for

clustering. That is, the distance between a node and a cluster is

equal to the distance between that node and the closest node in the

cluster. The cutoff distance determines the size of clusters. If the

distance between a node and a cluster is less than the cutoff, we

include the node in that cluster; otherwise, we exclude the node

from that cluster. We use a RMSD cutoff of 2.5Å for clustering the

XN1Q47-P11-P10 polypeptide and a 2Å RMSD cutoff for all other

polypeptides. These cutoffs are chosen to maintain high structural

similarity among the nodes in a cluster (Fig. S4). We study the

centroid of each cluster, which is the most representative node or

the centermost node of a cluster. Furthermore, we select the

centroids from the largest clusters to be overall representatives of

their respective polypeptides. To gauge the significance or

reliability of the centroid, we calculate the ratio of the number

of structures present in its cluster and the total number of

structures considered for clustering. Example calculations are

reported in the captions of Figs. 3d and 4. Finally, necessary raw

data is presented in Table S3.
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Supporting Information

Table S1 Thermodynamic Peak Values. Data corresponding to

the peaks (Fig. 2) of the heat capacity versus temperature curves

for each polypeptide modeled. Column 2 contains the values from

the position of the peaks, which is the temperature at which the

transition from folded to unfolded occurs. Column 3 contains the

corresponding heat capacities at the folding transitions. Increasing

glutamine repeat length does not correlate significantly with the

transition temperature. The XN1 and Qn models show higher

heat capacities for longer glutamine repeats.

Found at: doi:10.1371/journal.pcbi.1000772.s001 (0.03 MB

DOC)

Table S2 Compact Structure Populations. Some statistics on the

populations of compact structures that are used for analysis. Each

simulation produces 800,000 structures in total. A subset of

compact, low-energy structures is selected for analysis. Here, the

total number of these compact structures is given for each

simulation. For comparison, the percentages out of the total

800,000 structures represented by the compact populations are

also shown. Because the compact populations are only 30% or less

of the total, the polypeptides are primarily extended and

unstructured.

Found at: doi:10.1371/journal.pcbi.1000772.s002 (0.03 MB

DOC)

Table S3 Clustering Data. Statistics describing the clustering

results. For each polypeptide studied, the following values are

shown: total number of structures used for clustering (column 2),

number of clusters (column 3) and the population of the largest

cluster (column 4). A Root Mean Square Deviation (RMSD) cutoff

of 2Å is used for all polypeptides, except XN1Q47-P11-P10 where

2.5Å is used. Due to computational constraints, only about 1% of

all compact structures (Table S2) are used for clustering. The

structures presented in Figures 3d and 4 are centroids of the largest

cluster.

Found at: doi:10.1371/journal.pcbi.1000772.s003 (0.03 MB

DOC)

Figure S1 Example Rg Histogram. Distribution of the Radius of

Gyration (Rg). This histogram is an example from one polypeptide

(XN1Q23). The bin size is 1Å. Exactly 800,000 Rg values, one per

10 time units per replica, from the trajectories of all eight replicas

are used to generate the distribution. The dashed line indicates the

Rg cutoff value (20Å in this case), which is used to determine

compact structures. Structures with a larger Rg than the cutoff, are

considered extended or insufficiently compact and are not

included in the compact ensemble used for further analysis. Note

the sharp peak around 16Å; most polypeptides produced a similar

sharp peak. This peak indicates that most conformations explored

during the simulation are compact.

Found at: doi:10.1371/journal.pcbi.1000772.s004 (0.07 MB

DOC)

Figure S2 Example Energy Histogram. Example histogram of

two replicas from one polypeptide (XN1Q23). The bin size is

1 cal/mol. The distribution for each replica is based on 1,000,000

data points: one value per time unit. Here, the data from two

replicas are pooled; therefore this distribution is based on

2,000,000 data points. The dashed line indicates the energy cutoff

value (2285 cal/mol); this cutoff applies to all replicas of this

polypeptide. The cutoff is chosen such that only the lowest energy

states are included as compact structures.

Found at: doi:10.1371/journal.pcbi.1000772.s005 (0.08 MB

DOC)

Figure S3 Trajectories Sampling the Compact Domain. Two

example trajectories that depict how the simulations explored

states that are compact and partially folded. Both trajectories are

from the XN1Q23 simulation, and each trajectory corresponds to

the particular replica indicated in the legend. The energy cutoff

value is indicated as the red line. This value is determined by a

histogram (Fig. S2). All explored states that occur below the cutoff

are considered compact and are included in the compact

ensemble.

Found at: doi:10.1371/journal.pcbi.1000772.s006 (0.13 MB

DOC)

Figure S4 Hierarchical Clustering. One example (from

XN1Q23) of how the cutoff distance for clustering is determined.

With hierarchical clustering, we are able to determine the number

of clusters remaining for a given Root Mean Square Deviation

(RMSD) cutoff. The cutoff value, indicated by the dashed line

(2Å), is chosen to maximize the clustering of similar structures

while avoiding clustering of unlike structures. Clustering of similar

structures occurs in the steeply descending portion of the curve

(between 1Å and 2Å). In this region clusters are close to each other

or similar, because a very small increase in the cutoff distance joins

two clusters. Clustering of structures that are less similar occurs in

the tail end of the curve (roughly 3Å or longer). Here, the clusters

are distant or dissimilar and a large increase in the cutoff distance

is required to join two clusters. Thus, a suitable cutoff is often

found after the most similar clusters have been joined (here,

between 1Å–1.5Å) and before the distant clusters are joined (2.5Å

and longer).

Found at: doi:10.1371/journal.pcbi.1000772.s007 (0.08 MB

DOC)
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