
Feedforward Inhibition and Synaptic Scaling – Two Sides
of the Same Coin?
Christian Keck1., Cristina Savin2., Jörg Lücke1,3*

1 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany, 2 Computational and Biological Learning Lab, Department of Engineering, University of

Cambridge, Cambridge, United Kingdom, 3 Department of Physics, Goethe-University, Frankfurt am Main, Germany

Abstract

Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can
receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions.
The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we
show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In
technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We
demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between
different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this
model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input
normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through
feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally
optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may
have important functional implications for general cortical processing.

Citation: Keck C, Savin C, Lücke J (2012) Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin? PLoS Comput Biol 8(3): e1002432.
doi:10.1371/journal.pcbi.1002432

Editor: Olaf Sporns, Indiana University, United States of America

Received September 16, 2011; Accepted February 1, 2012; Published March 22, 2012

Copyright: � 2012 Keck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants German Ministry of Research and Education (BMBF) under grant 01GQ0840, BFNT Frankfurt, (CK), the German
Research Foundation (DFG) under grant LU,1196/4-1 (JL) and the Wellcome Trust (CS). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: luecke@fias.uni-frankfurt.de

. These authors contributed equally to this work.

Introduction

As part of an ever-changing world, brain activity changes

continuously. The fraction of neurons active in a region at each

given moment fluctuates significantly driven by changes in the

environment and intrinsic dynamics. Ideally, regions receiving this

activity as input should be able to represent incoming signals

reliably across the full possible range of stimulation conditions.

Indeed, this type of regulation seems to be ubiquitous in the

cortex. In the early visual system, contrast gain control begins in

the retina [1] and is strengthened at subsequent stages of the visual

system, such that the way an image is represented in V1 simple

cells is largely contrast invariant [2,3]. Similarly, in the olfactory

system, neuronal representations remain sparse and odor-specific

over thousand-fold changes in odor concentration [4–6].

To be able to achieve such invariance, neurons have evolved

various mechanisms that adjust neuronal response properties as

function of their total input. One instance of such normalization

involves feedforward inhibition, in which afferent inputs induce

both excitation and mono-synaptically delayed inhibition onto

principal cells [7–12], shaping the temporal activity pattern of the

postsynaptic neurons [8–10], and sparsifying population activity

[5]. The degree of specificity of this inhibition can vary from

stimulus specific to relatively unspecific [7,12]. Here, we focus on

fast but unselective feedforward inhibition, which has been

reported in a range of circuits including hippocampus and sensory

areas [11,13–15]. This mechanism adjusts, virtually instanta-

neously, the sensitivity of pyramidal cells to the overall strength of

the afferent stimulus. As a result, the influence of an individual

afferent on the firing of the postsynaptic neuron is continuously

normalized by the total number of active afferents. Functionally, it

has been hypothesized that such input normalization is needed to

expand the range of inputs that can be represented in a neuron

population [11], however, its implications for learning in the

circuit remain unclear.

Another mechanism with similar effects, but acting on a slower

time scale, is synaptic scaling [16–18]. Specifically, it is believed

that neurons detect sustained changes in their firing rates through

calcium-dependent sensors and increase or decrease the density of

glutamate receptors at synaptic sites to compensate for these

changes in drive [19]. This results in an uniform rescaling of the

strength of excitatory synapses as a function of average

postsynaptic activity. Synaptic scaling often takes a multiplicatively

form [17], which has the benefit of preserving the relative

contribution of synapses and hence the information stored through

Hebbian learning [20]. This type of weight normalization is

believed to address a different kind of stability problem–the fact

that synapses are plastic. As Hebbian learning alone would

destabilize neural dynamics, due to a positive feedback loop,

additional homeostatic mechanisms such as synaptic scaling are

needed to ensure stable circuit function [18–20].

PLoS Computational Biology | www.ploscompbiol.org 1 March 2012 | Volume 8 | Issue 3 | e1002432

Fast feedforward inhibition and synaptic scaling have been

reported for a range of circuits including hippocampal and

neocortical pyramidal neurons [11,19]. Given that both mecha-

nisms effectively regulate the total incoming drive to neurons, it

may be somewhat surprising that they co-occur in the same cell

types. This suggests there may be some computational advantage

in combining input normalization and synaptic scaling. However,

based on the existing experimental evidence alone, it is unclear

what possible benefits this interaction may have.

We show here that the role of input normalization and synaptic

scaling goes beyond simply maintaining circuit homeostasis, and

that they play important computational roles during synaptic

learning. In the presence of neuronal competition by global lateral

inhibition, the two enable efficient unsupervised learning from

noisy or ambiguous inputs. Specifically, we consider an elementary

circuit that incorporates synaptic scaling and fast feedforward

inhibition. We analyze the learning dynamics in this circuit and

show that, for certain input statistics, standard neural dynamics

and Hebbian synaptic plasticity implement approximately optimal

learning for this data–an observation that we further confirm in

numerical experiments. The studied circuit learns an efficient

representation of its inputs which can be used for further

processing by downstream networks (e.g., for classification).

Importantly, in the absence of feedforward inhibition, learning

in the same circuit results in much poorer representations, as the

system has a stronger tendency to converge to locally optimal

solutions–a problem that neural and non-neural systems for

unsupervised learning commonly face. This provides evidence for

synaptic plasticity requiring normalized inputs for efficient

learning. Given that feedforward inhibition and synaptic scaling

seem to co-occur in various neural circuits, our results suggest that

the interplay between the two mechanisms may generally facilitate

learning in the cortex.

Results

We construct a model of feedforward inhibition and synaptic

scaling acting in a neural circuit in which excitatory synapses

change by Hebbian learning. The analysis of their interaction

proceeds in two steps. First, we study the dynamics of learning

within the circuit, leaving details of the neural dynamics

unspecified. This analysis reveals that the weights converge to

final values that are fully determined by the input distribution and

the neuronal transfer function. Second, when using a specific

statistical model for the input distribution, we can identify

biologically plausible neural dynamics that implement optimal

learning for these stimuli. We show that a specific form of lateral

inhibition implementing softmax competition between different

neurons is sufficient for optimal learning in our setup, something

which we then confirm by numerical simulations, using both

artificially generated and natural data. Lastly, we show that

learning performance is critically dependent on feedforward

inhibition and, how the emerging representations can be used

by higher processing layers, for instance, for efficient classification.

A neural circuit model
As a starting point, consider the elementary neural circuit

shown in Fig. 1A. The network consists of C neurons receiving

excitatory inputs from D input neurons through a set of excitatory

weights W~(Wcd), Wcd§0. We denote by yd the activity of

input neuron d and by sc the activity of the downstream processing

neuron c.

In the general case, the activity of neurons~ss~(s1, . . . ,sC) can

be defined as a function of the activity of the input layer,

~yy~(y1, . . . ,yD), and of the weights W :

sc~fc(~yy,W): ð1Þ

This transfer function is not necessarily local, as it does not restrict

the dependency to the afferent weights of neuron c; it allows us to

also describe the interactions between neurons through lateral

connections (marked by dotted lines in Fig. 1A). For the first part

of the analysis, we assume the neural dynamics given by (1) to be

arbitrary, though later we consider specific forms for the transfer

function.

We model feedforward inhibition by explicitly normalizing the

input vector ~yy[RD to satisfy the constraint:

XD

d~1

yd~A with Aw0: ð2Þ

Such input normalization can remove undesired patterned

variations (e.g. contrast, see Fig. 1D), potentially facilitating

learning in the circuit. If we denote the un-normalized input by
~~yy~yy~(~yy1, . . . ,~yyD), the constraint can, for instance, be fulfilled by a

simple division, yd~A ~yyd=
P

d ’ ~yyd ’, though alternative implemen-

tations are possible. This formulation abstracts away the details of

the biological implementation, focusing on its functional implica-

tions [11]. Importantly, the simple form allows us to derive

theoretical results about the role of this form of feedforward

inhibition during learning. At the level of the neural circuit,

however, input normalization relies on the presence of a set of fast

spiking interneurons (in the hippocampus – predominantly basket

cells [8]) innervated by the same afferent inputs, with unspecific

projections onto the subsequent layer. The implications of this

neural implementation are considered in more detail in the

Discussion.

Author Summary

The inputs a neuron receives from its presynaptic partners
strongly fluctuate as a result of either varying sensory
information or ongoing intrinsic activity. To represent this
wide range of signals effectively, neurons use various
mechanisms that regulate the total input they receive. On
the one hand, feedforward inhibition adjusts the relative
contribution of individual inputs inversely proportional to
the total number of active afferents, implementing a form
of input normalization. On the other hand, synaptic scaling
uniformly rescales the efficacy of incoming synapses to
stabilize the neuron’s firing rate after learning-induced
changes in drive. Given that these mechanisms often act
on the same neurons, we ask here if there are any benefits
in combining the two. We show that the interaction
between the two has important computational conse-
quences, beyond their traditional role in maintaining
network homeostasis. When combined with lateral inhibi-
tion, synaptic scaling and fast feedforward inhibition allow
the circuit to learn efficiently from noisy, ambiguous
inputs. For inputs not normalized by feed-forward
inhibition, learning is less efficient. Given that feed-forward
inhibition and synaptic scaling have been reported in
various systems, our results suggest that they could
generally facilitate learning in neural circuits. More broadly,
our work emphasizes the importance of studying the
interaction between different plasticity mechanisms for
understanding circuit function.

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 2 March 2012 | Volume 8 | Issue 3 | e1002432

We model incoming synapses to be plastic and to change by

Hebbian learning, with synaptic scaling implemented by an

additional weight dependent term [20,21]:

DWcd~ (scyd{scWcd), ð3Þ

where is a small positive learning rate. This synaptic scaling

model captures the important biological constraint that weight

changes should rely only on information that is local to the

synapse. It differs from global forms that use an explicit weight

normalization in that the normalizing constant is not a separate

parameter, but rather is implicitly determined by the circuit

dynamics.

Evolution of weights during learning
The circuit model above defines specific learning dynamics for

the synaptic weights as function of the their initial values and of the

incoming inputs ~yy. To investigate the evolution of the weights

analytically, it is informative to first study the time course of the

weight sums W c~
P

d Wcd for an arbitrary neuron c. Using the

learning rule (Eq. 3) and the explicit input normalization

constraint (Eq. 2), we obtain:

DW c~ sc(A{W c), ð4Þ

which shows that W
�
c~A is a stationary point for the dynamics of

W c. Furthermore, since neural activity and the learning rate are

both positive, W
�
c is a stable stationary point, i.e., W c increases

when smaller than A, and decreases when larger, independent of

the input statistics. Consequently, synaptic plasticity automatically

adjusts the sum of the incoming weights to each neuron to the total

incoming drive (since
PD

d~1 yd~A). Hence, the synaptic weights

of a processing neuron adapt during learning to match the scale of

its inputs. Rather than being a separate parameter, the norm of

the weights is inherited from the properties of the input stimuli.

We show below that this match of the normalizing constants for

inputs and weights, respectively, is critical for achieving efficient

learning in the neural circuit.

In contrast to the mean W c, which is independent of the inputs

~yy provided that the inputs are normalized, the stationary points for

individual weights Wcd depend on the statistics of the input

patterns. Such a dependency is, of course, needed if the circuit is to

memorize properties of the input after learning. We can derive an

analytical solution for learning in this system, something that has

often proved difficult for other models. Specifically, if we consider

the input vectors~yy to be drawn independently and identically from

a stationary but otherwise unspecified distribution p(~yy), we can

show (see Methods) that, at convergence, the weights associated

with each neuron are uniquely determined by the statistics of input

stimuli and the transfer function fc(~yy,W):

Wcd&A

P
n fc(~yy(n),W)y

(n)
dP

d ’

P
n fc(~yy(n),W)y

(n)
d ’

&A
Sfc(~yy,W)ydTp(~yy)P
d ’ Sfc(~yy,W)yd ’Tp(~yy)

, ð5Þ

where the brackets denote the average of the expression under the

input distribution. This approximation is very accurate for small

learning rates e and large numbers of inputs.

A statistical model for normalized input stimuli
Although Eq. 5 gives a formal description for the outcome of

learning in the neural circuit as a function of the neuron dynamics

fc(~yy,W) and the input statistics p(~yy), it tells us little about the

quality of the learning result. For this, we need to specify the input

distribution p(~yy). In particular, we use a generative model, which

gives not only an explicit model for the input statistics p(~yy), but

also an expression for the theoretically optimal solution for

inference and learning on such data, which we can use to evaluate

the quality of learning in the neural circuit [22].

The specific generative model we chose is a mixture model,

which is naturally associated with classification tasks [23].

Intuitively, a mixture model assumes each input stimulus to

belong to one out of C classes. Each class is described by a

representative input and its typical variations. Mixture models

have been well-investigated theoretically and are used to model a

variety of data [23]. Moreover, although they may seem

restrictive, mixtures are well-suited to model multi-modal data

distributions also when the assumptions of the model are not

satisfied exactly [23].

In generative model terminology, mixture distributions assume

an input~yy to be generated by one of C model classes (see Fig. 1B).

Each class c is described by a representative pattern ~WWc, which we

will refer to as its generative field. The mixture distributions

p(~yyDc,W) define the variations of the patterns within each class,

where W is the matrix of all generative fields. The prior

probability p(c) specifies how many inputs are generated by the

different classes. Here, we assume all classes to be equally likely,

Figure 1. An overview of the model. (A) The neural circuit receives normalized inputs conveyed by excitatory synapses to a processing layer
(large figure). The activity of the processing neurons is determined by the received inputs and internal dynamics mediated by lateral interactions.
Inset: Two forms of weight scaling. The red curve shows conventional linear scaling, the green curve logarithmic scaling for values larger one. (B)
Inputs to the circuit are modeled using a mixture model with normalized generative fields and Poisson noise. (C) Example normalized fields, with
different values of the normalization constant A. (D) Illustration how inputs with different contrast levels are normalized (background set to 1).
doi:10.1371/journal.pcbi.1002432.g001

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 3 March 2012 | Volume 8 | Issue 3 | e1002432

and, since inputs yd represent positive firing rates, we choose the

Poisson distribution to model noise:

p(c)~
1

C
, p(~yyDc,W)~ P

D

d~1
Poisson(yd ;Wcd), ð6Þ

where D is the number of input dimensions.

To capture the effects of feedforward inhibition, we assume the

parameters W to satisfy the constraint:

X
d

Wcd~A for all c, ð7Þ

with parameter A effectively determining the contrast of the

inputs, see Fig. 1C. Note that this model only approximates the

effect of feedforward inhibition, since individual stimuli are not

normalized (the constraint in Eq. 2 is only true on average).

However, the approximation gets increasingly accurate with

increasing size of the stimuli, D.

Having a model for the input distribution, we can derive the

optimal solution for inference and learning on this data. In

particular, we use the expectation maximization (EM) framework

[24,25] which enables us to learn the maximum likelihood

solutions for the parameters W from input stimuli. Intuitively,

this optimal learning procedure alternates between what we call

the E-step, estimating how likely the data are under the current

model, and the M-step, when we change the model parameters.

Iterating E- and M-steps is guaranteed to never decrease the data

likelihood and, in practice, it increases the likelihood to (possibly

local) likelihood maxima. If a global maximum likelihood solution

is found, the parameters W represent the best possible learning

result (in the limit of many data points). Similarly, the posterior

distribution with optimal W represents the best possible inference

given any specific input. For our model, we obtain the following

update rules for optimal parameter learning:

E{step : p(cj~yy(n),W)~
exp (Ic)P
c0 exp (Ic0)

,

where Ic~
X

d
log (Wcd)y

(n)
d

ð8Þ

M{step : Wnew
cd ~A

P
n p(cD~yy(n),W)y

(n)
dP

d ’

P
n p(cD~yy(n),W)y

(n)
d ’

, ð9Þ

where the posterior probability required for the E-step takes the

form of the well-know softmax function [26] with arguments Ic.

Optimal learning in the neural circuit
With the concrete model of normalized input data, we can now

ask how learning in our neural circuit is related to the theoretically

optimal solutions for such data. First, recall that after learning in

the neural circuit has converged, the synaptic weights are a

solution of Eq. 5. Second, for the probabilistic model the (possibly

local) optimum is obtained after the EM iterations have converged,

which means that W satisfies Eq. 9 with Wnew~W. Comparing

the result of neural learning with the result of EM learning, we

note that they have a very similar structure:

Wcd&A

P
n fc(~yy(n),W)y

(n)
dP

d ’

P
n fc(~yy(n),W)y

(n)
d ’

,Wcd~A

P
n p(cD~yy(n),W)y

(n)
dP

d ’

P
n p(cD~yy(n),W)y

(n)
d ’

:ð10Þ

Indeed, synaptic weights W can be easily mapped into the

parameters W of the generative model and if we choose the

transfer function fc(~yy,W) in the circuit to be equal to the posterior

probability p(cD~yy,W), the two expressions are the same. Hence, if

we interpret neural activity as representing posterior probabilities

under our model (compare [27–31]), any fixed point of EM

optimization becomes an approximate fixed point of neural

learning.

The transfer function fc(~yy,W)~p(cD~yy(n),W) makes learning in

the neural circuit approximately optimal for normalized data, but

what does this transfer function mean in neural terms? First, the

optimal neural dynamics requires a specific form of lateral

interactions, implementing the softmax function (Eq. 8, left-

hand-side). Through these interactions, neurons compete for

representing each input stimulus. Due to its importance for

competitive learning, neural circuits giving rise to the softmax have

extensively been investigated [26,32–34]. Typically they involve

unspecific feedback inhibition which suppresses neurons with weak

inputs while those with strong inputs can maintain high activity

rates. Most of the variants of the implementation should work for

the purposes of our model (also compare [35–37]); hence we do

not commit to one specific realization of this function.

The arguments of the softmax have a particularly simple form:

they represent local summations of input activities weighted by

synaptic strengths, Ic~
P

d log (Wcd)yd . While the summation of

inputs is biologically plausible, scaling by the logarithm of the

weights log (Wcd) may not be. It, for instance, implies that the

contribution of an input to a neuron’s activity may be negative or,

unrealistically, change sign during learning. This problem can be

addressed, however, while preserving the close correspondence

between the circuit’s fixed points and maximum likelihood

solutions. To achieve this, we note that the only requirement for

the input data~yy is that the total input is preserved,
P

d yd~A. We

therefore have some freedom when modeling how feedforward

inhibition enforces this constraint. In particular, if the un-

normalized input is~~yy~yy, then feedforward inhibition could constrain

the total inputs by:

yd~(A{D)
~yydP
d ’ ~yyd ’

z1, ð11Þ

which represents a slight alteration to the common choice

yd~A
~yydP
d ’ ~yyd ’

. Practically, this form of normalization continues

to scale the activity of an un-normalized input unit ~yyd by the total

activity
P

d ’ ~yyd ’, but it introduces an offset corresponding to having

some spontaneous background activity in the input layer (which

leads to a normalization constant AwD).

This model of feedforward inhibition guarantees that the

weights will eventually converge to values larger or approximately

equal to one. As a consequence, negative weight factors can be

removed completely by linearizing the logarithm around one. We

consider two forms of such a linearization: in the first, we use the

linearization only for values of Wcdv1, in the second, we

completely replace the logarithm by the linearized form (see inset

of Fig. 1A):

sc~
exp (Ic)P
c’ exp (Ic’)

with Ic~
X

d

S(Wcd)yd or Ic~
X

d

Wcd yd ,ð12Þ

where S(w)~w for wv1 and S(w)~ log (w)z1 for w§1. For

the linearization we exploited that for normalized inputs the

softmax becomes invariant with respect to weight offsets (see

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 4 March 2012 | Volume 8 | Issue 3 | e1002432

Methods). The linear case recovers the conventional linear

summation of synaptic inputs, while the logarithmic case is a

closer approximation of the optimal dynamics (see Discussion).

The complete description of the final neural circuit is

summarized in Table 1. It consists of essentially three elements:

input normalization, Hebbian plasticity with synaptic scaling, and

softmax competition (see also Fig. 1). Our analysis shows that these

elementary models of neural interactions can be approximately

optimal for learning on normalized inputs from mixture

distributions. Notably, the neural circuit can process any type of

un-normalized data as feedforward inhibition projects any

stimulus to a subspace on which learning is optimal.

It is important to remark that no explicit knowledge about

A or (A{D) is required at the level of processing neurons, which

would be difficult to justify neurally. Instead, synaptic scaling

automatically adjusts the weights W such that the constraint in Eq.

2 is satisfied. This, furthermore, means that synaptic plasticity can

follow slow changes of the normalization constant A, which could

be used to further facilitate learning. Formally, manipulating A

during learning provides a simple implementation for simulated

annealing, which is often used to prevent optimization from

converging to locally optimal solutions [38,39]. Alternatively,

annealing can be achieved by changing the amount of spontane-

ous activity in the input layer (see Discussion for neural

mechanisms implementing such changes).

Considering the details of the neural circuit and the generative

model used here, some aspects of the analytical results presented

may not seem very surprising. The similarity between the fixed

points for the synaptic weights and the maximum likelihood

solution is partly due to the fact that both models fulfill the same

constraint,
P

d Wcd~A, at least approximately. However, this

constraint has different origins in the two models: in the neural

circuit it is a reflection of synaptic scaling, whereas in the

generative model it appears due to the fact that the modeled data

is normalized. Along the same lines, the fact that the softmax

function emerges as the optimal transfer function for the circuit is

somewhat expected, given that the softmax is closely associated

with mixture models. However, the arguments of the softmax, Ic,

have a particularly compact form in our case, and they can be

easily approximated through the integration of afferent inputs to

the processing neurons. The compactness of the neural interac-

tions is a direct consequence of the combination of Poisson

mixture distributions, normalized inputs and synaptic scaling.

Without any of these components, the interactions would be more

complicated, or not optimal.

Optimal learning – numerical simulations
Although we have shown that learning in the neural circuit

approximates optimal learning for our data model, several details

remain to be investigated. First, it is unclear how close is learning

in the neural circuit to the optimum in practice. Second, since real

data rarely follows the assumptions of the model exactly, we would

like to know how robust learning is in such cases. These questions

can only be answered through numerical simulations using either

simple artificial data for which the optimal solutions are known, or

realistic inputs from a standard database.

Artificial data. We consider an artificially generated data set,

for which ground truth about the input distribution is available. In

particular, input stimuli are generated by the normalized mixture

model (Eqs. 6 and 7), using generative fields ~WWgen
c ~

(Wgen
c1 , . . . ,Wgen

cD)T in the shape of partially overlapping filled

rectangles, with background values set to one, see Fig. 2A. The

degree of overlap of the rectangles and their relative sizes

determine the difficulty of the task. Note that all data will be

visualized two-dimensionally, i.e., we show inputs ~yy~
(y1, . . . ,yD)T and the synaptic weights of a neuron c,
~WWc~(Wc1, . . . ,WcD)T , as

ffiffiffiffi
D
p

|
ffiffiffiffi
D
p

pixel images.

Some example data, generated with C~4 classes, D~10|10,

and different normalization constants are shown in Fig. 2B,C.

High values of A (Fig. 2B) correspond to a high signal-to-noise

ratios, while low values of A (Fig. 2C) result in very noisy data. In

annealing terms, a low A corresponds to a high temperature,

which makes the system more flexible to explore the space of

possible parameters and helps avoid local optima. Here, we keep

A fixed during learning and optimize its value for best

performance (for this data A~120, with performance deteriorat-

ing for values larger than A~150).

We generated N~10000 data points with generative fields as

those in Fig. 2A, which we use to learn the weights in the neural

circuit and for the EM parameter optimization (the detailed setup

for these experiments is described in the Methods). The evolution

of the synaptic weights during learning for an example run in the

linear neural circuit is shown in Fig. 2D. The corresponding

evolution of the generative fields using EM optimization is shown

in Fig. 2E. Both converge after about 9 iterations over the whole

data set (we repeat the input data in the neural circuit as well, for a

closer match to EM). Also the neural circuit with log-saturation of

inputs shows a behavior very similar to EM (not shown). For a

more quantitative comparison of learning in the two systems, we

use two measures: the likelihood of the input data under the

model, given the learned model parameters, and the percentage of

trials which converge to the global optimum.

First, the evolution of the likelihood during learning is shown in

Fig. 2F for the different versions of the model. During learning, the

circuit parameters improve continuously to a value close to the

likelihood of the ground-truth parameters and therefore close to

the optimal value for the data. For comparison, the same plot also

shows the likelihood values during EM optimization, which

converges to the optimum with a small amount of overfitting

(hardly visible in the figure), same as the neural model with log-

saturating inputs. The great similarity between the obtained

likelihoods confirms the high accuracy of the approximations used

in the neural circuit with log-saturation. Likewise, the neural

circuit with linear input summation converges to close to optimal

likelihood values. The slightly lower final values are attributed to

the stronger effect of the fully linear approximation. Second,

regarding the recovery of global vs. locally optimal solutions,

learning in the circuit converges to the approximately optimal

solution for normalized data in most of the runs. Specifically,

neural learning in the simple neural circuit recovers the global

Table 1. Learning in neural circuits.

lateral inhibition
sc~

exp (Ic)P
c’ exp (Ic’)

input integration Ic~
P

d S(Wcd)yd (logarithmic)

Ic~
P

d Wcd yd (linear)

synaptic plasticity DWcd~ (scyd{scWcd)

feedforward inhibition
yd~(A{D)

~yydP
d ’ ~yyd ’

z1

Summary of neural interactions for approximately optimal learning in our
model. The function S(w) is given by S(w)~w for wv1 and S(w)~ log (w)z1

for w§1 (see Fig. 1A).
doi:10.1371/journal.pcbi.1002432.t001

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 5 March 2012 | Volume 8 | Issue 3 | e1002432

optimum in 86 of 100 runs, while the log-saturating version further

improves this number to 97 of 100 runs; for comparison, EM

learning converges to global optima in 96 of 100 runs.

Realistic data. We have seen that learning in the neural

circuit shows close to optimal performance when the input data is

generated according to the assumed mixture model. Real data,

however, does not match the assumptions of our model exactly. If

we take, for instance, the MNIST dataset of handwritten digits

[40,41], a standard dataset for classification, differences between

different items from the same class arise from different writing

styles for the same digit. Although writing style variations are not

modeled explicitly, we expect the stochasticity modeled by Poisson

noise to capture these variations at least partially, allowing for

robust learning in this setup. Hence, we use this dataset for

learning in our model. We start by normalizing the data by

feedforward inhibition (Eq. 11), after which learning proceeds as

for the artificial data (see Methods for details). The emerging

weights in the neural circuit (linear case) and the corresponding

generative fields for an example run using digits ‘0’ to ‘3’ are

shown in Fig. 3A,B. As can be observed, both the neural circuit

weights and the learned generative fields of EM converge to

represent individual digits.

A quantitative analysis of the learning outcomes is more difficult

in the case of realistic inputs, as we no longer have access to

ground-truth information. Nevertheless, we can still compare the

likelihood values during learning. Fig. 3C shows the evolution of

likelihoods for both circuit models and for EM. As can be

observed, the likelihood values for both the neural circuit and EM

again continuously increase. As before, the log-saturating circuit

and EM converge to virtually identical likelihood values. For the

linear circuit, there is again a gap, slightly more pronounced this

time (but also note the finer y-axis scale). Still, the neural circuit is

very similar to EM in representing individual digits (Fig. 3A,B).

In general, unsupervised learning in the circuit and EM try to

cluster the available data as well as possible, regardless of the ‘true’

class labels. In particular, because of similarities between different

digits, the emerging generative fields do not necessarily reflect the

digits’ class distinction. If we use the full MNIST dataset and ten

processing neurons, similar images from different classes, e.g. a ‘3’

and ‘8’ with similar slant, are often clustered together. As a

consequence, the neural circuit and EM usually fail to represent all

classes. A straight-forward solution for this problem is to increase

the number of neurons in the processing layer, which allows for a

finer grain representation of the inputs. In such an overcomplete

setting, learning can successfully represents all classes. Further-

more, when several neurons learn the same digit, they represent

different subclasses (e.g., different slants for ‘3’), as shown in

Fig. 3D. In the following, we show that these emerging

representations can be used by a higher neural processing layer

for efficient classification.

Higher level processing – a classification task
Until now, we have evaluated the effectiveness of learning by

measuring how well the final weights can describe the data

(formally, the data likelihood under the generative model).

Alternatively, we could ask how useful the emerging input

representation is for performing higher level tasks in downstream

circuits. The performance for such tasks can give a measure of

Figure 2. Learning on artificial data. (A) An example set of generative fields W gen, for D~100 (10|10 pixels). Due to the normalization, different
rectangles have different pixel intensities (displayed here for A~120). (B) Some examples of generated data for the same rectangles as in (A) with
normalization constants A~240. (C) Same examples with A~120. Very high intensity values were truncated to improve visibility. (D) The evolution of
synaptic weights during learning in the neural circuit (linear case) if data as in (C) was used. (E) Evolution of the generative fields using EM algorithm
for the same data. (F) Likelihood changes during learning for the neural circuit (both versions) and EM; learning used 10000 inputs from the classes
shown in (A) with A~120. Different lines of the same color mark individual runs with different random initial conditions.
doi:10.1371/journal.pcbi.1002432.g002

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 6 March 2012 | Volume 8 | Issue 3 | e1002432

learning quality that is more independent of specific assumptions

about the input statistics. Moreover, such alternative performance

measures become a necessity when comparing learning on

normalized versus un-normalized data, as done in the following

section. Since likelihoods are well-suited measures of learning

performance only when computed using the same data, no such

comparison is possible when trying to asses the benefits of

normalization.

For the MNIST dataset, a natural task is classification, which

has been extensively investigated in the literature, both in neural

models and using purely functional approaches (e.g., [42–44]).

Note, however, that the type of classification relevant for biological

systems differs from the generic classification in several aspects.

Perhaps most importantly, stimuli processed by neural circuits

usually come without explicit labels. For instance, most visual

stimuli we process are not accompanied by labels of the visual

objects that caused them. However, during development we are

provided (directly or indirectly) with the meaning of objects for

some stimuli. In order to classify inputs accordingly, the model

needs to have access to at least some stimuli~yy for which the class

membership (label) is known. These labels can then be used to

associate the representations in the lower processing layer

(obtained by unsupervised learning) with the corresponding class;

for instance, all writing styles of a hand-written ‘2’ with digit class

‘2’. Having an overcomplete representation of the data becomes

critical for the system to work in this setup. As we have seen in

previous numerical experiments, learning with MNIST data yields

representations of different classes of hand-written digits. Because

of different writing styles, the variations of all patterns showing the

same digit are too strong to allow for a representation of all digits

with one class per digit. However, as already shown in Fig. 3D,

with more neurons than classes, the emergent representation

successfully captures all digit classes, with different neurons

representing different writing styles (the more units, the more

detailed the representation of different writing styles).

For classification, we extend the neural circuit to include an

additional processing stage that makes use of the previously

learned representation for assigning class labels. As done for the

first processing layer, we formulate the classification process

probabilistically, using a generative model assuming that a digit

type k generates different writing styles (Fig. 4A). This allows us to

derive a probabilistic procedure for classifying a given input

stimulus (see Methods). The focus here is assessing the utility of the

first layer representation for higher level computations rather than

the neural implementation of this later processing stage. Still, we

can note that the dynamics of the second layer shares several

features with the first layer model: the neural dynamics have a

simple dependency on a weighted sum of incoming inputs (see

Methods), and the inputs themselves are normalized (because of

the softmax), suggesting this type of computation could be

implemented in a neurally plausible circuit.

To illustrate classification based on the representations learned

unsupervised, we first consider stimuli representing digits of types

‘0’ to ‘3’. For this data, the representations learned by

unsupervised learning in the first processing layer (with 20 units)

is shown in Fig. 4B (bottom row). We label these representations

using 4% of the data used for training (i.e., we use the labels of 4%
of the training data). The probability distribution for the map

between first layer representations and class labels is shown in

Fig. 4B (computed using Eq. 34, see Methods), demonstrating a

close to perfect assignment of representations to digit classes. For a

quantitative analysis of this match, we can measure the

classification performance of the system for a test dataset (i.e.,

for data not used for training; see Methods for details). For the four

Figure 3. Learning on more realistic data. (A) Evolution of synaptic weights in the neural circuit on inputs from the MNIST database. (B)
Evolution of generative fields using EM on the same data; for both input data consisted of 10000 data points from the digit classes 0 to 3 with
normalization A~900. (C) Changes of the likelihood during learning for the neural circuit (both versions) and EM. (D) Synaptic weights learned by the
circuit (linear version) on the same data but with five times more processing neurons.
doi:10.1371/journal.pcbi.1002432.g003

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 7 March 2012 | Volume 8 | Issue 3 | e1002432

digit dataset, the classification performance as function of the

number of neurons in the first processing layer is shown in Fig. 4C.

For both the neural circuit and EM optimization classification

performance increases with the number of units. As can be

observed, the neural circuit with log-saturating synaptic efficacies

shows virtually identical classification rates to EM learning.

Likewise, the neural circuit with standard linear input summation

shows a good classification performance, even slightly better for

the complete case (four digit classes and four processing neurons).

In an overcomplete setup, the rate of successful classifications is

still high (e.g., around 93% for the five times overcomplete setup),

though a bit lower than for the log case and EM.

So far, we have used classification performance as an additional

measure for the quality of learning in the circuit. However, the

setup is interesting from a functional perspective as well, since it

allows for relatively high rates of correct classification using a very

limited amount of labeled data. Fig. 4E shows classification

performance for different degrees of overcompleteness in the

processing layer if normalized EM is applied to the full MNIST

data (we use EM here as it can be efficiently scaled-up to the size of

the full MNIST dataset; see Methods). As before, classification

performance increases with an increasing number of units and

with the number of labels used for classification (see Fig. 4E and

Fig. 4F, respectively). Importantly, a small percentage of labels is

already sufficient to obtain almost the same classification

performance as when using all labels. For instance for C~1000
processing units we obtained a performance of 95% correctly

classified stimuli using just 6:7% of the MNIST labels. For rates

above 90% less than 1% of labels were sufficient. Moreover,

performance in our model is comparable to that of state-of-the-art

methods, such as deep belief networks (DBN; [42]). Using all the

labels, the performance of DBN reaches 98:75% [42], but with a

much more complex circuit (two processing layers and an

associative memory), several learning mechanisms, and after the

tuning of many free parameters. In contrast, learning in our model

is very straightforward, with very few free parameters (e, A, C), and

requires just few labeled inputs. These properties seem particularly

desirable in the biologically relevant setting.

Functional benefits of input normalization
Even if we assume that synaptic scaling is unavoidable to

guarantee stability during Hebbian learning, it is still unclear why

the system would need feedforward inhibition, or, more in formal

terms, what are the benefits of learning using normalized data.

This question can be addressed at two levels. First, at an abstract

level, we can ask how different are the outcomes of optimal

probabilistic learning when using unconstrained versus normalized

data. Second, in neural terms, we can ask how learning changes

when blocking feedforward inhibition in the neural circuit.

To answer the first question, we use our generative model

approach to compare the optimal learning dynamics for data that

is, or not, normalized (this difference will depend on the relative

size of different stimuli; compare Fig. 5A and B). Formally, we

construct an analog mixture model for un-normalized data, and

derive optimal learning for this model. The analysis yields a similar

set of update rules (see Methods, Eqs. 26 and 27), which we can

use for unsupervised learning with similar (but un-normalized)

data. Because the two learning procedures use different data,

comparing them is nontrivial. While for data generated according

to the assumed probabilistic model we can still use the percentage

Figure 4. Classification of MNIST inputs. (A) A graphical model linking the representations in the first processing layer, learned in an
unsupervised setting, to class labels k in a second processing layer. (B) The assignment of the learned generative fields to digit classes obtained using
4% of the labels in the set of N~10000 training inputs (subset of MNIST with classes 0 to 3). (C) Classification rates after training for the neural circuit
(both versions) and EM on the MNIST test set (classes 0 to 3). (D) Generative fields for C~50 classes for EM trained on the full MNIST training set (10
digit types). (E) The classification rate based on the generative fields learned by EM for the full MNIST data set (N~60000). Rates are plotted as
function of the number of units in the first processing layer. For the results 4000 labels of the training set were used (6:7%). Error bars (10 runs) were,
in general, too small to be visible: for 100 units, different runs divert from the mean classification rate of 89:5% by less than 1:2%; for 300 units by
results diverted by 0:5%; and for 1000 units diversions were at 0:3%. (F) Classification performance as function of the amount of labeled data used for
learning in the second processing layer, for C~1000 units. As in (E) error bars were, in general, too small to be visible.
doi:10.1371/journal.pcbi.1002432.g004

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 8 March 2012 | Volume 8 | Issue 3 | e1002432

of trials converging to the optimum as a performance measure,

comparison becomes very difficult for the digits data. Since the

likelihoods are no longer comparable (because they are estimated

from different data), we can only rely on the classification rates for

estimating the quality of the learned representations in this case.

We compare the performance of the two learning procedures

for the same two datasets described above. For the blocks dataset,

learning performance is not significantly different in the two cases

(not shown), probably because the task is too easy to be able to

differentiate between the two learning procedures. The results for

the digits are shown in Fig. 5C. The unconstrained learning

procedure yields worse performance than the constrained case; the

difference may seem small in absolute terms, but the classification

rate for the unconstrained case is worse than the outcome of k-

nearest-neighbour (k-NN) classification, which we may view as a

lower bound for task difficulty. In itself, this result is not sufficient

to prove that learning from normalized data is generally useful for

unsupervised learning. Since we can only estimate learning

performance indirectly, through the classification rates, it may

be that data normalization improves classification in general, by

removing task irrelevant variability, without having any specific

benefit for learning per se. If this were the case, then we should

observe a similar performance improvement for the normalized

relative to the unnormalized data when using a standard classifier,

such as k-NN. This is however not the case; on the contrary, for k-

NN performance decreases to 89:7% (from 93:1%) after data

normalization, suggesting that the benefits of normalization are

restricted to learning procedures that explicitly exploit this

property, as does learning in our model.

For the neural circuit, the utility of the interaction between

feedforward inhibition and synaptic scaling is further emphasized.

When blocking feedforward inhibition (practically, this means

using unnormalized stimuli as inputs to the circuit) the linear

circuit converges to represent all classes very rarely, much less

often than when feedforward inhibition is active in the circuit

(Fig. 5D, compare grey and red bars). In principle, since the neural

circuit approximatively implements optimal learning for normal-

ized data, one could expect that performance should be similar to

that obtained by constrained EM with un-normalized data, which

is indistinguishable from that obtained when learning from

normalized data. So why is there a the big difference in

performance in the case of the neural circuit? The critical

difference between EM and the network is that synaptic scaling

only enforces the constraint of the weights through its (normalized)

inputs. If the incoming stimuli are not normalized, the sum of the

weights is not guaranteed to converge at all (Eq. 4 does not apply).

This intuition is confirmed by the fact that when replacing

synaptic scaling by an explicit weights normalization (see Methods)

learning evolves similarly to the case when feedforward inhibition

is active. These results suggest that feedforward inhibition is

critical for correctly learning the structure of the data when the

weights are constrained by biologically plausible synaptic scaling.

Discussion

Our results reveal a close connection between feedforward

inhibition and synaptic scaling, which could be important for

cortical processing. We have shown that an elementary neural

Figure 5. The contribution of feedforward inhibition and synaptic scaling to learning. (A) An example set of generative fields for
unconstrained (left column) and normalized (right column) data. The overall average intensity across all fields is constrained to facilitate the
comparison of learning with different models. (B) Same as before, but with rectangles of similar sizes. (C) Rate of correct classification for optimal
learning with constrained vs. unconstrained data. (D) Rate of convergence to global optima when learning from (un)constrained data with the linear
network model, when weights are constrained either by local synaptic scaling, or through explicit normalization. All estimates are computed out of
100 trials. (E) Evolution of the synaptic weights when synaptic scaling is implemented either by synaptic scaling or (F) as instantaneous weights
normalization, for an example run.
doi:10.1371/journal.pcbi.1002432.g005

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 9 March 2012 | Volume 8 | Issue 3 | e1002432

circuit with lateral inhibition, Hebbian plasticity and synaptic

scaling can approximate optimal learning for normalized inputs.

Furthermore, although our analysis demonstrates the approximate

equivalence between learning in the neural circuit and the optimal

theoretical solution only when inputs are generated by normalized

mixture distributions with Poisson noise, numerical simulations

using realistic data show that close to optimal learning is possible

even when the inputs do not match these model assumptions

exactly. Importantly, optimal learning is an outcome of a

synergistic interaction between input and weight normalization,

and learning is much less effective in absence of any of the two.

The mechanisms required for optimal learning in our model

circuit have close correspondents in biology. First, the type of input

normalization used in our model has been observed in both

hippocampus and the cortex [11]. It involves a population of fast-

spiking inhibitory neurons that deliver relatively homogeneous

inhibition to the pyramidal cells. For a more detailed map of our

model onto this circuit, we assume, in first instance, that the

normalized version of the stimulus is explicitly represented in one

layer, which then projects onto the processing layer. Alternatively, it is

imaginable that the normalized stimuli could only be available in

implicit form, without the need for an additional input layer; this

would, however, require some corrections to the Hebbian learning

rule, since the presynaptic term would depend on the input scale in

this case. Second, learning in the circuit takes a simple local form,

which has natural biological correspondents. In particular, for the

linear approximation for synaptic currents, learning involves simple

Hebbian plasticity and multiplicative synaptic scaling. The map to

biology is somewhat more difficult for the model with logarithmic

saturation of synaptic efficacies. This would translate in an

unconventional type of weight-dependent Hebbian learning, and

more complex additive synaptic scaling. Although there is some data

on weight-dependent correlation learning [45] and additive synaptic

scaling has been reported in some systems [46], the experimental

evidence clearly favors the linear approximation for synaptic currents.

The logarithmic version is nonetheless important, as the closest

approximation to the optimal solution with bounded excitatory input

currents. Moreover, it enables us to quantify the effect of the

approximations in the linear model and hence to explain the

difference in performance of the neural circuit relative to the

theoretical optimal solution. Lastly, optimal learning requires a lateral

interactions between the processing neurons, mathematically de-

scribed by the softmax function. Due to its importance for

competitive learning, different circuit models giving rise to softmax

or softmax-like competition have been investigated previously

[26,32–34,36,37], typically involving lateral inhibitory networks with

uniform connectivity onto the excitatory population. Experimentally,

evidence for such lateral inhibition has recently been reported, for

instance, in primary sensory cortex, where feedback inhibition relies

on broadly tuned interneurons, that integrate information from

pyramidal cells with diverse stimulus preference [47], confirming

earlier anatomical observations (see [48] for an overview).

We have seen that the normalization constant plays an

important role during learning, as it controls the sharpness of

the posterior distribution which in turn influences the frequency to

converge to locally vs. globally optimal solutions. Learning

outcomes can be improved by annealing this parameter

throughout learning. Biologically, several neuromodulators are

known to affect the response properties of inhibitory neurons [49]

in a way that would effectively change the normalization constant.

Alternatively, the modulation of background noise can affect

neuronal gain in cortical neurons [13,15], which, in the model, has

similar effects (since both change input contrast). It is tempting to

speculate that the effectiveness of learning can be manipulated by

systematic changes in background current or in the concentration

of neuromodulators, such as acetylcholine, dopamine or nor-

adrenaline [49,50]. This would suggest that experimentally

manipulating the concentration of these substances in the cortex

should have predictable effects on learning efficiency, although

these may be difficult to dissociate from other effects of such

manipulations on arousal or attention [51].

Activity normalization is ubiquitous in the cortex. In particular,

divisive normalization – when a neuron’s response is rescaled as

function of that of its neighbors – has been reported for a variety of

sensory systems, from visual [52–54], to auditory [55,56] or

olfactory [57]. Correspondingly, a range of functions have been

attributed to such normalization. It could optimize the represen-

tation of visual inputs in primary sensory areas [58,59], facilitate

the decoding of information from probabilistic population codes

[60], explain attentional modulation of neural responses [61], or

implement multi sensory cue integration [62]. While the form of

normalization considered here is not equivalent to standard

models of divisive normalization (which typically assume an L2

norm) and seems to have different neural substrates [63], several

interesting parallels can be drawn with these models. In particular,

we can view feedforward inhibition as a way to constrain the space

of representations, similar to [59]. However, instead of asking how

normalization affects the information that can be encoded in the

population as a whole, we investigate how activity normalization

constrains learning in neurons receiving it as inputs.

The simple, biologically plausible neural circuit proposed here

achieves robust, close to optimal unsupervised learning through

the interaction between feedforward inhibition and synaptic

scaling. Moreover, the two are mirror processes, which need to

work together for Hebbian learning to yield efficient representa-

tions of the inputs to the network. Since the type of neural

mechanisms involved in our model can be found throughout the

cortex, it is tempting to suggest that the interaction between

feedforward inhibition and synaptic scaling could be a general

strategy for efficient learning in the brain.

Methods

Evolution of weights – details
Learning in the neural circuit consists of iterative applications of

Eq. 1 and Eq. 3 to normalized input data ~yy, which is drawn

identically and independently from a stationary distribution p(~yy).
To facilitate numerical analysis, we assume that learning uses a

finite dataset of N stimuli, presented repeatedly to the network in

random order. In the limit of large N, this procedure becomes

equal to drawing a new sample from p(~yy) each time.

For the learning dynamics Eqs. 1 to 3 we can show that the

synaptic weights W approximately satisfy Eq. 5 at convergence.

The approximation holds for small learning rates e and large

numbers of inputs N. Large learning rates would bias learning

towards recent inputs. A small dataset would introduce a large

sample bias such that averages across the dataset would be

significantly different from expectation values w.r.t. the distribu-

tion p(~yy) in Eq. 5. For the derivation nested terms scaling with e
and applied N times have to be considered, which requires a series

of rather technical approximations. We, therefore, present the

essential steps here and provide the details as supplemental

information (Text S1).

For the derivation, we consider learning after convergence, i.e.,

after the changes of W have reduced to changes introduced by

random fluctuations due to online updates. For small e these

fluctuations are small. Let us denote by T an iteration step after

which only such small fluctuations take place. After iteration T we

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 10 March 2012 | Volume 8 | Issue 3 | e1002432

can assume the weights W to have evolved to satisfy
P

d Wcd~A
for all c (which follows from Eq. 4). For small e the learning

dynamics (1) to (3) is approximated by changing the weights

according to DWcd~efc(~yy(n),W (n))y
(n)
d followed by an explicit

normalization to
P

d Wcd~A. More compactly, we can write:

W
(nz1)
cd ~A

W
(n)
cd z fc(~yy(n),W (n))y

(n)
dP

d0 (W
(n)

cd0z fc(~yy(n),W (n))y
(n)

d0)

~A
W

(n)
cd z F

(n)
cdP

d0 (W
(n)

cd0z F
(n)

cd0)
,

ð13Þ

where W (n) denotes the weights at the nth iteration of learning,

and F
(n)
cd ~fc(~yy(n),W (n))y

(n)
d .

We now consider another N learning steps after iteration T , i.e.,

we iterate through the inputs once again after learning has

converged. By applying the learning rule (13) iteratively N times,

the weights W (TzN) are given by (see Text S1):

W
(TzN)
cd

~
W

(T)
cd z

PN
n~1 F

(TzN{n)
cd PN

n0~nz1
(1z

A

X
d0 F

(TzN{n0)
cd0)

PN
n0~1

(1z
A

X
d0 F

(TzN{n0)
cd0)

:
ð14Þ

The right-hand-side can now be simplified using a sequence of

approximations, all of which are based on assuming a small but

finite learning rate e and a large number of inputs N. Below we

present the main intermediate steps of the derivation and list the

approximation used for each step:

W
(TzN)
cd &

W
(T)
cd z

PN
n~1 exp (

A
(N{n)

P
d ’ F̂F

(n)
cd ’)F

(TzN{n)
cd

exp (
A

N
X

d ’
F̂F

(0)
cd ’)

ð15Þ

& exp ({
A

N
X

d ’

F̂F
(0)
cd ’)W

(T)
cd z F̂F

(0)
cd

XN

n~1

exp ({
A

n
X

d ’

F̂F
(0)
cd ’)ð16Þ

&F̂F
(0)
cd

exp ({
A

X
d0 F̂F

(0)

cd0)

1{ exp ({
A

X
d0 F̂F

(0)

cd0)
~A

F̂F
(0)
cdP

d0 F̂F
(0)

cd0

~A

PN
n~1 F

(TzN{n)
cdP

d0
PN

n~1 F
(TzN{n)

cd0

ð17Þ

where F̂F
(n)
cd ~

1

N{n

XN

n’~nz1
F

(TzN{n’)
cd (note that F̂F

(0)
cd is the

mean of F
(n)
cd over N iterations starting at iteration T).

For the first step (15) we rewrote the products in Eq. 14 and

used a Taylor expansion (see Text S1):

P
N

n’~nz1
(1z

A

X
d ’

F
(TzN{n’)
cd ’)& exp (

A
(N{n)

X
d ’

F̂F
(n)

cd
0): ð18Þ

For the second step (16) we approximated the sum over n in (15)

by observing that the terms with large n are negligible, and by

approximating sums of F
(TzN{n)
cd over n by the mean F̂F

(0)
cd (see

Text S1). For the last steps, Eq. 17, we used the geometric series

and approximated for large N (see Text S1). Furthermore, we used

the fact that for small ,
exp ({ B)

1{ exp ({ B)
&B{1 (which can be seen,

e.g., by applying l’Hôpital’s rule). Finally, we back-inserted the

definition of F̂F
(n)
cd for n~0.

By inserting the definition of F
(n)
cd into (17) and by applying the

assumption that the ~yy(n) are drawn from a stationary distribution

p(~yy), it follows that:

1

N

XN

n~1

fc(~yy(n),W (Tzn))y
(n)
d

&
ð

fc(~yy,W (T))ydp(~yy)d~yy~Sfc(~yy,W (T))ydTp(~yy),

ð19Þ

yielding the final expression:

W
(TzN)
cd &A

F̂F
(0)
cdP

d0 F̂F
(0)

cd0
&A

PN
n~1 fc(~yy(n),W (Tzn))y

(n)
dP

d0
PN

n~1 fc(~yy(n),W (Tzn))y
(n)

d0

&A
Sfc(~yy,W (T))ydTp(~yy)P
d0 Sfc(~yy,W (T))yd0Tp(~yy)

:

ð20Þ

For Eq. 19 we used the initial assumption that the weights have

converged, i.e., that W remains approximately unchanged after T .

If the same assumption is applied to Eq. 20, we obtain Eq. 5.

Note that although we have applied a number of different

approximations during this derivation (compare [64] for proof

sketches of some of them), each approximation is individually very

accurate for small e and large N. Eq. 5 can thus be expected to be

satisfied with high accuracy in this case; subsequent numerical

simulations for a specific choice of the transfer function fc(~yy,W)
confirm such high accuracies.

Derivation of the EM update rules
Given a set of N inputs drawn from an input distribution p(~yy),

optimal generative model parameters W can be found by

optimizing the likelihood: L(W)~PN
n~1 p(~yy(n)DW). A frequently

used approach to find optimal parameters is expectation maximi-

zation (EM) [24,25]. Instead of maximizing the likelihood directly,

EM maximizes a lower-bound of the log-likelihood, the free-energy:

F (W,Wold)~
X

n

X
c0

p(c0j~yy(n),Wold)(log (p(~yy(n)jc0,W))

z log (p(c0jW)))zH(Wold),

ð21Þ

whereW andWold are the newly computed and previous parameters

of the generative model, respectively, and where H(Wold) is an

entropy term only depending on the previous parameters. To

optimize the free-energy, EM alternates between two steps – the E-

step and the M-step. First, in the E-step, the parameters are assumed

fixed atWold and the posterior p(cD~yy(n),Wold) is computed for all data

points~yy(n). Second, in the M-step, the model parameters are updated

using these posterior values. Note that for more general models,

computations of expectation values w.r.t. the posteriors are

considered part of the E-step. For mixture models such expectations

are tractable operations, and we, therefore, often use E-step and

computation of the posterior synonymously.

M-step solutions can be found by setting the derivative of the

free-energy w.r.t. W to zero. Applied to the concrete model of

normalized input given by the mixture model (Eq. 6), we have to

optimize the free-energy under the constrained of normalized

weights:
P

dWcd~A. We can satisfy the constraint by using

Lagrange multipliers for the derivatives and obtain:

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 11 March 2012 | Volume 8 | Issue 3 | e1002432

L
LWcd

F (W,Wold)

~
L

LWcd

X
n

X
c0

p(c0j~yy(n),Wold)(log (p(~yy(n)jc0,W))z log (p(c0jW))):

L
LWcd

F (W,Wold)z
L

LWcd

X
c’

lc’(
X

d ’

Wc’d ’{A)~0

Expanding the expression for the free energy and computing the

partial derivatives gives (all c’=c drop out):

X
n

p(cD~yy(n),Wold)(y
(n)
d

1

Wcd

{1)zlc~0

X
n

p(cD~yy(n),Wold)(y
(n)
d {Wcd)zlcWcd~0

Taking the sum over d and applying the constraint
P

dWcd~A,

we can rewrite the above expression as:

X
d

X
n

p(cD~yy(n),Wold)y
(n)
d {A

X
n

p(cD~yy(n),Wold)zAlc~0

lc~
X

n

p(cD~yy(n),Wold){
1

A

X
d

X
n

p(cD~yy(n),Wold)y
(n)
d :

Inserting the value of lc computed above and solving forWcd yields:

X
n

p(cD~yy(n),Wold)y
(n)
d {

X
n

p(cD~yy(n),Wold)WcdzlcWcd~0

X
n

p(cD~yy(n),Wold)y
(n)
d {

1

A

X
d ’

X
n

p(cD~yy(n),Wold)y
(n)
d ’ Wcd~0

Wcd~A

P
n p(cD~yy(n),Wold)y

(n)
dP

d ’

P
n p(cD~yy(n),Wold)y

(n)
d ’

:

ð22Þ

For the normalized mixture model (Eq. 6 and Eq. 7), the posterior

probability p(cD~yy,W) can be computed directly. By inserting the

Poisson noise model and constant priors, p(cDW)~1=C, and by using

the constraint on the weights, the posterior can be simplified as follows:

p(cj~yy,W)~
p(~yyjc,W)p(cjW)P
c0 p(~yyjc0,W)p(c0jW)

~
Pd (Wyd

cd exp ({Wcd))P
c0 Pd (Wyd

c0d exp ({Wc0d))

~
exp (log (PdW

yd
cd exp ({Wcd)))P

c0 exp (log (PdW
yd
c0d exp ({Wc0d)))

~
exp (

P
d (yd log (Wcd){Wcd))P

c0 exp (
P

d (yd log (Wc0d){Wc0d))

~
exp (

P
d (yd log (Wcd))) exp ({

P
dWcd)P

c0 exp(
P

d (yd log (Wc0d))) exp ({
P

d Wc0d)
with

X
d

Wcd~A

~
exp (Ic)P
c0 exp (Ic0)

,where Ic~
X

d

log (Wcd)yd :

ð23Þ

To summarize, putting together 22 and 23, E- and M-step for

our model of normalized data are given by:

M{step : Wnew
cd ~A

P
n p(cD~yy(n),W)y

(n)
dP

d ’

P
n p(cD~yy(n),W)y

(n)
d ’

, ð24Þ

E{step : p(cj~yy(n),W)~
exp (Ic)P
c0 exp (Ic0)

,

where Ic~
X

d

log (Wcd)y
(n)
d :

ð25Þ

Update rules for unconstrained learning. In order to

investigate the effects of feedfoward inhibition on learning, we

need to derive the optimal learning rules for a mixture model that

does not assume normalized generative fields. The derivation is

very similar to the one above and more conventional because no

Lagrange multipliers are required for enforcing the normalization

constraint. The E- and M-step equations for the unconstrained

case are given by:

unconstrained M{step : Wnew
cd ~A

P
n p(cD~yy(n),W)y

(n)
dP

n p(cD~yy(n),W)
ð26Þ

unconstrained E{step :

p(cj~yy(n),W)~
exp (

P
d (yd log (Wcd){Wcd))P

c0 exp (
P

d (yd log (Wc0d){Wc0d))

ð27Þ

Note that enforcing the weight normalization
P

dWcd~A in the

above expression recovers the expression for the constrained EM

before.

Linearization of input integration - details
To further simplify the computation of the posterior in Eq. 8,

first note that due to normalized input,
P

d yd~A, the posterior

computations remain unchanged for any offset value b for the

weights:

p(cD~yy,W)~
exp (Ic)P
c’ exp (Ic’)

,with Ic~
X

d

(log (Wcd)zb)yd ð28Þ

~
exp (

P
d log (Wcd)ydzbA)P

c0 exp(
P

d (log (Wc0d)ydzbA)

~
exp (

P
d log (Wcd)yd)P

c0 exp(
P

d (log (Wc0d)yd)

ð29Þ

~
exp (Ic)P
c’ exp (Ic’)

,with Ic~
X

d

log (Wcd)yd ð30Þ

If we use an offset of b~1 we can approximate log (w)z1&w by

applying a Taylor expansion around w~1. If we use the linear

approximation for values wv1 only, we obtain the function S(w)
in Eq. 12. For data with yd§1 as enforced by Eq. 11, the weights

will converge to values greater or approximately equal to one,

which makes S(w) to a very accurate approximation. If we use the

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 12 March 2012 | Volume 8 | Issue 3 | e1002432

linear approximation for all values of w, we obtain the

conventional linear summation in Eq. 12.

Higher level processing – details for classification
In order to use the representation of pattern classes in the first

processing layer for classification, we consider the hierarchical

generative model in Fig. 4A. The model assumes the patterns to be

generated by the following process: First, choose a pattern type k

(e.g., k~1, . . . ,10 for ten digit types), second, given k choose a

pattern class c (e.g., different writing styles), and, third, given c

generate the actual pattern ~yy (with added noise). For the

generation of pattern types k we assume flat priors p(k)~1=K ,

i.e., we assume that each type is equally likely.

Under the assumption that the data is generated by the model,

optimal inference is given by computing the posterior p(kD~yy,H),
where H are the parameters of the model. By using the form of the

graphical model in Fig. 4A, we obtain:

p(kD~yy,H)~
p(k,~yyDH)P
k’ p(k’,~yyDH)

~

P
c p(~yyDc,H)p(c,kDH)P

k’

P
c’ p(~yyDc’,H)p(c’,k’DH)

ð31Þ

The probabilities p(~yyDc,H) are given in Eq. 6 (right-hand-side).

To estimate the probabilities p(c,kDH) let us first define the sets

Rk~f~yy :~yy is of type kg and let us assume these sets to be disjoint

(no overlap). In this case we obtain:

p(c,kDH)~p(c,~yy[Rk DH)~
X
~yy[Rk

p(c,~yyDH) ð32Þ

~
X
~yy[Rk

p(cD~yy,H)p(~yyDH)~
1

K

X
~yy

p(cD~yy,H)p(~yyDk,H) ð33Þ

&
1

K

1

M

XM
m~1

p(cD~yy(m),H) with ~yy(m)*p(~yyDk,H): ð34Þ

Together with Eq. 31, the estimate for p(c,kDH) allows for a

convenient way to approximate the posterior p(kD~yy,H) using input

labels:

Bck : ~
1

M

XM
m~1

p(cD~yy(m),W) with M inputs~yy(m)with label k,ð35Þ

p(kD~yy,W)&
P

c Bckp(~yyDc,W)P
k’

P
c’ Bc’k’p(~yyDc’,W)

: ð36Þ

That is, we can compute the values Bck using M labeled inputs

~yy(m) for each type k. Having computed all Bck, the approximate

posterior given an unlabeled input is given by Eq. 36. Few labeled

inputs can be sufficient to get good estimates for Bck and thus for the

posterior computation (compare Fig. 4B). Note that Eqs. 35 and 36

can only be regarded as approximations for optimal classification

because of the assumptions made. However, they serve in providing

good classification results (see Results), the Bck can conveniently be

computed after unsupervised learning, and, the Bck can be

interpreted as weights in a neural processing context.

After unsupervised learning and computation of Bck using Eq.

35, an input~yy is assigned to the digit type k with highest posterior

using Eq. 36. If the assigned type matches the true label of ~yy, the

input is correctly classified. Note, in this context, that our

approach would also allow for a quantification of the classifica-

tions’ reliabilities by comparing the different values of p(kD~yy).

Finally, note that the setting of few labeled inputs among many

unlabeled ones is typical for semi-supervised learning. Algorithms

for semi-supervised learning usually take labeled and unlabeled

data into account simultaneously. As we focus on unsupervised

learning and use the labels for a second stage of classification, we

avoided to refer to our approach as semi-supervised.

Simulation details
For all simulations we initialize the weights Wcd with the mean

pixel intensity md averaged over all data points, with some additive

uniform noise:

md~
1

N

X
n

y
(n)
d ð37Þ

vd~
1

N

X
n

(y
(n)
d {md)2 ð38Þ

W init
cd ~mdzu with u*U(0,2vd), ð39Þ

where U(xdn,xup) is the uniform distribution in the range

(xdn,xup).

Artificial data. We generate a dataset of N~10000 images

using our mixture model. The generating parametersWgen (Eqs. 6

and 7) used are of the type as shown in Fig. 2A, normalized with

A~120. More specifically, the data generating process involves

first choosing a class c from the prior, and then applying Poisson

noise to the corresponding generative field Wgen
c . We randomly

create a new set of parametersWgen for each trial, each consisting

of 4 fields with block sizes varying in the interval (2{6) pixels,

constrained such that the degree of overlap between any two

blocks is in between 1 to 50%. The resulting dataset is repeatedly

presented to the neural circuit, with the order of the data points

permuted for each block. Learning in the neural circuit proceeds

according to Eq. 3, with the learning rate e~10{3. For the

corresponding EM learning the same parameters and the same

data is used.

Realistic data. For the numerical experiments shown in

Fig. 3, we used N~10000 data points of the digits ‘0’ to ‘3’. These

data points are subsamples of the MNIST data set to guarantee

equal representation of each digit (note that for the numerical

experiments in the section ‘Higher level processing’ we do not use

subsampling). We normalized the resulting dataset using Eq. 2.

Note that this ensures that each input is normalized exactly while

each of the artificial inputs used before was normalized

approximately. Another distinction is that the new input images

no longer have background noise. For the MNIST data we used

with A~900 a larger normalization constant than for the artificial

data, which is needed due to the higher input dimensionality

(D~28|28~784). Learning proceeds in the same way as for the

artificial data before; the learning rate of both neural circuit

models (the log case and the linear case) is e~5:10{4, chosen such

that the number of iterations needed to converge is roughly the

same as the number of EM iterations. For the overcomplete setting

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 13 March 2012 | Volume 8 | Issue 3 | e1002432

shown in Fig. 3D, we ran the experiment with C~20 neurons in

the processing layer; all other parameters were the same as before.
Learning and higher processing on the full MNIST

dataset. Since we want to estimate the best possible result for

MNIST digits classification, we apply annealing while learning the

generative fields. For computational reasons, we can only use the

EM algorithm for these results because EM can be executed on

arrays of linear processors much more efficiently: the batch of N
data points can be subdivided into smaller batches and distributed

to the array of processors. The number of processors can be

chosen such that each small batch can be stored in memory (we

used up to 360 processing cores for the MNIST data). The E-step

can then be executed in parallel, the results are collected, and the

parameters are subsequently updated once per iteration across the

batch. While neurally plausible, the online learning of the neural

circuit requires an update of the parameters once per input. The

parallelization approach for EM is therefore not applicable and

learning with hundreds of processing neurons becomes

impractically slow. Note, however, that with inherently parallel

hardware such as VLSI or FPGA, neural learning could be made

very efficient, but the application of such technologies would go

beyond the scope of this paper. The neural circuit learning is thus

only used with a limited number of neurons (Fig. 4B, C).

For the results shown in Fig. 4D, E, F we started the EM

algorithm with A~830 and linearly increase it over 80 EM steps

to A~910. When estimating the classification performance on the

MNIST test set, training uses the full MNIST training set, in

which the samples are not exactly distributed equally among the

digits. In contrast to the numerical experiments with data points

from digits ‘0’ to ‘3’ (Fig. 3), we do not subsample the MNIST

learning set. Applying subsampling would mean to use indirectly

the knowledge of the labels of the data points. Since we apply pure

unsupervised learning, we did not want to use this knowledge. The

actual performance estimate uses the MNIST test set [40]. Given

an input~yy of the test set, we determine the digit type according to

Eqs. 35 and 36.
Comparison with other methods on MNIST classifi-

cation. More than a decade of research on MNIST data

classification has generated a large body of literature. However,

basically all reported approaches are fully supervised (see [40]),

i.e., they are using all labels. Many approaches, furthermore, use a

larger training set by extending the MNIST training set with

adding transformed versions of its inputs. On the original MNIST

data, and thus on the same data as used for our systems, deep

belief networks (DBN; [42]) achieve 98:75% by using all labels. For

extended training sets or with systems using build-in

transformation invariance [43,44] still higher classification rates

can be achieved (above 99%). For a baseline comparison with our

results, we ran a k-Nearest-Neighbor (k-NN) algorithm; we used

the L3 norm for k-NN, since this is known to yields slightly better

performance on MNIST compared to the more traditional L2

norm [40]. While such a classifier is very close to the state-of-the-

art on extended MNIST training sets (98:78%, see [40]) and on

the original training set (97:17%), our approach results in a better

performance for few labeled inputs. E.g., if 6:7% of the labels are

used, we obtained 95:2+0:1% while the k-NN approaches

achieved 93:1%. For still fewer labels the performance difference

gets still more pronounced. On 1% of the labels, the k-NN

algorithm achieved just 84:5% while our approach resulted in

92:0+0:2% correct classifications. These results show a clear

benefit of learning an unsupervised representation as provided by

our approach, while fully supervised approaches such as k-NN

algorithms can not make use of unlabeled data.

Unconstrained learning and unconstrained inputs. In

the case of unconstrained EM, we use the original MNIST data

(globally rescaled by a factor 1/255 to avoid numerical problems),

with no input normalization. For the neural network results,

artificial data is generated using the same blocks model as before,

but without individually normalizing the generative fields. In the

absence of input normalization, the contrast of the images remains

unspecified; multiplying all inputs by an arbitrary constant does

not affect the original model but can have serious consequences for

learning on unconstrained data (intuitively, this scaling factor

translates into an arbitrary change in learning rate, which is bound

to affect learning). Hence, to facilitate the comparison between

different models we globally rescale the generating fields to have

the same mean intensity (averaged over all fields), while allowing

different inputs to have different mean intensities (see Fig. 5A,B),

using A = 200. Since the overall mean is preserved, any difference

between the normalized and un-normalized data is not due to

some overall scaling, but rather to constraining the space spanned

by the data.

Learning with either constrained or unconstrained EM or the

(linear) neural network proceeds as before, the difference being

that either the normalized or the unnormalized data is used as

input (learning rate ~10{3 as before). Additionally, we use a

variation of the linear neural circuit in which synapses change by

simple Hebbian learning, followed by an explicit weight

normalization, Wcd~
W

0

cdP
d ’ W

0
cd ’

. This version ensures that the

synaptic weights are still normalized to the constant A when the

inputs are unconstrained. We use again N~10000 data points for

training in all cases.

Supporting Information

Text S1 Evolution of weights – details of derivations and

approximations.

(PDF)

Acknowledgments

We would like to thank Sina Tootoonian, Abdul-Saboor Sheikh and Philip

Sterne for feedback on earlier versions of the manuscript.

Author Contributions

Conceived and designed the experiments: JL CS. Performed the

experiments: CK. Analyzed the data: CK. Wrote the paper: CS JL CK.

Derivation of analytical results: JL and CK. Preliminary experiments: CS

and JL.

References

1. Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal
circuitry. Neuron 36: 909–919.

2. Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual

pathways of the macaque monkey. Vision Res 30: 1–10.

3. Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M (2005) Independence

of luminance and contrast in natural scenes and in the early visual system. Nat
Neurosci 8: 1690–1697.

4. Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an

olfactory system. Neuron 39: 991–1004.

5. Assisi C, Stopfer M, Laurent G, Bazhenov M (2007) Adaptive regula-
tion of sparseness by feedforward inhibition. Nat Neurosci 10: 1176–

1184.

6. Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control
in an olfactory circuit. Nature 452: 956–960.

7. Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in
awake sensory neocortex. Cereb Cortex 13: 25–32.

8. Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal

cells by somatic feed-forward inhibition. Science 293: 1159–1163.

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 14 March 2012 | Volume 8 | Issue 3 | e1002432

9. Mittmann W (2004) Feed-forward inhibition shapes the spike output of

cerebellar Purkinje cells. J Physiol 563: 369–378.
10. Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat

auditory cortex. Neuron 47: 437–445.

11. Pouille F, Marin-Burgin A, Adesnik H, Atallah BV, Scanziani M (2009) Input
normalization by global feedforward inhibition expands cortical dynamic range.

Nat Neurosci 12: 1577–1585.
12. Isaacson JS, Scanziani M (2011) How Inhibition Shapes Cortical Activity.

Neuron 72: 231–243.

13. Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background
synaptic input. Neuron 35: 773–782.

14. Fellous J, Rudolph M, Destexhe A (2003) Synaptic background noise controls
the input/output characteristics of single cells in an in vitro model of in vivo

activity. Neuroscience 122: 811–829.
15. Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of

synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci

23: 10388–10401.
16. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998)

Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature
391: 892–896.

17. Leslie KR, Nelson SB, Turrigiano GG (2001) Postsynaptic depolarization scales

quantal amplitude in cortical pyramidal neurons. J Neurosci 21: 1–6.
18. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing

nervous system. Nat Rev Neurosci 5: 97–107.
19. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory

synapses. Cell 135: 422–435.
20. Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci

3: 1178–1183.

21. Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian
learning. Biol Cybern 87: 404–415.

22. Marr D (1982) Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. New York: Henry Holt

and Co.

23. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. Wiley-Interscience
(2nd Edition).

24. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from
incomplete data via the EM algorithm (with discussion). J R Stat Soc

Series B Stat Methodol 39: 1–38.
25. Neal R, Hinton G (1998) A view of the EM algorithm that justifies incremental,

sparse, and other variants. In: Jordan MI, ed. Learning in Graphical Models

Kluwer Academic Publishers. pp 355–368.
26. Yuille AL, Geiger D (2003) Winner-take-all networks. In: Arbib M, ed. The

handbook of brain theory and neural networks MIT Press. pp 1228–1231.
27. Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge: MIT Press.

28. Rao RPN, Olshausen BA, Lewicki MS, eds. Probabilistic Models of the Brain:
Perception and Neural Function. Neural Information Processing. Cambridge,

MA: The MIT Press.
29. Fiser J, Berkes P, Orbán G, Lengyel M (2010) Statistically optimal perception

and learning: from behavior to neural representations. Trends Cogn Sci 14:
119–130.

30. Berkes P, Orban G, Lengyel M, Fiser J (2011) Spontaneous Cortical Activity

Reveals Hallmarks of an Optimal Internal Model of the Environment. Science
331: 83–87.

31. Lochmann T, Deneve S (2011) Neural processing as causal inference. Curr Opin
Neurobiol 21: 774–781.

32. Yuille AL, Grzywacz NM (1989) A Winner-Take-All mechanism based on

presynaptic inhibition feedback. Neural Comput 1: 334–347.
33. Elfadel IM, Wyatt JLJ (1994) The ‘softmax’ nonlinearity: Derivation using

statistical mechanics and useful properties as a multiterminal analog circuit
element. Adv Neural Inf Process Syst 6: 882–887.

34. Kwok T, Smith K (2005) Optimization via intermittency with a self-organizing

neural network. Neural Comput 17: 2454–2481.
35. Fukai T, Tanaka S (1997) A simple neural network exhibiting selective activation

of neuronal ensembles: from winner-take-all to winners-share-all. Neural
Comput 9: 77–97.

36. Liu SC (1999) A winner-take-all circuit with controllable soft max property. Adv

Neural Inf Process Syst 12: 717–723.
37. Mao ZH, Massaquoi SG (2007) Dynamics of winner-take-all competition in

recurrent neural networks with lateral inhibition. IEEE Trans Neural Netw 18:

55–69.
38. Ueda N, Nakano R (1998) Deterministic annealing EM algorithm. Neural Netw

11: 271–282.
39. Sahani M (1999) Latent variable models for neural data analysis [Ph.D. thesis].

Pasadena (California): California Institute of Technology. Available: citeseer.ist.

psu.edu/sahani99latent.html.
40. LeCun Y (NEC). MNIST database of handwritten digits. Available: http://

yann.lecun.com/exdb/mnist/.
41. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning

applied to document recognition. In: Proceedings of the IEEE. pp 2278–2324.
42. Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief

nets. Neural Comput 18: 1527–1554.

43. Ranzato M, Huang F, Boureau Y, LeCun Y (2007) Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In: 2007

IEEE Conference on Computer Vision and Pattern Recognition; 17–22 June
2007.

44. Bruna J, Mallat S (2010) Classification with scattering operators. Computing

Research Repository abs/1011.3023.
45. Watt AJ, von Rossum MCW, MacLeod KM, Nelson SB, Turrigiano GG (2000)

Activity co-regulates quantal AMPA and NMDA current at neocortical
synapses. Neuron 23: 659–670.

46. Echegoyen J, Neu A, Graber KD, Soltesz I (2007) Homeostatic plasticity studied
using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity

and age-dependence. PLoS One 2: e700.

47. Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, et al. (2011) Differential
connectivity and response dynamics of excitatory and inhibitory neurons in

visual cortex. Nat Neurosci 14: 1045–1052.
48. Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev

Neurosci 27: 419–451.

49. Bacci A, Huguenard J (2005) Modulation of neocortical interneurons: extrinsic
inuences and exercises in self-control. Trends Neurosci 28: 602–610.

50. Kuo SP, Trussell LO (2011) Spontaneous Spiking and Synaptic Depression
Underlie Noradrenergic Control of Feed-Forward Inhibition. Neuron 71:

306–318.
51. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention.

Behav Brain Res 221: 430–442.

52. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis
Neurosci 9: 181–197.

53. Carandini M, Heeger D (1997) Linearity and normalization in simple cells of the
macaque primary visual cortex. J Neurosci 17: 8621–8644.

54. Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal

elements of macaque V1 receptive fields. Neuron 46: 945–956.
55. Schwartz O, Simoncelli EP (2000) Natural sound statistics and divisive

normalization in the auditory system. Adv Neural Inf Process Syst. pp 166–172.
56. Rabinowitz NC, Willmore BDB, Schnupp JWH, King AJ (2011) Contrast gain

control in auditory cortex. Neuron 70: 1178–1191.
57. Olsen SR, Bhandawat V, Wilson RI (2010) Divisive normalization in olfactory

population codes. Neuron 66: 287–299.

58. Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain
control. Nat Neurosci 4: 819–825.

59. Ringach DL (2010) Population coding under normalization. Vision Res 50:
2223–2232.

60. Deneve S, Latham PE, Pouget A (1999) Reading population codes: a neural

implementation of ideal observers. Nat Neurosci 2: 740–745.
61. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron

61: 168–185.
62. Ohshiro T, Angelaki DE, Deangelis GC (2011) A normalization model of

multisensory integration. Nat Neurosci 14: 775–782.

63. Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant
orientation tuning in simple cells of cat visual cortex. Neuron 54: 137–152.

64. Lücke J, Sahani M (2008) Maximal causes for non-linear component extraction.
J Mach Learn Res 9: 1227–1267.

Feedforward Inhibition and Synaptic Scaling

PLoS Computational Biology | www.ploscompbiol.org 15 March 2012 | Volume 8 | Issue 3 | e1002432

