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Abstract

Advances in reporters for gene expression have made it possible to document and quantify expression patterns in 2D–4D.
In contrast to microarrays, which provide data for many genes but averaged and/or at low resolution, images reveal the
high spatial dynamics of gene expression. Developing computational methods to compare, annotate, and model gene
expression based on images is imperative, considering that available data are rapidly increasing. We have developed a
sparse Bayesian factor analysis model in which the observed expression diversity of among a large set of high-dimensional
images is modeled by a small number of hidden common factors. We apply this approach on embryonic expression
patterns from a Drosophila RNA in situ image database, and show that the automatically inferred factors provide for a
meaningful decomposition and represent common co-regulation or biological functions. The low-dimensional set of factor
mixing weights is further used as features by a classifier to annotate expression patterns with functional categories. On
human-curated annotations, our sparse approach reaches similar or better classification of expression patterns at different
developmental stages, when compared to other automatic image annotation methods using thousands of hard-to-interpret
features. Our study therefore outlines a general framework for large microscopy data sets, in which both the generative
model itself, as well as its application for analysis tasks such as automated annotation, can provide insight into biological
questions.
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Introduction

Detailed knowledge of the precise location and time span of

gene expression is mandatory to deciphering dynamic cellular

mechanisms. The application of microarray technology has led to

genome-wide quantitative overviews of the relative changes of

transcript levels in many organisms (such as Drosophila embryonic

development [1–4]), but these rarely provide spatial information.

In contrast, microscopy of colored or fluorescent probes, followed

by imaging, is able to deliver spatial quantitative phenotype infor-

mation such as gene expression at high resolution [5,6]. For

instance, RNA in situ hybridization localizes specific mRNA

sequences by hybridizing complementary mRNA-binding oligo-

nucleotides and a suitable dye [7]. This approach has been used as

part of large scale compendia of gene expression in Drosophila

embryos [4,8] and the adult mouse brain [9,10].

Available image data therefore constitute a repertoire of

distinctive spatial expression patterns, allowing us to obtain

significant insights on gene regulation during development or in

complex organs. One of the fastest growing expression pattern

data collections is the Berkeley Drosophila Genome Project RNA in

situ hybridization database [8]), which contains annotations of

spatial expression patterns using a controlled vocabulary, following

the example of the Gene Ontology (GO) [11]. The annotation

terms integrate the spatial gene expression dimensions of a

developing ‘‘path’’ from the cellular blastoderm stage until organs

are formed. Over 97,000 images for w7,000 genes have thus been

manually acquired, curated and annotated [4]. Due to the

complex nature of the task, these Drosophila images were manually

annotated by human experts.

Automatic image annotation systems are fairly routinely used in

cell-based assays, e.g. for the classification of protein subcellular

localization in budding yeast [12]. The increasing number of

expression images for complex organisms has motivated the design

of computational methods to automate these analyses [13]. In

general, this requires solving two sub-problems: identifying objects

in a potentially noisy image and normalizing the morphology of

the objects, followed by analysis on the actual expression patterns.

Typically, studies have focused on the task to recapitulate the

expert-provided annotation, based on bottom-up approaches utili-

zing large sets of low-level features extracted from the images. For

instance, Ji et al. [14] proposed a bag-of-words scheme in which

invariant visual features were first extracted from local patches on

the images, followed by a feature quantization based on precom-

puted ‘‘visual codebooks’’ and finally classification. Peng et al. [15]

developed an automatic image annotation framework using three

different feature representations (based on Gaussian Mixture

Models, Principal Component Analysis (PCA) and wavelet

functions) and several classifiers, including Linear Discriminant

Analysis (LDA), Support Vector Machines (SVM) and Quadratic
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Discriminant Analysis (QDA). Heffel et al. [16] proposed an

embryo outline extraction and transformation and conversion to

Fourier coefficients-based feature representation.

One potential drawback of the above mentioned approaches is

the high dimensional and complex feature space (thousands of

features per image) which implies a potential for high redundancy

and computational difficulties. In contrast to such large feature

sets, a spatial expression pattern typically consists of a limited

number of discrete domains, defined by a small set of upstream

regulatory factors. As an alternative, Frise et al. [17] therefore set

out to identify a concise set of basic expression patterns in

Drosophila. Starting with an unsupervised clustering approach on a

manually selected small set of 553 distinct images, the clusters were

extended to a broader data set comprising 2,693 lateral views of

early development through a binary SVM classification. This

pipeline revealed a set of 39 well defined clusters describing speci-

fic regions of expression with good correspondence to develop-

mental structures and shared biological functions of the genes

within clusters. While the authors gave many individual examples

for the possible meaning of clusters, they did not use them in

further applications to annotate patterns or infer regulatory

relationships. As with most of the described approaches, the study

involved significant human intervention, which generally includes

manual selection of ‘‘good’’ images for training, clustering, and/or

evaluation: selection of a subset of viewpoints (images show

different embryo orientations, e.g. lateral or dorsal/ventral), or

selection of successfully registered images only. While this may

lead to highly encouraging results, the significant work for manual

image selection represents a potential shortcoming, considering

that available data are rapidly increasing and an automatic

computational method is essential.

We here propose a new approach to close the gap between the

feature-oriented approaches for pattern annotation, and the

identification of expression domains to gain functional insights.

The central part is the application of sparse Bayesian factor

analysis (sBFA), which describes a large number of observed

variables (image features) by linear combinations of a much

smaller number of unobserved variables (factors). This framework

aims at explaining the variability of the original high dimensional

feature space by a much smaller set of latent factors, through a

completely unsupervised process. [Note that the mathematical

usage of the word ‘‘factor’’ is distinct from its biological meaning].

It can also be seen as a clustering method, where samples belong to

different clusters, based on their corresponding linear combination

mixing weights. Another advantage of the sBFA model is that any

information about the underlying structure can be easily

incorporated through priors [18]; for instance, we here use a

sparseness prior placed on the number of factors used to

‘‘reconstruct’’ each image.

Using such sparse Bayesian approaches we identify a basic

expression vocabulary directly from the image data, and show that

this small subset of features is highly interpretable in terms of

biological function or co-regulation. This vocabulary is then used

for gene annotation with performance comparable or exceeding

current systems, and stability when applied on the complete and

noisy data set, without any human intervention or selection of

‘‘representative’’ images. The top-down generative nature of this

approach (rather than traditional bottom-up approaches) also

promises high utility in other application areas, by integrating the

model with various information on gene expression and

regulation.

Results

Our study describes the application of an sBFA framework for

gene expression pattern annotation. The model converts every

segmented image of a Drosophila embryo into a sparse feature

representation of the spatial gene expression pattern, suitable for

downstream quantitative analysis based on widely used classifiers.

This technique is fully automatic, and not specific to any data or

feature set. In the analysis presented here, we employ factor

models where data (X) are modeled by a linear combination of

factors (rows of S) given the corresponding mixing weights (A) and

some additive Gaussian noise (E) while sparseness is promoted on

the factor loading matrix (A). The model jointly infers both the

factors and the mixing weights; we can then analyze the factors

regarding their representation of biological concepts, and use the

mixing weights for analysis tasks such as automatic annotation.

Drosophila image data sets
One of the most popular data sets to explore the use of image

expression data is the Berkeley Drosophila Genome Project (BDGP)

data set. It consists of over 97,000 images which document

embryonic expression patterns for over 7,000 of the 13,659
protein-coding genes identified in the Drosophila melanogaster

genome. A gene’s expression pattern can be reflected in the

accumulation of its product in subsets of cells as embryonic

development progresses. In this case, the patterns of mRNA

expression were studied by RNA in situ hybridization, which has

the potential to reveal the spatial aspects of gene expression during

development at genome-wide scale. The RNA in situ hybridization

used digoxygenin-labeled RNA probes derived primarily from

sequenced cDNAs to visualize gene expression patterns and

documented them by digital microscopy. For each expressed gene,

representative low and high magnification images were captured

at key developmental stages. These developmental stages clearly

define emerging embryonic structures such as gastrulation,

midblastula transition and organogenesis onset. For practical

reasons, the first 15 hours of Drosophila development, spanning

embryonic stages1{3, 4{6, 7{8, 9{10, 11{12 and 13{16,

were chosen for analysis, as this interval is manageable in terms of

data annotation. As examples, stages 4{6 are associated with the

time interval 1h20min–3h, while the later developmental stages

11{12 occur between 5h20min–9h20min.

Genes are annotated with ontology terms from a controlled

vocabulary describing developmental expression patterns (cf. [11]).

Author Summary

High throughput image acquisition is a quickly increasing
new source of data for problems in computational biology,
such as phenotypic screens. Given the very diverse nature
of imaging technology, samples, and biological questions,
approaches are oftentimes very tailored and ad hoc to a
specific data set. In particular, the image-based genome
scale profiling of gene expression patterns via approaches
like in situ hybridization requires the development of
accurate and automatic image analysis systems for
understanding regulatory networks and development of
multicellular organisms. Here, we present a computational
method for automated annotation of Drosophila gene
expression images. This framework allows us to extract,
identify and compare spatial expression patterns, of
essence for higher organisms. Based on a sparse feature
extraction technique, we successfully cluster and annotate
expression patterns with high reliability, and show that the
model represents a ‘‘vocabulary’’ of basic patterns
reflecting common function or regulation.

Spatial Expression Pattern Annotation
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Any gene is thus associated to one or multiple terms, and often

represented by more than one image. Images can display non-

informative patterns due to poor quality staining/washing, and a

gene can show distinct and different expression patterns due to

different embryo orientations or the relatively long developmental

time spanned by a stage range. Images with lateral orientation

have now been annotated as such, information not available until

recently.

As proof of concept, the model is demonstrated on a variety of

images, covering two distinct developmental stage ranges (4{6,

11{12) and multiple orientations (lateral, dorsal/ventral). The first

data set (S4{6) includes 287 genes (2,246 images) with arbitrary

orientation (mostly lateral and dorsal/ventral), acquired during the

time window of developmental stages 4{6. The second data set

(Sl
4{6) covers a subset of 196 genes (1,231 images) restri-

cted to lateral views; we used this smaller data set to evaluate the

effect of integrating images from multiple views, and to be able to

compare against earlier approaches which were frequently applied on

lateral views only. Genes in these two sets were annotated with 34
non-trivial terms (i.e. excluding no or ubiquitous expression). The

third data set (S11{12) covers 2,347 genes (12,323 images) with

arbitrary orientation from the later developmental stage range

11{12. At this point, the problem is complicated by the more

developed embryo morphology, which gives rise to intricate spatial

expression patterns. Consequently, genes in this set were annotated

with 94 unique non-trivial terms. The last data set (Sl
11{12) contains

435 manually selected genes from data set S11{12 as used in a

previous study [15], comprising 3,315 images with lateral view only.

The image registration process used throughout this paper was

previously introduced by Mace et al. [19] in which individual

embryos were extracted and rotated in an automatic fashion. We

then scaled the registered images to 2406120 pixel resolution and

extracted grid-based features by calculating the mean pixel value

within each patch. Details can be found in the ‘‘Materials and

Methods’’ section.

Factor inference and decomposition of expression
patterns

To illustrate the potential of a sparse set of factors to represent

complex expression patterns, we started with data set S4{6. We

evaluated different values for the number of factors in the model

(k) and different resolution – 20, 40 and 60 factors for grid sizes of

48624, 60630 and 80640, respectively. Representative images

(original, grid-based, and reconstructed factor-based) for the

annotation terms with the highest number of associated genes

are shown in Figure 1. While the resulting images are somewhat

noisier, they clearly recapitulate the overall expression domains.

sBFA was successful in automatically extracting interpretable

patterns based on our choice of pixel intensities as input features.

Figure 2 illustrates this for an example grid size of 80640 and

k~60 factors, and the estimated sparse factor loading matrix is

shown in Figure S1. In particular, many factors correspond to

prototypical lateral view patterns along the anterior/posterior axis,

reflecting the activity of the segmentation network. Others

represent expression differences along the dorsal/ventral axis,

and patterns from different views, showcasing the ability of the

method to automatically extract distinct patterns for different

embryo orientations. In addition, some factors do not represent

distinct expression patterns but rather the embryo shape or

lighting artifacts. While these factors certainly reflect commonal-

ities among the input data, they show the potential of sBFA to

automatically separate meaningful patterns from noise.

Besides image reconstruction, the factor loading matrix provides

for an elegant way for clustering and co-expression analysis: the

Figure 1. Original, grid-based and reconstructed factor-based images, using the estimated factors and factor loading matrix.
Selected annotation terms with the highest number of associated genes; each annotation term is represented by two of its corresponding genes
(with the original, the grid-based factor-based embryo images), from the time window of developmental stages 4{6. These examples reveal that
images with the same annotation term can show different orientations and quite different patterns, for instance because they are taken during a
relatively large temporal window during which expression can change. In the false color display, blue color indicates strong in situ staining while red
indicates no staining.
doi:10.1371/journal.pcbi.1002098.g001

Spatial Expression Pattern Annotation
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factors (rows in the factor matrix S) represent cluster centroids and

the mixing weights (entries in the factor loading matrix A) describe

co-expression between genes. Each cluster can then be referred to

through its corresponding factor. To illustrate this, we selected the

entry/factor in the factor loading matrix with the highest absolute

value for each gene in data set S4{6. The resulting clusters divided

the expression landscape into distinct categories, defining clusters of

genes with various expression patterns. Compared to Frise et al.

[17], who illustrated the correspondence of clusters to a develop-

mental fate map, the sBFA framework was thus able to discover

highly similar expression domains and the underlying relationships

among them, but with no prior manual initialization. Within the

largest clusters (Figure 2), we noticed broadly expressed genes,

anteriorly expressed genes, posteriorly expressed genes, as well as

dorsal/ventral expression. We further investigated co-expression by

identifying instances where two clusters shared genes (two columns

in the factor loading matrix contain informative mixing weights for

common genes; for informative weights, we selected all loading

matrix entries within 10% of the absolute highest value, in

accordance with the sparsity assumption of the model). In most of

the cases, linked clusters correspond to a general trend of temporally

progressing gene expression, from larger expression domains to

more narrowly defined spatial expression (Figure 2). Categorizing

the factors revealed that among lateral views, a larger number of

genes in the data set were expressed anteriorly and ventrally, and

fewer genes posteriorly and dorsally (Figure 3A). Among dorsal/

ventral views, most of the expressed genes have ventral view and

predominantly anterior orientation.

As mentioned earlier, data set S4{6 covered 2,246 images with

arbitrary orientation (lateral, dorsal/ventral). The inferred set of

factors and factor loading matrix unveiled another important

strength of the proposed framework: for any given image, factors

which represent the same embryo orientation are more likely to

contribute to the image decomposition, through more informative

Figure 2. Selected factors estimated from a total of k~60 factors, for a grid size of 80640 (data set S4{6. As factors can have negative
loadings, patterns may be inverse to the in situ staining pattern. The different background colors are an artifact and not part of the model. The
bordered factors are the centroids of the largest clusters, while representative occurrences of genes shared among clusters are indicated by the
weighted lines.
doi:10.1371/journal.pcbi.1002098.g002
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weights. As a result, estimated factors that show a clear lateral gene

expression would be highly used by lateral gene expressed images in

their corresponding factor linear combination; furthermore,

estimated factors with dorsal/ventral expressions would be most

likely used by dorsal/ventral input gene patterns. The four examples

in Figure 3B illustrate lateral, dorsal/ventral, and non-informative

expression. As expected, for non-informative maternal expression,

all factors share relatively low weights in their image decomposition.

As co-regulated genes are frequently co-regulated by transcrip-

tion factors, we next inspected the similarities between estimated

factors (matrix S in our model) and the FlyTF database of

Drosophila site-specific transcription factors [20]. This database

contains 171 manually annotated site-specific transcription factors,

identified from a list of candidate proteins with transcription-

related GO annotation as well as structural DNA-binding domains

assignments. Careful visual inspection revealed that a number of

inferred factors were close to the expression patterns of the 171
experimentally verified transcription factors (Figure 4), thus

suggesting that the model factors are reflecting underlying

biological functions. Moreover, the majority of the discovered

Figure 3. Distribution of expression patterns in Drosophila image data from stages 4–6. (A) Distribution of gene expression patterns. The
height of the bars corresponds to the percentage of patterns in the indicated direction (lateral view for the first 4 bars and dorsal/ventral view for the
remaining 4 bars, shaded area). Pred. D = predominantly dorsal (lateral view), Pred. V = predominantly ventral (lateral view), Pred. A = predominantly
anterior (lateral view), Pred. P = predominantly posterior (lateral view), D (d/v view) = dorsal (dorsal/ventral view), V (d/v view) = ventral (dorsal/ventral
view), Pred. A (d/v view) = predominantly anterior (dorsal/ventral view), Pred. P (d/v view) = predominantly posterior (dorsal/ventral view). (B) Example
factor contributions. The top three rows show significant factors contributing to the original image decomposition, for lateral (anterior/posterior) and
dorsal/ventral gene expressions. The bottom row corresponds to a non-informative (maternal expression only) case, where all factors share similar
low weights for their image decomposition. Overall, for any given image (arbitrary orientation), factors which show that particular gene expression
orientation are more likely to contribute to the image decomposition, through more informative weights.
doi:10.1371/journal.pcbi.1002098.g003
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similarities (8 out of 12 cases) correspond to the top ranked factors

shown in Figure 2.

Biological correlates of inferred factors
Clusters of co-regulated genes inferred from microarray

analyses have frequently been shown to reflect groups of genes

with distinct functions. A popular approach is to determine

enrichments of functional annotations, such as provided by the

Gene Ontology, to genes within each cluster. For this aim, we

selected the 10% absolute highest value entries from the factor

loading matrix to find enriched GO biological process terms

(corrected p-valuev0:001 for hypergeometric test). The early

development during stages 4{6 is largely centered on specifying

the body axes and layout, and we thus examined the later stage

data set S11{12 which included a broader range of ontology terms

(Figure 5). Compared to the stage 4{6 analysis, we used a larger

matrix with 200 factors to allow for the identification of a larger

number of distinct patterns.

Among the entire selection of biological process terms

(GO:0009987), we found 48 biological processes with significant

enrichments mapping to one or more of 39 out of 200 clusters. In

particular, cluster 17 had a clear enrichment of genes with heart

development function (GO:0007507) which agrees with the gene

expression showed by the factor itself (at stage 11{12, heart

precursors have been specified within the dorsal mesoderm). Cluster

8, with a pattern localized around the germ band, is highly enriched

in germ cell migration genes (GO:0008354). Finally, cluster 19
shows central/posterior development, related to the enrichment of

genes with gonad development function (GO:0008406).

The availability of recent genome-wide regulatory information

made it possible to additionally investigate regulatory relationships

between transcription factors and their target genes. Using the

same clusters as for the GO enrichment analysis, we examined the

agreement of factors with the ‘‘physical’’ regulatory network

published by the modENCODE consortium [21]). This static

network was inferred from 76 TFs with experimentally derived

binding profiles, combining chromatin immunoprecipitation data

from multiple cultured cell lines with chromatin information and

conserved sequence elements. It covers more than 12,000 target

genes; on average, genes were targeted by 12 TFs, with up to 54
regulatory inputs. We carefully selected the subset of TFs with

demonstrated expression during Drosophila embryogenesis as

profiled in the BDGP database as well as FlyBase, and identified

the significant ones for every set of genes with high value entries in

the factor loading matrix (following the GO analysis described

before). For developmental stages 11{12, we found 23 significant

TFs (corrected p-valuev10{6 for Pearson’s Chi-square test)

mapping to one or more of 44 out of 200 clusters (Figure 6).

Out of these 44 significant clusters, 35 are shared with the clusters

found in the GO analysis (Figure 5). There are 4 clusters that only

show significant enrichments among biological functions and 9
clusters with solely significant TFs (shaded areas). Nevertheless,

most of the clusters of interest share biological functions as well as

physical regulatory relationships and illustrate a strong consistency

between the two analyses.

Moreover, clusters with significance for both biological function

and transcription regulation revealed term associations between

transcription factors and biological processes currently not found

in the Gene Ontology database. For instance, Trl targets

(FBgn0013263) are enriched in germ cell migration (cluster 6)

and heart development (cluster 24); Trl mutants have been

reported to exhibit defects in oogenesis [22]. Twi targets

(FBgn0003900) are associated with cell adhesion (cluster 26),

consistent with findings from genome wide ChIP analyses [23]; a

complete list with term associations between transcription factors

and biological processes can be found in Figure S2.

To put these results into context, we identified the set of

modENCODE TFs enriched within the gene sets of the 10 most

frequent developmental terms of the controlled vocabulary as

annotated by human experts (Figure S3). Among the 32 enriched

Figure 4. Similarities between estimated factors in S4{6 and entries in the FlyTF database.
doi:10.1371/journal.pcbi.1002098.g004
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TFs, a subset of 19 TFs are shared with the sBFA cluster-based

transcription regulation analysis. The TFs that were only identified

in the CV analysis are mostly general regulators; e.g. involved in

chromatin remodeling and silencing (trx, BEAF-32, CTCF, TfllB,

or CBP). These enrichments are not function-specific and

therefore spurious hits. On the other hand, there are only four

TFs specific to the sBFA cluster-based analysis: among them, bab1

targets (FBgn0004870) are enriched during ectoderm develop-

ment, consistent with recent reports based on sequence motif

analyses [24]. The automatically inferred factors are therefore

more enriched in specific TF targets, and lead to a cleaner and

more extensive set of links between TFs, expression patterns, and

biological functions.

Lastly, we visually inspected similarities between spatial

expression of estimated sparse model factors (cluster centroids)

and corresponding TFs with significant p-values. Three example

cases are shown in Figure S4, and they suggest that the estimated

factors not only reflect biological functions but also explain

correlations within the physical regulatory network.

In conclusion, our method can be used to find physical/

functional networks that are relevant to Drosophila embryonic

developmental stages of interest. In this case, the network

associated to stages 11{12 appears to be a highly modular

cohesive component of the full physical regulatory network

introduced in [21]; the multitude of highly significant TFs advance

the hypothesis of a self-contained, highly evolvable structure.

Gene classification into developmental expression
domains

While gene expression data is often analyzed in an unsupervised

fashion, the expert annotation of images with anatomical terms

also allows for a direct evaluation whether extracted features

reflect distinct biological patterns. To demonstrate the effective-

ness of the sparse factor analysis in exploiting the hidden structure

Figure 5. Enrichment of GO terms in the biological process (GO:0009987) category, for 39 representative factors (cluster centroids),
developmental stages 11–12. The level of significance of each GO term (vertical axis) is displayed as color intensity between yellow
(p-value*10{3) and red (p-value*10{4), as indicated by the color bar on the left side; smaller p-values correspond to more enriched genes. The
blue color corresponds to GO terms with a p-valuew0:001.
doi:10.1371/journal.pcbi.1002098.g005
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shared among different genes, entries in the factor loading matrix

(A) were subsequently used as features by two state-of-the-art

classifiers: the SVM (polynomial kernel) [25] and a sparse

multinomial logistic regression model, SMLR [26].

In evaluating the relative performance of the classifiers for

individual annotation terms, we trained binary classifiers, one for

each anatomical annotation term. We only considered terms

associated to more than 5 genes; terms with too few annotated

genes were statistically too weak to be learned and evaluated

effectively (for the developmental stages 4{6, this selection

translated into removing 10 of the initial non-trivial terms

mentioned before). For each of these remaining terms, the

question was whether the factor loadings would be effective

features to discriminate genes with a particular annotation term

from those without one (to automatically identify the anatomical

regions that express a gene, given a training set of annotations).

We chose sparse classifiers, as some factors appeared to reflect

common sources of noise (e.g. illumination differences) and should

thus be uninformative for annotation. The accuracy of sBFA-

based classifiers is represented by the area under the ROC curve

(AUC values, [27]).

We started with data set Sl
4{6, which contained 1,231 genes

annotated with a total of 24 terms, and the SMLR classifier, which

allows one to assess the importance of features for a classification

task by the weights assigned to each feature. We first analyzed the

SMLR weights w on the entire set of features (three different

resolutions with corresponding number of factors of k~10, k~20
and k~30 leading to a combined k~60 factors), and examined

the number of times factors were selected as relevant by the SMLR

algorithm during leave-one-out cross-validation (LOO-CV).

During cross-validation, all images corresponding to a single gene

were left out and the model was trained on the remaining set of

images. A few common factors were not selected as relevant by

any annotation term model, which confirmed our initial belief that

some factors were uninformative for at least some annotations. In

addition, there is strong consistency in factor selection, and most

factors are either always or never included. Figure 7 shows the

mixing weights on the factors for two randomly selected

annotation terms, as well as a histogram of the number of times

each factor is selected as relevant over the entire set of 1,231 trials,

with a cut-off value for feature selection at t~0:05. Specifically,

for the ‘amnioserosa anlage in statu nascendi’ annotation term, 42
factors were never selected while 17 were always selected.

To evaluate the success of annotation prediction, we computed

AUC values achieved by the SMLR framework on data set Sl
4{6

using LOO-CV (Figure 8A). To assess the influence of a particular

classifier, we compared the SMLR results to those achieved by

polynomial SVMs. The AUC value for each annotation term was

computed using majority voting across all genes (see ‘Materials

and Methods’). We see that on average, the annotation process

reached similar performances with both classifiers, above 0:7
across all terms (exception are the ‘pole cell’ and ‘ventral ectoderm

anlage’ annotation terms; the ‘pole cell’ lower performance can be

explained by the fact that these germline precursor cells migrate

and may have little overlapping spatial expression during stage

4{6).

In the next phase, we evaluated the effect of integrating images

with multiple views at early stages in Drosophila development, by

running the sBFA on data set S4{6; as previously mentioned, it

covers 287 genes (2,246 images) with arbitrary orientation (most

lateral and dorsal/ventral). Similar to the previous case, we

carefully examined different numbers of factors for different image

resolutions and observed the following good matches: 20, 40 and

60 factors for a grid size of 48624, 60630 and 80640,

respectively. On the images in this set, the SVM-60 slightly

outperforms the SVM-120 and both SMLR-60 and SMLR-120
results and leads to overall consistent results despite the large

variety of patterns, inconsistency among patterns associated with

Figure 6. Significant transcription factors, for 44 representative factors (cluster centroids), developmental stages 11–12. The level of
significance of each TFs (vertical axis) is displayed as color intensity between yellow (p-value*10{6) and red (p-value*10{12), as indicated by the
color bar on the left side; smaller p-values correspond to more significant genes. The blue color corresponds to TFs with a corrected p-valuew10{6 .
doi:10.1371/journal.pcbi.1002098.g006
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the same term, and variable orientation (Figure 8B). AUC values

fall largely between 0:7 and 0:9 with a few exceptions, where we

believe that either the annotation terms were assigned to the

wrong images, or the corresponding images had some tilted

viewing angle, making the understanding of the 2D pattern

difficult to accomplish. Figure S5 shows two scenarios where

several images corresponding to the same genes are either

uninformative, out of focus or under tilted viewing angles, or

show expression at different time points, making it impossible for

an automated annotation process to reach perfect accuracy.

To assess how the good performance of the sBFA model would

translate to later development, we applied it to the full set of

images from stage 11–12 (S11{12), representing a more compli-

cated image annotation problem, given the variety of orientations

(lateral, dorsal/ventral) and very intricate spatial expression

patterns. The sBFA framework was run on both the complete

data and the lateral subset; classifiers were trained/tested on the

top 10 most frequent annotation terms. As the above results did

not show a clear advantage of using features from multiple

resolutions, we used the highest resolution (grid size) of 80640 on

the complete set, and a total number of factors k~200. Due to the

larger number of images, training and test data sets were

generated 10 times by randomly selecting 10% each with and

without a specific annotation from the total set of 12,323 images.

On the set of lateral view images only (7,244 images), the sBFA

model was run on the same grid-size and a smaller number of

factors k~100; in this case, the training and test data sets were

generated 10 times by randomly selecting 20% from lateral views

(to achieve a comparable number of images between the two

scenarios). The AUC values for each annotation term obtained by

the sBFA framework (SVM classifier) were computed using both

minority and majority voting, i.e. counting a gene as a true positive

hit if it had at least one of its images, or the majority of images,

correctly classified. According to our expectations, minority voting

reaches AUC values of 80–90%, with a high 92:4% performance

corresponding to ‘posterior midgut primordium’. When using

majority voting, the performance is in the same range (70–80%) as

on the images from early development, this time with a slight

advantage of SMLR over SVM, indicating that sBFA was

successfully able to represent more complex expression patterns

(Table 1).

The overall improved performance of minority over majority

voting (in the range of 4–16 AUC percent points) is a direct

reflection of the nature of the actual images used by our model.

For a given gene, this can happen when most, but not all, of the

images are of poor quality (out of focus, poor quality of staining/

washing); the existence of at least one clear and representative

image can lead to a successful minority classification. Additional

complications arise from errors in the automatic normalization

(such as incorrect orientation), and outlier images from different

views. Several such examples are shown in Figure S6: gene

FBgn0033227 is annotated with ‘posterior midgut primordium’ on

a total of three images, two of which were impossible to classify

due to poor quality staining and washing; FBgn0002174 is

incorrectly annotated on a total of three images, two of which

contain non-informative patterns; FBgn0015774 was incorrectly

majority voted for two different controlled vocabulary terms, in

both cases, images are either out of focus, with non-informative

patterns or improperly rotated by the automated registration

process.

The analysis of integrating images with multiple views revealed

that, for stages 11{12, the annotation performance consistently

increased when incorporating images from views other than

lateral. In comparison, the average AUC performance on the

lateral view only data set from stages 4{6 slightly outperformed

the annotation using multiple views. In S4{6, the additional views

increased the number of genes as much as the number of images,

meaning that most genes were represented by either lateral or

other views. Additional dorsal/ventral view images are less

informative for annotating purposes during early stages in

Drosophila embryogenesis, which generally follows simple expres-

sion dynamics oriented along the A/P or D/V axis. In contrast, at

Figure 7. SMLR analysis on the estimated sBFA factors on data set Sl
4{6, for two randomly selected annotation terms. The top row

shows the SMLR mixing weights on the factors, for a regularization parameter l~20; the x-axis represents the FA factors: the first 10 factors for a grid
size of 48624, the next 20 factors for a grid size of 60630 and the last 30 factors for a grid size of 80640. The bottom row contains histograms with
the number of factors selected as relevant over 1,231 LOO-CV trials, with a cut-off value at t~0:05. Each feature appears once in the graph. The more
mass concentrated at the two ends, the more consistent the classifier is in identifying relevant factors.
doi:10.1371/journal.pcbi.1002098.g007
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later developmental stages with more complex patterns, the

dorsal/ventral view images become more informative for embryo

annotation, as certain expression patterns cannot be fully

represented by one 2D view only.

In summary, our results confirm that a fully automatic image

analysis pipeline without any human intervention can lead to

highly successful expression pattern classification, despite varia-

tions in orientation and the presence of uninformative images

and/or registration errors. Since both classifiers (SVM and

SMLR) achieved similar annotation results, it further demon-

strates the general effectiveness of the sparse Bayesian factor

representation.

Comparison to previous automatic annotation efforts
To put our approach in context, we compared our results to two

state-of-the-art systems representing bottom-up approaches using

many low-level features. The automatic image annotation

platform IANO was introduced by Peng et al. [15]; in the original

Figure 8. SMLR and SVM comparison on (A) data set Sl
4{6 and (B) data set S4{6: the AUC of individual annotation terms from the

time window of developmental stages 4–6. (A) We consider two different scenarios: using the factors corresponding to the highest resolution,
k~30 (SVM-30 and SMLR-30), or using the entire set of factors available (SVM-60 and SMLR-60). The last 8 annotation terms correspond to 15 genes
or less, too few to count for a strong statistical evaluation (shaded area). (B) We consider two different scenarios: using the factors corresponding to
the highest resolution, k~60 (SVM-60 and SMLR-60), or using the entire set of factors available (SVM-120 and SMLR-120). The last 10 annotation
terms correspond to 20 genes or less, and results are less reliable due to the stronger variance and impact of results on individual samples (shaded
area).
doi:10.1371/journal.pcbi.1002098.g008
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study, it used three different feature representations and several

classifiers to predict annotations, which were reported on lateral-

view images only. To provide for a fair comparison on the same set

of genes, we ran the first comparison on data set Sl
4{6, using the

IANO code as provided by the authors. In its current version,

SVMs were the only available classifier; furthermore, binary

prediction labels were provided, which prevented the use of AUC

as evaluation metric. Instead, we followed the authors’ example

and used the absolute recognition rate, despite its flaws on

unbalanced data sets which leads to inflated results, as opposed to

the balanced view obtained by AUC (for more details, see

‘Materials and Methods’). With this in mind, the results from both

sBFA (majority voting) and IANO systems on the 10 most frequent

annotation terms showed that the sBFA model clearly outper-

formed IANO (Table 2), at lower dimensionality. The proposed

sBFA model consists of a fixed grid-based feature extraction

technique followed by a sparse Bayesian factor analysis framework,

whereas IANO considers three local and global feature extraction

analyses which might result in higher-dimensional feature spaces.

The original IANO results focused on a manually selected data

set of 435 representative gene images with lateral views from stages

11{12 [15]. While we were able to obtain identifiers for the

genes, the exact images used in their work were no longer available

from the authors; as a result, for the second comparison, we

considered all BDGP images from stage 11{12 for the 435 genes

(3,315 images, data set Sl
11{12). Using sBFA with a polynomial

kernel SVM classifier, we obtained results using both minority and

majority voting. The average recognition rate for the 5 annotation

terms evaluated by Peng et al. are shown in Table 3; minority

voting SVM(sBFA)min is the measure most likely to recapitulate

the IANO results reported for the smaller, manually curated data

set [15]. Altogether, sBFA lead to clearly improved results when

applied on the same data sets, or on a prediction scheme aimed at

recapitulating the original scenario, demonstrating the robustness

of our generative feature extraction method when using SVM

classifiers.

A more recent study used dense Scale-Invariant Feature

Transform (SIFT) descriptors [28] that were converted into sparse

codes to form a codebook to represent registered images, and

proposed a local regularization procedure for the learning process

[14]. An unbiased comparison between our model and this system

was hard to establish since the image IDs were not published in

detail, results were based at least partially on selected orientations

and not full sets, and annotation terms did not exactly correspond

to the BDGP ontology. However, our results based on a much

smaller feature space (effectively around 15 features for the SMLR

classifiers, as opposed to several thousand), are in a similar range to

the ones reported by their system.

Discussion

Digital images are a quickly increasing new source of data for

problems in computational biology. Given the very diverse nature

of imaging technology, samples, and biological questions,

approaches are oftentimes very tailored and ad hoc to a specific

data set. At the same time, high content screening of phenotypes is

moving from cell-based assays to whole organisms, and pheno-

types can no longer be manually annotated due to large volumes of

data. In this paper we presented a general method for the

automatic decomposition of spatial quantitative information,

applied on the dissection and annotation of gene expression

images. The algorithm is based on a fully Bayesian factor analysis

Table 1. Annotation performance in terms of AUC (mean and standard deviation), using the LOO-CV scheme, data set S11{12.

Classifier PMP AMP BP VNCP TMP HPP DEP FP HMP SMP

SVMmaj 77.4+0.71 77.1+0.39 75.2+0.97 73.9+1.12 74.3+1.03 75.8+0.86 73.5+0.28 73.2+0.33 73.7+0.58 73.9+1.32

SVMmin 92.4+1.74 90.6+1.19 89.7+1.26 87.6+0.65 82.2+0.78 83.4+1.12 79.9+1.70 79.7+1.11 77.1+1.09 80.8+1.48

SMLRmaj 77.5+0.43 76.6+0.52 77.2+0.64 74.1+0.36 74.8+0.42 76.2+0.26 75.2+0.77 74.5+0.65 74.8+0.68 75.1+0.83

SVM
l

maj
71.2+1.14 72.5+1.49 71.1+0.96 72.8+0.91 72.2+0.73 70.6+1.27 70.1+1.41 67.3+1.44 70.4+0.72 69.6+1.29

SVM
l

min
87.4+0.88 88.1+1.31 87.5+1.74 86.1+0.82 81.1+0.52 80.3+1.05 77.5+1.46 80.6+1.08 75.8+1.35 78.9+0.55

SMLR
l

maj
70.5+0.95 72.1+0.57 73.5+0.88 73.7+0.38 72.9+0.74 71.1+0.48 71.9+1.01 69.5+1.18 72.2+1.22 69.7+1.23

SVM
l

maj , SMLR
l

maj and SVM
l

min denote the performance obtained by the SVM and SMLR classifiers on lateral view images only, using both majority (maj) and minority
voting (min). For more details on majority and minority voting, please see ‘Materials and methods’. For each case, 10 random partitions of the training and testing data
sets are generated, on the 10 most popular annotation terms. Abbreviations of the anatomical annotations: AMP - anterior midgut primordium; BP - brain primordium;
DEP - dorsal epidermis primordium; FP - foregut primordium; HMP - head mesoderm primordium; HPP - hindgut proper primordium; PMP - posterior midgut
primordium; SMP - somatic muscle primordium; TMP - trunk mesoderm primordium; VNCP - ventral nerve cord primordium.
doi:10.1371/journal.pcbi.1002098.t001

Table 2. Overall recognition rate (%) of the sBFA and IANO models, data set Sl
4{6 (stages 4{6).

Classifier DEASN PrEASN VEASN CB PoEASN YN AEASN MASN HASN FASN Mean

SVM(IANO) 53.8 56.5 58.2 77.1 77.2 78.6 76.8 77.3 78.7 80.4 71.46

SVM(sBFA)maj 65.4 67.9 68.1 80.2 81.7 78.5 81.2 84.4 86.3 85.9 77.96

Image level recognition rates on the top 10 most frequent annotation terms from the time window of developmental stages 4{6; majority voting (maj) was used for
the sBFA model. Abbreviations of the anatomical annotations: AEASN - anterior endoderm anlage in statu nascendi; CB - cellular blastoderm; DEASN - dorsal ectoderm
anlage in statu nascendi; FASN - foregut anlage in statu nascendi; HASN - hindgut anlage in statu nascendi; MASN - mesoderm anlage in statu nascendi; PoEASN -
posterior endoderm anlage in statu nascendi; PrEASN - procephalic ectoderm anlage in statu nascendi; VEASN - ventral ectoderm anlage in statu nascendi; YN - yolk
nuclei.
doi:10.1371/journal.pcbi.1002098.t002
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formulation, and annotates images based on a trained SVM or

SMLR model. We also employed the biologically justified prior

assumption that the models for both factor inference and

classification are sparse, implying that only a small subset of

factors are used to define expression domains. Indeed, the

classifiers make use of only a dozen or two of features, orders of

magnitude less than state-of-the-art approaches addressing the

same problem. We also demonstrated that genes with strong

weights to the same factor share specific biological functions or are

targets of the same transcription factor, providing important

starting point for future in-depth analysis.

Our approach is probably closest to Pan et al. [29], which

introduced an image mining system to discover latent spatial

‘‘themes’’ of gene expressions, by using PCA and independent

component analysis (ICA) based features. ICA assumes indepen-

dence at the regulatory level, and the resulting decomposition may

lack the physical or biological association to sBFA factors, by not

imposing sparsity within the model (as the biological prior

assumption). Unlike PCA, sBFA includes sparseness constraints

and allows for independent additive measurement errors on the

observed variables. Whereas the earlier study was mostly

exploratory and did not include a specific application, we provided

extensive results on fruit fly embryonic expression pattern

annotation from early and late stages.

Our results showed that sBFA automatically identifies and

separates patterns corresponding to different views, and subse-

quently makes successful predictions even when presented with

images of the same gene taken from different angles. In addition to

the automatic pattern separation, factor loadings can also

automatically identify and filter non-informative (such as ubiqui-

tous) gene expression patterns. To illustrate this, we manually

selected a set of 30 informative images (lateral, dorsal/ventral

expression) and 30 non-informative images (mostly maternal

expression) from data set S4{6 and computed the Euclidean

distances between their corresponding estimated sparse mixing

weights (rows in matrix A) and the null vector as reference.

Choosing a threshold to separate the informative images from

non-informative images (please see Figure S7), we succesfully

filtered the original data set S4{6 by removing a total of 235 non-

informative images (about 10% of the total number of images).

The subsequently obtained AUC values on the filtered data set of

S4{6 (2,011 images) displayed the further improvement achieved

by this simple Euclidean-based analysis (Figure S8). For future

work, we plan to extend the sparse Bayesian analysis to the entire

BDGP database (multiple developmental stage analysis); after

extracting stage-window specific factors, a classifier taking factor

weights from different stage windows as input may be able to

increase the baseline performance obtained on one stage window

only.

In constructing the sparse FA representation, we only used

simple grid-based features. This provided for an easy human

interpretation of the factors and was possible because we used

previously registered data as input. However, results from other

groups have shown that multiple feature integration (over features

including wavelet and rotation/translation invariant coefficients)

can improve performance. Given that we are addressing spatial

patterns, features can also take the correlation to neighboring

features into account (cf. Frise et al., [17]). As preliminary example,

we ran the sparse Bayesian factor analysis on the features used by

the SPEX2 platform which was concurrently developed to our

system [30]. SPEX2 registers every raw Drosophila ISH image via

foreground object extraction, alignment, orientation detection and

concise gene expression pattern extraction (using a Markov

random field model). Resulting images are then converted into a

low-dimensional feature representation using the ‘triangulated

image’ idea, first introduced in [17], in which embryo expression is

represented on a deformable mesh of 311 equilateral triangles in

the shape of an ellipse. A comparison between the sparse Bayesian

factor analysis applied on fixed grid-based filtered registered

images used here [19], and the ‘triangulated’ SPEX2 features [30],

is shown in Figure S9 and Table S1. Overall, the SPEX2 features

showed a slight advantage over the fixed grid-based technique.

However, the mean absolute recognition rates achieved by both

feature sets when used in a sparse Bayesian factor analysis model

were in a highly similar range, and filtering of non-informative

images as discussed above showed a comparatively stronger

positive effect. This demonstrated the robustness of the sBFA

framework, and its ability to identify and separate gene expression

patterns, regardless of the complexity of the feature space. In the

future, application of the sBFA model on the actual set of

registered SPEX2 images may potentially generate accuracies

even better than the mesh-based features.

The correspondence of inferred factors to expression patterns of

regulatory proteins, as well as the enrichment of targets for specific

TFs, suggests the potential for a more sophisticated model that

incorporates known transcription factor expression patterns into

the factor analysis, possibly in the shape of prior information, or as

higher level information in hierarchical models. Finally, the

approach can be extended by the integration of image data with

other genomic sources. A previous study automatically inferred

positive (spatial gene co-expression) and negative pairwise

constraints (distinctive spatial expression patterns) from image

data, and used them in a semi-supervised analysis of microarray

time-course data [31].

Table 3. Overall recognition rate (%) of the sBFA and IANO models, data set Sl
11{12 (stages 11{12).

Classifier HPP PMP AMP PP/BP DEP Mean

LDA(IANO) 83 80 84 86 88 84.2

SVM(IANO) 91 89 91 97 95 92.6

SVM(sBFA)maj 90.1 85.5 86.4 78.3 93.9 85.8

SVM(sBFA)min 96.5 95.3 95.1 95.8 98.1 96.16

The updated controlled vocabulary replaced the PP (protocerebrum primordium) annotation term with BP (brain primordium); minority voting SVM(sBFA)min is the
closest measure to the SVM(IANO) results based on a manually selected data set. In the one case where our performance ranks below IANO, numbers may not be
exactly comparable, as the updated database release we used had rephrased the ontology term and reannotated some images. Abbreviations of the anatomical
annotations: AMP - anterior midgut primordium; BP - brain primordium; DEP - dorsal epidermis primordium; HPP - hindgut proper primordium; PMP - posterior midgut
primordium; PP - protocerebrum primordium.
doi:10.1371/journal.pcbi.1002098.t003
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In summary, factor analysis provides a flexible unsupervised

framework to identify the basic vocabulary in complex image

(expression) data, which leads to competitive prediction results

while using only a small set of features. This sparse approach is

general and applicable in other microscopy application domains,

such as protein localization in subcellular domains and expression

data from other organisms, and as such holds promise as a general

framework for high-throughput screeening, to identify candidate

gene sets with consistent altered expression under changed

environmental or genetic conditions.

Materials and Methods

Factor analysis - model specification
Factor analysis is a statistical method first introduced by

Gorsuch [32] when modeling many dependent random variables

with linear combinations of a few hidden variables. Hinton et al.

[33] pioneered an Expectation-Maximization (EM) algorithm for

factor analysis in order to model the manifolds of digitized images

of handwritten digits. West [34] was the first to introduce a

framework for using factor analysis on gene expression data.

In matrix notation, the Bayesian factor analysis on image data

can be represented as

X~ASzE, ð1Þ

where X~½x1,x2, . . . ,xn� is a p|n dimensional data matrix, with n

the number of features, quantifying the associated gene-expression

values for p images (genes) under investigation. Each row of X is

called a gene pattern with dimension 1|n. Here, we assume that each

gene pattern is already normalized to zero mean. A is the factor

loading matrix with dimension p|k, which contains the linear

weights. S is the factor matrix with dimension k|n, with each

element modeled by a standard normal distribution. Each column of

S is the factor score for feature i and each row is called a factor. E is

the additive Gaussian noise with dimension p|n. Both A and S are

inferred by the model simultaneously.

From the model we can see that each row of X is modeled by a

linear combination of the factors (rows of S), indicating that the

variability of the original p feature patterns can be explained by

only k latent factors. The model can also be written in a vector

form as follows

xj~ajSz j (j~1,2, . . . ,p), ð2Þ

where xj and aj denote the jth row of X and A, respectively and

the basis matrix S is shared across all samples. Indeed, factor

analysis is an unsupervised dimensionality reduction method used

widely in data analysis and signal processing [35].

To promote sparseness required by the underlying biological

assumption of gene expression data, West [34] suggested the use of

a mixture prior on the factor loading matrix. Thus each row of the

matrix should only have a small number of non-zero elements in

order to comply with the biological assumption and to make the

model more interpretable. In order to follow the biological

assumption where spatial gene expression patterns are modeled

only by a few domains (factors), coupled with the benefit of a

relatively simple inference, we employed the Student-t distribution

as sparseness prior, which takes the following hierarchical form

p(Aj,mjaj,m)~N (Aj,m; 0,a{1
j,m )

p(aj,m)~Gamma(aj,m; g0,h0),
ð3Þ

with j~1,2, . . . ,p, m~1,2, . . . ,k, a indicating the precision

parameters and g0, h0 the shape and scale parameters of the

gamma prior distribution on a. By integrating out the precision

parameter aj,m, the marginal prior on Aj,m is a sparseness inducing

Student-t distribution. The sparseness is controlled by the

precision parameter aj,m. The objective of imposing this sparse

prior is to automatically shrink most elements in A to near zero, in

order to yield a more interpretable model. A comprehensive

review of sparse factor analysis for gene expression data analysis is

given by Pournara and Wernisch [18], with various sparse priors

taken into consideration.

The full likelihood for the Student-t sparse factor analysis model

can be expressed as

p(X,A,S,Q,a)~Pn
i~1N (xi; Asi,diag{1(Q))N (si; 0,I):

:Pp
j~1Gamma(Qj ; c0,d0):Pp

j~1P
k
m~1N

(Aj,m; 0,a{1
j,m )Gamma(aj,m; g0,h0),

ð4Þ

where xi denotes the ith column of X, Q represents the precision

parameters on the additive noise E, while c0 and d0 indicate the

shape and scale hyperparameters on precision Q, respectively.

The posterior distribution for the sparse factor analysis

framework is approximated using a Markov Chain Monte Carlo

(MCMC) inference.

Detailed update equations
–Sample the factor matrix S from

p(sij{)~N (si; mi,
X

), (i~1,2, . . . ,n) ð5Þ

where

X
~(AT diag(Q)AzI){1; mi~

X
(AT diag(Q)xi) ð6Þ

and p(sij{) denotes conditional density of p(si) on all other

random variables.

–Sample the factor loading matrix A from

p(Aj,:j{)~N (Aj,:; jj,Lj) (j~1,2, . . . ,p), ð7Þ
where

Lj~(QjSSTzdiag(aj,:))
{1; jj~L(QjSXj,:): ð8Þ

Here Aj,:~½Aj,1,Aj,2, . . . ,Aj,k�T denotes the jth row of A; Xj,: and

aj,: are similarly defined.

–Sample the precision parameters a from

p(aj,mj{)~Gamma(aj,m; gj,m,hj,m) ð9Þ

with j~1,2, . . . ,p and m~1,2, . . . ,k, where

gj,m~g0z
1

2
; hj,m~h0z

1

2
A2

j,m: ð10Þ

–Sample the precision parameters Q from

p(Qj j{)~Gamma(Qj ; cj ,dj) (j~1,2, . . . ,p), ð11Þ
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where

cj~c0z
n

2
; dj~d0z

1

2

Xn

i~1

(Xj,i{AT
j,:si)

2: ð12Þ

The sBFA algorithm was generally run for a total of 5,000
Gibbs iterations, discarding the first 1,000 and estimating the

model parameters on the remaining 4,000 iterations. The sparse

prior on the factor loading matrix (A) was controlled by the

hyperparameter on the precision parameters a, g0~0:5, while the

scale parameter of the Gamma prior distribution on a was set to

h0~10{6. Running on a typical modern PC (Quad-core Intel

Xeon 1.86 GHz processors and 4.0 GB memory), the computa-

tion times for data sets S4{6 and Sl
4{6 are summarized in Table 4.

Automatic annotation by different classifiers
SVM classification. the SVM model is a supervised learning

method; given a set of training examples, each marked as

belonging to one of the two classes (categories), the SVM

training algorithm builds a model that predicts whether a new

example falls into one category or the other. Intuitively, an SVM

model is a representation of the examples as points in space,

mapped so that the examples of the separate categories are divided

by a clear gap (decision boundary or functional margin) that is as

wide as possible. New examples are then mapped into that same

space and predicted to belong to a category based on which side of

the gap they fall on. We used the SVMlight implementation [36]

with a polynomial kernel function and a unity trade-off between

the training error and the functional margin.

SMLR classification. the SMLR model learns a classifier

and simultaneously performs feature selection to identify a small

subset of features (factors) relevant to the class distinctions. The

learned classifier reports the probability of a sample (gene

expression) belonging to each of the classes given a set of feature

weights, one for each class, and also estimates the mixing weights

on all features. In order to achieve sparsity, the model incorporates

a sparsity-promoting l1 prior on the mixing weights entries and

then estimates the weights using a MAP (Maximum a Posteriori)

criterion. Explicitly, the model computes

ŵwMAP~ argmax
w
½l(w)zlog p(w)�, ð13Þ

where p(w) is a prior distribution on the mixing weight entries w
and l(w) is the log-likelihood

l(w)~
Xn

j~1

½
Xm

i~1

yi
jw

iT aj{log (
Xm

i~1

exp(wiT aj))�, ð14Þ

with n the number of training samples, m the number of classes (in

our work we have a binary model, m~2), yi
j the class label for

training sample n and wi the weight vector corresponding to class

i.
Sparsity-promoting Laplacian priors on the mixing weights can

be written as

p(w)*exp({ljjwjj1), ð15Þ

where l acts as a tunable regularization parameter (the larger is l,

the greater is the sparsity). Excessively large values of l can result

in the nonselection of relevant factors, while excessively small

values can result in the selection of irrelevant features. We

evaluated values of 0:1, 1, 5, 20 and 50 for l and noticed very

similar best classification results at l~20 and l~50, choosing

l~20 throughout the paper.

Performance assessment
The sBFA model is demonstrated on a large set of image

expression data collected within the Berkeley Drosophila Genome

Project. The use of brightfield microscopy and the color of the

staining made it hard to separate object and expression pattern

from the same image, although heuristic normalization steps have

been proposed [17]. We here used previously segmented and

registered images [19], in which a state-of-the-art framework

provided simultaneous, fully automated image segmentation and

registration without human intervention. Due to the complex

nature of this task, the final registration process was not perfectly

accurate in terms of precise embryo extraction as well as

orientation, which increased the challenge of automatic annota-

tion. We scaled the registered images to 2406120 pixel resolution,

containing a single embryo and no background. We defined a grid

of fixed size (e.g., 80640 patches) and calculated the mean pixel

value within each patch; all mean values were stacked into a single

feature vector.

Each scaled and registered image was classified individually,

with each gene being represented by one or more images. As a

results of a one gene to a multiple image mapping, many earlier

approaches chose representative images, one per gene, with a

clearly defined informative pattern. However, for a fully

automated approach, the data offer the possibility to combine

results from several images to annotate a gene. The challenge is

illustrated by the examples in Figure S5, which demonstrate

inconsistencies and presence of noise in large image data sets; as a

result, some images are more informative than others and may

even lead to contradicting images within the same gene.

Regardless of evaluation metric, we here use two strategies: (i)

majority voting, in which a label is assigned based on the

predominant label over all images associated to a particular gene;

(ii) minority voting, in which a gene is considered correctly

classified if at least one image has been predicted with the correct

annotation term. While the latter is not a realistic metric for

unseen data, it provides for a reasonably fair evaluation when

comparing against previous approaches which evaluated manually

selected single representative images for each gene.

The agreement between the predicted annotations and the

ground truth provided by human curators was measured using

AUC values for a leave-one-out cross-validation procedure. To

allow for a fair comparison to previously published work, we also

Table 4. Representative relative CPU times of the sBFA
algorithm (5,000 Gibbs iterations), data sets S4{6 and Sl

4{6.

CPU Time (hours)

data set
S4{6

data set

Sl
4{6

Factor Analysis (20 factors, 48624 grid size) 6.1 3.3

Factor Analysis (40 factors, 60630 grid size) 6.9 3.9

Factor Analysis (60 factors, 80640 grid size) 10.5 5.1

doi:10.1371/journal.pcbi.1002098.t004
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used the absolute recognition rate (ARR) to measure the

classification accuracy. When a data set is unbalanced, this metric

is not representative of the true performance of the classifier: if the

larger class comprises 99% of the data, an ARR of 99% is trivially

achieved by classifying all samples into the larger class. Image data

sets are heavily unbalanced, as only comparatively few out of a

total set of images are annotated with any given term.

Supporting Information

Figure S1 BDGP analysis, data set S4{6: estimated
factor loading matrix, for a grid size of 80640, with
k~60 factors. The sBFA algorithm was run for a total of 5,000
Gibbs iterations, with a burn-in of 1,000 iterations. Most factor

loadings are near zero (light green color), illustrating the sparseness

of the solution.

(TIF)

Figure S2 A complete list with term associations
between transcription factors and biological processes,
developmental stages 11–12.
(TIF)

Figure S3 Significant transcription factors, for the top
10 most frequent annotation terms (developmental
stages 11–12). The level of significance of each TFs (vertical

axis) is displayed as color intensity between green (p-value *
10{6) and red (p-value * 10{15), as indicated by the color bar on

the left side; smaller p-values correspond to more significant genes.

The blue color corresponds to TFs with a corrected p-valuew10{6.

(TIF)

Figure S4 Visual similarities between spatial expres-
sions of estimated sparse model factors and corre-
sponding TFs with significant p-values (data set S11{12).
(TIF)

Figure S5 Complexity of the image data (focal distance
and viewing angles). Two examples where several images

corresponding to two individual genes (at stages 4–6 and 11–12,

respectively) are either out of focus, with no visible gene expression

pattern, or under tilted viewing angles, making the annotation

process more difficult.

(TIF)

Figure S6 Spatial expression patterns of genes with
successful classification within the minority voting
scenario, data set S11{12. Several examples where, for a given

gene, there is only one correct annotated image, due to out of

focus, non-informative patterns or an improper rotation by the

registration process. In each case, the original gene spatial

expression patterns and the automatically extracted individual

embryos are shown.

(TIF)

Figure S7 Euclidean distance based informative/non-
informative gene selection. Informative images (lateral,

dorsal/ventral expressions) are separated from non-informative

images (mostly maternal expressions) through the use of Euclidean

distance between their corresponding estimated mixing weights

(rows in matrix A) and a reference vector. The chosen threshold is

further employed to succesfully remove a total of 235 non-

informative images from data set S4{6.

(TIF)

Figure S8 SVM analysis on developmental stages 4–6.
The AUC values achieved by the SVM framework on the filtered

data set S4{6 (2,011 images) in comparison to the AUC results on

the original data set S4{6.

(TIF)

Figure S9 SVM analysis on developmental stages 4–6:
the AUC of individual annotation terms using the sBFA
model. We consider two different scenarios: using the grid-based

features (grid size of 80640), or using the SPEX 2-based features.

The common set between the two studies extends to a total of

1,698 images, with different views (lateral, dorsal/ventral). During

the sBFA estimation, we used a number of factors k~60, for both

scenarios; the polynomial SVM generated the AUC of individual

annotation terms.

(TIF)

Table S1 Overall recognition rate (%) of the sBFA model
on grid-based features and SPEX2-based features,
developmental stages 4{6. Image level recognition rates on

the top 10 most frequent annotation terms from the time window

of developmental stage 4{6 (1,698 images), as used as metric in

[30]. Abbreviations of the anatomical annotations: AEASN -

anterior endoderm anlage in statu nascendi; CB - cellular

blastoderm; DEASN - dorsal ectoderm anlage in statu nascendi;

HASN - hindgut anlage in statu nascendi; MASN - mesoderm

anlage in statu nascendi; PoEASN - posterior endoderm anlage in

statu nascendi; PrEASN - procephalic ectoderm anlage in statu

nascendi; TMASN - trunk mesoderm anlage in statu nascendi;

VEASN - ventral ectoderm anlage in statu nascendi; YN - yolk

nuclei.

(TIF)
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