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Abstract

Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and
enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical
interactions which ultimately induce gene expression programs or other processes such as translation initiation.
Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin
with translation initiation remains unclear. We addressed this question by developing and interrogating a family of
mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics
within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an
initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations
and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation
of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled
translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-
binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of
insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence
of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback,
modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.
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Introduction

Insulin, the primary hormone regulating the level of glucose in

the bloodstream, modulates a variety of cellular and enzymatic

processes in normal and diseased cells [1–7]. The regulation of

cellular function by insulin and insulin-like growth factors I/II

(IGF-I/II) is a highly complex process [8–14]. Insulin and IGF-I/

II interact with insulin receptors (IR), and type I/II IGF receptors

(IGF-IR/IIR) in addition to other transmembrane receptors [10].

These interactions ultimately induce gene expression programs or

other processes such as translation initiation. Translation rates of

many cell cycle and survival proteins are modulated by growth

factor, hormone or other mitogenic signals [15]. Insulin induces

the activation of class I Phosphoinositide 3-kinases (PI3Ks), which

in turn activate the serine/threonine protein kinase Akt and the

mammalian target of rapamycin (mTOR). The PI3K/Akt/

mTOR signaling axis is important to a variety of cellular

programs, including apoptosis [16], cell size control [17] and

translation initiation. Among other functions, activation of the

PI3K/Akt/mTOR axis results in the phosphorylation of eukary-

otic translation initiation factor 4E-binding protein (4E-BPx)

family members [18]. Phosphorylation of 4E-BPx causes the

release of the eukaryotic translation initiation factor 4E (eIF4E),

which is critical to directing ribosomes to the 7-methyl-guanosine

cap of eukaryotic mRNAs. Previously, the availability of eIF4E has

been shown to be rate limiting for translation initiation in many

eukaryotic cell-lines [15,19]. Given its central role in cell biology,

evolutionarily optimized infrastructure like translation might be

expected to be robust or highly redundant. Surprisingly,

deregulated translation, especially involving growth-factor or

insulin induced initiation mechanisms, has been implicated in a

spectrum of cancers [20].

Despite the wealth of literature on insulin signaling, the relative

importance of the components linking insulin with translation

initiation remains unclear. Many investigators have explored this

question using both experimental and computational tools. For

example, Caron et al. recently published a comprehensive map of

the mTOR signaling network, including a detailed portrait of

insulin induced mTOR activation and its downstream role in

translation initiation [21]. Taniguchi et al. proposed three criteria

to identify the critical nodes of insulin signaling: network

divergence, degree of regulation and potential crosstalk [10].

Using these criteria, they identified insulin-receptor (IR), PI3K

and Akt as the critical nodes of insulin action. Several insightful

mathematical models of insulin-signaling have also been published

[22–25]. While these models vary in their focus and biological

scope, none has exclusively focused on how insulin stimulates

translation initiation. This particular question was addressed by
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Nayak et al., who analyzed a family of detailed mathematical

models of growth factor and insulin induced translation initiation

[26]. Like the Taniguchi et al. hypothesis, their study suggested

that Akt/mTOR were structurally fragile, and likely the key

elements integrating growth factor signaling with translation.

However, the Nayak et al. model neglected several key features of

insulin processing, e.g., negative feedback of IR resulting from

mTOR activity.

The objective of this study was to rank-order the importance of

components of insulin-induced translation initiation using compu-

tational tools. Toward this objective, we analyzed an ensemble of

mechanistic mathematical models of insulin induced translation

initiation that was a significant extension of our previous work

[26]. First, we expanded the original model connectivity to include

a detailed description of the regulation and activity of insulin,

insulin-like growth factor and platelet-derived growth factor

(PDGF) receptor family members (including negative feedback).

Second, we refined the description of the phosphorylation state of

Akt and its downstream role in the activation of the mTORC1 and

mTORC2 complexes. Lastly, we used new model estimation and

interrogation techniques to generate and analyze an uncorrelated

population of initiation models that were simultaneously consistent

with 24 qualitative and quantitative data sets. Interrogation of this

model population, using sensitivity and robustness analysis,

identified an insulin-dependent switch that controlled translation

initiation. Without insulin, a balance between the pro-initiation

activity of the GTP-binding protein Rheb and anti-initiation

activity of PTEN controlled basal initiation. Rheb knockdown

simulations confirmed decreased initiation in the majority of the

model population, while translation initiation increased for all

models in the population following a PTEN deletion. On the other

hand, a combination of PI3K and Rheb activity controlled insulin

inducible initiation. PI3K deletion in the presence of insulin

removed the ability of the network to process insulin signals, but

did not remove initiation altogether. PI3K deletion reduced

initiation to approximately 60% of its maximum level. Interest-

ingly, the relative contribution of PI3K versus Rheb to the overall

initiation level could be tuned by controlling IRS-1 feedback. In

the absence of feedback, PI3K was more important than Rheb to

signal propagation, while the opposite was true in the presence of

feedback. Taken together, our modeling study supported the

Taniguchi et al. hypothesis that PI3K was a critical node in the

insulin-induced initiation network. However, we also found that

the role of PI3K was nuanced; PI3K in combination with Rheb

controlled initiation in the presence of insulin, while the

combination of PTEN and Rheb controlled basal initiation.

Results

Translation initiation model connectivity
The translation initiation model consisted of 250 protein, lipid

or mRNA species interconnected by 573 interactions (Fig. 1). The

model described the integration of insulin and growth-factor

signaling with 80S assembly. While other eukaryotic translation

initiation mechanisms exist, we focused only on cap-mediated

translation as the dominant translation mechanism [27]. The

model interactome was taken from literature (SBML file available

in the supplemental materials Protocol S1); the connectivity of

insulin- and growth-factor induced translation initiation has been

extensively studied [14,28]. The model interactome was not

specific to a single cell line. Rather, it was a canonical

representation of the pathways involved in insulin and growth-

factor induced initiation. Using a canonical network allowed us to

explore general features of insulin or growth-factor induced

translation initiation without cell line specific artifacts. Binding of

insulin or IGF-I/II with IR or IGF-I/IIR promotes the

autophosphorylation of the cytosolic domains of these receptors

at tyrosine residues. Receptor autophosphorylation promotes the

formation of adaptor complexes, which are anchored in place by

insulin receptor substrate (IRSx) family members; IRSx are

required for the assembly of adaptor complexes involving the

SHC-transforming protein 1 (Shc), Son of Sevenless (SoS), growth

factor receptor-bound protein 2 (Grb2) and Ras proteins [29–31].

In the model we considered only the IRS-1 protein and neglected

other IRSx family members. Adaptor complex formation

ultimately culminates in the activation of the catalytic subunit of

PI3K. Among their many roles, PI3Ks catalyze the phosphory-

lation of the phospholipid PIP2 to PIP3 [6]. PIP3 is critical to the

localization of 3-phosphoinositide-dependent kinase 1 (PDK1) to

the membrane, where it phosphorylates the master kinase Akt at

Thr308 [32]. Akt is further phosphorylated at Ser473 by the

rictor-mammalian target of rapamycin (mTORC2) protein [33].

Once phosphorylated, Akt promotes translation initiation by

directly or indirectly activating the mTORC1 protein [1]. Akt

directly activates mTORC1 through a novel binding partner

known as PRAS40 [34,35]. However, mTORC1 can also be

activated by the GTP bound form of the Ras homologue enriched

in brain (Rheb) protein. Without insulin, Rheb is regulated by the

tuberous sclerosis complex TSC1/2, which has GTPase activating

protein (GAP) activity. Akt directly phosphorylates TSC1/2 which

inhibits its GAP activity and allows Rheb-mediated activation of

mTORC1 [36,37]. Activated mTORC1 plays two key roles in

translation initiation; first, it activates ribosomal protein S6 kinase

beta-1 (S6K1) and second it phosphorylates eukaryotic translation

initiation factor 4E-binding protein (4E-BPx) family members

[38]. In this study, we included only 4E-BP1 and modeled a single

deactivating phosphorylation site. Phosphorylated 4E-BP1 releases

eIF4E which, along with other initiation factors, is critical to

directing ribosomes to the 7-methyl-guanosine cap structure of

eukaryotic mRNAs [28].

Several mechanisms attenuate insulin and growth-factor

induced translation initiation. First, insulin signal propagation

can be controlled by disrupting adaptor complex formation. For

example, we included tyrosine phosphatases and competitive

Author Summary

Insulin is a hormone produced by the body that regulates
uptake of glucose from the bloodstream. The cellular
response to insulin is governed by a complex network of
intracellular interactions that ultimately influence cell
growth and metabolism. Because of its central role in
physiology, insulin signaling has been extensively studied.
Yet despite this wealth of research, the relative importance
of components in insulin signaling remains unclear.
Mechanistic computer simulations have been shown to
provide insight into the function of complex systems, such
as insulin signaling. In this work we constructed and
interrogated a mathematical computer simulation of
insulin signaling to better understand the important
components of the insulin signaling network. We deter-
mined the most important network components and
identified network perturbations that can induce dramatic
shifts in cellular phenotype. Our results offer an in-depth
analysis of the insulin signaling pathway and provide a
unique paradigm towards understanding how malfunc-
tions in insulin signaling can result in numerous disease
states.

Modeling of Insulin Induced Translation Initiation
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inhibitors such as protein-tyrosine phosphatase 1B (PTP1B), src

homology phosphotyrosyl phosphatase 2 (SHP2), growth factor

receptor-bound protein 10 (Grb10) and suppressor of cytokine

signaling 1/3 (SOCS1/3) which interfere with adaptor complex

formation and activity [10,39–41]. Second, several mechanisms

control PIP3 formation, PDK1 recruitment and Akt phosphory-

lation [10]. In the model, we included the phosphatase and tensin

homolog (PTEN) protein, which dephosphorylates PIP3 [42], as

well as the SH2 (Src homology 2)-containing inositol phosphatase-

1 (SHIP1) protein which hydrolyses the 5
0
-phosphates from PIP3

[43]. Lastly, S6K1 inhibits IRS-1 activity by phosphorylation at

Ser318 [44]. S6K1/IRS-1 feedback has been shown to be

important in insulin resistance and cancer [14,45–47].

Estimating an ensemble of translation initiation models
using POETs

Translation initiation was modeled using mass-action kinetics

within an ordinary differential equation (ODE) framework. ODEs

and mass-action kinetics are common methods of modeling

biological pathways [48–50]. However, ODEs have several

important limitations that could be addressed with other model

formulations e.g., Partial Differential Equation (PDE) based

Figure 1. Schematic of the translation initiation signaling network. Growth factors trigger receptor dimerization and the formation of
adaptor complexes which activate PI3K. PI3K then signals through PIP2/3 to activate Akt. Activated Akt can then activate mTORC1 either directly or
by phosphorylating TSC1/2, an inhibitor of Rheb. Activated mTORC1 can phosphorylate 4EBP1 and activate S6K1, two necessary checkpoints for
translation initiation. mTORC1 can also phosphorylate IRS-1, a negative feedback which inhibits formation of the adaptor complex and attenuates
insulin signaling.
doi:10.1371/journal.pcbi.1002263.g001

Modeling of Insulin Induced Translation Initiation
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models. PDEs naturally describe spatially distributed intracellular

processes or can be used to model population dynamics using

population balance methods [51]. However, the computational

burden associated with solving and analyzing systems of PDEs,

especially at the scale of the current study, would be substantial.

Alternatively, we have addressed both of these ODE shortcomings

(without resorting to a PDE formulation) by including well-mixed

compartments to account for spatially localized species and

processes and have considered an ensemble of models in our

analysis to coarse-grain population phenomena. Irregardless of

whether we have an ODE or PDE model formulation, both classes

of model typically require the identification of a large number of

unknown model parameters. The initiation model had 823

unknown parameters (573 kinetic parameters and 250 initial

conditions), which were not uniquely identifiable (data not shown).

We estimated an experimentally constrained population of

parameters using multiobjective optimization. Model parameters

were estimated, starting from an initial best fit parameter set, using

24 in vitro and in vivo data sets taken from literature (Table 1). These

training data were taken from multiple independent studies (in

different cell lines) exploring insulin and IGF-I/II signaling or in-

vitro translation initiation. These data were largely western blot

measurements of the total or phospho-specific abundance of

proteins following the addition of a stimulus or inhibitor. While the

use of multiple cell-lines was not ideal, it did allow us to capture a

consensus picture of insulin or IGF-I/II initiated signaling (which

was useful in understanding the general operational principles of

the network). However, one should be careful when applying

consensus models to specific cell lines or tissues, as these generally

may behave qualitatively differently.

The residual between model simulations and each of the

experimental constraints was simultaneously minimized using the

multiobjective POETs algorithm [52]. We used a leave-three-out

cross validation strategy to independently estimate prediction and

training error during parameter identification (Table 1). Addi-

tionally, a random control (100 random parameter sets) was run to

check the training/prediction fitness above random (Table 1). The

training error for 23 of the 24 objectives was statistically significantly

better than the random control at a 95% confidence level.

Additionally, for 20 of the 24 objectives, the model prediction error

was also significantly better than the random control (pƒ0.05). Of

the four remaining objectives (O4,O5,O12 and O13), three

involved phosphorylated Akt (O4 and O12) or IRS-1 (O13), each

of which had redundant measurements in the objective set that

were significant. While the remaining objective, which involved

IRS-1 levels (O5), was not significantly better than the random

control, the absolute error was small.

The ensemble of translation models recapitulated diverse

training data across multiple cell lines. POETs generated 18,886

probable models with Pareto rank ƒ4. Model parameters had

coefficients of variation (CV) ranging from 0.65 to 1.10. Further,

89% (512 of 573) of the model parameters were constrained with a

CV v1. The performance of 5,818 rank-zero models is shown in

Fig. 2. The majority of objective functions were uncorrelated e.g.,

Table 1. Objective function list along with species, cell type, cellular compartment, nominal error, training error, prediction error,
random error with a randomly generated parameter set and the corresponding literature reference.

O# Species Cell Type Nominal Training Prediction Random Source

O1 PI3K Activity 3T3-L1 cells 0.01 0.01+0.00 0.01+0.00 0.67+0.20 [82]

O2 PIP3 3T3-L1 cells 0.00 0.00+0.00 0.00+0.00 0.84+0.08 [82]

O3 pS6K1(T389) 3T3-L1 cells 0.39 0.17+0.15 0.27+0.24 1.55+0.49 [35]

O4 pAkt(S473) 3T3-L1 cells 0.38 0.30+0.23 0.53+0.29 0.50+0.38 [35]

O5 IRS1 3T3-L1 cells 0.43 0.47+0.62 1.37+0.71 0.56+0.58 [35]

O6 pAkt(S473) 393T cells 0.06 0.28+0.32 0.43+0.35 1.10+0.31 [35]

O7 pAkt(S473) C2C12 myotubes 0.05 0.12+0.13 0.12+0.13 0.69+0.11 [83]

O8 pS6K1(T421/S424) C2C12 myotubes 0.20 0.18+0.07 0.20+0.10 0.47+0.22 [83]

O9 pAkt(T308) HUVEC cells 1.21 0.78+0.38 0.94+0.36 1.20+0.79 [84]

O10 IRS-1P(S636/639) L6 Myotubes 1.34 1.17+0.37 1.13+0.35 1.28+0.38 [53]

O11 pS6K1(T389) L6 Myotubes 0.98 0.27+0.33 0.55+0.64 2.95+0.51 [53]

O12 pAkt(T308) L6 Myotubes 0.93 0.62+0.36 0.71+0.34 0.84+0.48 [53]

O13 IRS-1P(S636/639) L6 Myotubes 1.24 1.07+0.38 1.29+0.31 1.35+0.36 [53]

O14 pS6K1(T389) L6 Myotubes 2.36 2.02+0.43 2.26+0.24 1.95+0.38 [53]

O15 pAkt(T308) L6 Myotubes 0.97 0.39+0.35 0.48+0.33 0.87+0.82 [53]

O16 pS6K1(T389) RhoE 3T3 cells 1.33 0.28+0.33 0.21+0.25 2.94+0.54 [54]

O17 c4EBP-P(S65, T37/46) RhoE 3T3 cells 0.37 0.57+0.33 0.85+0.38 1.76+0.43 [54]

O18 Cap-Met-Puro rabbit reticulocytes 0.46 0.42+0.46 0.86+0.73 1.24+0.71 [55]

O19 43S-mRNA rabbit reticulocytes 0.19 0.37+0.39 0.57+0.47 1.14+0.64 [55]

O20 pAkt(S473) A14 NIH 3T3 cells 1.12 0.98+0.23 0.99+0.23 1.16+0.15 [56]

O21 pS6K1(T389) A14 NIH 3T3 cells 1.20 0.57+0.29 0.57+0.23 0.69+0.21 [56]

O22 Rheb HeLa cells 0.00 0.15+0.83 0.10+0.71 1.99+0.09 [56]

O23 pS6K1(T389) HeLa cells 0.13 0.14+0.11 0.24+0.23 0.77+0.58 [56]

O24 c4EBP1-P (T70) HEK293 cells 0.25 0.34+0.26 0.62+0.41 0.90+0.22 [56]

doi:10.1371/journal.pcbi.1002263.t001
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O4|O13 or O12|O13 or directly proportional e.g., O3|O11

or O9|O15. Uncorrelated or proportional objectives suggested

the model population simultaneously described each training

constraint. However, several other objectives were inversely

proportional e.g., O12|O14. For these pairs, the model was

unable to simultaneously fit both training data sets. Surprisingly,

these objectives were the same protein pAkt(Thr308) O9|O12

and pS6K1(Thr389) O3|O14, taken from either different cell

lines or different labs. This suggested conflicts in the data e.g., cell

line variation or differences in specific laboratory protocols, rather

than structural inaccuracies in the model, were responsible for the

inverse relationship. The key indicators of eukaryotic translation

initiation are the phosphorylation of S6K1 and 4E-BP1 [38]. Both

Tzatos et al. and Villalonga et al. performed insightful studies

exploring the dynamics of S6K1 and 4E-BP1 phosphorylation in

L6 Myotubes and RhoE 3T3 cells [53,54]. The ensemble

recapitulated these observations with error distributions that were

statistically significantly better than random parameters (Etrain~

0:27+0:33, Erand~2:95+0:51; Etrain~0:57+0:33, Erand~1:76+
0:43) (Fig. 3A and 3B, Table 1). The model population also

recapitulated IGF1 induced Akt and S6K1 phosphorylation

(Etrain~0:12+0:13, Erand~0:69+0:11; Etrain~0:18+0:07, Erand~

0:69+0:11) (Fig. 3E and 3F, Table 1). Lorsh et al. studied

ribosomal assembly dynamics in rabbit reticulocytes, suggesting

the formation of the eIF2:GTP:Met-tRNA tertiary complex was

rate limiting in 80S formation [55]. Our model captured 80S

assembly dynamics, including the crucial lag phase in the first two

minutes of stimulation (Etrain~0:42+0:46, Erand~1:24+0:71)

(Fig. 3C, Table 1). Inhibitor data was also used for model

training. Without insulin, PI3K was not activated and pAkt

(Ser473) levels remained low (Fig. 3D, lane 1). Following insulin

stimulation, PI3K activation resulted in increased pAkt(Ser473)

levels (Fig. 3D, lane 2). Wortmannin, a PI3K inhibitor,

significantly decreased pAkt(Ser473) (Fig. 3D, lane 3). While our

model population qualitatively captured this decrease, the levels of

pAkt(Ser473) were higher than those observed experimentally.

The model was not trained using mTORC1/2 measurements,

however species immediately upstream and downstream of

mTORC1/2, namely pAkt(Ser473) or S6K1 were used in model

training. Without insulin, pAkt(Ser473) and S6K1(Thr421/

Ser424) levels were low (Fig. 3E/F, lanes 1). Addition of insulin

increased pAkt(Ser473) and S6K1(Thr421/Ser424). Upon rapa-

mycin addition, mTORC1 was inhibited and the levels of

phosphorylated S6K1 decreased (Fig. 3E, lane 3). However,

because of its position upstream of mTORC1, pAkt(Set473) levels

were unchanged (Fig. 3E, lane 3).

The model was validated by comparing simulations with in vivo

and in vitro data sets not used for training or cross-validation

(Table 2). For four of the five prediction data sets, the model

demonstrated errors statistically significantly better than a random

control (pƒ0.05). However, the remaining prediction case (P3),

while not significantly different than random, has a small error

relative to the other objectives. Data from Lorsh et al. was used to

validate the dynamics of intermediate ribosomal complexes [55].

The level of 43S mRNA was quantified using both GTP and a

non-degradable GTP-like homologue GMP-PNP (Fig. 4A). Data

involving GMP-PNP was used for training while data involving

GTP was used only for validation (Epred~0:52+0:40, Erand~
0:82+0:51). Garami et al. explored insulin-induced Rheb

activation and the role of TSC1/2 in the presence and absence

of wortmannin and rapamycin [56]. We first compared measured

versus simulated Rheb-GTP levels, with and without insulin, in the

absence of inhibitors. While we captured the qualitative trends, we

over-predicted the percentage of GTP bound Rheb (Epred~

0:22+0:11, Erand~0:42+0:01) (Fig. 4B). The model also failed to

predict sustained Rheb-GTP levels in the presence of rapamycin.

Figure 2. The scaled simulation error (SSE) for selected objective function pairs for N = 5818 rank zero initiation models. The SSEs for
objective functions chosen by cross-validation for prediction was set to zero and disregarded when ranking other sets. The red point denotes the
performance of the nominal parameter set.
doi:10.1371/journal.pcbi.1002263.g002

Modeling of Insulin Induced Translation Initiation

PLoS Computational Biology | www.ploscompbiol.org 5 November 2011 | Volume 7 | Issue 11 | e1002263



This suggested that sustained pAkt(Ser473) levels (observed in

Fig. 3E) were not correlated with increased Rheb-GTP activity.

Garami et al. also measured the levels of GTP bound Rheb in both

wild-type and TSC2 knockout cells. Because of TSC2’s regulatory

role, a TSC2 knockout significantly increased Rheb-GTP levels

(Epred~0:10+0:03, Erand~0:09+0:06) (Fig. 4C). Lastly, the model

predicted the levels of 4E-BP1 bound eIF4E in response to heat

shock (Epred~0:51+0:33, Erand~1:67+1:17) (Fig. 4D) [57].

Because the model was not trained on stress-induced translation

inhibition, this result further demonstrated the predictive power of

the model population.

Sensitivity analysis identified robust and fragile features
of the initiation architecture

Sensitivity analysis generated falsifiable predictions about the

fragility or robustness of structural features of the initiation

architecture. First order sensitivity coefficients were computed for

40 parameter sets selected from the ensemble (materials and

methods), time-averaged and rank-ordered for the 250 species in

the model, in the presence and absence of insulin and IRS-1

feedback. The sensitive components of insulin signaling shifted

from Rheb in the absence of insulin to a combination of Rheb and

PI3K in the presence of insulin. Sensitivity coefficients (sij ) were

calculated with and without insulin over the complete 100 min

response (Fig. 5A). Globally, processes involved with 80S

formation were consistently ranked among the most sensitive,

irrespective of insulin. However, the sensitivity of other signal

processing components changed with insulin status. For example,

without insulin, Rheb/Rheb-GDP were highly fragile

(rank§0.25), while PI3K, PIP2, PIP3 and PTEN were highly

robust (rank*0.0). Surprisingly, the relative sensitivity of these

network components changed in the presence of insulin. While the

fragility of Rheb/Rheb-GDP shifted modestly upward with

insulin, the sensitivity of PI3K and its downstream complexes

increased dramatically (rank§0.45) following insulin stimulation.

This suggested that the combination of PI3K and Rheb activity

was critical to insulin action over the full 100 min time window.

However, it was unclear whether PI3K was always important, or if

there was a temporal window in which PI3K became important

following insulin stimulation. To explore this question, we time-

averaged the sensitivity coefficients over early- and late-phase time

periods following insulin stimulation (Fig. 5B). The 0–5 minute

time period captured the initial network dynamics, while the 30–

100 minute time period captured the network at a quasi-steady

Figure 3. Ensemble performance against selected training objectives (N = 400). Dotted lines represent the simulation mean of the
ensemble, while the shaded region denotes the 99.9% confidence estimate for the mean. The solid dots represent the scaled experimental data. A.
Time course data for p70S6K1 phosphorylation in response to insulin stimulation (L6 Myotubes). B. Time course data for c4EBP1 phosphorylation in
response to FBS (RhoE 3T3 cells). C. In vitro time course of the 80S complex measured by puromycin assay (rabbit reticulocyte). D. pAkt(Ser473) levels
at 20 minutes in the presence and absence of insulin and wortmannin (393T cells). E,F. pAkt(Set473) and activated p70S6K1 levels at 15 minutes in
the presence and absence of insulin-like growth factor (IGF) and rapamycin (C2C12 myotubes).
doi:10.1371/journal.pcbi.1002263.g003

Modeling of Insulin Induced Translation Initiation
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state. Generally, network components were more sensitive under

dynamic operation (species beneath the 45o line), compared with

steady state. However, there were exceptions to this trend. For

example, PI3K, PTEN and TSC1/2 were equally sensitive in both

time frames, suggesting these species played important roles in

both dynamic and steady state signaling. On the other hand, the

Rheb rank decreased from 0:6 to 0:25 as the network moved

toward steady state. Taken together, the sensitivity results

suggested that Rheb activity controlled the background level of

translation initiation while the PI3K axis in combination with

Rheb regulated insulin-induced initiation. Moreover, the transi-

tion between PTEN and PI3K control occurred directly after the

addition of insulin, giving rise to switch like behavior.

IRS-1 phosphorylation, a well known negative feedback

mechanism [14,45–47], attenuated PI3K sensitivity. We explored

the role of IRS-1 feedback by comparing sensitivity coefficients

under insulin stimulation in the presence and absence of IRS-1

feedback (Fig. 5C). The most significant change without feedback

was the sensitivity of the IR:IRS-1 and adaptor complexes (Fig. 5C,

black fill); IR:IRS-1, which anchors the adaptor complex to the

Figure 4. Blind model predictions for the ensemble (N = 400). The predictive ability of model ensemble was assessed by comparing model
performance with novel experimental data. Dotted lines represent the simulation mean of the ensemble, while the shaded region denotes the 99.9%
confidence estimate for the mean. The solid dots represent the scaled experimental data. A. In vitro time course for formation of 43S-mRNA complex.
A slowly-hydrolyzable GTP homologue (GMP-PNP) was used in place of GTP to isolate formation of this intermediate complex. GMP-PNP data was
used for training while GTP data was used for validation. B. Percent of Rheb-GTP to Rheb-GDP in the presence of insulin, wortmannin and rapamycin
(A14 NIH 3T3 cells). C. Percent of Rheb-GTP to Rheb-GDP in wildtype and TSC2 lacking cells (MEF cells). D. 4EBP1 bound EIF4E in the presence of heat
shock (CHO.K1 cells).
doi:10.1371/journal.pcbi.1002263.g004

Table 2. Blind Prediction list along with species, cell type, prediction error, random error with a randomly generated parameter set
and the corresponding literature reference.

Prediction# Species Cell Type Compartment Prediction Random Source

P1 43S-mRNA (GTP) rabbit reticulocytes in vitro 0.52+0.40 0.82+0.51 [55]

P2 Rheb-GTP A14 NIH 3T3 cells Total lysate 0.22+0.11 0.42+0.01 [56]

P3 Rheb-GTP A14 NIH 3T3 cells Total lysate 0.10+0.03 0.09+0.06 [56]

P4 eIF4E:4EBP1 CHO K1 cells Total lysate 0.51+0.33 1.67+1.17 [57]

P5 pAkt(Ser473) HEK293 cells Total lysate 0.27+0.09 0.72+0.09 [56]

doi:10.1371/journal.pcbi.1002263.t002
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activated receptor and is immediately upstream of PI3K

activation, changed from NSS rank ^0.04 to 0.32. The sensitivity

of the PI3K/Akt signaling axis also increased in the absence of

feedback (Fig. 5C, grey fill). Surprisingly, the sensitivity of Rheb

and many ribosomal components decreased in the absence of

feedback. Similar results were observed when sensitivity coeffi-

cients were time averaged over the 0 to 5 min time window

(Fig. 5D). These sensitivity calculations suggest that IRS-1

feedback plays a significant role in insulin signaling by modulating

the relative importance of PI3K versus Rheb. Thus, IRS-1

feedback though not directly identified as a fragile regulatory

motif, has significant effects on network function.

Lastly, the architectural features of the initiation network

identified by sensitivity analysis, as either fragile or robust, were

likely parameter independent. While first-order sensitivity coeffi-

cients are local, we sampled a family of uncorrelated parameter

sets (mean correlation of approximately 0.6) to generate a set of

consensus conclusions. By sampling over many uncorrelated sets,

we calculated how our conclusions changed with different

unrelated parameter sets. The distribution of ranking (standard-

error shown in Fig. 5) suggested that despite parametric

uncertainty, sensitivity analysis over an uncorrelated model

population produced a consensus estimate of the strongly fragile

or robust elements of the insulin signaling network. Previously, we

Figure 5. Sensitivity analysis of a population of initiation models (N = 40). Species with a high sensitivity ranking are considered fragile
while species with a low sensitivity ranking are considered robust. A. Sensitivity ranking of network species in the presence and absence of insulin.
B. Time-course sensitivity ranking of network species. C,D. Sensitivity ranking of network species in the presence and absence of IRS-1 feedback.
Black fill denoted complexes containing IRS-1, grey fill denotes PI3K/Akt associated signaling components. Sensitivity values were time averaged over
0–100 minutes and 0–5 minutes, respectively. Error bars denote one standard error in the sensitivity ranking computed over a family of uncorrelated
(mean correlation of approximately 0.6) parameter sets selected for the analysis.
doi:10.1371/journal.pcbi.1002263.g005
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(and others) have shown that monte-carlo parameter set sampling

produced similar results in several studies across many signaling

networks [49,58–60].

Robustness analysis identified key regulators of
translation initiation

Knockdown simulations were conducted for 92 proteins to

estimate the functional connectedness of the initiation network.

The effects of the perturbations were quantified by calculating the

relative change (a) in translational activity (80S formation) for each

simulated knockout in the presence (Fig. 6A) and absence (Fig. 6B)

of insulin. Knockdown simulations were conducted using 400

models selected from the ensemble based on error and correlation

(materials and methods). Proteins were classified based on their

impact on translational activity: little or no effect (a&1, white fill),

moderate decrease (a&0:6, dark grey), critical (a&0, light grey)

and increase (aw1, black). Generally, knockdowns in the presence

of insulin were more likely to decrease initiation (Fig. 6A).

Knockdown analysis identified 24 proteins (or 26% of the network)

that were critical to translation initiation irrespective of insulin

status; these critical components included mTORC1, S6K1,

several initiation factors and other ribosomal components.

Sensitivity analysis suggested basal translation was governed by

Rheb, while insulin-induced initiation was governed by PI3K.

Robustness analysis showed that perturbations in PI3K signaling,

in the presence of insulin, restored initiation control to Rheb.

Initiation was reduced by 40% by disrupting species immediately

upstream or downstream of PI3K; a moderate reduction in the

presence of insulin demonstrated that initiation was governed by

both PI3K and Rheb. Lastly, deletion of TSC1/2 (negative

regulator of Rheb) or 4E-BP1 (sequesters the cap-binding protein

eIF4E), increased initiation in the presence of insulin. Interestingly,

for several proteins the direction or magnitude of change in

initiation activity depended upon the presence or absence of

insulin. For example, PTEN deletion significantly increased

initiation (a&1) in the absence of insulin, but had no effect when

Figure 6. Species knockdown simulations for a population of translation initiation models (N = 400). Simulated knockdowns were
performed by removing nodes from the stoichiometric matrix. The relative change in 80S formation resulting from the removal of a species was used
to quantify the impact of the knockdown. A. Species knockdowns in the presence of insulin. Simulated knockdowns resulted in increased (black),
constant (white), moderately decreased (dark grey) or severely decreased (light grey) translational levels. B. Species knockouts in the absence of
insulin. Simulated knockdowns resulted in increased (black), constant (white), or decreased (grey) translational levels. C. Histogram of translation
levels across each member of parameter ensemble. Asterisk index indicates parameter sets that were selected for further analysis. D. Alternative
modes of network operation. For a subset of the ensemble, initiation increased following Rheb or mTORC2 disruption. Asterisk indicates rate-limiting
step.
doi:10.1371/journal.pcbi.1002263.g006
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insulin was present. On the other hand, PI3K deletion had a

moderate reduction on 80S formation in the presence of insulin,

but only a small effect in the absence of insulin (Fig. 6B). These

results suggested that PI3K and PTEN were conditionally fragile

proteins; in the presence of insulin, PI3K is a critical signal

processing node, while PTEN acts to restrain inadvertent basal

initiation.

Paradoxically, Rheb and mTORC2 subunit (sin1, rictor)

knockdowns increased initiation. Our expectation from sensitiv-

ity analysis was that a Rheb knockdown would reduce initiation,

irrespective of insulin status. However, this was not universally

true; some members of the model population showed increased

initiation (Fig. 6C). Following the deletion of PTEN, approxi-

mately 80% (or 323 of the 400 models sampled) had increased

initiation in the absence of insulin. Of these models, 16% (or 51

of 323) had at least a two fold increase in translational activity.

This result was expected; deletion of a protein species resulted in

a qualitatively similar change in initiation across the ensemble of

models. However, for Rheb knockdowns, members of the

ensemble demonstrated qualitatively different behavior. For

84% (or 334 of 400) of the models sampled, Rheb knockdowns

significantly down-regulated initiation. Thus, the vast majority of

models behaved as expected. Interestingly, 20 models (or 5% of

the models sampled) had increased translation initiation in the

presence of a Rheb knockdown, with 15 models demonstrating

greater than a two-fold change (Fig. 6C). Thus, the model

population estimated by POETs contained models with quali-

tatively different behavior. Histograms of sin1 and rictor

knockdowns showed a similar trend (results not shown). We

explored the flux vectors of these outlying parameter sets to

better understand the mechanistic effect of Rheb and rictor/sin1

knockouts. All of the outlying models were in regions of

parameter space where the association between Rheb and

GTP was very high. Strong Rheb/GTP binding resulted in

abnormally high signal flux to mTORC1 despite the inhibitory

effects of TSC1/2 (Fig. 6D, top-left). Consequently, less GTP

was available for the energy-dependent steps of translation

initiation (i.e. formation of eIF2-GTP-met-tRNA tertiary com-

plex). Additionally, strong association between Rheb and GTP

resulted in high levels of activated mTORC1 and S6K1.

However, despite the high levels of mTORC1, GTP-dependent

pre-initiation reactions were rate limiting (Fig. 6D, labeled*).

Thus, Rheb knockdown released the network from its GTP

limitation and shifted the predominant signaling mode to

mTORC2. This shift in signaling, while lowering the activated

mTORC1/S6K1 level, ultimately resulted in higher levels of

initiation (Fig. 6 bottom-left). On the other hand, the rictor/sin1

knockdown behaved differently. The rate-limiting step for the

rictor/sin1 knockdowns was mTORC1 activation: more Rheb-

GTP was present than there was mTORC1 to be activated

(Fig. 6D top-right). Thus, knockdown of rictor/sin1 prevented

the assembly of mTORC2 and freed the mTOR subunit to be

used for mTORC1 assembly. This shift toward mTORC1

assembly and activation relieved the Rheb-GTP/mTORC1

bottleneck, resulting in increased initiation.

Discussion

In this study, we developed and analyzed a population of insulin

and growth factor induced translation initiation models. These

models described the integration of insulin and growth-factor

signals with 80S assembly. A family of model parameters was

estimated from 24 transient and steady state data sets using

multiobjective optimization. In addition to the training data, the

model family also predicted novel data sets not used during model

training. The population of initiation models was analyzed using

sensitivity and robustness analysis to identify the key components

of insulin-induced translation initiation. Without insulin, a balance

between the pro-initiation activity of the GTP-binding protein

Rheb and anti-initiation activity of PTEN controlled basal

initiation. Rheb knockdown simulations confirmed decreased

initiation in the majority of the model population. Surprisingly,

we also identified a model subpopulation in which deletion of

Rheb or mTORC2 components increased initiation. In these

cases, removal of Rheb or mTORC2 components relieved a rate-

limiting bottleneck e.g., constrained levels of GTP, leading to

increased initiation. On the other hand, in the absence of insulin,

translation initiation increased for all models in the population

following a PTEN deletion. In the presence of insulin, Rheb and

PTEN were no longer the dominant arbiters of initiation; a

combination of PI3K and Rheb activity controlled inducible

initiation, where PI3K was only critical in the presence of insulin.

PI3K deletion in the presence of insulin removed the ability of the

network to process insulin signals, but did not remove initiation

altogether. PI3K deletion reduced initiation to approximately 60%

of its maximum level. Interestingly, the relative contribution of

PI3K versus Rheb to the overall initiation level could be tuned by

IRS-1 feedback. In the absence of feedback, PI3K was more

important than Rheb to signal propagation, while the opposite was

true in the presence of feedback.

PI3K and PTEN in combination with Rheb are components of

a switch that regulates inducible and basal translation initiation. In

the absence of insulin, a balance between the pro-initiation activity

of Rheb and the anti-initiation activity of PTEN regulated basal

initiation. On the other hand, in the presence of insulin, control

shifted to a combination of Rheb and PI3K, where PI3K activity

regulated the inducible fraction of initiation. Thus, deletion of

PTEN, constitutive activation of PI3K or constitutively active

Rheb could all induce aberrant translation initiation without an

insulin or growth factor signal. Yuan and Cantley noted that every

major species in the PI3K pathway is mutated or over-expressed in

a wide variety of solid tumors [6]. For example, activating

mutations in PIK3CA, the gene encoding the catalytic subunit of

PI3K, induces oncogene signaling in colon, brain and gastric

cancers [61]. On the other hand, PTEN mutations have long been

implicated in a spectrum of cancer types [62]. Both PIK3CA and

PTEN mutations induce a pro-initiation operational mode in the

absence of growth factor. Likewise, constitutive Rheb activity

induces a variety of pleiotropic traits involving translation. For

example, Saucedo et al. showed that Rheb over-expression in

Drosophila melanogaster increased cell size, wing area and G1/S cell

cycle progression [63]. Rheb and TSC1/2 mutations are also

frequently observed in cancer [64,65]. Taken together, our study

supports the supposition of Taniguchi et al. that PI3K is a critical

arbiter of insulin-induced translation initiation [10]. However, we

have also shown that initiation control and particularly the role of

PI3K was more nuanced; while insulin or growth-factor inducible

initiation was controlled by PI3K, basal initiation was controlled

by Rheb. Moreover, in the absence of insulin, PTEN was the

critical upstream initiation regulator, not PI3K. This suggested

that the relative level of the phosphorylated phospholipids PIP2

and PIP3 was actually the key mediator of initiation. Lastly,

Taniguchi et al. suggested that Akt was also a key node involved in

insulin action. Our previous model directly supports this, however,

the current model does not. Rather, our analysis suggested that

Rheb was the downstream controller of initiation. These two

points of view are not contradictory however, as Rheb activation is

driven by phosphorylated Akt.

Modeling of Insulin Induced Translation Initiation

PLoS Computational Biology | www.ploscompbiol.org 10 November 2011 | Volume 7 | Issue 11 | e1002263



The initiation model connectivity was assembled from an

extensive literature review, however, several potentially important

signaling mechanisms were not included. First, we should revisit

the role of PRAS40. Currently, PRAS40 acts as a cofactor that

aids in pAkt(Ser473)-mediated activation of mTORC1. Sancak

et al suggested that PRAS40 sequesters mTORC1, and only after

phosphorylation by Akt does it releases from mTORC1 [34].

Other groups have also shown that mTORC1 can phosphorylate

and inhibit PRAS40, thus providing a positive feedback

mechanism for Akt-mediated mTORC1 activation [66,67]. A

more complete description of PRAS40 will enhance our ability to

interrogate Akt dependent mTORC1 activation. Second, we

need to refine the description of IRS-1 feedback. Currently, we

assume a single deactivating phosphorylation event at Ser308.

However, several studies have shown that IRS-1 can be

phosphorylated at multiple serine sites, which are both activating

and deactivating [44,68]. Additionally, PTEN is known to

dephosphorylate activated PDGF receptors and attenuate their

activity, a feature not included currently [69]. A more complete

description of IRS-1 phosphorylation could help define how, and

under what conditions, IRS-1 regulation attenuates PI3K

activation. Third, we modeled the regulation of 4E-BPx as a

single phosphorylation event where phosphorylated 4E-BPx was

unable to bind to eIF4E. In reality, 4E-BPx family members, such

as 4E-BP1, have several phosphorylation sites [70] and the

release of eIF4E is driven only after multiple conserved

phosphorylation events [71]. Additionally, eIF4E can itself be

phosphorylated at Ser209; while there is agreement that the

phosphorylation of eIF4E does have a regulatory significance, the

data is contradictory as to whether it is positive or negative [72].

Fourth, signaling downstream of mTORC1 has also been shown

to mediate translation modes beyond those included in our

model. eIF3 has been identified as a scaffolding protein that

recruits mTORC1 to untranslated mRNA and facilitates S6K1

and 4E-BP1 phosphorylation [73]. S6K1 can also activate eIF4B,

a protein that helps eIF4A to unwind the secondary structure of

untranslated mRNA [74]. Further, a recently discovered scaffold

protein, SKAR, has been shown to assist S6K1 recruitment to

mRNA [75]. Lastly, because of mTORC1’s unique cellular role,

it would be interesting to explore how other aspects of

metabolism interact with insulin signaling to mediate decisions

between translation, lipid synthesis or proliferation. In these

studies, one could imagine constructing in-vivo mouse models to

explore the physiological role of mTORC1 signaling in important

diseases such as diabetes or cancer.

Materials and Methods

Formulation and solution of the model equations
The translation initiation model was formulated as a set of

coupled non-linear ordinary differential equations (ODEs):

dx

dt
~S:r x,pð Þ x toð Þ~xo ð1Þ

The symbol S denotes the stoichiometric matrix (250|573). The

quantity x denotes the concentration vector of proteins (250|1).

The term r x,pð Þ denotes the vector of reaction rates (573|1). The

(i,j) element of the matrix S, denoted by sij , described how

protein i was involved in rate j. If sijv0, then protein i was

consumed in rj . Conversely, if sijw0, protein i was produced by

rj . Lastly, if sij~0, then protein i was not involved in rate j. We

assumed mass-action kinetics for each interaction in the network.

The rate expression for interaction q was given by:

rq x,kq

� �
~kq P

j[ Rqf g
x

{sjq
j ð2Þ

The set Rq

� �
denotes reactants for reaction q while sjq denotes

the stoichiometric coefficient (element of the matrix S) governing

species j in reaction q. The quantity kq denotes the rate constant

governing reaction q. All reversible interactions were split into two

irreversible steps. Model equations were generated using UNI-

VERSAL from an SBML input file (available in the supplemental

materials Protocol S1). UNIVERSAL is an open source Objective-

C/Java code generator, which is freely available as a Google Code

project (http://code.google.com/p/universal-code-generator/).

The model equations were solved using the LSODE routine in

OCTAVE (v 3.0.5; www.octave.org) on an Apple workstation

(Apple, Cupertino, CA; OS X v10.6.4).

When calculating the response of the model to the addition of

insulin or other growth factors, we first ran to steady state and then

issued the perturbation. The steady state was estimated numer-

ically by repeatedly solving the model equations and estimating the

difference between subsequent time points:

Ex tzDtð Þ{x tð ÞE2ƒc ð3Þ

The quantities x tð Þ and x tzDtð Þ denote the simulated concen-

tration vector at time t and tzDt, respectively. The L2 vector-

norm was used as the distance metric, where Dt~1 s and

c = 0.001 for all simulations.

Estimation and cross-validation of a population of
models using Pareto Optimal Ensemble Techniques
(POETs)

We used multiobjective optimization in combination with cross-

validation to estimate an ensemble of initiation models. Multi-

objective optimization in combination with cross-validation

allowed us to address qualitative conflicts in the training data,

and to protect against model over-training. While computationally

more complex than single-objective formulations, multiobjective

optimization is an important tool to address qualitative conflicts in

training data that arise from experimental error or cell-line

artifacts [76]. Multiobjective optimization balances these conflicts

allowing us to identify a consensus model population. In this study

we used the Pareto Optimal Ensemble Technique (POETs) to

perform the optimization. POETs integrates standard search

strategies e.g., Simulated Annealing (SA) or Pattern Search (PS)

with a Pareto-rank fitness assignment [52]. Denote a candidate

parameter set at iteration iz1 as kiz1. The squared error for kiz1

for training set j was defined as:

Ej(k)~
XT j

i~1

(M̂Mij{ŷyij(k))2 ð4Þ

The symbol M̂Mij denotes scaled experimental observations (from

training set j) while ŷyij denotes the scaled simulation output (from

training set j). The quantity i denotes the sampled time-index and

T j denotes the number of time points for experiment j. In this

study, the experimental data used for model training was typically

the band intensity from immunoblots, where intensity was

estimated using the ImageJ software package [77]. The scaled

measurement for species x at time i~ft1,t2,::,tng in condition j is

given by:
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M̂Mij~
Mij{miniMij

maxiMij{miniMij

ð5Þ

Under this scaling, the lowest intensity band equaled zero while

the highest intensity band equaled one. A similar scaling was

defined for the simulation output. By doing this scaling, we trained

the model on the relative change in blot intensity, over conditions

or time (depending upon the experiment). Thus, when using

multiple data sets (possibly from different sources) that were

qualitatively similar but quantitatively different e.g., slightly

different blot intensities over time or condition, we captured the

underlying trends in the scaled data.

We computed the Pareto rank of kiz1 by comparing the

simulation error at iteration iz1 against the simulation archive

Ki. We used the Fonseca and Fleming ranking scheme [78] to

estimate the number of parameter sets that dominate kiz1.

Parameter sets with increasing rank are progressively further away

from the optimal trade-off surface. The parameter set kiz1 was

accepted or rejected by POETs with probability P kiz1ð Þ:

P(kiz1):expf{rank kiz1jKið Þ=Tg ð6Þ

where T is the annealing temperature and rank kiz1jKið Þ denotes the

Pareto rank for kiz1. The annealing temperature was discretized into

10 quanta between To and Tf and adjusted according to the schedule

Tk~bkT0 where b was defined as Tf =To

� �1=10
. The initial

temperature was given by To~n=log(2), where n~4 was used in

this study and the final temperature was Tf ~0:1. The epoch-counter

k was incremented after the addition of 100 members to the ensemble.

Thus, as the ensemble grew, the likelihood of accepting parameter sets

with a large Pareto rank decreased. To generate parameter diversity,

we randomly perturbed each parameter by ƒ+25%. We performed

a local pattern search every q steps to minimize the residual for a single

randomly selected objective. The local pattern-search algorithm has

been described previously [79].

A leave-three-out cross-validation strategy was used to simulta-

neously calculate the training and prediction error during the

parameter estimation procedure [80]. The 24 training data sets

were partitioned into eight subsets, each containing 21 data sets for

training and three data sets for validation. The leave-three-out

scheme generated 18,886 probable models. From the approxi-

mately 6000 rank zero models, we iteratively selected 50 random

models from each cross-validation trial with the lowest correlation

and shortest Euclidian distance to the origin (minimum error).

This selection technique produced sub-ensembles with low set-to-

set correlation (ƒ0.50) and minimum training error.

Sensitivity and robustness analysis of the initiation model
population

Sensitivity coefficients were calculated for 40 models selected

from the ensemble (rank-zero, low-correlation, minimum error

selection). First-order sensitivity coefficients at time tq:

sij tq

� �
~

Lxi

Lkj

jtq ð7Þ

were computed by solving the kinetic-sensitivity equations [81]:

dx=dt

dsj=dt

� �
~

S:r x,kð Þ
A tð Þsjzbj tð Þ

� 	
j~1,2, . . . ,P ð8Þ

subject to the initial condition sj(t0)~0. The quantity j denotes

the parameter index, P denotes the number of parameters in the

model, A denotes the Jacobian matrix, and bj denotes the jth

column of the matrix of first-derivatives of the mass balances with

respect to the parameters. Sensitivity coefficients were calculated

by repeatedly solving the extended kinetic-sensitivity system for

forty parameters sets selected from the final 400 member

ensemble. These sets were chosen to be comparable to the final

400 member ensemble on the basis of parametric coefficient of

variation (CV); the sets selected for sensitivity analysis had a mean

CV of 0.85+0.5 and a mean correlation of approximately 0.6.

Thus, there were diverse and uncorrelated. The Jacobian A and

the bj vector were calculated at each time step using their

analytical expressions generated by UNIVERSAL.

The resulting sensitivity coefficients were scaled and time-

averaged (Trapezoid rule):

N ij:
1

T

ðT

0

dt:jsij(t)j ð9Þ

where T denotes the final simulation time. The time-averaged

sensitivity coefficients were then organized into an array for each

ensemble member:

N Eð Þ
~

N Eð Þ
11 N Eð Þ

12 N Eð Þ
1j N Eð Þ

1P

N Eð Þ
21 N Eð Þ

22 N Eð Þ
2j N Eð Þ

2P

..

. ..
. ..

. ..
.

N Eð Þ
M1 N Eð Þ

M2 N Eð Þ
Mj N

Eð Þ
MP

0
BBBBBB@

1
CCCCCCA

E~1,2, . . . ,NE ð10Þ

where E denotes the index of the ensemble member, P denotes the

number of parameters, NE denotes the number of ensemble

samples and M denotes the number of model species. To estimate

the relative fragility or robustness of species and reactions in the

network, we decomposed the N Eð Þ
matrix using Singular Value

Decomposition (SVD):

N Eð Þ
~U Eð ÞS Eð ÞVT , Eð Þ ð11Þ

Coefficients of the left (right) singular vectors corresponding to

largest hƒ15 singular values of N Eð Þ
were rank-ordered to

estimate important species (reaction) combinations. Only coeffi-

cients with magnitude greater than a threshold (d = 0.001) were

considered. The fraction of the h vectors in which a reaction or

species index occurred was used to determine its importance

(sensitivity ranking). The sensitivity ranking was compared

between different conditions to understand how control in the

network shifted as a function of perturbation or time (Fig. 5).

Robustness coefficients were calculated as shown previously

[60]. Robustness coefficients (denoted by a i,j,to,tf

� �
) are the ratio

of the integrated concentration of a network marker in the

presence (numerator) and absence (denominator) of a structural or

operational perturbation. The quantities t0 and tf denote the

initial and final simulation time, respectively, while i and j denote

the indices for the marker and the perturbation respectively. If

a i,j,to,tf

� �
w1, then the perturbation increased the marker

concentration. Conversely, if a i,j,to,tf

� �
v1 the perturbation

decreased the marker concentration. Lastly, if a i,j,to,tf

� �
*1 the

perturbation did not influence the marker concentration. Robust-

ness coefficients were calculated over 400 models selected from the

ensemble (rank-zero, low-correlation, minimum error selection).
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Convergence analysis suggested that the qualitative conclusions

drawn from the robustness analysis would not change if more than

N = 400 parameter sets were sampled (Fig. S1).

Supporting Information

Figure S1 Effect of the ensemble size on the knockdown
simulations. Fold change of the translational activity was

calculated for ensemble sizes of N = 50 (white fill), N = 100 (light

grey), N = 200 (dark grey) and N = 400 (black) randomly selected

parameter sets in the presence and absence of insulin. For the

majority of the perturbations, the robustness coefficients con-

verged for as few as 50 parameter sets. In a small number of other

cases, the robustness coefficients varied significantly up to 200

parameter sets. Between 200–400 sets the robustness coefficients

largely converged to qualitatively and quantitatively similar

answers.

(EPS)

Protocol S1 Supporting simulation protocols. Protocol S1

file includes SBML file of the network used with nominal rate

constants and initial conditions and ensemble of parameter files

generated by POETs and used for model analysis. Further details

of each file is included in a README file included in the zip.

(TAR.BZ2)
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