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Abstract

Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent
theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the
upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal
model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and
stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated
positive receptor feedback can induce a ‘‘switch-like’’ response to external stimuli during multilineage differentiation by
providing robustness to both bipotent and committed states while protecting progenitors from noise-induced
differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of
commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly
bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as
ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation
to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen.
Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments
and provides a computational framework that can integrate both classical and alternative commitment paths in
hematopoiesis that have been observed experimentally.
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Introduction

Multipotent stem cells have the ability to both self-renew and

differentiate, thus sustaining the stem cell pool and giving rise to

mature, specialized cells, respectively. The hematopoietic stem cell

(HSC), located in the adult bone marrow, is well characterized and

has served as a popular model system for understanding self-

renewal, lineage commitment, and differentiation [1]. HSCs are

responsible for producing the entire repertoire of blood cells

through the process of hematopoiesis. During hematopoiesis, HSCs

lose the capacity to self-renew and differentiate into common

myeloid progenitors (CMP) and common lymphoid progenitors

(CLP) [2,3]. Multipotent progenitors undergo further lineage-

restricted differentiation to give rise to mature cells via bipotent

progenitors. In addition to this classical commitment paradigm in

hematopoiesis, alternative pathways are emerging. For example, it

has also been observed that HSCs and multipotent progenitors can

bypass canonical intermediate states during commitment [2,4,5].

The exact molecular events that direct lineage commitment at the

stem cell stage or at the multipotent progenitor level remain elusive,

but it is well appreciated that lineage-specific transcription factors

and cytokine receptors play critical roles.

Lineage-specific transcription factors have been identified as master

regulators of commitment and differentiation. They drive the

expression of pertinent lineage-specific genes, thereby initiating the

phenotypic change in the progenitor cell down a specific differenti-

ation path [6,7]. Developmental potency of a multipotent progenitor is

reflected by the co-expression of multiple lineage-specific transcription

factors at low levels, a phenomenon known as transcriptional priming

[8]. This promiscuous gene expression pattern in the progenitor cell

necessitates that, during cell differentiation, a specific transcription

factor is upregulated, chiefly by positive autoregulation [9,10], and

other lineage transcription factors are downregulated, primarily

through cross-antagonism [11–13].

In addition to lineage-specific transcription factors, cell

differentiation is also believed to be tightly regulated by cytokines.

Cytokines signal via their cognate receptors whose cytoplasmic

domains activate various pathways involved in survival, prolifer-

ation, and differentiation [14–16]. It has been extensively debated

whether cell fate during differentiation is a stochastic or an

instructive process. The stochastic theory claims that the

differential expression of lineage-specific transcription factors due

to intrinsic noise in progenitor cells dictates the commitment

decision [17–19], whereas the instructive theory argues that the
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absolute dependence on lineage-specific cytokine receptor signals

during differentiation shows that cell-fate decisions are regulated

by extrinsic growth factor cues [14,15,20,21]. An underlying

question evoked by both of these theories is whether cytokines

provide instructive cues or select lineage-committed progenitors by

providing permissive survival and proliferation signals. The

instructive model does not account for the occurrence of certain

mature cell types even when their lineage-specific receptors are

knocked out [16,18]. The predetermined distribution of the

heterogeneous progenitor population into mature cells, as

suggested by the stochastic model fails to explain how specific

cell types can be enriched during stress or how homeostasis is

restored after infections or therapy [15]. A recent landmark study

utilizing bioimaging techniques at the single-cell level suggests that

there is validity to both of these theories [20]. These authors

showed that lineage-specific cytokines can strongly instruct lineage

choice, although differentiation was still possible in the absence of

lineage-specific cytokines.

A more comprehensive understanding of lineage commitment

may emerge by analyzing the biochemical associations that

coordinate cell-extrinsic and cell-intrinsic events. The promiscuous

gene expression pattern during differentiation is observed not only

in lineage-specific transcription factors, but also in lineage-specific

receptors. A critical commitment signal during differentiation is the

upregulation of the transcription factor, which aids in expressing the

lineage-specific genes; however, the need to upregulate the lineage-

specific receptor, an event also integral to commitment, is still

unclear. This is particularly confounding since the low number of

lineage-specific receptors present in a progenitor cell is sufficient for

providing permissive survival cues. During lineage commitment, the

expression of the cytokine receptor mirrors the expression of the

transcription factor, often due to the presence of transcription factor

binding domains in the promoter region of the receptor gene [22–

25]. The advantage of regulating the lineage-specific receptor

expression through the lineage-specific transcription factor is not

apparent. Recent biochemical evidence also suggests that cytokines

can provide signals to functionally activate lineage-specific tran-

scription factors through post-translational modifications [26] and

can also regulate the expression of transcription factors during cell

differentiation [27].

Cell differentiation is believed to be an all-or-none ‘‘switch-like’’

event rather than a gradual transition of a precursor cell to a

stable, mature cell. Mathematical modeling and analysis have been

successfully used to provide insights into the biological networks

that give rise to such switch-like behaviors [28]. Typically, the

networks involved in lineage specification seem to engender

cellular memory through nonintuitive behaviors, such as bistable

response profiles. The components that generate bistability, the

toggling of the system between two stable steady states, include

nonlinear feedback loops [29,30], external noise [31], and multi-

site covalent modifications [32]. Previous lineage commitment

models have suggested that transcriptionally primed multipotent

progenitors are capable of exhibiting bistability purely via cell

intrinsic events of autoregulation and cross-antagonism [8,33,34],

but these models have assumed the existence of cooperative

positive feedback loops to achieve bistability and do not consider

the role of extracellular cues.

While cooperativity is a widely recognized biological mecha-

nism that may play an important role in lineage commitment,

alternative mechanisms can generate similar switch-like behavior

in networks where cooperativity has not been observed. For

example, we have previously shown that cytokine-regulated,

positive feedback of receptor can generate robust bistability to

stimulus without cooperativity in a deterministic model for

unilineage commitment [35]. Furthermore, even in networks with

cooperativity, receptor-mediated feedback may provide additional

robustness to the system behavior and, perhaps more importantly,

offer an external mode of regulation of cell-fates.

Here, we present a minimal model that integrates the

bidirectional regulation between lineage-specific cytokines and

transcription factors with previously explored autofeedback loops

and cross-antagonism to understand the interplay between cell-

extrinsic and cell-intrinsic factors in fate decisions of hematopoietic

progenitors. Our model shows that the strength of cross-

antagonism can be a critical determinant in achieving multi-

stability. The analyzed network exhibits a ‘‘bilayer’’ of memory

with respect to external stimuli to provide robustness to both the

bipotent and committed states. The model suggests that noise in

the network can enable stochastic switching between the stable

states; however, the distribution of the uncommitted population

among the various states during differentiation can still be strongly

biased by external cues (as has now been experimentally observed

[20]). Furthermore, this modeling framework captures both

classical and alternative modes of lineage commitment seen in

hematopoiesis. Although discrete cell fates are likely to represent

high-dimensional attractors [34,36], our minimal model may

provide an initial step towards understanding how extrinsic factors

integrate with intrinsic factors and may elucidate new mechanisms

that underlie cell-fate decisions.

Results

Model formulation
Different cell states in our model are identified by the relative

expression levels of lineage-specific receptors and transcription

factors. An uncommitted (or ‘off-state’) cell, such as a common

myeloid progenitor (CMP), is one that expresses lineage-specific

receptors and transcription factors for multiple lineages at low

levels. It is primed to differentiate into several lineages, but not yet

committed to any specific lineage. A bipotent (or ‘intermediate-

state’) cell, such as a megakaryocyte-erythrocyte progenitor (MEP),

is one that is restricted to exactly two lineages, but not yet

committed to either of them. Lineage-specific receptors and

transcription factors for the two lineages are expressed at

intermediate levels. A committed (or ‘on-state’) cell, such as a

proerythroblast, is one that expresses the receptor and transcrip-

Author Summary

Complex biomolecular interaction pathways in signaling
networks can lead to non-intuitive behaviors that can
prove critical for the regulation and robustness of
biological processes. In this work, we present a signaling
topology that can generate dynamic responses that are
particularly pertinent to cell commitment in hematopoie-
sis. Our minimal model explores fundamental questions of
instructive signaling that have persisted in cell-fate
decisions. We show that even when lineage commitment
decisions are inherently noisy, external cytokine signals,
amplified by receptor upregulation, can bias the lineage
choices of a progenitor cell. The multipotent progenitor,
based on its differentiation potential, can exhibit several
layers of memory to provide stability to both intermediate
and mature states and can potentially bypass canonical
intermediate states in generating mature cell types. Thus,
our model provides a computational framework that can
accommodate both classical and non-classical commit-
ment paths in hematopoiesis.

Model of Multilineage Commitment
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tion factor of a single lineage at a high level and will eventually

terminally differentiate into the corresponding mature cell.

The topology of our minimal model for multilineage commit-

ment was informed by various experimental studies on lineage-

specific receptors and transcription factors. The cytokines Epo,

Tpo, GCSF, and MCSF have been shown to offer instructive cues

to uncommitted and bipotent cells to differentiate into committed

cells, which then terminally differentiate into erythrocytes,

megakaryocytes, neutrophils, and macrophages, respectively

[3,15,20,37]. Lineage-specific transcription factors GATA-1,

PU.1, T-bet, and GATA-3 orchestrate the differentiation program

of erythrocytes, neutrophils, Th1, and Th2 cells, respectively, by

regulating the expression of their lineage-specific genes [6,38].

Transcription factors GATA-1 and PU.1 have been shown to

autoregulate their gene expression by binding to the promoter

region of their own genes [9,10]. Erythrocytic transcription factor

GATA-1 has been shown to transactivate the Epo receptor

(EPOR) gene and the neutrophilic transcription factor PU.1 has

been observed to regulate the expression of the GCSF receptor

(GCSFR) [22,25]. A transcription factor can prevent another

transcription factor from binding to DNA either by competitively

binding to response elements (as in the case of GATA-1 and

GATA-2 [12]) or by binding to the DNA-binding domain of the

transcription factor itself (for example, GATA-1 and PU.1 [13]).

The topology shown in Figure 1 represents a generalized

minimal network of these observed connections between the

cytokine and lineage-specific transcription factor during lineage

commitment. The model assumes that the fate decision of an

uncommitted cell to either lineage A or lineage B is determined

solely by the concentrations of the active forms of the respective

lineage-specific transcription factors, ATFA and ATFB. The

components that drive the formation of each ATF are the inactive

transcription factor (ITF), which serves as the substrate, and the

ligand (L)-receptor (R) complex (C), which serves as the enzyme.

The strong upregulation of ATF during lineage commitment is

achieved through two positive feedback loops that upregulate ITF

and R, respectively. Transcription factor feedback is a cell-intrinsic

autofeedback loop and receptor feedback is an externally (ligand)

regulated positive feedback loop. F1A and F2A (expressed in

molecules/min) denote the strengths of the transcription factor

and receptor feedback loop for lineage A, respectively; F1B and F2B

represent the corresponding feedback strengths for lineage B.

During commitment, a lineage-specific transcription factor gets

upregulated and other lineage transcription factors get downreg-

ulated due to cross-antagonism [11–13]. The mechanism of cross-

antagonism between the transcription factors is modeled to be

competitive inhibition in binding to response elements present

upstream of the transcription factor and receptor genes, thereby

affecting the strengths of the two positive feedback loops. While

cell fates are likely to represent high dimensional attractors [34,36]

and this higher level of complexity is not considered here, our

minimal model framework may be useful in elucidating the

interplay among extrinsic and intrinsic factors in lineage

commitment and differentiation. The deterministic (ordinary

differential equations) and the stochastic (probability functions)

versions of the model along with the kinetic parameters and initial

conditions are provided in Supplementary Tables S1, S2, S3.

Double positive feedback loops, coupled with moderate
transcriptional cross-antagonism, can lead to
multistability

To explore the role of the two positive feedback loops in lineage

commitment, we first considered the case with no competitive

inhibition between the transcription factors. The inhibitor

dissociation constants KIA (inhibitory effect of A on B) and KIB

(inhibitory effect of B on A) are kept infinite. Figure 2A shows the

steady-state values of ATFA as the strength of two autofeedback

loops, F1A and F1B, are changed. The strengths of the receptor-

mediated feedback loops and the ligand levels are kept constant

(F2A = F2B = 3 molecules/min, LA = LB = 100 molecules). We can

see that the system rests in the uncommitted state when F1A = 0 for

the chosen F2 and L values. As we increase F1A, the system

switches to the on-state (committed state) for lineage A. Since F1

constitutes the strength of the autofeedback loop in A, increasing

F1A over the threshold value will increase the set point of ATFA in

the on-state, provided F2A is not limiting [35]. To consider the

effect of receptor-mediated feedback on the steady-state values of

ATFA, the strength of the autofeedback loops and ligand are kept

constant (F1A = F1B = 3 molecules/min, LA = LB = 100 molecules).

Similar to F1A, there seems to be a critical value for F2A at which

the system switches to the on-state (Figure 2B). As F2 controls the

activation loop, increasing F2A beyond the critical level will not

change the on-state set point value of ATFA, provided F2A is not

limiting [35]. As expected, F1B and F2B have no effect on ATFA

since we have assumed no crosstalk between the two pathways.

The above analysis was repeated with moderate inhibition

(KIA = KIB = 400 molecules). Similar to the no inhibition case,

there appear to be critical values for F1A and F2A at which the

system switches to the on-state (Figures 2C and 2D). However,

increasing F1B and F2B increases the switching values of F1A and

F2A, due to the negative feedback from ATFB on ATFA. It is

interesting to note that for high values of F1B and F2B, the system

reaches a stable, intermediate state at which the concentration of

ATFA is higher than that in the uncommitted state, but less than

that in the committed state (by symmetry, the same effect is

observed for ATFB; see Supplementary Figure S1). As in the

committed state, the set point in this intermediate state increases

with F1, but not with F2. To better visualize the intermediate state,

cross-sections of F1B and F2B from Figures 2C and 2D for various

values of F1A and F2A are given in Figures 2E and 2F, respectively.

For strong inhibition (KIA = KIB = 50 molecules), the system

Figure 1. A minimal model of multilineage commitment. A
multipotent progenitor expresses lineage-specific receptors (RA and RB)
and inactive transcription factors (ITFA and ITFB) at low levels with the
potential to differentiate into lineage A or B. Addition of ligand (LA, LB)
leads to complex formation (CA, CB), which activates the corresponding
lineage-specific transcription factor. Active TF (ATFA, ATFB) binds to the
response elements present upstream of the transcription factor and
receptor genes and induces two positive feedback loops (dashed green
arrows). To account for cross-antagonism between the lineages, the
active transcription factors are modeled to competitively inhibit the
activation of the positive feedback loops in the other lineage (dashed
red lines). F1A and F2A denote the respective strengths of the
transcription factor and receptor feedback loops for lineage A; similarly,
F1B and F2B represent the corresponding feedback strengths for lineage
B. Inhibitor dissociation constants KIA and KIB denote the inhibitory
effect of A on B and B on A, respectively.
doi:10.1371/journal.pcbi.1000518.g001

Model of Multilineage Commitment
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Figure 2. Effect of the positive feedback loops on the on-state ATFA levels. A. Strengths of the autofeedback loops (F1A and F1B) are varied
for both lineages and the steady-state values of ATFA are plotted for the no inhibition condition (KIA = KIB = ‘), keeping the strengths of the receptor
feedback (F2) constant. B. Strengths of the receptor feedback loops (F2A and F2B) are varied and the values of ATFA are plotted for the no inhibition
condition, keeping the strengths of the autofeedback (F1) constant. C. Same as part A except with moderate inhibition (KIA = KIB = 400 molecules). D.
Same as part B except with moderate inhibition. E. Cross-sectional plot from C for various values of F1A. F. Cross-sectional plot from D for various
values of F2A. G. Same as part A except with strong inhibition (KIA = KIB = 50 molecules). H. Same as part B except with strong inhibition. No inhibition
and strong inhibition give rise to only on or off populations, whereas moderate inhibition can generate a third intermediate population.
doi:10.1371/journal.pcbi.1000518.g002

Model of Multilineage Commitment
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achieves commitment to lineage A for F1A and F2A values above

the threshold levels. When F1B and F2B are increased over the

critical value, the system requires concomitantly larger increases in

F1A and F2A values to switch from the uncommitted state

compared to the moderate inhibition condition (Figures 2G and

2H). Also, strong mutual inhibition between the transcription

factors destroys the stable intermediate state, so the cells can rest

only in the uncommitted or committed state. Since the model is

symmetric with respect to lineages A and B, the steady-state

responses of ATFB with respect to changes in F1 and F2 are

analogous to the results shown for ATFA (see Supplementary

Figure S1). It should be noted that the system is capable of

achieving multistability for a given F1 and F2 ([35] and results not

shown); however, only the stable solution attained without the

memory of strong feedback is plotted in Figure 2 (i.e., the

simulations were always started from the off-state).

‘‘Bilayer’’ memory in a tristable system
External regulation provides a practical way to control the

dynamics of the network without the need to alter the internal

control elements of the system. We analyzed how cell commitment

might be influenced in the presence of conflicting ligands with the

strength of the positive feedback loops held constant (F1 = F2 = 3

molecules/min) for the moderate inhibition case. As seen from the

phase plots in Figure 3, increasing LA when LB is low commits the

uncommitted cell to lineage A (red region in Figure 3A), increasing

LB for low LA commits the cell to lineage B (red region in

Figure 3B), and for high values of both LA and LB the system rests

at a third, bipotent state that is primed but not committed to either

of the lineages (overlapping yellow regions in Figures 3A and 3B).

For low LA and LB (both less than ,40 molecules), the system

remains in the uncommitted state (overlapping blue regions in

Figures 3A and 3B).

To explore the robustness of the bipotent and committed states,

we tested the system for memory to external stimulus. From the

phase plots, we chose LB = 300 to analyze the robustness of the

bipotent state. The steady-state response plots of ATFA and ATFB

for LB = 300 are given in Figures 3C and 3D. In Figure 3C,

increasing LA switches the system from the committed B state to

the bipotent state (solid red line). After reaching the bipotent state,

Figure 3. Effect of ligand on the on-state ATF levels. A. Phase plot showing the steady-state ATFA levels (blue – low, yellow – medium, red –
high) when LA and LB values are varied. B. Phase plot showing the steady-state ATFB levels when LA and LB values are varied. Low LA and low LB do not
commit the uncommitted cell to either lineage (overlapping blue region in panels A and B). Low LA and high LB values commit the cell to lineage B
(blue region in panel A and red region in panel B). High LA and low LB values commit the cell to lineage A (red region in panel A and blue region in
panel B). High LA and high LB commit the cell to the bipotent state (overlapping yellow region in panels A and B). Steady-state response plots: C.
Increasing LA from 0, with LB constant at 300, abruptly switches the cell from the committed B state to the bipotent state (increase in ATFA to
intermediate level) after reaching a threshold concentration (solid red line). After achieving the bipotent state, decreasing LA to sub-threshold values
does not immediately switch the cell state, suggesting significant memory in the system (dotted red line). D. Increasing LA from 0, with LB constant at
300, decommits the cell to the bipotent state (decrease in ATFB to intermediate level) after reaching the threshold concentration (solid blue line).
After achieving the bipotent state, decreasing LA to sub-threshold values does not immediately switch the cell state, again suggesting significant
memory (dotted blue line). E. Increasing LA from 0, with LB constant at 100, abruptly switches the committed B cell to the bipotent state (increase in
ATFA to intermediate level) and then again to the committed A state (increase in ATFA to high level) after reaching the corresponding threshold
concentrations (solid red line). After achieving the bipotent state or the committed state, decreasing LA to sub-threshold values does not immediately
switch the cell response, suggesting significant memory in both states (dotted and dot-dash red line). F. Increasing LA from 0, with LB constant at 100,
decommits the cell to the bipotent state (decrease in ATFB to intermediate level) and then again to the committed lineage A state (decrease in ATFB

to low level) after reaching the corresponding threshold concentrations (solid blue line). After achieving the bipotent state or the committed lineage
A state, decreasing LA to sub-threshold values does not immediately switch the cell response, suggesting significant memory in both states (dotted
and dot-dash blue line). Plots C and D show bistable expression of ATFA and ATFB; plots E and F exhibit both bistable and tristable expression of the
transcription factors.
doi:10.1371/journal.pcbi.1000518.g003
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the ligand concentration can be decreased far below the initial

switching concentration while still maintaining the system in the

bipotent state (dotted red line). However, complete removal of LA

switches the system back to the committed B state. For the ligand

concentrations spanned by the dotted red line, the system is

bistable. Considering the steady-state response of ATFB in the

same simulation, we see that for low LA values, the system is

already committed to lineage B (Figure 3D). However, increasing

LA can decommit the cell to a bipotent state (solid blue line).

Decreasing LA after reaching the bipotent state maintains the cell

in that state for values of LA much lower than the decommitment

concentration (dotted blue line). So, the system is also bistable for

ATFB expression (inversely correlated to ATFA expression) and

can exist either in the committed state for lineage B or in the

bipotent state based on the memory of LA.

To analyze the switching of the system across three states, we

chose LB = 100 based again upon the phase plots in Figures 3A

and 3B. In Figure 3E, a modest increase in LA switches the system

to the bipotent state and a further increase in LA, switches the

system to the committed A state (solid red line). If the ligand

concentration is lowered after the system reaches either the

bipotent state or the committed state, the system remains in the

current state (dotted and dot-dash red lines). This hysteresis is

greater for the committed state than for the bipotent state,

suggesting that the committed state is more robust to changes in

the ligand concentration. For LB = 100 and for 10,LA,75, the

system exhibits tristability (i.e., it can exist in committed state A,

committed state B, or the bipotent state). The steady-state response

plot of ATFB for LB = 100 (Figure 3F) shows that a committed B

cell decommits to the bipotent state and then further to lineage A

with an increase in LA (solid blue line). As in Figure 3E, the

bipotent and lineage A states are robust with respect to decreases

in LA (dotted and dot-dash blue lines) and the system exhibits

tristability for the same concentration range of LA as in Figure 3E.

It should also be noted that the ligand-dependent multistability

seen for a lineage-specific transcription factor is the same for the

corresponding lineage-specific receptor, thus simultaneously

generating memory in cell-extrinsic and cell-intrinsic signals [35].

Extrinsic cues can regulate stochastic switching
We developed a stochastic version of the ordinary differential

equation (ODE)-based deterministic model to analyze how noise

in the network might affect the fate decision of an uncommitted

cell (i.e., one that initially contains no ATFA or ATFB) and how

external signals might regulate these stochastic transitions. The

stochastic model was initialized with several LA|LB combinations

(0|350; 100|250; 175|175; 250|100; 350|0) for the no inhibition,

moderate inhibition, and strong inhibition conditions. In each of

10,000 simulations, the system was allowed to reach steady-state

(see Supplementary Text S1) and steady-state ATFA and ATFB

levels for the first three ligand combinations listed above are shown

as 3D histograms in Figure 4 (since the model is symmetric, the

250|100 and 350|0 plots are virtual mirror images of the 100|250

and 0|350 plots, respectively, in Figure 4). Unlike the deterministic

model, which only provided a population average of the four

attainable steady states (uncommitted, bipotent, lineage A, lineage

B) for any LA|LB, the stochastic simulations elucidated the relative

populations of these multiple steady states for a given LA|LB. For

the no inhibition condition, an uncommitted cell can reach any of

four distinct stable states given the appropriate extracellular cues:

uncommitted, A, B, and a committed AB state with high ATFA

and ATFB values (though this last state is simply a consequence of

having no inhibition and likely has little relevance in biological

mechanisms specific to cell commitment decisions). When ATFA

and ATFB can moderately inhibit each other, the uncommitted, A,

B, and bipotent states can all be populated, even for a single

LA|LB combination (e.g., middle plot in Figure 4). However, when

the transcription factors exhibit strong cross-antagonism, this

bipotent state is no longer realizable and cells only commit fully to

one lineage or the other or stayed uncommitted. The stochastic

simulations with various combinations of conflicting ligand

concentrations and for different levels of competitive inhibition

show that all of the populations obtained from the deterministic

model are stable and distinct even with the introduction of noise.

For conditions in which only one ligand was present (e.g., 0|350),

the cells committed only to the induced lineage for all levels of

inhibition. A small fraction of the initial population remained

uncommitted for all conditions for the chosen steady-state time

point. When external cues of equal strength were provided

(175|175), cells in the absence of inhibition primarily reached the

committed AB state; with strong inhibition, they attained nearly

equal levels of the committed A and B states; and with moderate

inhibition, the cells were roughly evenly distributed across the

bipotent, A, and B states. When high but unequal ligand levels

were used (e.g., 100|250), cells in the no inhibition model commit

almost exclusively to the AB state since the effects of LA and LB are

entirely uncoupled. However for the strong and moderate

inhibition conditions, the initial population committed predomi-

nantly to the lineage corresponding to the higher ligand value.

This shows that, while the noise in the system is capable of

distributing the initial population to all available steady states for

any ligand concentration above a minimum threshold, a dominant

external signal can still strongly bias the system to its specific

lineage.

Time trajectories during lineage commitment
From 100 individual stochastic trajectories, we calculated the

average time for an uncommitted cell to reach lineage A, lineage

B, or the bipotent state and, in separate simulations, the average

time for a bipotent progenitor to reach lineage A or B. A phase

plot of the total transcription factors (tTF = ITF+ATF) shows that

it takes ,36 hours for the uncommitted cell to reach lineage A,

lineage B, or the bipotent state; however, when ligand concentra-

tions that destabilize the bipotent progenitor are applied, it only

takes ,24 hours for the bipotent progenitor to reach either of the

committed states (Figure 5A). This effect is even more pronounced

when we look at the phase plots for ATF (Figure 5B); the time to

reach the high level of active transcription factor(s) from the

uncommitted cell is still ,36 hours, however it takes much less

time (,14 hours) for the bipotent progenitor to reach lineage A or

B. The kinetics of reaching new steady-state levels for total

receptor (tR = R+C) and complex (Figures 5D and 5E) are faster

than those for tTF and ATF, respectively, but the trend of

reaching commitment faster from the bipotent state compared to

the uncommitted state is similar to the transcription factor plots.

Figures 5C and 5F respectively show the mean CA and ATFA

values with respect to time (in hours) for transitions from the

uncommitted state to lineage A (blue line), uncommitted state to

bipotent state (orange line), and bipotent state to lineage A (green

line). The error bars represent the standard deviation of the

trajectories from the mean values. The red lines show the

decreases in CB and ATFB as the bipotent cell follows the

trajectory to commit to lineage A. A primed bipotent cell reaches

either committed state faster than an uncommitted cell does,

primarily due to the fact that accumulation of new transcription

factor molecules (protein synthesis) is a much slower process than

deactivation of existing active transcription factor molecules.

Furthermore, cytokine signaling has been shown to accelerate
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differentiation [20], so the dynamics of activated receptors and

transcription factors are likely to influence the kinetics of

differentiation.

Comparison to experiments
Figure 6A shows a widely accepted branching diagram for

differentiation from the common myeloid progenitor (CMP).

CMPs undergo lineage-restricted differentiation to form either

granulocyte-macrophage progenitors (GMPs) or megakaryocyte-

erythrocyte progenitors (MEPs). GMPs give rise to neutrophils or

macrophages, whereas MEPs differentiate into megakaryocytes or

erythrocytes. It has been recently demonstrated that alternative

routes of differentiation are possible in hematopoiesis: HSCs and

multipotent progenitors can bypass canonical intermediate states

in reaching mature states [2,4], suggesting that these lineage-

restricting steps may be more complex than a series of simple

binary decisions. We have shown analogous alternative trajectories

in Figure 6A (gray arrows). In Figure 6B, the light green and light

red lines represent 200 individual stochastic trajectories from the

strong inhibition model that committed to lineage A and lineage B,

respectively. The dark green and dark red lines show the average

of these trajectories. As the strong inhibition model cannot

generate a bipotent state, all of the trajectories are directed

towards single-lineage populations (A or B). In Figure 6C, the light

blue, gray, and light red lines denote 200 individual stochastic

trajectories from the moderate inhibition model that committed to

lineage A, the bipotent state, and lineage B, respectively. The dark

blue line denotes the average of all trajectories committing to

either lineage A or the bipotent state. The dark red line denotes

the average of all trajectories committing to either lineage B or the

bipotent state.

To qualitatively compare the receptor dynamics predicted by

our model to those seen in experiments, we compared our

simulations to lineage-specific receptor expression from micro-

array data (graciously provided from Bruno et al. [37] by Tariq

Enver, University of Oxford); the data were collected at multiple

time points during differentiation of multipotent myeloid progen-

itors (FDCP-mix, which are CMP-like progenitors [37]) across

Figure 4. External regulation of stochastic transitions. Three different LA|LB combinations (0|350, 100|250, and 175|175) were run using the
stochastic version of the model with no, moderate, or strong inhibition conditions and the system was allowed to reach steady state. ATFA and ATFB

values from 10,000 runs for each condition are plotted here as three-dimensional histograms. With strong inhibition, the system cannot achieve the
intermediate, bipotent state that is seen with moderate inhibition. When induced with only one ligand (e.g., 0|350), the initial population, for all
inhibition conditions, commits predominantly to the lineage corresponding to that ligand. When the uncommitted state is stimulated with equal
values of ligand (175|175), the no inhibition condition primarily results in a state that corresponds to high activation of both transcription factors
(unlikely to be a biologically relevant state for cell-commitment decisions); the strong and the moderate inhibition conditions result in significant
population of all of the available states except the uncommitted state. When one ligand value is higher (e.g., 100|250), in the presence of inhibition,
the majority of the cells committed to the lineage corresponding to the higher ligand concentration. The number next to each individual population
denotes the percentage of the total population when treated with the given combination of LA and LB.
doi:10.1371/journal.pcbi.1000518.g004
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three lineages (neutrophil, erythrocyte, and megakaryocyte). The

relative mRNA expression levels of the lineage-specific receptors –

erythropoietin receptor (EPOR), granulocyte colony-stimulating

factor receptor (GCSFR), and thrombopoietin receptor (TPOR) –

were extracted from the processed microarray data. Since the

phenotypic heterogeneity was also quantified at each time point in

these microarray experiments [37], we were able to perform a

simple deconvolution to estimate the contribution of each distinct

cell type to the overall signal (see Supplementary Table S4).

Therefore, the receptor expression trajectory for a given lineage in

Figures 6D–F represents the average of only those multipotent,

bipotent, and committed cells that lie along that specific lineage

path (as is also the case for the average computational trajectories

shown in bold lines in Figures 6B–C) and excludes those cells that

belong to other commitment paths (for example, the TPOR

trajectory includes blasts and megakaryocytes, but excludes

erythroblasts, erythrocytes, and neutrophils which were also

present in the in vitro cultures used for microarray analysis). The

level of receptor was normalized to the basal levels in the CMP

state. The error bars show the standard error of the mean from

three independent experiments.

We constructed phase plots of EPOR and GCSFR showing the

receptor trajectories (t = 0 to 7 days) as CMPs differentiate into

either erythrocytes or neutrophils (Figure 6D). Induction of CMPs

with EPO or GCSF drives cell commitment to the erythrocytic

(red line) or the neutrophilic (green line) lineage, respectively [37].

During neutrophil commitment, GCSFR expression is significant-

ly upregulated, but EPOR expression stays at or below basal levels;

conversely, during erythrocyte commitment, EPOR expression is

increased and GCSFR expression is unchanged or slightly

reduced. Figure 6E shows the experimental phase plot of TPOR

and GCSFR expression when CMPs are induced to differentiate

into megakaryocyte or neutrophil lineages by stimulating with

TPO (blue line) and GCSF (green line), respectively. As in

Figure 6D, receptor expression corresponding to the induced

lineage is upregulated and the receptor expression corresponding

Figure 5. Time trajectories during lineage commitment. A. Phase plot of total transcription factor (ITF+ATF) for the four steady-state
populations (uncommitted, A, B, and bipotent). B. Phase plot of active transcription factor (ATF). C. Time trajectories for ATFA in panel B for the
transition from the uncommitted cell to committed A state (blue line) and bipotent state (orange line) and from the bipotent state to committed A
state (green line). The error bars represent the standard deviation of the mean. The red line shows the level of ATFB as the bipotent cell transitions to
the committed A state. D. Phase plot of total receptor (R+C). E. Phase plot of active complex (C). F. Time trajectories for CA in panel E for the transition
from the uncommitted cell to committed A state (blue line) and bipotent state (orange line) and from the bipotent state to committed A state (green
line). The error bars represent the standard deviation of the mean. The red line shows the level of CB as the bipotent cell transitions to the committed
A state. In the phase plots, the arrows indicate the direction of commitment (averaged over 200 stochastic runs each): from the uncommitted state,
the three possible commitment trajectories lead to pure lineage A, pure lineage B, and the bipotent state. In separate simulations starting with the
bipotent state and with initial ligand concentrations sufficient to destabilize this state, the two possible commitment trajectories lead to pure lineage
A and pure lineage B. Each trajectory has several nodes and the number at each node denotes the average time (in hours) it takes to reach the node
from the initial state. Each black dot in A, B, D and E represents the endpoint (100,000 min) of an individual stochastic trajectory. The initial conditions
for the trajectories are provided in the Supplementary Text S1.
doi:10.1371/journal.pcbi.1000518.g005
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to the other lineage is unchanged or even slightly downregulated.

Figure 6F shows the phase plot from the differentiation

experiments to erythrocytic and megakaryocytic lineages. Induc-

tion of CMPs with Epo or Tpo drives CMPs to either the

erythrocytic (red line) or the megakaryocytic (blue line) lineage.

Interestingly, during erythrocyte and megakaryocyte commitment,

EPOR and TPOR are co-upregulated; however, the observed

increase was higher for the receptor corresponding to the specific

lineage that was predominantly generated. Statistical analysis was

performed to deduce positive receptor correlation for the receptor

pairs in Figures 6D, 6E, and 6F by comparing the overall slope of

each trajectory (inverted to lie along the x-axis, if appropriate) at

both the 3-day and 7-day time points to a value of zero (no

correlation) by a one-sample, one-tailed t-test. The correlation in

receptor expression for EPOR-GCSFR and TPOR-GCSFR was

either negative or not statistically significant. However, the EPOR-

TPOR receptor pair showed a positive correlation with statistical

significance. The symbols in Figure 6F denote the 3-day ({, *) and

7-day ({, #) time points during erythrocyte and megakaryocyte

differentiation from the CMP (p-values: { (0.027), * (0.009), {
(0.060), # (0.008)).

Comparing experimental results to the model simulations, we

note that the trajectories in the erythrocyte-neutrophil (Figure 6D)

and neutrophil-megakaryocyte (Figure 6E) plots compare well with

the strong inhibition model (Figure 6B) and the trajectories from

the erythrocyte-megakaryocyte plot (Figure 6F) show agreement

with the moderate inhibition model (Figure 6C). This inference is

validated by the widely accepted observation that the transcription

Figure 6. Comparison of multilineage commitment model to experimental data. A. The classical model of hematopoiesis is given here as a
branching diagram showing the differentiation paths from the common myeloid progenitor (CMP) to four distinct myeloid lineages (megakaryocyte,
erythrocyte, neutrophil, and macrophage) via bipotent progenitors (GMP – granulocyte/macrophage progenitor and MEP – megakaryocyte/
erythrocyte progenitor). Potential non-canonical routes of commitment, bypassing the bipotent state, are shown as gray arrows. B. Stochastic
simulations of total receptor levels under strong competitive inhibition. Light green and red lines indicate the individual trajectories from the
uncommitted cell to lineages A and B, respectively. The dark red and green lines denote the averaged trajectories of all stochastic runs. C. Stochastic
simulation for total receptor levels under moderate competitive inhibition condition. Light blue, light red, and gray lines indicate the individual
trajectories from the uncommitted cell to A, B, and the bipotent state, respectively. The dark blue line denotes the average value of all stochastic runs
that commit to either lineage A or the bipotent state; the dark red line denotes the average value of all stochastic runs that commit to either lineage
B or the bipotent state. D. Trajectories from microarray data showing upregulation of EPOR and GCSFR during erythrocyte (red) and neutrophil
(green) commitment from the CMP, respectively. E. Trajectories from microarray data showing upregulation of TPOR and GCSFR during
megakaryocyte (blue) and neutrophil (green) commitment from the CMP, respectively. F. Trajectories from microarray data showing upregulation of
EPOR and TPOR during erythrocyte (red) and megakaryocyte (blue) commitment from the CMP. The trajectories in D–F represent the average of the
multipotent, bipotent, and mature cells for a single lineage (see Supplementary Table S4), thus enabling a direct comparison to the model
simulations. The error bars in D–F show the standard error of the mean. The symbols in F denote the 3-day ({, *) and 7-day ({, #) time points during
erythrocyte and megakaryocyte differentiation from the CMP, respectively. Statistical analysis was performed to deduce positive correlation in
receptor pair upregulation by comparing the overall slope of each trajectory (inverted to lie along the x-axis, if appropriate) at both the 3-day and
7-day time points to a value of zero (no correlation) by a one-sample, one-tailed t-test (p-values: { (0.027), * (0.009), { (0.060), # (0.008)).
doi:10.1371/journal.pcbi.1000518.g006
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factors for the erythrocytic and megakaryocytic lineages are

strongly cross-antagonistic to the transcription factor for the

neutrophil lineage [11–13]. Other than evolutionary constraints,

the model suggests that the strength of the transcriptional cross-

antagonism can dictate whether two distinct lineage-specific

receptors (and the corresponding lineage-specific transcription

factors) can be co-upregulated, which in turn can influence the

nature of the instructive, possibly conflicting, cues that the cell

receives. This paradigm may highlight different modes of receptor

regulation, and corresponding transcriptional activity, in various

stages and branches of hematopoiesis (e.g., Figure 6A).

Discussion

Mathematical models of lineage commitment during hemato-

poiesis have generally analyzed cell-fate decisions from an intrinsic

standpoint. Here, we show how extrinsic regulation can play a role

in instructing lineage choice and, furthermore, how a cell might

process and respond to conflicting extracellular cues. It has been

extensively debated whether cytokines play an instructive or

permissive role during lineage commitment. In this work, we show

that cell-fate decisions can be stochastic but that external cues can

strongly bias this stochasticity and instruct cells to specific lineages.

A recent publication [20] definitively demonstrated an instructive

role for cytokines in hematopoiesis. This strongly underscores our

need to understand how extracellular cues, either in isolation or in

combination, influence hematopoiesis. Our model also suggests a

possible alternative mode of commitment, whereby an uncom-

mitted multipotent progenitor may commit directly to a mature

lineage without transitioning through a bipotent state. This

potential plasticity has been seen experimentally in HSCs [4]

and multipotent progenitors [2].

The initial cell state that is modeled here is a common

multipotent progenitor that expresses multiple lineage-specific

receptors and transcription factors at low levels and is capable of

differentiating along several lineages. In particular, two lineages

that may exhibit different levels of transcriptional cross-antago-

nism are analyzed. The lineage commitment decision is modeled

to be driven by the accumulation of the functionally active form of

the lineage-specific transcription factor. This event is driven

through two positive feedback loops, a synthesis loop that produces

the transcription factor and a regulatory loop that aids in the

activation of the transcription factor. This two-step positive

feedback mechanism provides a means to externally regulate the

classical autofeedback loop and can be of general significance in

cell-fate decision models. In our lineage commitment model, the

regulatory loop targets the cell-surface receptor, but analogous

topologies may be seen in systems where the regulation is achieved

extracellularly (upregulating the ligand) or intracellularly (upregu-

lating a rate-limiting enzyme in the signaling pathway). Also, it

should be noted that even though we have considered the external

stimuli to be cytokines, they may also be cell-cell interactions, cell-

matrix interactions, mechanical cues, or other diffusible factors.

Through steady-state response plots, we have shown that the

system exhibits ultrasensitivity to ligand and can achieve multi-

stability in active transcription factor levels (Figure 3). Here,

ultrasensitivity to ligand confers switch-like behavior in cell-fate

specification. Multistability provides memory to both the interme-

diate (bipotent) and committed cell states, enabling the system to

robustly sustain its current state even when external stimuli are

reduced to sub-threshold levels. Although the system modeled here

represents a reversible switch, irreversibility during differentiation

can be achieved by epigenetic means such as chromatin

remodeling.

In support of the stochastic theory of commitment, our model

suggests that, irrespective of the strength of external factors,

intrinsic noise in transcriptional networks can switch a significant

percentage of cells to a committed state or the bipotent state;

however, in support of the instructive theory, extrinsic cues can

still strongly bias the majority of the uncommitted cell population

to the final state induced by the higher ligand signal, as seen in

Figure 4. This figure also highlights how the same network

topology can generate both binary and ternary cell-fate decisions.

For example, strong inhibition enables only a binary cell-fate

choice; however, simply relaxing the strength of the inhibition to

moderate levels enables three possible fates from the uncommitted

state.

Our model suggests a new paradigm that integrates classical and

alternative modes of lineage commitment and also accommodates

both stochastic and instructive roles in hematopoiesis (Figure 7). It

is generally appreciated that upstream commitment events are

more stochastic in nature while downstream events are more

instructive. Stochastic events in HSCs and multipotent progenitors

can potentially lead to the generation of all mature cell types,

explaining ‘normal’ hematopoiesis even when a lineage-specific

receptor is knocked out [16,18] (although other non-canonical

extrinsic cues may also play compensatory roles). In parallel,

Figure 7. Proposed paradigm for hematopoiesis. Extrinsic (instructive) and intrinsic (stochastic) cues can both play roles in commitment of
progenitor cells. In addition to classical pathways of commitment (solid arrows), bypass mechanisms have been reported for HSCs [4] (dashed green
arrow) and our model suggests that this may be possible for multipotent progenitors as well (dashed purple arrow).
doi:10.1371/journal.pcbi.1000518.g007
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instructive cytokine signaling in multipotent progenitors and

bipotent progenitors, which can strongly bias and accelerate

lineage commitment [20], may drive stress responses and restore

homeostasis [15]. Furthermore, emerging alternative commitment

paths suggest that decision-making in hematopoietic progenitors

need not be purely binary. HSCs have been shown to bypass

multipotent progenitors and directly produce bipotent MEPs [4]

and common lymphoid progenitors appear to directly generate T

cells, B cells, and NK cells [2]. The model presented in this work

suggests a framework in which both binary and ternary decisions

may be possible in multipotent CMPs. Such bypass mechanisms in

commitment may also provide important redundancies that ensure

mature cell production if a specific intermediate state becomes

dysregulated.

Many of the predictions from our minimal, multipotent

commitment model can be experimentally verified. Multipotent

and bipotent progenitors can be identified and isolated with multi-

color fluorescence-activated cell sorting, using specific cell-surface

markers for the lineages of interest. Cytokine-induced time course

experiments conducted on these bipotent cells can corroborate

whether they reach mature states faster than the corresponding

multipotent progenitors. Experiments with conflicting extracellular

ligand cues can be useful in determining the strength of the

instructive cues, the degree of transcriptional cross-antagonism

between lineages, and the existence of a bipotent progenitor. For

example, to analyze the differentiation paths of erythrocytes and

neutrophils from a common progenitor, FDCP-mix cells can be

induced with both Epo and GCSF and the trajectories of the

expression of the lineage-specific transcription factors (GATA1,

PU.1) and receptors (EPOR, GCSFR) can be determined by

sensitive flow cytometry measurements. Groundbreaking new

bioimaging techniques which enable observation of single cells

over an extended period [20] should mitigate technical difficulties

that have hampered such analyses and should help to further

elucidate the roles of extrinsic and intrinsic regulation on cell

commitment decisions.

Methods

The minimal model shown in Figure 1 represents a regulatory

network for lineage commitment of a multipotent progenitor to

lineages A and B. The multipotent progenitor expresses basal

levels of both lineage-specific transcription factors TFA and TFB

(present in their inactive forms ITFA and ITFB) and lineage-

specific receptors RA and RB before the addition of ligand.

Addition of LA to the system leads to receptor-ligand complex CA

formation. Complex CA activates signaling pathways that lead to

the activation of ITFA to form ATFA. Even though a mechanistic

understanding of how this occurs via cytokine-mediated signaling

has not fully emerged, we have modeled it to be rapidly regulated

at the protein level (e.g., by post-translational modification). There

may be other mechanisms involved (e.g., transcriptional and

translational regulation) that are not considered here. The

activated form of the transcription factor, ATFA, upregulates the

transcription of its own gene through a positive autoregulatory

feedback loop, enhancing production of ITFA. ATFA also

upregulates the expression of the lineage-specific receptor RA

forming a ligand-regulated positive feedback loop. The model also

accounts for basal synthesis of RA and ITFA, degradation of RA,

CA, ITFA and ATFA and inactivation of ATFA (not explicitly

shown in Figure 1). For simplicity, we consider the network

topology in the commitment of the two lineages to be symmetric:

the reactions involved in the activation of ITFB to ATFB by ligand

LB and the formation of the two positive feedback loops are

analogous to those described in lineage A. To account for the

cross-antagonism between the transcription factors TFA and TFB,

ATFA and ATFB are modeled to downregulate the induced

expression of [ITFB, RB] and [ITFA, RA] by competitively

inhibiting the binding of ATFB and ATFA to the regulatory

domains present upstream of their lineage-specific receptor and

TF genes. This multilineage commitment network led to a

deterministic model with eight ordinary differential equations

(ODEs), shown in Supplementary Table S1. The initial conditions

and the values of the rate constants are provided in Supplementary

Table S2. A single-compartmental homogenous system is assumed

and the pathways involved in TF activation and in the synthesis of

TF and receptor are lumped as single-step reactions.

Stochastic version of the deterministic model
The Gillespie stochastic algorithm was employed to simulate a

stochastic version of the ODE model [39]. The stochastic reactions

and their probability functions are given in Supplementary Table

S3. Conversion of the deterministic model to its stochastic form

was performed by using composite Michaelis-Menten type rate

expressions in the propensity function instead of decomposing the

minimal model into a series of elementary reactions; this was done

to directly compare the dynamics of both the approaches [40,41].

A detailed description of the stochastic simulations, including the

parameter values, initial conditions, and the number of runs for

Figures 4, 5, and 6, is provided in the Supplementary Text S1.

Computational methods
The ODE-based deterministic model was solved using the

numerical stiff solver ode15s in MATLAB (The Mathworks,

Natick, MA). Time course, steady-state response and multistability

plots were also created using MATLAB. The Gillespie algorithm

for the stochastic model was programmed in C++. Histograms,

phase plots and time trajectories of the stochastic simulations were

created using the open-source statistical package R.

Microarray analysis
Normalized microarray data from Bruno et al. [37] were

generously provided by Tariq Enver (University of Oxford). The

detailed experimental procedures for the microarray experiments

and analyses are provided elsewhere [37]. EPOR, GCSFR and

TPOR mRNA levels extracted from the data were further

normalized to their basal levels present in the uninduced FDCP-

mix. The inherent heterogeneity in the differentiating populations

at each time point was overcome by weighting the contribution of

each cell population to the average expression of the gene of

interest. A detailed description and analysis of the weighting

function used and the fitted parameters for the individual genes

are provided in Supplementary Table S4.
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Table S4 Parameter fitting of microarray data

Found at: doi:10.1371/journal.pcbi.1000518.s006 (0.09 MB PDF)

Acknowledgments

We are grateful to Tariq Enver (University of Oxford) for sharing

microarray data and to Najaf A. Shah and Shamit Soneji for helpful

discussions.

Author Contributions

Conceived and designed the experiments: SP CAS. Performed the

experiments: SP. Analyzed the data: SP CAS. Wrote the paper: SP CAS.

References

1. Eckfeldt CE, Mendenhall EM, Verfaillie CM (2005) The molecular repertoire of

the ‘almighty’ stem cell. Nat Rev Mol Cell Biol 6: 726–737.

2. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common
lymphoid progenitors in mouse bone marrow. Cell 91: 661–672.

3. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common

myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.
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