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Abstract

Theoretical models of infection spread on networks predict that targeting vaccination at individuals with a very large
number of contacts (superspreaders) can reduce infection incidence by a significant margin. These models generally assume
that superspreaders will always agree to be vaccinated. Hence, they cannot capture unintended consequences such as
policy resistance, where the behavioral response induced by a new vaccine policy tends to reduce the expected benefits of
the policy. Here, we couple a model of influenza transmission on an empirically-based contact network with a
psychologically structured model of influenza vaccinating behavior, where individual vaccinating decisions depend on
social learning and past experiences of perceived infections, vaccine complications and vaccine failures. We find that policy
resistance almost completely undermines the effectiveness of superspreader strategies: the most commonly explored
approaches that target a randomly chosen neighbor of an individual, or that preferentially choose neighbors with many
contacts, provide at best a 2% relative improvement over their non-targeted counterpart as compared to 12% when
behavioral feedbacks are ignored. Increased vaccine coverage in super spreaders is offset by decreased coverage in non-
superspreaders, and superspreaders also have a higher rate of perceived vaccine failures on account of being infected more
often. Including incentives for vaccination provides modest improvements in outcomes. We conclude that the design of
influenza vaccine strategies involving widespread incentive use and/or targeting of superspreaders should account for
policy resistance, and mitigate it whenever possible.
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Introduction

Seasonal influenza imposes a significant health burden: in the

United States alone there are an estimated 25–50 million cases per

year, with 30,000 deaths and numerous hospitalizations, especially

among the elderly and individuals with severe medical conditions

[1,2]. Vaccination generally commences in September prior to the

influenza season and is non-mandatory for the general public [1–

4]. The question of whether to focus efforts on increasing vaccine

coverage in children (who spread a disproportionate amount of

infection) or the elderly (who suffer the greatest health burden

from infection) has received significant attention in the transmis-

sion modelling literature [5–7]. Much of this work indicates that

immunizing children might be a more effective way to reduce

overall disease burden in the population. However, vaccine

coverage has not significantly expanded in children. This leaves

room for considering alternative strategies.

Many infectious diseases exhibit a highly heterogeneous form of

transmission known as ‘‘superspreading’’, wherein a minority of

individuals are responsible for the majority of secondary infections

[8–12], and it is possible that influenza also exhibits this property

[13]. In a contact network, a superspreader can be represented as

an individual with a very large number of contacts. Network-based

infectious disease transmission models show how targeting super-

spreaders can be a highly effective (and efficient) form of infection

control [14–20]. This suggests there may be value in exploring the

possibility of immunizing influenza superspreaders, hence the

focus of our analysis in this paper.

Transmission models generally treat vaccine coverage as a fixed

control parameter [21], requiring the implicit assumption that

desired vaccine coverage can always be achieved. However, public

health authorities do not decide influenza vaccine coverage because

they do not control individual vaccinating decisions. Instead, they

control decisions such as where to set up immunization clinics, how

to disseminate information, and whether to offer incentives to get

vaccinated. Using a theoretical model to address factors that public

health actually controls requires incorporating individual vaccinat-

ing behavior into the model. However, models of superspreader

vaccination strategies usually assume that targeted individuals will

always agree to be vaccinated to an arbitrarily specified level of

vaccine uptake [14–16,18].

Incorporating behavior into transmission models is increasingly

important in an age of vaccine exemption, especially for influenza

vaccine, for which coverage is typically suboptimal [22,23].

Combining incentive use with targeting of influenza super-

spreaders could potentially be very effective, but behavioral

feedbacks need to be considered in program design.

Previous research has integrated behavioral modelling with

transmission modelling to explore aspects of vaccinating behavior
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for various vaccine-preventable infections (see Refs. [24–26] for

reviews). Earlier approaches used compartmental models, but

more recently, researchers are also using simulation models where

transmission of infection and/or information occurs through social

contact networks [27–31]. Transmission patterns can change

significantly–even qualitatively–when transmission occurs through

a network rather than in a homogeneously mixing population, and

vaccinating behavior can change accordingly. The proliferation of

recent papers considering vaccinating behavior on social contact

networks prevents our providing a comprehensive survey here.

However, to our knowledge, these previous models have not

analyzed how behavioral feedbacks influence the effectiveness of

vaccination strategies that target superspreaders, nor have most of

them explored how incentive use influences vaccination behavior.

Here, we analyze an agent-based simulation model that couples

seasonal influenza transmission on an empirically-based contact

network with a psychologically realistic model of individual

vaccinating decisions. We explore the effectiveness of incentive

programs and targeted superspreader vaccination strategies. Our

objectives are to understand: 1) whether superspreader vaccination

strategies remain effective when behavior is accounted for; 2)

whether economic incentives improve the effectiveness of such

strategies; and 3) how perceived vaccine efficacy and the resulting

vaccinating decisions are determined by interactions between

network structure, transmission heterogeneity, and vaccine-disease

dynamics.

Model

Population structure
For our baseline analysis we generated ten contact networks of

10,000 nodes each, by sampling subnetworks from a large contact

network derived from empirical contact patterns in Portland,

Oregon [32–34]. We ensured that the resulting node degree

distribution and clustering coefficient matched that of the full

empirical network (see Text S1). For influenza, susceptible

individuals are recruited primarily through immunity waning,

hence we assumed that the networks remained static, with no

immigration or emigration. In our sensitivity analysis we explored

hypothetical networks with exponential and Poisson node degree

distributions.

The contact network contains individuals representing the full

spectrum of neighborhood sizes and does not impose a dichotomy

between superspreaders and others. However, to assist with

interpreting the output of our simulations, we defined a super-

spreader as an individual who infected more than the 95th

percentile from a Poisson distribution with mean R0, where R0 is

the basic reproduction number for the ‘‘null’’ deterministic

model’s approximation. Approximately 11% of individuals in the

empirically-based network met this definition of superspreaders

(see Text S1 for details) [11].

Disease dynamics
We assumed a Susceptible - Infected - Recovered - Vaccinated -

Susceptible (SIRVS) natural history. An infectious individual

transmits influenza to a susceptible contact (S?I) with probability

p(t) per day, where p(t) varies seasonally. An infectious individual

moves to the recovered state (I?R) after a number of days

sampled from a Poisson distribution with mean d days. A

recovered individual becomes susceptible (R?S) with probability

r per season (natural waning immunity). A vaccinated individual

becomes susceptible (V?S) with probability v per season

(vaccine waning immunity). Vaccination has no impact on

individuals who are in the naturally immune R state and the

vaccine efficacy is e. Symptomatic infection occurs with probability

y. In our sensitivity analysis, we also allowed for heterogeneity

with respect to the infectious period d and the infectivity p(t). This

creates additional sources of heterogeneity that may cause some

individuals to become superspreaders. More details appear in

Table 1, Table S1 and Text S1.

Vaccinating behavior
We structured the vaccination decision-making submodel

according to known determinants of influenza vaccine acceptance.

Empirical studies have identified that perceived vaccine effective-

ness, previous acceptance of vaccine, past experiences with

infection and vaccine complications, social influence, and

perceived susceptibility are correlates of vaccine acceptance

[35,36]. Although the data in these studies are not detailed

enough to favor particular functional forms governing these

effects, it is nonetheless possible to construct functional forms that

are qualitatively consistent with them, which is also the approach

adopted in some other models [37].

The payoffs for strategy choices are given by

PV (t)~L{cvac(t){½1{e(t)�cinf (t) ð1Þ

PN (t)~L{cinf (t), ð2Þ

where PV (t) is the payoff to vaccinate for season t, PN (t) is the

payoff not to vaccinate, L is the baseline payoff (a state of perfect

health), e(t) is the perceived vaccine efficacy, cvac is the cost of

vaccinating and cinf (t) is the perceived infection cost [37].

The perceived infection cost cinf (t) incorporates perceived

susceptibility and past infection experiences. Perceived suscepti-

bility is expressed through past influenza incidence in the

population. Past infection experience is expressed through the

time since the individual’s last perceived infection, TI . Hence

Author Summary

Superspreaders are the small number of individuals
responsible for the majority of infections. Theoretical
models have shown how vaccinating superspreaders can
be a highly efficient way to control disease. However,
these models neglect behavior by assuming that super-
spreaders will always agree to be vaccinated. This is a
problematic assumption for influenza vaccination, which is
voluntary in most populations, and for which vaccine
coverage is often suboptimal. We developed a model of
seasonal influenza transmission on a network of individ-
uals who make decisions about whether or not to get
vaccinated based on known determinants of vaccine
uptake, such as personal infection history, perceived
vaccine risks, and social influences. We found that, because
of feedbacks between disease spread and individual
vaccinating behavior, attempts to boost vaccine coverage
in superspreaders through the use of incentives or
recruiting by social contacts are almost completely
undermined by such feedbacks. For example, higher
vaccine uptake in superspreaders reduces influenza inci-
dence, which in the next season reduces the perceived
need for vaccination among non-superspreaders, who
then do not become vaccinated as much. Our results
suggest that the design of potential strategies to reach
influenza superspreaders should account for behavioral
feedbacks, since they may blunt policy effectiveness.

Policy Resistance Undermines Targeted Vaccination
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cinf (t)~lcinf e{mTI z(1{l)cinf

Xt{1

j~0

e{mjI(t{1{j), ð3Þ

where I(t) is the influenza incidence in season t, cinf is the penalty

for being infected, l controls the relative importance of personal

history versus population history, and m is the memory decay rate.

Severe outcomes are implicitly accounted for in cinf , which

represents the combined foreseen risk of infection and any

resulting complications. Thus, this equation captures how

individuals use past experiences to guide future vaccinating

decisions.

The perceived vaccine efficacy e(t) for an individual in season t
generally differs from actual efficacy e and is given by

e(t)~

(1{e)e(t{1) vaccinated & infected

e(t{1)e{mz½1{e{m�e vaccinated & not infected

e(t{1)e
{m

j z½1{e
{m

j �e did not vaccinate

8><
>:

ð4Þ

where e controls how quickly perceived vaccine efficacy drops

upon a perceived vaccine failure, e is the maximum perceived

vaccine efficacy, and jw1 is a decay factor which causes memory

of a previously ineffective vaccination to fade at a slower rate

(m=j) than a successful vaccination, since they have less

information with which to update their impression [37]. The

asymmetry between an event where individuals vaccinate and

become infected versus an event where they did not vaccinate

arises because of the distinction between ‘‘evidence of absence’’

Table 1. The values and descriptions of the parameters used in the simulations.

Parameter Description Value Reference

N Number of individuals in network 10000 assumption

RED
0

Null Deterministic Basic Reproductive Value (empirically-based) 3.45 calibrated **; [40,53–55]

ps Change in Seasonality Amplitude (empirically-based) 0.03 [53,56]

�tt Shift in Seasonality function (empirically-based) 120 calibrated**

�II Number of Exogenous Infections (empirically-based) 11 calibrated**

y Probability of influenza being symptomatic 0.70 [57]

d Average number of days to move from state I to state R (recovery rate) 5 [44,57–59]

r Probability of moving from state R to state S, per season 0.25 [58,60,61]

SaT Average incidence for niILI, per day 0.00035{ [62]

SSaTT Variance of incidence for niILI 12.25|10{10 calibrated{{

b Probability of an individual mistaking niILI for influenza 0.50 assumption

�VV Number of individual’s contacted for vaccination, per day 20 assumption

v Probability of moving from state V to state S, per season 0.50 [63]

e Vaccine efficacy 0.70 [41,64]

c Probability of experiencing vaccine complications, per vaccination 0.01 [45]

$=QALY Cost per Quality Adjusted Life Years $50,000 [43]

L Baseline payoff $50,000 assumed

U Monetary value of the incentive $20,$50 [41,44–46,49,50,65]

m Memory decay rate, per season 0.30 calibrated

e Minimum perceived vaccine efficacy 0.65 calibrated

e Maximum perceived vaccine efficacy 0.90 assumption

j Vaccine efficacy memory decay rate factor 15 assumption

cvac Minimum cost of vaccination $45 e[41,44–46]

cvac Additional cost of vaccination due to a complication $115 assumption [41,44–46]

cinf Maximum cost of infection $172:5 [43]

l Weight assigned to personal experiences 0.50 assumption

s Probability that the individual imitates 0.50 assumption

n Strength of preference to imitate contacts 0.50 assumption

b Parameter for vaccine uptake equation (empirically-based) 3950 calibrated

The values were calibrated for each network using the passive vaccination approach.
* The values m, b and e were calibrated such that the average annual vaccine coverage on each network was approximately 35% using appropriate values.
**R0 was used in calibrating influenza incidence (15%) using values similar to influenza’s R0 [40–42] on each network such that the average peak of prevalence

occurred between January 1st and February 28th [66].
{The value for SaT was calculated such that the annual incidence of non-influenzal influenza-like-illness (niILI) was 12%, corresponding to the ratio of niILI incidence to
influenza incidence estimated in [62] and multiplied by the average annual influenza incidence (15%) [37,40–42].
{{The variance for a was calibrated such that the log-normal distribution best resembled the shape of a normal distribution.
ecvac was computed as the cost of the actual vaccination $20 and plus the time required to receive the vaccination $25.
doi:10.1371/journal.pcbi.1002945.t001

Policy Resistance Undermines Targeted Vaccination
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and ‘‘absence of evidence’’. Only symptomatically infected

individuals update their values of TI and e(t).

The cost of vaccination also incorporates past experience:

cvac(t)~cvaczcvace{mTC , ð5Þ

where cvac represents time and economic costs, TC is the time

since the last perceived vaccine complication, and cvac is the

perceived cost of a vaccine complication. The probability an

individual perceived a complication upon vaccinating is c.

We incorporate social influence through a learning process.

Empirical studies of determinants of vaccine acceptance suggest

that individuals form opinions through communicating with their

peers and sharing personal experiences [35,36]. Hence, before

each vaccination season, an individual engages in a social learning

process with probability s, sampling another individual at random

and replacing their TI , TC and e(t) with the average of their pre-

existing value and that of the sampled individual, weighted by s
and 1{s respectively. This captures both the tendency to

personalize the experiences of others, as well as habit, since

strategies change more slowly as s?0. This mechanism of social

learning is similar to that used in a previous behavior-incidence

model that was validated against empirical data [38].

We also account for the impact of non-influenzal influenza-like-

illness (niILI) on decision making, since niILI can be mistaken for

true influenza and thus alter TI and e(t). The probability an

individual experiences niILI each day is a, where a is sampled

from a log-normal distribution parameterized from empirical data

on niILI incidence. An individual mistakes niILI for true influenza

with probability b, in which case TI and e(t) are updated

accordingly (see Text S1 for details).

Vaccination strategies
Passive Vaccination (PV) is the baseline strategy corresponding

to how most influenza vaccination programs are designed:

vaccines are made available (e.g. at drug stores, public health

clinics, doctors’ offices), opening times are widely disseminated,

and individuals seek out vaccination on their own, without being

individually recruited by public health.

To capture this, we assume an individual decides to get

vaccinated for the current season with probability W(PV{PN ),
which is a sigmoidal function of PV{PN such that W(0)~0:5,

W(?)~1, and W({?)~0 (see Text S1). We assume individuals

can be vaccinated only between September 1st (t~0) and

December 31st [4]. Those who choose to vaccinate have their

times of vaccination distributed throughout this period according

to a process described in Text S1. If an individual perceives having

been infected by influenza before it is their time to become

vaccinated, they do not seek vaccination.

In addition to making PV available, public health may also

implement one of four pro-active strategies: 1) random vaccination

(RV) which targets a randomly chosen individual; 2) nearest

neighbor vaccination (NN), which targets a randomly chosen

individual and one of their neighbors (i.e. contacts) 3) chain

vaccination (CV), which either targets a randomly chosen

individual or a neighbor of an individual targeted the previous

day; and 4) improved nearest neighbor vaccination (INN) which

targets a randomly chosen individual and one of their most

popular neighbors. Under INN, ‘‘popular’’ means having the

highest degree, and we assume imperfect knowledge of a

neighbor’s neighborhood size. We refer to NN, CV and INN as

superspreader strategies, as their objective is to target individuals

with a large number of contacts [15,16,18,39].

The number of individuals targeted by public health each day is

held constant at �VV for all strategies. In each case, if the targeted

individual did not already decide to vaccinate under PV, they

reconsider: they undergo the social learning process again and

agree to be recruited for vaccination with probability W(PV{PN ).
In our sensitivity analysis we also ran simulations where each

targeted person was automatically recruited, corresponding to a

situation where behavior is neglected (NB). More details on the

pro-active strategies appear in Text S1.

Incentives
We allowed for the use of economic vaccination incentives

under the pro-active strategies. Each time an individual is targeted

they receive an incentive of value U if they get vaccinated during

the current season. An individual can receive multiple incentives.

Hence superspreaders should receive more incentives, since they

are likely to be targeted multiple times under NN, CV and INN.

We considered U~$0 (baseline), $20, and $50. With incentives,

the probability of vaccinating becomes a function of

PV{PNznU (where n is the number of times they have been

targeted) instead of PV{PN . In order to express PV , PN and U in

the same payoff currency, cinf , cvac, and cvac were expressed in

quality-adjusted life years (QALYs) (see Text S1).

Model calibration and simulation design
For each of the ten networks, the transmission probability and

amplitude of seasonality were calibrated so that the average

seasonal incidence of influenza in the absence of vaccination was

15% [40–42], and prevalence peaked between January and

February. cinf was based upon utility scores derived from patient

surveys [43]. cvac was based on published vaccine costs [41,44–46].

m and e were calibrated such that the average annual vaccine

coverage was 35%. For a 70% efficacious vaccine, vaccine

coverage of 35% reduces seasonal influenza incidence by about

33% (Table 2), in line with what is expected for an imperfect

vaccine covering one-third of the population. Examples of

calibrated time series of annual coverage and weekly incidence

appear in Figure S1. For each network we generated 400

realizations of 150 years each, discarding the first 125 years to

avoid transient effects.

Results

In the absence of incentives, the improved nearest neighbor

strategy (INN) is the most effective in reducing influenza incidence,

followed by chain vaccination (CV), nearest neighbor (NN),

random vaccination (RV), and the baseline strategy of passive

vaccination alone (PV) (Table 2).

This relative ordering is to be expected, since previous research

shows the advantages of targeting individuals with many contacts

[14,16–20]. However, feedbacks due to the dependence of

vaccinating decisions on infection history generates some surprises

[26,38,47,48]. In this system, the feedbacks manifest as policy

resistance [48], where the response of the population to an

intervention (in this case, pro-active strategies and incentives) tends

to reduce the effectiveness of the intervention. In our model

simulations, policy resistance arises because increased vaccine

coverage in one season reduces incidence due to both direct and

indirect (herd) protection, which in turn disincentives vaccination

in future seasons, since decisions are based partly on infection

history and perceived vaccine failure/complications. An additional

source of policy resistance in this system is the tendency for pro-

active strategies to waste recruitments on individuals who already

decided to get vaccinated under passive vaccination, or who have

Policy Resistance Undermines Targeted Vaccination
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already been infected (this is a problem especially among

superspreaders, who are both targeted more often and tend to

get infected earlier in the season) (Table S2). On average, only

1:9% of the population was vaccinated through being contacted

through a nearest neighbor under INN; whereas under NN and

CV the percentage was 2%.

Policy resistance almost completely undermines the benefits of

using pro-active strategies: passive vaccination (PV) reduces

seasonal influenza incidence from 15% to 10%, but implementing

improved nearest neighbour vaccination (INN) on top of that

provides only slight additional reductions, down to 9:5%. The

other pro-active strategies (NN, CV, RV) are even less effective,

reducing incidence to 9:6% or 9:7% (Table 2). Moreover, among

pro-active strategies, superspreader strategies are only marginally

more effective than random vaccination (RV) (Table 2). As

expected, the superspreader strategies improve vaccine coverage

among superspreaders. However, this is offset by lower coverage

among non-superspreaders. As a result, the average vaccine

coverage under superspreader strategies is the same as under

random vaccination (Figure 1, Table 2).

The impact of policy resistance is made clear by considering the

case where vaccinating behavior is neglected (by assuming that

targeted individuals are automatically recruited for vaccination).

Neglecting behavior (NB) significantly overestimates both effec-

tiveness and vaccine coverage for the pro-active strategies, both in

superspreaders and non-superspreaders (Table 2). Hence, without

accounting for behavior, we might have concluded that super-

spreader vaccination strategies can be significantly more effective

than their non-targeted counterpart, but if we take behavior into

account, their impact is greatly diminished.

We note that the slightly higher effectiveness of the improved

nearest neighbor strategy also arises because by preferentially

immunizing those individuals with a large number of contacts,

susceptible individuals tend to be clustered together on the

network, reducing the opportunities for the susceptible-infected

contacts necessary for transmission (Table S3).

Individuals with more neighbors were more likely to be infected

(Figure 1a)–d)). This resulted in a higher probability of them

getting vaccinated (Figure 1e)–h)), but it also caused them to

perceive the vaccine to be less effective (Figure 1i)–l)), on account

of higher infection rates causing higher rates of perceived vaccine

failure.

The effect of adding vaccinating incentives is likewise blunted by

policy resistance (Table 2). Any increase in vaccine coverage due

to use of incentives reduces incidence, which in turn disincentivizes

future vaccine uptake (especially among superspreaders under

passive vaccination, Table S4). Also, incentives often reach

individuals who are already prone to get vaccinated (Table S2).

However, modest improvements in program effectiveness due to

the use of incentives are still possible. For example, adding a $50
incentive to the improved nearest neighbor strategy reduces

influenza incidence from 9:5% to 8:3% (Table 2).

We estimated the net per capita costs (total vaccine costs plus

total infection treatment costs per member of the population) for

each strategy. The least expensive strategy was the improved

nearest neighbor strategy (INN) without incentives, at a cost of

$16:88 per capita. In contrast, passive vaccination on its own (PV)

costs $17:11 per individual because infection costs are higher

under PV than INN. These results assume the administrative costs

of vaccination are the same for passive versus pro-active strategies,

although in reality the marginal cost per vaccinated person may be

higher under pro-active strategies, especially if they involve

targeting superspreaders. We ran additional simulations where

there was an additional marginal cost for recruiting contacts (as

under NN, CV and INN), finding that the marginal cost for

recruiting contacts under INN would have to be at least $12:09
per recruited individual before INN becomes more costly than PV.

Using vaccinating incentives increased the total cost of all

strategies, but not always significantly. Further details appear in

Text S1 and Table S5.

On average, most individuals received few incentives and only a

few individuals received many incentives (Figure S2). Super-

spreaders tended to receive more incentives by virtue of having

more contacts, but the benefit of this was partly mitigated by the

fact that they are likely to be infected and/or seek vaccination

earlier in the season than individuals with few contacts, and hence

have less time to accumulate incentives.

Our baseline assumption was that superspreading is driven only

by heterogeneity in neighborhood size (node degree). Incorporating

heterogeneity into the infectious period, transmission rate, or both

did not significantly impact the results (the superspreader strategies

become slightly less effective in the absence of incentives). We

suspect these forms of heterogeneity did not make a difference

because an individual’s infectious period and infectiousness were not

correlated to their node degree, meaning that superspreader

strategies on average do not target individuals with higher

infectiousness or longer infectious period. This causes differences

in effectiveness between the various strategies to be averaged out.

Were correlations to exist between node degree on the one hand,

and infectious period or transmission rate on the other hand, then

we speculate the results could change qualitatively, either in the

direction of greater effectiveness of superspreader strategies, or

Table 2. Average influenza incidence SI(t)T and vaccine
coverage SV (t)T in the entire population, and just in

superspreaders (SI(t)SST, SV(t)SST).

Strategy SSI(t)TT SSV(t)TT SSISS (t)TT SSVSS (t)TT

No Vaccination 0:150 0 0:23 0

PV 0:100 0:35 0:17 0:39

PV+RV 0:097 0:38 0:17 0:41

PV+NN 0:096 0:37 0:16 0:43

PV+CV 0:096 0:37 0:16 0:43

PV+INN 0:095 0:37 0:16 0:46

PV (NB) 0:098 0:35 0:17 0:35

PV+RV (NB) 0:075 0:49 0:15 0:49

PV+NN (NB) 0:070 0:49 0:13 0:57

PV+CV (NB) 0:070 0:48 0:13 0:57

PV+INN (NB) 0:066 0:48 0:12 0:63

PV+RV ($20) 0:092 0:41 0:16 0:44

PV+NN ($20) 0:090 0:40 0:15 0:49

PV+CV ($20) 0:090 0:40 0:15 0:49

PV+INN ($20) 0:088 0:38 0:14 0:53

PV+RV ($50) 0:088 0:43 0:16 0:45

PV+NN ($50) 0:085 0:41 0:15 0:52

PV+CV ($50) 0:085 0:41 0:15 0:52

PV+INN ($50) 0:083 0:40 0:14 0:57

Numbers represent mean of 400 simulations (standard deviations were very
small). NB indicates that vaccinating behavior is ignored, $20 (respectively $50)
indicates that $20 (respectively $50) incentives are used. The strategies listed
without any parentheses (rows 2-6) pertain to the baseline model: strategies
with behavior but no incentives.
doi:10.1371/journal.pcbi.1002945.t002

Policy Resistance Undermines Targeted Vaccination
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lesser effectiveness, depending on whether the correlation was

positive or negative, respectively.

For simulations on the hypothetical Poisson or exponential

networks instead of the empirically-based network, we found that

the pro-active strategies continued to provide very small reductions

in incidence compared to passive vaccination alone (Table S6 and

Table S7). Results were also qualitatively unchanged when

incentives were distributed only to the recruited neighbor of

individuals targeted under NN and INN (Tables S2, S5); however,

the cost of the policies was reduced due to fewer incentives being

distributed (Table S5).

Discussion

Previous models of superspreader vaccination strategies have

shown how targeting individuals with a very large number of

contacts can be a very effective way to control infection [14–

20,39]. These models have generally assumed that targeted

individuals will always agree to be vaccinated. For voluntary

influenza vaccination, this assumption may introduce inaccuracies,

since individual choice is a major determinant of influenza vaccine

uptake [22,35,36].

Here, we developed a psychologically structured model of

influenza vaccinating behavior and coupled it to a model of

seasonal influenza transmission through an empirically-based

contact network. Our assumptions about vaccinating behavior

were based on empirical studies exploring determinants of vaccine

uptake [35,36]. We found that three of the most commonly

investigated superspreader vaccination strategies (nearest neigh-

bor, chain vaccination, and improved nearest neighbor) provided

little or no improvements over their non-targeted counterpart

(random vaccination).

This surprisingly strong policy resistance is driven by multiple

mechanisms: individuals are less likely to get vaccinated if their

most recent influenza infection was a long time ago, if they

perceive low susceptibility to infection (which can emerge from

herd immunity generated by vaccination), or if they perceive

recent vaccine complications or low vaccine efficacy. The presence

of non-influenzal influenza-like illness (niILI) reinforces this

because it can create the perception of vaccine failure. Moreover,

superspreader strategies tend to reach individuals who are already

more prone to get vaccinated without the need for active

recruitment on account of their history of more frequent

infections. Contact-based recruiting was also stymied by the fact

that neighbors tended to share similar experiences and informa-

tion, which led to neighbors more often than not sharing the same

opinion regarding vaccination [27,37].

Figure 1. Model outcomes as a function of neighborhood size k. Average probability of being infected (a–d), probability of being vaccinated
(e–h), and perceived vaccine efficacy (i–l) for the scenarios of no incentives (a, e, i); $20 incentives (b, f, j), $50 incentives (c, g, k), and no behavior (d, h,
l). Strategies include no vaccination (black), passive vaccination (blue), random vaccination (red), nearest neighbor vaccination (green), chain
vaccination (light blue), and improved nearest neighbor vaccination (purple).
doi:10.1371/journal.pcbi.1002945.g001
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Providing vaccination incentives boosted effectiveness some-

what, including for superspreader strategies, although these gains

were again partly mitigated by policy resistance. The most

effective overall strategy was the improved nearest neighbor

strategy (INN) with $50 incentive: this strategy reduced the

average annual influenza incidence to 8:3% (compared to 10%
under passive vaccination). The improved nearest neighbor

strategy may also be cost-saving compared to passive vaccination.

A few empirical studies have found that incentives can increase

vaccine uptake [49,50]. However, these studies focused on

incentivization for small groups of elderly individuals over the

course of a single season, not widespread incentivization for

individuals with a large number of contacts.

Individuals with more contacts were more likely to be infected,

which agrees with results from past models [51,52]. This resulted

in an individual’s perceived vaccine efficacy declining with their

number of contacts. This is a potential barrier in superspreader

vaccination compliance. More generally, how perceived vaccine

efficacy evolves over time and in response to disease dynamics and

the collective effects of individual vaccinating decisions merits

further study.

As with any model, our model made simplifying assumptions.

For example, we assumed a targeted individual who is asked to

recommend a contact for vaccination would always comply. We

could address this limitation by introducing a parameter for

compliance failure. This would result in a similar strategy to the

chain vaccination strategy, where occasionally the recruitment

process jumps to another individual rather than continuing along

the chain of contacts. We also neglected age structure in the

model, which did not allow us to address issues such as age-related

heterogeneity in infection severity, and correlations between

infection severity and neighborhood size.

Incorporating greater heterogeneity into the model by stratify-

ing individuals with respect to age would increase model realism. It

would also allow us to address other objectives such as how

incentives can be designed to boost vaccine coverage in children.

However, this would also increase model complexity, and given

that current model already required dealing with the extra

complexity of incorporating behavior, we opted for the incremen-

tal approach of first developing a model without age structure.

Another aspect of model development that requires greater

attention is the functional forms used to capture psychological

effects such as the role of past experiences and social influences,

since typically more than one functional form is qualitatively

consistent with existing data on determinants of vaccine uptake.

These areas suggest potential for further work at the interface of

theoretical modeling and empirical surveys. In particular, surveys

of determinants of vaccination behavior can be designed to better

meet the needs of models that couple disease dynamic models to

vaccinating behavior models, for instance by helping to determine

which functional forms best capture psychological effects. This will

require collecting new psychological data from study populations.

In other cases, these models suggest predictions which can be

tested. For example, our model predicted that superspreaders

would perceive a slightly lower vaccine efficacy than non-

superspreaders, and it would be interesting to see whether this

effect holds true for any populations.

Thoroughly validated ‘‘behavior-incidence’’ models of influenza

vaccinating behavior will help public health authorities to optimize

influenza vaccine programs. However, as we have found here,

vaccination strategies that target superspreaders and/or provide

vaccination incentives must be carefully designed to mitigate the

potentially strong effects of behavioral feedbacks and policy

resistance.
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strategies a) random vaccination b) nearest neighbor vaccination c)

chain vaccination and d) improved nearest neighbor vaccination.
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values were calibrated for each network using the passive
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actually used (%U Used). NB indicates the scenario where

vaccination behavior is entirely ignored, ($20) indicates where

$20 incentives were used and ($50) for $50 incentives. The

vaccination programs are the passive (PV), along with the pro-

active programs: random vaccination (RV), nearest neighbor

(NN), chain (CV) and improved nearest neighbor (INN).
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Table S3 The global clustering coefficient among susceptible

individuals (CS ) and the pair correlations between susceptible and

infected individuals (PC½SI �) and susceptible and vaccinated
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Table S4 The statistics regarding the number of superspreaders

that were willing to vaccinate prior to being recruited (VSS
S (t)),

that were randomly contacted and then were willing to vaccinate

(VSS
R (t)) and those contacted through a nearest neighbor and then

were willing to vaccinate (VSS
NN (t)) for the various vaccination

strategies (with and without incentives) (empirically-based net-

work). S(:)~S:T+
ffiffiffiffiffiffiffiffiffiffiffiffi
SS:TT
p

, where S:T denotes the average andffiffiffiffiffiffiffiffiffiffiffiffi
SS:TT
p

denotes the standard deviation. NB indicates the scenario

where vaccination behavior is entirely ignored, ($20) indicates

where $20 incentives were used and ($50) for $50 incentives. The

vaccination programs are the passive (PV), along with the pro-

active programs: random vaccination (RV), nearest neighbor

(NN), chain (CV) and improved nearest neighbor (INN).
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Table S5 The estimated costs of the various vaccination

strategies for the Realistic networks. The vaccination programs

are the passive, along with the pro-active programs: random

vaccination (RV), nearest neighbor (NN), chain (CV) and

improved nearest neighbor (INN). U indicates an incentive value
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refers to the cost of infection, Vcost refers to the cost of vaccination

and Ucost refers to the cost associated with incentives. � the strategy
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there is heterogeneity in the infectious period and transmission

rate (exponential network). S(:)~S:T+
ffiffiffiffiffiffiffiffiffiffiffiffi
SS:TT
p

, where S:T
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indicates where $20 incentives were used and ($50) for $50
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with the pro-active programs: random vaccination (RV), nearest

neighbor (NN), chain (CV) and improved nearest neighbor (INN).
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various vaccination strategies (with and without incentives) where
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ffiffiffiffiffiffiffiffiffiffiffiffi
SS:TT
p
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the average and
ffiffiffiffiffiffiffiffiffiffiffiffi
SS:TT
p

denotes the standard deviation. The

annual incidence is denoted by I(t), where ISS(t) denotes the
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vaccine uptake is denoted as V (t), where the vaccine uptake in the

superspreading population is denoted as VSS(t). NB indicates the

scenario where vaccination behavior is entirely ignored, ($20)
indicates where $20 incentives were used and ($50) for $50
incentives. The vaccination programs are the passive (PV), along

with the pro-active programs: random vaccination (RV), nearest

neighbor (NN), chain (CV) and improved nearest neighbor (INN).

(PDF)
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information pertaining to the modelling of disease dynamics and

vaccination behavior, the classification of a superspreader and the

various vaccination strategies.
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