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Abstract

Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is
consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only
ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the
prior over visuomotor transformations – the mapping between actual and visual location of the hand – during a learning
task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual
feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one
reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a
combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a
Bayesian observer model in order to infer the covariance structure of the subjects’ prior, which was found to give high
probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor
transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory
evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of
visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the
prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like
transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a
sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover,
through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior.
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Introduction

Uncertainty poses a fundamental problem for perception, action

and decision-making. Despite our sensory inputs providing only a

partial and noisy view of the world, and our motor outputs being

corrupted by significant amounts of noise, we are able to both

perceive and act on the world in what appears to be an efficient

manner [1,2]. The investigation of the computational principles

that might underlie this capability has long been of interest to

neuroscientists, behavioral economists and experimental psychol-

ogists. Helmholtz [3] was one of the first to propose that the brain

might operate as an ‘inference machine’ by extracting perceptual

information from uncertain sensory data through probabilistic

estimation. This computational framework has now gained

considerable experimental support and has recently led to the

formulation of the ‘Bayesian brain’ hypothesis [4,5]. According to

this hypothesis, the nervous system employs probabilistic internal

models representing Bayesian probabilities about different states of

the world that are updated in accordance with Bayesian statistics

whenever new evidence is incorporated. Crucially, this update

depends on two components: a prior that represents a statistical

distribution over different possible states of the world, and the

incoming evidence about the current state that is provided through

noisy sensory data.

In the Bayesian framework the prior can have a strong impact

on the update, with particular priors leading to inductive biases

when confronted with insufficient information. Many perceptual

biases have been explained as the influence of priors learned from

the statistics of the real world, such as the prior for lower speed

when interpreting visual motion [6,7], the prior for lights to shine

from above when interpreting object shape [8,9] and the prior that

near-vertical visual stimuli are longer than horizontal stimuli [10].

However, there are some phenomena such as the size-weight

illusion – the smaller of two objects of equal weight feels heavier –

that appear to act in the direction opposite to that expected from

straightforward integration of the prior with sensory evidence

[11,12]. Interestingly, despite the perceptual system thinking the

smaller object is heavier, the motor system is not fooled as, after

experience with the two objects, people generate identical forces

when lifting them [13]. Many cognitive biases can also be

explained, not as errors in reasoning, but as the appropriate

application of prior information [14–16], and the Bayesian

approach has been particularly successful in explaining human

performance in cognitive tasks [17,18].

In sensorimotor tasks, a number of studies have shown that

when a participant is exposed to a task which has a fixed statistical

distribution they incorporate this into their prior and combine it

with new evidence in a way that is consistent with Bayesian

estimation [5,19,20]. Similarly, when several sources of evidence

with different degrees of uncertainty have to be combined, for

example a visual and a haptic cue, humans integrate the two

sources of evidence by giving preference to the more reliable cue in
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quantitative agreement with Bayesian statistics [21–23]. More-

over, computational models of motor control, such as optimal

feedback control [24–27], are based on both Bayesian estimation

and utility theory and have accounted for numerous phenomena

in movement neuroscience such as variability patterns [24],

bimanual movement control [28,29], task adaptation [30–32] and

object manipulation [33]. There have also been several proposals

for how such Bayesian processing may be implemented in neural

circuits [34–36].

If one uses Bayesian estimation in an attempt to learn the

parameters of a new motor task, the prior over the parameters will

impact on the estimates. While previously priors have been either

imposed on a motor task or assumed, there has been no paradigm

that allows the natural prior distribution to be assessed in

sensorimotor tasks. Here we develop a technique capable of

estimating the prior over tasks.

We examine visuomotor transformations, in which a discrep-

ancy is introduced between the hand’s actual and visual locations,

and estimate the prior over visuomotor transformations. Impor-

tantly, we are not simply trying to estimate the mean of the prior

but its full covariance structure. Subjects made reaching

movements which alternated between batches in which feedback

of the hand’s position was either veridical or had a visuomotor

transformation applied to it. By exposing participants to a large

range of visuomotor transformations we are able to fit a Bayesian

observer model to estimate the prior. Our model assumes that at

the start of each transformation batch a prior is used to instantiate

the belief over visuomotor transformations and this is used to

update the posterior after each trial of a transformation batch. The

prior to which the belief is reset at the start of a transformation

trial may change with experience. For our model we estimate the

average prior used over an experimental session by assuming it is

fixed within a session, as we expect the prior to only change slowly

in response to the statistics of experience.

Our approach allows us to study the inductive biases of

visuomotor learning in a quantitative manner within a Bayesian

framework and to estimate the prior distribution over transfor-

mations. Having estimated the prior in one experimental session,

we examine whether extensive training in two further sessions with

a particular distribution of visuomotor transformations could alter

the participants’ prior.

Results

Subjects made reaching movements to targets presented in the

horizontal plane, with feedback of the hand position projected into

the plane of movement by a virtual-reality projection system only

at the end of each reach (terminal feedback). Reaches were from a

starting circle, *30 cm in front of the subject’s chest, to a target

randomly chosen from within a rectangle centred 11 cm from the

starting circle (*41 cm in front of the chest). Subjects made

reaching movements in batches which were alternately veridical

and transformed (Figure 1 top, see Methods for full details). In a

veridical batch, the cursor was always aligned with the hand. In a

transformation batch, subjects experienced a visuomotor transfor-

mation that remained constant throughout the batch and in which

the terminal-feedback cursor position (v) was a linear transforma-

tion (specified by transformation matrix T) of the final hand

position (h) relative to the (constant) starting point of the reaches:

v~Th. In component form, this can be written as

vx

vy

� �
~

a b

c d

� �
hx

hy

� �
,

where we define the (x,y) coordinates as (left-right, backward-

forwards) relative to the subject. Each transformed batch used a

different transformation. The number of transformations experi-

enced was at least 108 for each subject in each of three

experimental sessions (mean 147 transforms, s~24; see Table 1).

Transformation batches contained at least three trials (mean

length: 4.9 trials, s~3:0) and generally continued until a target

had been hit (achieved on 91% of batches). Veridical batches

always continued until a target had been hit (mean length: 1.4

trials, s~0:8). The purpose of the veridical batches was to wash

out short-term learning. Transformed trials were distinguished

from veridical trials by the color of the targets, so that the onset of

a new transformation was clear to the subjects. The length of a

session was on average 921 trials (s~118) and lasted 82 minutes

(s~9). Subjects performed three experimental sessions on

different days. The transformations used in Session 1 were drawn

from an ‘uncorrelated’ distribution so as to minimize pairwise

correlations between elements of the transformation matrix. The

transformations used in Session 2 & 3 were drawn from a

‘correlated’ distribution to examine whether this would change

subjects’ priors (see Figure 1 bottom).

Initial analysis
Figure 2 shows the starting location and rectangle in which the

targets could appear together with 50 examples of ‘perturbation

vectors’ that join the hand position on the first trial of a

transformation batch to the displayed cursor position (pi~vi{hi

where i is the trial index, in this case 1). On the first trial of each

transformation batch, the ‘target-hand vector’ joining the centre of

the target t to the final position of the hand h (the ‘target-hand

vector’ qi~hi{ti) was shorter than 3 cm in 90% of cases (Figure 3,

column A, top panel), suggesting that the preceding veridical

batches had washed out most of the learning. Subjects were

instructed that on the second and subsequent trials of each

transformation batch, they should attempt to compensate for the

transformation in order to hit the target with the cursor. Hence on

trials 2 and 3, the proportion of final hand positions within 3 cm of

the target drops to 43% (middle panel of Figure 3, column A) and

36% (bottom panel), respectively. Further analysis suggests that the

increase in length of the target-hand vectors on trials 2 and 3 is due

to subjects attempting to counter the transformation, rather than

Author Summary

When learning a new skill, such as riding a bicycle, we can
adjust the commands we send to our muscles based on
two sources of information. First, we can use sensory
inputs to inform us how the bike is behaving. Second, we
can use prior knowledge about the properties of bikes and
how they behave in general. This prior knowledge is
represented as a probability distribution over the proper-
ties of bikes. These two sources of information can then be
combined by a process known as Bayes rule to identify
optimally the properties of a particular bike. Here, we
develop a novel technique to identify the probability
distribution of a prior in a visuomotor learning task in
which the visual location of the hand is transformed from
the actual hand location, similar to when using a computer
mouse. We show that subjects have a prior that tends to
interpret ambiguous information about the task as arising
from a visuomotor rotation but that experience of a
particular set of visuomotor transformations can alter the
prior.

Priors over Visuomotor Transformations
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just exploring the workspace randomly. Figure 3, column B shows

that the direction of the target-hand vector tends to be opposite to

that of the perturbation vector experienced on the previous trial,

while column C shows that the lengths of these two vectors are

positively correlated. The ratio of the length of the target-hand

vector on the second trial to that of the perturbation vector on the

first trial gives a measure of the extent of the adaptation induced

by the experience on the first trial, with a value of zero suggesting

no adaptation. We regressed this adaptation measure for all

subjects and sessions (removing a few outliers – 0.34% – where this

measure was greater than 5) against the absolute angular

difference between the direction of the first and second targets,

in order to test the assumption made later in our modelling that

adaptation generalizes across the workspace. If there were a local

generalization function with a decay based on target direction we

would expect that the greater the angular difference the smaller

the adaptation measure. The fit had a slope which was not

significantly different from zero (p~0:1) suggesting global

generalization.

Compensatory responses tend to be in the correct direction:

Column D shows that target-hand vectors on trials 2 and 3 tend to

be in the same direction as the target-hand vector that would place

the cursor on the target (qo
i ~T{1ti{ti), and column E shows that

the lengths of these two vectors are also positively correlated. This

suggests that subjects are adapting within a batch so as to

compensate for the induced perturbation.

Bayesian observer model
We fit subjects’ performance on the first two trials of each

transformed batch using a Bayesian observer model in which we

assume subjects attempt to estimate the four parameters (a, b, c, &

d ) of the transformation matrix. We represent the subject’s prior as

a four-dimensional multivariate Gaussian distribution over these

four parameters, centred on the identity transformation (since

subjects naturally expect the visual location of the hand to match

its actual location). Our inference problem is to determine the

4|4 covariance matrix of this prior. Figure 4 includes a schematic

of a prior with the four-dimensional distribution shown as six two-

dimensional marginalizations with isoprobability ellipses (blue),

representing the relation between all possible pairings of the four

elements of the transformation matrix.

An optimal observer would integrate this prior with information

received on the first trial (hand position and visual feedback of

hand position) to generate a posterior over transformations. Even

if there were no noise in proprioception or vision, the information

from the first trial would not uniquely specify the underlying

Figure 1. The experimental design. Each session alternated between veridical and transformed batches of trials. Each subject participated in
three sessions, the first using an uncorrelated distribution of transformations, and the second and third using a correlated distribution. The joint
distributions of b and c are plotted.
doi:10.1371/journal.pcbi.1001112.g001

Table 1. The experimental subjects.

Session 1 Session 2 Session 3

Subject Transforms Trials Delay Transforms Trials Delay Transforms Trials

1 120 745 3 118 786 9 120 850

2 150 947 3 150 830 8 200 1102

3 144 827 4 150 860 8 180 977

4 133 944 3 140 929 9 160 1075

5 150 871 5 150 838 8 206 1076

6 140 970 6 124 928 9 155 1117

7 160 1090 5 151 1035 7 144 955

8 133 861 3 108 731 7 134 762

The number of transformations and trials in each experimental session, and the lengths of the delay in days between sessions.
doi:10.1371/journal.pcbi.1001112.t001

Priors over Visuomotor Transformations
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transformation. For example, for a particular feedback on the first

trial the evidence is compatible with many settings of the four

parameters (grey lines and planes in Figure 4). Therefore, given

the inherent ambiguity (and noise in sensory inputs), the estimated

transformation depends both on the sensory evidence and prior

which together can be used to generate a posterior distribution

over the four parameters of the transformation matrix (Figure 4,

red ellipses). Our Bayesian observer then uses the most probable

transformation (the MAP estimate is the centre of the red ellipses

in Figure 4) to determine where to point on the second trial. Our

aim is to infer the prior distribution for each subject in each

experimental session by fitting the pointing location on the second

trial based on the experience on the first trial. The model assumes

the observer starts each transformation batch within a session with

the same prior distribution, although this distribution will of course

be updated during each batch by combination with evidence. As

shown above, these updates are washed out between batches

through the interleaved veridical batches.

Session 1
In Session 1, transformations were sampled so as to minimize

pairwise correlations between elements of the transformation

matrix. This ‘uncorrelated’ distribution was designed to avoid

inducing learning of new correlations. The set of transformations

experienced in the first session is shown in the top-left cell of

Figure 5, viewed in the same six projections of the four-

dimensional space used in Figure 4. The Gaussian priors fit to

each of the eight subjects’ data in Session 1 are shown in the

middle-left cell of Figure 5. For some pairs of elements of the

transformation matrix (e.g. c{d) the prior appears to show little

correlation whereas for others (e.g. b{c) there appears to be a

stronger correlation. To quantify these relations we examined the

correlation coefficients between each pair of elements of the

Figure 2. Target area and example perturbation vectors. The
starting point of the reaches (1 cm radius circle) and the area from which
the centres of targets were drawn (16|4 cm rectangle: not displayed to
the subject) are shown, in addition to ‘perturbation vectors’ from
subjects’ hand positions to the corresponding cursor positions on the
first trials of 50 example transformations from Session 1.
doi:10.1371/journal.pcbi.1001112.g002

Figure 3. Analysis of hand positions across the trials of a transformation batch. Column A shows the distribution (across all subjects and
sessions) of the ‘target-hand vector’ representing the position of the hand relative to the target, qi~hi{ti , separately for trials 1, 2 & 3 of a
transformation batch. Columns B and C show the relation between the target-hand vector and the ‘perturbation vector’ from hand to cursor on the
previous trial, pi{1~vi{1{hi{1. Column B gives the distribution of the angle between the two vectors, and Column C plots the lengths of the
vectors against each other. Columns D and E make the same comparisons between the target-hand vector and the target-hand vector that would
place the cursor on the target, qo

i ~T{1ti{ti . Column D gives the distribution of the angle between the two vectors, and Column E plots the lengths
of the vectors against each other.
doi:10.1371/journal.pcbi.1001112.g003

Priors over Visuomotor Transformations
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transformation matrix across the subjects. First, to examine the

consistency of the correlation across subjects we tested the null

hypothesis that subjects’ correlation coefficients were uniformly

distributed between {1 and z1 (Kolmogorov-Smirnov test). We

found that only between elements b and c was the correlation

significantly consistent (pv0:001). In addition we used a t-test to

examine whether the correlations across subjects were significantly

different from zero (although correlations are strictly speaking not

normally distributed). We found that only the b{c correlation was

significant (mean {0:78, pv0:001).

We also analyzed the orientations of these covariance ellipses.

Confidence limits on the orientation angle of the long axis of each

ellipse were obtained by bootstrapping. The bottom-left cell of

Figure 5 shows, for each subject, the mean angle (thick line) and

the 95% confidence limits (thin lines connected by curved arrows).

The b{c confidence limits are exclusively in the negative range

for all but two subjects, while for all other pairings of elements

confidence limits for most subjects overlap the 00 or 900 points

indicative of an absence of correlation. The mean b{c angle across

subjects was {30:40 (95% confidence limits obtained by boot-

strapping of the best fits: {41:20 to {20:40). We also found that

the a{d covariance angle was significantly positive (mean across

subjects z69:80, confidence limits z61:60 to z77:40).

Sessions 2 and 3
Each subject participated in Session 2 between three and six

days after Session 1, and in Session 3 between seven and nine days

after Session 2 (Table 1). These sessions both used a set of

transformations whose distribution was chosen so as to be very

different from the subjects’ priors measured in Session 1. This

allowed us to examine whether we could change subjects’ priors

through experience. As subjects had priors with a strong negative

correlation between elements b and c of the transformation matrix

we used a ‘correlated distribution’ over transformations in which

the b{c correlation was set to z1, with an orientation angle of

z450 (Figure 5, top-right cell). Importantly, the two distributions

used in Session 1 and in Sessions 2 & 3 were designed so that the

distribution of evidence (that is the relation between visual and

actual hand locations) shown on the first trial of each

transformation batch was identical under the two distributions

(see Methods). Therefore any changes in behavior on the second

trial (which we use to estimate the prior) arose because of changes

in the subject’s prior. The remainder of the trials within a batch

have different statistics between Session 1 and Sessions 2 & 3, so

we did not use data beyond trial 2 to estimate the prior, although

this could be used by the subjects to alter their internal prior.

The priors fit to the data of the five subjects in Session 2 are

shown in the middle-right cell of Figure 5. We found that in

Session 2 the b{c correlations across subjects were now not

significantly different from zero (mean correlation coefficient

{0:15, p~0:42, t-test) and were not distributed significantly non-

uniformly across subjects (p~0:37, K-S test). Confidence limits

(Figure 5, bottom-right cell) on the b{c covariance angle now

overlapped 00 for all but one subject, again implying the absence

of correlation. Confidence limits on the mean b{c covariance

angle across subjects overlapped 00 ({15:70 to z19:40, mean

{1:40). A weak but significant a{d correlation was now found

(mean z0:33, pv0:05 on t-test and K-S test), and the a{d
covariance angle continued to be positive (mean z74:30,
confidence limits z63:30 to z82:90), although angles were not

significant for any individual subject.

In Session 3 (see Figure 6, which summarises changes in the

b{c relation across sessions) the b{c correlation was still not

significant (mean correlation coefficient z0:13, p~0:31 on t-test

and p~0:37 on K-S test). The covariance angle confidence limits

now overlapped zero within all subjects and across subjects ({3:20

to z9:30, mean z3:40). A weak but significant a{d correlation

was again found (mean z0:46, pv0:001 on t-test and pv0:05 on

K-S test), and the a{d covariance angle continued to be positive

(mean across subjects z61:50, confidence limits z42:50 to

z75:00), although angles were only significant for three individual

subjects.

Model comparison
To assess the extent to which our Bayesian observer model

explained the data, we compared the magnitudes of its errors in

predicting hand positions to the errors made by four other models:

(A) the ‘no-adaptation’ model, which assumes the hand hits the

centre of the target on all trials; (B) the ‘shift’ model, which is also a

Bayesian observer but assumes the transformation is a translation;

(C) the ‘rotation & uniform scaling’ model, another Bayesian

observer that assumes the transformation is a rotation combined

with a scaling; (D) the ‘affine’ model, which is a Bayesian observer

more general than the standard model in that it accounts for linear

transformations combined with shifts. Comparisons of hand

position prediction error were made for each trial of a transformed

batch from the 2nd to the 7th, although it should be remembered

that trials after the 3rd represent progressively fewer batches, with

only 44% of batches lasting to the 4th trial and only 19% lasting to

the 7th. The Bayesian observer models integrated information

about a transformation from all previous trials of a batch when

making a prediction for the next trial. Since the Bayesian observer

Figure 4. Schematic of the Bayesian observer model. The plots
show six 2-dimensional views of the 4-dimensional probability space of
the a, b, c & d parameters of the transformation matrix. The Gaussian
prior is shown in blue (marginalised 1 s.d. isoprobability ellipses). On the
first trial the evidence the subject receives (for simplicity shown here as
noiseless) does not fully specify the transformation uniquely, and the
transformations consistent with this evidence are shown in gray. This
evidence (as a likelihood) is combined with the prior to give the
posterior after the first trial (red ellipses: these are shown calculated
from the noisy visual feedback) and the MAP of this posterior is taken as
the estimate of the transformation. The cross shows the position of the
actual transformation matrix used in generating the first-trial evidence.
doi:10.1371/journal.pcbi.1001112.g004

Priors over Visuomotor Transformations
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models were all fit to data from the second trials of each

transformed batch (i.e. the standard model used the fits presented

above), comparison of prediction errors on the second trials

themselves was done using 10-fold cross-validation for these

models, in order to avoid over-fitting by complex models.

To compare the models we focus on trial 3, which is late enough

that the subjects have received a considerable amount of

information about the transformation (just enough to specify the

whole transformation matrix, in noiseless conditions) but early

enough that all batches can be included. Figure 7 shows that on

this trial the standard model makes smaller prediction errors for

the hand positions (averaged across all sessions) than any other

model. The next-best is the affine model (mean error 4.50 cm,

versus 4.34 for the linear model). On all other trials, the linear

model is also superior to all other models. The failure of the affine

model to perform better than the standard model shows that its

extra complexity, which allows it to account for shifts, is not

necessary. Accounting for shifts made little difference to the linear

components of the fits: the correlation coefficients between pairs of

elements of the transformation matrix were very similar to those in

the linear model fits (median absolute difference across all pairs:

0.11), and the b{c coefficients were again significantly negative in

Session 1 (pv0:001 on t-test and Kolmogorov-Smirnov test) and

ceased to be significantly different from zero in Sessions 2 and 3.

The covariance angles between pairs of elements were also very

similar to those in the linear model fits (median absolute difference:

3:250), and the b{c angles were significantly negative in Session 1

(95% confidence limits: {41:20 and {20:20) and ceased to be

significantly negative in Sessions 2 and 3.

We also varied the origin of the linear transformations that we

used in the Bayesian observer model, to see if the coordinate

system used by the experimental subjects was based around the

starting point of the reaches (small circle in Figure 8), or about

some other location such as the eyes (cross in Figure 8). The

shading in Figure 8 represents the fitting error and shows that

using the starting point of the reaches as the origin fits the data

considerably better than any other position tested (mean error:

Figure 5. Distributions of transformations and prior distributions in Sessions 1 and 2. Left column: Session 1. Right column: Session 2. Top
row: the distributions of transformations in the two sessions. In each case 700 of the experimental transformations are plotted in the six projections of
the 4-D space of linear transformations used in Figure 4. Middle row: the priors fit to the data of the 8 subjects, plotted in the style used for the priors
in Figure 4. Each covariance matrix has been scaled so that its largest eigenvalue is unity, in order that all priors can be displayed together without
any being too small to see. Bottom row: confidence limits on covariance orientation angles, shown for each pairing of the four elements of the
transformation matrix a, b, c, d . These confidence limits were obtained by bootstrapping, as explained in Methods. For each subject, thick lines show
the mean angle across the 1000 or more resampled fits. Thin lines, connected to the mean line by curved arrows, give the 95% confidence limits. Only
the range {900 to z900 is labelled, because the data is axial and therefore only exists in a 1800 range.
doi:10.1371/journal.pcbi.1001112.g005

Figure 6. Evolution of the b-c relationship. The top line shows the
best fits in each of the experimental sessions, for each of the eight
subjects; the middle line shows means and confidence limits on the
covariance orientation angles. The bottom-left graph shows the mean
across subjects of the orientation angles from the best fits to each
subject’s data, with 95% confidence limits on the mean found by
bootstrapping.
doi:10.1371/journal.pcbi.1001112.g006

Figure 7. Comparison of standard linear model against other
plausible models. Models are compared on the basis of their mean
error, across subjects and sessions, in predicting subjects’ hand
positions on trials 2–7 of transformation batches. For each trial, all
batches that lasted for at least that number of trials are used. Errors are
capped at 20 cm before averaging, to reduce the effect of outliers. Trial
2 values are computed using 10-fold cross-validation, and later trial
values are computed using fits to all transformation batches.
doi:10.1371/journal.pcbi.1001112.g007

Priors over Visuomotor Transformations
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3.49 cm for the starting point, versus 3.61 cm for the next best

position). In particular, a repeated-measures ANOVA (using

subject number and session as the other two factors) shows that

using the starting point as origin gives significantly lower errors

than using the eye position (pv0:05).

Discussion

By exposing participants to numerous linear transformations

(2|2 transformation matrices) in a virtual-reality reaching task in

the horizontal plane we were able to estimate the prior subjects

have over visuomotor transformations. After a new transformation

had been experienced for a single trial, we fit the prior in a

Bayesian observer model so as to best account for the subsequent

reach. That is, for the subject the first reach provides a likelihood

which together with his prior leads to a posterior over visuomotor

transformations, the maximum of which determines his second

reach. While the mean of the prior is assumed to be the identity

transformation (vision of the hand is expected to be where the

hand really is), we found the estimated prior to have a covariance

structure with a strong negative correlation between the off-

diagonal elements of the transformation matrix. We then exposed

the participants in two further sessions to visuomotor transforma-

tions from a distribution that had a positive correlation between

these off-diagonal elements (hence the opposite correlation

structure to the prior), and remeasured the prior. The estimated

prior had changed significantly in that there was now no

correlation between the off-diagonal elements, demonstrating

learning.

Our study has three key novel features. First, we have developed

a technique which can, unlike previous paradigms, estimate the

full covariance structure of a prior in a sensorimotor task. Second,

we have shown that for our task the prior over visuomotor

transformations favors rotation-like structures. Third, we have

shown that through experience of a novel correlation structure

between the task parameters, participants appropriately alter the

covariance structure of their prior.

Measuring the prior
Previous studies have attempted to determine the natural co-

ordinate system used for visuomotor transformations. The

dominant paradigm has been to expose subjects to a limited

alteration in the visuomotor map and examine generalisation to

novel locations in the workspace. These studies show that when a

single visual location is remapped to a new proprioceptive

location, the visuomotor map shows extensive changes throughout

the workspace when examined in one-dimensional [37–40] and in

three-dimensional tasks [41]. These studies are limited in two ways

in their ability to examine the prior over visuomotor transforma-

tions. First, they only examine how subjects generalize after

experiencing one (or a very limited set of) alterations between

visual and proprioceptive inputs. As such the results may depend

on the particular perturbation chosen. Second, while the

generalization to novel locations can provide information about

the co-ordinate system used, it provides no information about the

covariance structure of the prior. Our paradigm is able to address

both these limitations using many novel visual-proprioceptive

mappings to estimate the full covariance structure of the prior over

visuomotor transformations.

To study this covariance structure in the fitted priors, we

analyzed both the correlation coefficients between elements of the

transformation matrix – as a measure of the strength of the

relationship between elements – and also the orientation of the

covariance ellipses of pairs of elements – as a measure of the slope

of the relationship. A significant strong negative correlation was

seen between the off-diagonal elements of the 2|2 transformation

matrices in the priors found in Session 1. Such a relation is found

in a rotation matrix,

R~
cosh sinh

{sinh cosh

� �
,

as this corresponds to a~d and b~{c in our transformation

matrix. This similarity suggests a bias for subjects to interpret

transformations as conforming to rotation-like structures. The

a~d and b~{c relations would still exist if a rotation were

combined with a uniform scaling. We do not claim that subjects

believe the transformations to be only rotations and uniform

scalings. If they did, we should have found a {450 relationship

between b and c in the prior and a strong z450 a{d relationship,

but the b{c covariance angle was around {300 and the a{d
correlation was weak. Rather, it seems likely that the subjects

believed many of the transformations in Session 1 to be rotations

combined with other perturbations.

Vetter and colleagues [41] also found an apparent bias for

rotations. However, these were rotations about the eyes, whereas

the centre of the coordinate system in our model is the starting

circle, approximately 30 cm in front of the eyes. We showed that

our subjects’ data across all sessions is best explained using the

starting circle as the origin of transformations, rather than the eyes

or any other location (Figure 8). The two studies are not

contradictory, because our subjects were shown the cursor on

top of the start circle at the start and end of every trial, and so

would have been likely to learn that it was the origin of the

transformations.

Importantly, to measure the prior we ensured that the

distribution of transformations in the first session was relatively

unstructured in the space of the four elements of the transforma-

tion matrix, and in particular the distribution of transformations

used had only a very small correlation between the off-diagonal

Figure 8. Comparison of possible linear transformation origins
for the Bayesian observer model. For each small square the
shading denotes the performance of the standard Bayesian observer
model when the origin of the linear transformations is set to the centre
of that square. Performance is measured using the error between
modelled and measured second-trial hand positions, averaged within
an experimental session for one subject (after capping all errors at
20 cm) and then averaged across all subjects and all sessions. The small
circle shows the start point of the reaches, which is used as the origin in
all other modelling. The cross shows the approximate position of the
eyes (0,{30 cm).
doi:10.1371/journal.pcbi.1001112.g008
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elements. Therefore, it is unlikely (particularly given the

adaptation results discussed below) that the prior for rotations

came about because of the particular set of transformations used in

our paradigm.

Our approach of probing a subject’s prior with many

transformations would be disrupted if the learning of these

transformations interfered with each other. Many studies have

shown interference between the learning of similar but opposing

visuomotor perturbations [42–44], similar to that found between

two dynamic perturbations [45,46]. However, subjects in those

experiments were trained for dozens of trials on each perturbation;

learning of individual transformations over just a few trials in our

experiment would have been much less resilient to overwriting

with new memories. Additionally, the veridical batches between

each transformation in our experiment would have washed out

any perceptual or non-cognitive component of learning [38,47–50].

The previous work on visuomotor generalization cited above

[37–39,41], which found that experiencing single visual-proprio-

ceptive pairs induced remapping throughout the workspace,

justifies the assumption made in the analysis of the current study

that perturbations experienced at one location will induce adaptive

responses throughout the workspace. In addition, our analysis

shows that the magnitude of the adaptive response on the second

trial does not decrease with the angular deviation of the second

target from the first, providing further support for global

generalization under terminal feedback. Another reaching study

[51] found much more limited generalization across locations, but

was criticized [41] on the grounds that the starting point of reaches

was not controlled, and that subjects were constrained to make

unnatural reaching movements at the height of the shoulder. Work

with visual feedback of the hand position throughout the reach has

found that scalings are generalized throughout the workspace but

rotations are learned only locally [52]. This lack of generalization

is clearly at odds with the weight of evidence from terminal-

feedback studies. The difference is perhaps due to differing extents

of cognitive adaptation under the two feedback conditions.

Altering the prior
Recent studies have shown that when exposed to tasks that follow

a structured distribution, subjects can learn this structure and use it

to facilitate learning of novel tasks corresponding to the structure

[53]. In the current study, when participants were exposed to a

structured distribution of transformations in Sessions 2 & 3 we

found that participants’ priors changed to become closer to the

novel distribution. The estimated prior’s negative correlation

between the off-diagonal elements observed in the Session 1 priors

was abolished by training on a distribution of transformations in

which these off-diagonal elements were set to be equal and therefore

perfectly positively correlated. This abolition in the fitted priors is

evidenced both by the orientations of the covariance ellipses

between the off-diagonal elements, which became clustered around

00, and by the correlation coefficients for this pair of elements, which

also clustered around zero. Importantly, the perturbations on the

first reach of each transformed batch in Sessions 2 & 3 were

generated identically to those in Session 1 so that we can be sure it is

the prior that has changed, as the evidence shown to the subject was

identically distributed and only varied in terms of the feedback on

the second and subsequent trials.

Previous studies have also demonstrated the ability of people to

learn priors over novel sensorimotor tasks. For instance, one study

showed that subjects learned a non-zero-mean Gaussian prior over

horizontal shifts [19], while reaction-time studies [54] succeeded in

teaching subjects non-uniform prior distributions over potential

targets for a saccade. Similarly, other studies have shown that

priors, such as the relation between size and weight [55] and over

the direction of light sources in determining shape from shading

[8], can be adapted through experience of a training set which

differs from the normal prior. In many of these previous studies

only the mean of the learned prior was measured, and the priors

were generally one-dimensional whereas in the current study we

expose subjects to distributions in which there is a novel and multi-

dimensional covariance structure. This difference in dimensional-

ity may also explain why a one-dimensional structure of

visuomotor rotations [53] could perhaps be learned faster than

the three-dimensional structure of transformations used in Sessions

2 & 3 in the present study, which was never learned fully. As

dimensionality increases, the amount of data required by a subject

to specify the structure increases dramatically.

Extensions of the technique
In the current study we have made a number of simplifying

assumptions which facilitated our analysis but which we believe in

future studies could be relaxed. First, we have analysed the prior

within the Cartesian coordinate system in which the prior is over

the elements of the set of 2|2 transformation matrices. We

believe this coordinate system to be a reasonable starting point for

such research, since the visuomotor generalization studies cited

above found visuomotor generalization to be linear [37,38,41]. In

particular, the bias seems to be for rotations [41] rather than shifts

in Cartesian space, which are not linear transformations; some

studies describe generalization of shifts but as they either only

examine a one-dimensional array of targets [37,38] or a single

generalization target [56] their results can not distinguish between

rotations and shifts.

Furthermore, the comparison of different models in this paper

(Figure 7) shows that our linear-transformations model performs

better than a more complex affine-transformations model and

simpler models such as the shift model. This suggests that our

linear-transformations model is of the right level of complexity for

explaining subjects’ performance in this paradigm. That the shift

model performed considerably better than the no-adaptation

model does not show that subjects believed any transformations to

have a shift component and that the extra complexity of the affine-

transformations model is therefore necessary. Rather, the shift

model may have simply managed to approximate linear

transformations (such as small rotations) as shifts.

A further simplifying assumption was that the prior takes on a

multivariate Gaussian distribution over elements of the transfor-

mation matrix. The true prior could be both nonlinear and non-

Gaussian in our parameterization and as such our estimation may

be an approximation to the true prior. While it may be possible to

develop techniques to find a prior which has more complex

structure, such as a mixture of Gaussians, such an analysis would

require far more data for the extra degrees of freedom incurred by

a more complex model.

Another model assumption is that the subject uses the MAP

transformation to choose his hand position. Although it is common

for Bayesian decision models to use point estimates of parameters

when making decisions, different rules that also take into account

the observer’s uncertainty over the transformation may better

model the data.

Our model was purely parametric, with the observer perform-

ing inference directly over the parameters of the transformation

matrix. In the future it will be interesting to consider hierarchical

observer models which would perform inference over structures of

transformations, such as rotations, uniform scaling or shearings,

and simultaneously over the parameters within each structure,

such as the angle of the rotation. This observer would have a prior

Priors over Visuomotor Transformations
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over structures and over the parameters within each structure.

Nevertheless, our study shows that we can estimate the full

covariance structure of a prior in a sensorimotor task, that this

prior has similar form across subjects and that it can be altered by

novel experience.

Methods

Experimental methods
All eight subjects were naı̈ve to the purpose of the experiments.

Experiments were performed using a vBOT planar robotic

manipulandum [57]. Subjects used their right hand to grasp the

handle, which they could move freely in the horizontal plane. A

planar virtual reality projection system was used to overlay images

into the plane of movement of the vBOT handle. Subjects were

not able to see their arm.

Ethics statement. All subjects gave written informed consent

in accordance with the requirements of the Psychology Research

Ethics Committee of the University of Cambridge.

First session. In the first session, subjects alternated between

making reaching movements under veridical and transformed

feedback (see Figure 1 for a summary of the experimental design).

On each trial subjects made a reach from a midline starting circle

(1 cm radius, *30 cm in front of the subject’s chest) to a visually

presented target. To initiate a trial the hand had to be stationary

within the starting circle (speed less than 0:5 cm s{1 for 800 ms),

at which point the visual target (2 cm radius) appeared. The target

location was selected pseudorandomly from a 16|4 cm rectangle

centred 11 cm further in front of the subject’s chest than the

starting location (see Figure 2). In the veridical batches, visual

feedback of the final hand location (0.5 cm radius cursor) was

displayed for 1 s at the end of the movement (hand speed less than

0:5 cm s{1 for 300 ms). Subjects then returned their hand to the

starting circle, and the cursor representing their hand was only

displayed when the hand was within 1.5 cm of the centre of the

starting circle. Subjects repeated trials (with a new target selected

uniformly subject to its direction from the starting circle being

w100 from the preceding target) until they managed to place the

centre of the hand cursor within a target circle. They then

performed a batch of transformed trials.

Transformed trials were the same as veridical trials except that:

1) a linear transformation was applied between the hand’s final

location and the displayed cursor position and this transformation

was kept fixed within a batch; 2) the position of the visual target

(3 cm radius) had to satisfy an added requirement not to overlap

the cursor position of the preceding trial; 3) to end a batch subjects

had to complete at least three trials and place the centre of the

hand cursor within a target circle, and 4) starting on the eighth

trial, a batch could spontaneously terminate with a probability of

0.2 after each trial.

For the transformed trials the cursor position (v) was a linear

transformation (specified by transformation matrix T) of the final

hand position (h) relative to the starting circle: v~Th. In

component form, this can be written:

vx

vy

� �
~

a b

c d

� �
hx

hy

� �
:

The target color, yellow or blue, indicated whether the trial was

veridical or transformed respectively. Subjects were told that on

‘blue’ trials the feedback was not of their actual hand position, but

was related to their hand position by a rule. Subjects were told to

attempt to learn, and compensate for, this rule in order to hit the

targets, and that the rule would be constant across trials until they

had hit a target and a set of ‘yellow’ trials had begun. They were

told that a new rule was chosen each time a new set of blue trials

started, and was unrelated to the rule of the previous set.

Second and third sessions. In the second and third sessions,

subjects again alternated between making reaching movements

under veridical and transformed feedback. However, in the

transformed feedback batches, full-feedback trials were included

in which the transformed hand cursor was continuously displayed

throughout the trial, in order to speed up learning of the

transformations and thus of the distribution of transformations.

On these trials the batch did not terminate on reaching the target

(1 cm radius) and these trials occurred randomly after the third

trial with probability 1{exp({0:3k), where k is a trial counter

that starts at 1 on the fourth trial and resets to 0 after a full-

feedback trial. Thus this probability rises with each consecutive

terminal-feedback trial, and drops to zero on the trial after a full-

feedback trial.

Correlated distribution of transformations. To sample a

transformation from the correlated distribution used in sessions 2

and 3, elements a and d of the transformation matrix were

sampled from the uniform distribution U(0,2). Elements b and c
were set equal to each other and were sampled from a zero-mean

Gaussian distribution with standard deviation s~0:7. To ensure

that the target was reachable, a proposed transformation was then

rejected and resampled if it mapped the hand cursor for any hand

position within the target rectangle outside the central 80% of

either dimension of the 64|40 cm screen, or if it required the

hand position to be further than 30 cm from the starting circle to

hit any possible target. The resulting distribution of

transformations is shown in the top-right cell of Figure 5. This

distribution was chosen based on pilot experiments which

suggested that subjects have a prior that b~{c and hence

setting b~c would differ from this prior and engender new

learning.

Uncorrelated distribution of transformations. In Session

1, the transformation on the first trial was also selected from the

correlated distribution. This ensured that the distribution of

evidence given to the subject on the first trial was consistent across

sessions. However, on the second trial of a batch a new

transformation consisted with the first-trial evidence was chosen,

and then used for this and all remaining trials of the batch. This

new transformation is treated in our analysis as if it had been the

transformation throughout the batch, since it would have

generated the same evidence on the first trial as the

transformation from the correlation distribution. The new

transformation was chosen such that across batches there were

negligible correlations between any pair of elements in the

eventual transformation matrices. To achieve this, at the start of

the second trial elements a and c were drawn from Gaussians with

s~0:7 and means 1 and 0 respectively, and b and d were then

uniquely specified so as to be consistent with the hand and cursor

positions of the first trial. The rules for rejection of proposed

transformations from the correlated distribution were also applied

to the choosing of an uncorrelated transform on the second trial of

a batch in Session 1; if transformations failed, more were drawn

until an eligible transform consistent with the first trial evidence

was found. The resulting uncorrelated distribution of the

transformation matrices of the second and subsequent trials of

the transformed batches of Session 1 (Figure 5, top-left cell) shows

minimal correlations between the four elements of the matrix

(r2
v0:02 across all pairs), while each element of the matrix has

similar standard deviation to in the correlated distribution

(Table 2).
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Modelling
The standard model. Our observer model starts each

transformation batch within an experimental session with the

same prior probability distribution over transformations. Over the

course of each batch, it optimally combines this prior with the

evidence shown to the subject, and on each trial uses the updated

distribution to select its final hand position.

We vectorize the transformation matrix, i.e. m~vec(T), in

order to model the probability distribution over transformations as

a multivariate Gaussian p(m)~N (mjm,
PP

). This distribution on

the first trial of a transformation batch is the prior, N (mjm1,
PP

1).

The prior mean is the identity transform: m1~vec(I)~(1,0,0,1)T.

Our inference problem is to the determine the 4|4 prior

covariance matrix
PP

1. For mathematical simplicity, we actually

performed inference on the precision matrix L1~
PP{1

1 .

On any transformed trial i of a batch, the subject has access to

the actual (hi) and transformed visual location of the hand

(vi~Thi). Our observer can use Bayes rule to update its

distribution over transformations with this new evidence:

p(Tjv1:i,h1:i)!p(vijT,hi)p(Tjv1:i{1,h1:i):

Our aim is to find the prior p(Tjh1), which we can replace with

p(T) since it is reasonable to assume that the subject does not

believe the transformation T to depend on the first-trial hand

position. The likelihood function is:

p(vijT,hi)~N (vijThi,Sv),

since for tractability we model the internal representation of the

hand position h as noiseless, with all noise being on the

transformed hand position v (although in reality this noise consists

of two components affecting both v and h). Thus the model

observer’s probability distribution over the actual v, given the v it

observes, is N (v,Sv), where Sv~kI. This noise, actually

representing both motor and visual noise, was modelled as

isotropic Gaussian because a preliminary experiment with

unperturbed reaching movements found the combined motor

and visual noise in this paradigm to be near to isotropic.

We now express the likelihood function in terms of the

vectorized transformation matrix (m~vec(T)):

p(vijm,hi)~N (vijAim,Sv),

where Ai is a function of hi:

A~
hx 0 hy 0

0 hx 0 hy

� �
:

We multiply this Gaussian likelihood with the Gaussian

distribution over transformations to give an updated distribution

over transformations [58]:

p(mjv1:i,h1:i)~N (mjL{1
iz1½Ai

TS{1
v vizLimi�,L{1

iz1),

where

Liz1~LizAi
TS{1

v Ai:

The observer then takes the MAP estimate of the transforma-

tion (T̂Tiz1) and applies its inverse to the target position on the next

trial tiz1, such that the predicted hand position is h�iz1~T̂T{1
iz1tiz1.

It can be shown that scaling the visual noise constant, k, will

simply induce the same scaling in the prior covariance L{1 on all

trials, with no effect on the predicted hand positions on the second

and subsequent trials. Since our analysis focusses on the shape

rather than the absolute size of the prior covariance, we simply set

k to 1 cm2.
Fitting the model. For a given prior covariance over the

elements of the transformation matrix, the model predicts the

optimal locations for the reaches on the second trial of each batch

(h�2). As a measure of goodness-of-fit we computed a robust

estimate of error between the predicted and actual hand position

(ej is the Euclidean error on trial 2 of transformation batch j)
across the N batches of a session for one subject,

cost~{
XN

j

exp
e2

j

2s2

 !
,

with s set to 10 cm. Use of this robust error measure reduces

sensitivity to outliers. Our choice of s was in order to maximize

sensitivity to errors in the 4–10 cm range that was common for

predictive errors for our model. We found that using different

values for s (5 and 20 cm) did not affect our main findings:

significantly negative correlation coefficients between b and c in

Session 1 (pv0:01 on t-test and Kolmogorov-Smirnov test) that

ceased to be significant in Sessions 2 and 3; and significantly

negative angles of the b{c covariance in Session 1 that then

clustered around zero and ceased to be significantly negative in

Sessions 2 and 3.

We then optimized the covariance matrix for each subject in

each session to minimize the cost. We did this by optimizing the 10

free elements of the 4|4 upper triangular matrix K, where

L1~KTK. This guarantees that L1 will be symmetric and positive

semi-definite (a requirement of a precision or covariance matrix).

To further constrain L1, and thus its inverse
P

1, to be positive-

definite, the diagonal elements of K were constrained to be

positive. These steps do not prevent near-singular matrices being

Table 2. Statistics of the two distributions of transformations.

a b c d

Correlation in uncorrelated
distribution

a 1.00 0.13 0.05 0.13

b 1.00 20.09 0.03

c 1.00 0.01

d 1.00

S.D. in uncorrelated distribution 0.64 0.62 0.72 0.53

S.D. in correlated distribution 0.53 0.54 0.54 0.41

Mean in uncorrelated distribution 1.12 0.01 20.01 1.07

Mean in correlated distribution 1.17 0.03 0.03 0.99

Top: statistics of the ‘uncorrelated’ and ‘uncorrelated’ distributions, estimated
from the 1130 transforms used in Session 1 and the 1091 transforms used in
Session 2 respectively.
doi:10.1371/journal.pcbi.1001112.t002
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evaluated; to avoid such numerical problems, I|10{4 was added

to L1 before evaluation of the cost during fitting and at the end of

the fitting process.

A trust-region-reflective algorithm implemented by the fmin-
con function of Matlab’s Optimization Toolbox was used, with fits

started from random precision matrices Lr~BTB, where B is a

4|4 matrix whose elements are independently drawn from a zero

mean Gaussian distribution with s~1. A hundred fits were run for

each session and the one with the lowest cost chosen.

Validating the model. 825 simulated datasets were created

by sampling random ‘generating’ priors (created in the same way

as the random precision matrices used to initiate model fits) and

running the model on an artificial experiment with 150

transformations chosen as for the real experiments. Zero-mean

Gaussian noise of covariance I|0:23 cm2 – so chosen to simulate

noise from real subjects – was added to the cursor positions.

The model was fit to each of these datasets by taking the best of

100 fits. These best fits always gave a lower cost than did the

generating prior, due to the finite sample size of the artificial data

set. Since our analysis of priors concentrates on the covariance

orientation angles and correlation coefficients between pairs of

elements, we sought to establish that the differences between these

statistics in the generating and fitted priors were small. The

median absolute difference in covariance angle between the

generating prior and the fitted prior was 30 (Figure 9A), compared

to 450 when comparing two randomly-generated priors (Figure 9B).

Likewise, the median absolute difference in correlation coefficient

between the generating prior and the fitted prior was 0.09

(Figure 9C), compared to 0.72 for random priors (Figure 9D). The

fitted correlation was of the wrong sign in 10% of cases, compared

to 50% for random priors.

Model variations. The standard Bayesian observer model

described above correctly assumes the cursor position to be at a

linear transformation of the hand position, v~Th. Three other

observer models, using the same Bayesian principle but making

different assumptions about the transformation, were developed.

The ‘shift’ model assumes the cursor position to be at a shift of

the hand position, v~hzs. The mean shift in the prior m1 is set at

zero. The update equations for the distribution p(s)~N (sjm,L{1)
are Liz1~LizS{1

v and miz1~L{1
iz1½S{1

v (vi{hi)zLimi�. To

select its next hand position, the model applies the inverse of the

mean shift miz1 to the target position, such that the predicted hand

position is h�iz1~tiz1{miz1.

The ‘rotation & scaling’ model assumes transformations to

consist of a rotation and uniform scaling. This was implemented in

polar coordinates centred on the start position, as a shift by w of

the angular coordinate and a multiplication by s of the radial

coordinate. This can be written as,

vh

vr

� �
~

1 0

0 hr

� �
w

s

� �
z

hh

0

� �
,

or in vector form, v~Bxzf. The mean transformation in the

prior m1 has zero rotation and a scaling gain s of unity. The update

equations for the distribution p(x)~N (xjm,L{1) are Liz1~

LizBT
i S{1

v Bi and miz1~L{1
iz1½BT

i S{1
v (vi{f i)zLimi�. The visual

noise covariance Sv was diagonal, with radial variance 1 cm2 and

angular variance 0.12, designed to be isotropic at an eccentricity of

10 cm (as in the standard model we fix the magnitude of the

variance - see above). The model selects its hand positions using

the MAP transformation: h�h~th{ŵw and h�r ~tr=ŝs.

The ‘affine transformations’ model is the most general of all,

assuming the hand position to be subject to a linear transformation

and a shift, v~Thzs. As for the standard model, the

transformation equation can be linearized to v~Am, where

m~(a,b,c,d,e,f )T and

A~
hx 0 hy 0 1 0

0 hx 0 hy 0 1

� �
:

The mean transformation is m1~(1,0,0,1,0,0)T, and the update

equations are identical to those for the standard model. The MAP

transformation m̂m is converted into its linear and shift parts T̂T and

ŝs, for the purpose of choosing the model hand position on the next

trial: h�iz1~T̂T{1
iz1(tiz1{ŝsiz1). The 6|6 Gaussian distribution

over the parameters of the affine transformation did not have

covariance between the linear and shift parameters, i.e.

L~
Labcd 0

0 Lef

 !
,

in order to restrict the number of free parameters to 13 (rather

than a possible 21).

The same trust-region-reflective algorithm as for the standard

model was used to fit the affine model. A slower active-set

algorithm, also implemented by the fmincon function of

Matlab’s Optimization Toolbox, was used to fit the shift and

rotation & scaling models; the choice of optimization method was

not so important when fitting these models, which have fewer

parameters.

Figure 9. Model validation. (A) The distribution of the difference in
covariance orientation angle between pairs of elements in the
generating and fitted priors, aggregated across all six pairings of
elements. (B) The corresponding distribution when random priors are
compared. (C) The distribution of the absolute difference in correlation
coefficient between pairs of elements in the generating and fitted
priors, aggregated across all six pairings of elements. (D) The
corresponding distribution when random priors are compared.
doi:10.1371/journal.pcbi.1001112.g009
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Models were compared on the basis of errors between the

predicted and actual hand positions. These predictive errors were

capped at 20 cm to minimize the effect of outliers, then averaged

across all transformations within an experimental session, and then

across all subjects and sessions. For trials 3–7 of transformed

batches, the Bayesian observer models used priors fit to the second

trial of all transformation batches. For comparing prediction errors

on the second trial itself, 10-fold cross-validation was used so that

complex models did not benefit from over-fitting. The transfor-

mations experienced by a subject in one session were assigned into

10 non-overlapping and evenly-spaced groups. For example, if the

session included 111 transformations, group 1 consisted of

transformations 1, 11, 21, ..., 101, 111; group 2 consisted of

transformations 2, 12, 22, ..., 92, 102, etc. Second-trial hand

positions were predicted for each group using priors fit as normal

to the other nine groups.
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