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Abstract

Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic
network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of
tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present FASTCORE, a
generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic
network models such as Recon X. FASTCORE takes as input a core set of reactions that are known to be active in the context of
interest (e.g., cell or tissue), and it searches for a flux consistent subnetwork of the global network that contains all reactions
from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction
can be defined via a set of sparse modes of the global network, and FASTCORE iteratively computes such a set via a series of
linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more
compact reconstructions, over a rival method. Given its simplicity and its excellent performance, FASTCORE can form the
backbone of many future metabolic network reconstruction algorithms.
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Introduction

Cell metabolism is known to play a key role in the pathogenesis

of various diseases [1] such as Parkinson’s disease [2] and cancer

[3]. The study of human metabolism has been greatly advanced by

the development of computational models of metabolism, such as

Recon 1 [4], the Edinburgh human metabolic network [5], and

Recon 2 [6]. These are genome-scale metabolic network models

that have been reconstructed by combining various sources of

‘omics’ and literature data, and they involve a large set of

biochemical reactions that can be active in different contexts, e.g.,

different cell types or tissues [7].

To maximize the predictive power of a metabolic model when

conditioning on a specific context, for instance the energy

metabolism of a neuron or the metabolism of liver, recent efforts

go into the development of context-specific metabolic models [8–13].

These are network models that are derived from global models

like Recon 1, but they only contain a subset of reactions, namely,

those reactions that are active in the given context. Such context-

specific metabolic models are known to exhibit superior explan-

atory and predictive power than their global counterparts

[10,14,15].

Most algorithms for context-specific metabolic network recon-

struction (see ‘Related work’ section for a short overview) first

identify a relevant subset of reactions according to some ‘omics’

information (typically expression data and bibliomics), and then

search for a subnetwork of the global network that satisfies some

mathematical requirements and contains all (or most of) these

reactions [8,10,13,16–18]. The mathematical requirements are

typically imposed via flux balance analysis, which characterizes

the steady-state distribution of fluxes in a metabolic network via

linear constraints that are derived from the stoichiometry of the

network and physical conservation laws [19–23]. The search

problem may target the optimization of a specific functionality of

the model (e.g., biomass production) or some other objective

[24], and it may involve repeated tests under different conditions

and parameter tuning [8,14,25,26]. The latter calls for fast

algorithms.

We present FASTCORE, a generic algorithm for context-specific

metabolic network reconstruction. FASTCORE takes as input a core

set of reactions that are supported by strong evidence to be active

in the context of interest. Then it searches for a flux consistent

subnetwork of the global network that contains all reactions from

the core set and a minimal set of additional reactions. Flux

consistency implies that each reaction of the network is active (i.e.,

has nonzero flux) in at least one feasible flux distribution [19,27].

An attractive feature of FASTCORE is its generality: As it only relies

on a preselected set of reactions and a simple mathematical

objective (flux consistency), it can be applied in different contexts

and it allows the integration of different pieces of evidence (‘multi-

omics’) into a single model.
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Computing a minimal consistent reconstruction from a subset of

reactions of a global network is, however, an NP-hard problem

[27], and hence some approximation is in order. Our key

observation is that a minimal consistent reconstruction can be

defined via a set of sparse modes of the global network, and

FASTCORE is designed to compute a minimal such set. Every

iteration of the algorithm computes a new sparse mode via two

linear programs that aim at maximizing the support of the mode

inside the core set while minimizing that quantity outside the core

set. FASTCORE’s search strategy is in marked contrast to related

approaches, in which the search for a minimal consistent

reconstruction involves, for instance, incremental network pruning

[10]. FASTCORE is simple, devoid of free parameters, and its

performance is excellent in practice: As we demonstrate on

experiments with liver data, FASTCORE is several orders of

magnitude faster, and produces much more compact reconstruc-

tions, than the main competing algorithm MBA [10].

Methods

Background
A metabolic network of m metabolites and n reactions is

represented by an m6n stoichiometric matrix S, where each entry Sij

contains the stoichiometric coefficient of metabolite i in reaction j.

A flux vector v[Rn is a tuple of reaction rates, v~(v1, . . . ,vn),
where vi is the rate of reaction i in the network. Reactions are

grouped into reversible ones (R) and irreversible ones (I ). For a

reaction i[I it holds that vi§0; this and other imposed flux

bounds, e.g., lower and upper bounds per reaction, are collectively

denoted by B (which defines a convex set). A flux vector is called

feasible or a mode if it satisfies a set of steady-state mass-balance

constraints that can be compactly expressed as:

Sv~0, v[B: ð1Þ

An elementary mode is a feasible flux vector v=0 with minimal

support, that is, there is no other feasible flux vector w=0 with

supp(w)5supp(v), where supp(v)~fj[f1,2, . . . ,ng : vj=0g is the

support (i.e., the set of nonzero entries) of v [19,22]. A reaction i is

called blocked if it cannot be active under any mode, that is, there

exists no mode v[Rn such that vi=0 (in practice Dvi D§e, for some

small positive threshold e). A metabolic network model that

contains no blocked reactions is called (flux) consistent [19,27].

Network consistency testing
Given a metabolic network model with stoichiometric matrix S,

a problem of interest is to test whether the network is consistent or

not. Additionally, if the network is inconsistent, it would be

desirable to have a method that detects all blocked reactions.

It has been suggested that network consistency can be detected

by a single linear program (LP) [27]. The idea is to first convert

each reversible reaction into two irreversible reactions (and define

a reversible flux as the difference of two irreversible fluxes), and

then test if the minimum feasible flux on the new set J of

irreversible-only reactions is strictly positive (in practice, at least e).

This is equivalent to testing if the following LP is feasible:

max
v,z

z

s:t: z§e z[R

vi§z Vi[J
Sv~0 v[B:

ðLP� 2Þ

This test of consistency, however, can produce spurious solutions.

In Figure 1 we show a toy metabolic network comprising four

metabolites (A,B,C,D) and six reactions annotated with corre-

sponding fluxes v1, . . . ,v6. Fluxes are bounded as 0ƒviƒ3 for

i=2, and Dv2Dƒ3. All stoichiometric coefficients are equal to one,

except for the reaction R2A. The only reversible reaction is

A«B, which is a dead-end reaction and therefore blocked,

whereas all other reactions are irreversible and unblocked. After

converting A«B to a pair of irreversible reactions, LP-2 achieves

optimal value z�~1:5, which implies (wrongly) that the network is

consistent. The test here fails because the two irreversible copies of

A«B have equal flux at the solution, thereby nullifying the actual

net flux of A«B.

A straightforward solution to the problem would involve

iterating through all reactions, computing the maximum and

minimum feasible flux of each reaction via an LP that satisfies the

constraints in (1). Reactions with minimum and maximum flux

zero would then be blocked. This is the idea behind the FVA (Flux

Variability Analysis) algorithm and the reduceModel function of the

COBRA toolbox [28,29]. However, iterating through all reactions

can be inefficient. A faster variant is fastFVA [30], which achieves

acceleration over FVA via LP warm-starts. Another fast algorithm

is CMC (CheckModelConsistency) [10], which involves a series of

LPs, where each LP maximizes the sum of fluxes over a subset J
of reactions:

Figure 1. A metabolic network with one blocked reaction
(A«B). Note that A appears with stoichiometric coefficient 2 in the
boundary reaction R2A.
doi:10.1371/journal.pcbi.1003424.g001

Author Summary

Metabolism comprises all life-sustaining biochemical pro-
cesses. It plays an essential role in various aspects of
biology, including the development and progression of
many diseases. As the metabolism of a living cell involves
several thousands of small molecules and their conversion,
a full analysis of such a metabolic network is only feasible
using computational approaches. In addition, metabolism
differs significantly from cell to cell and over different
contexts. Therefore, the efficient generation of context-
specific mathematical models is of high interest. We
present FASTCORE, a fast algorithm for the reconstruction
of compact context-specific metabolic network models.
The algorithm takes as input a global metabolic model and
a set of reactions that are known to be active in a given
context, and it produces a context-specific model. FASTCORE

is significantly faster than other algorithms, typically
obtaining a genome-wide reconstruction in a few seconds.
High-throughput model building will soon become a
common procedure for the integration and analysis of
omics data, and we foresee many future applications of

FASTCORE in disease and patient specific metabolic modeling.

Fast Reconstruction of Metabolic Network Models
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max
v

P
j[J

vj

s:t: Sv~0 v[B:
ðLP� 3Þ

The set J is initialized by J~R|I (all reactions in the network),

and it is updated after each run of LP-3 so that it contains the

reactions whose consistency has not been established yet. When J
cannot be reduced any further, we can reverse the signs of the

columns of S corresponding to the reversible reactions in J and

resume the iterations. Eventually, all remaining reactions may

have to be tested one by one for consistency, as in FVA. Such an

iterative scheme is complete, in the sense that it will always report

consistency if the network is consistent, and if not, it will reveal the

set of blocked reactions. However, as we will clarify in the next

section, LP-3 is not optimizing the ‘correct’ function, which may

result in unnecessarily many iterations. For example, when applied

to the network of Figure 1, LP-3 will pick up the elementary

mode that corresponds to the pathway ARCRD (because this

pathway achieves maximum sum of fluxes v1zv4zv5zv6~

1:5z3z3z3), and it will set v3~0. To establish the consistency

of the reaction ARD, an additional run of LP-3 would be needed,

where the set J would only involve the reactions A«B and ARD.

Hence, an iterative algorithm like CMC that relies on LP-3 would

need two iterations to detect the consistent part of this network.

However, one LP suffices to detect the consistent subnetwork in

this example, as we explain in the next section. In more general

problems involving larger and more realistic networks, CMC may

involve unnecessarily many iterations, as we demonstrate in the

experiments.

Fast consistency testing
In most problems of interest there will be no single mode that

renders the whole network consistent, and an iterative algorithm

like the one described in the previous section must be used. For

performance reasons it would therefore be desirable to be able to

establish the consistency of as many reactions as possible in each

iteration of the algorithm.

Since consistency implies nonzero fluxes, it is sufficient to

optimize a function that just ‘pushes’ all fluxes away from zero.

Formally, this amounts to searching for modes v whose

cardinality—denoted by card(v) and defined as card(v) = #supp(v),

i.e., the number of nonzero entries of v—is as large as possible.

Directly maximizing card(v) is, however, not straightforward, for

the following reasons: First, the card function is quasiconcave only

for v[Rn
z (the nonnegative orthant), and it is nonconvex for

general v[Rn [31]. Second, even if we restrict attention to

nonnegative fluxes in each iteration (which we can do without loss

of generality by flipping the signs of the corresponding columns of

S), it is not obvious how to efficiently maximize the quasiconcave

card(v). Third, in practice consistency implies fluxes that are e-

distant from zero, in which case some adaptation of the card

function is in order.

Here we propose an approach to approximately maximize

card(v) over a nonnegative flux subspace indexed by a set of

reactions J . First note that the cardinality function can be

expressed as

card ðvÞ~
X
i[J

h(vi), ð4Þ

where h : R?f0,1g is a step function:

h(vi)~
0 if vi~0

1 if viw0:

�
ð5Þ

The key idea is to approximate the function h by a concave

function that is the minimum of a linear function and a constant

function:

h(vi)&minfvi

e
,1g, ð6Þ

where e is the flux threshold. The problem of approximately

maximizing card(v) can then be cast as an LP: We introduce an

auxiliary variable zi[Rz for each flux variable vi, for i[J , and

take epigraphs [31], in which case maximizing card(v)~P
i[J h(vi) can be expressed as

max
v,z

P
i[J

zi

s:t: ziƒh(vi) Vi[J , zi[Rz

vi§0 Vi[J
Sv~0 v[B:

Using (6) and assuming constant e, this simplifies to

max
v,z

P
i[J

zi

s:t: zi[½0,e� Vi[J , zi[Rz

vi§zi Vi[J
Sv~0 v[B:

ðLP�7Þ

Note that LP-7 tries to maximize the number of feasible fluxes in

J whose value is at least e (contrast this with LP-2).

Returning to the network of Figure 1, if J comprises all network

reactions, then note that the flux vector

½v1,v2,v3,v4,v5,v6�~½e,0,e,e,e,2e� is an optimal solution of LP-7.

Hence, a single run of the latter can detect all unblocked reactions

of that network. More generally, a single run of LP-7 on an

arbitrary subset J of a given network will typically detect all

unblocked irreversible reactions of J . The intuition is that LP-7

prefers flux ‘splitting’ over flux ‘concentrating’ in order to

maximize the number of participating reactions in the solution,

which, in the case of irreversible reactions, corresponds to flux

cardinality maximization.

By construction, the above approximation of the cardinality

function applies only to nonnegative fluxes. In order to deal with

reversible reactions that can also take negative fluxes, we can

embed LP-7 in an iterative algorithm (as in the previous section),

in which reversible reactions are first considered for positive flux

via LP-7, and then they are considered for negative flux. The latter

is possible by flipping the signs of the columns of the stoichiometric

matrix that correspond to the reversible reactions under testing, in

which case the fluxes of the transformed model are again all

nonnegative, and the above approximation of the cardinality

function can be used. This gives rise to an algorithm for detecting

the consistent part of a network that we call FASTCC (for fast

consistency check). Since FASTCC is just a variant of FASTCORE, we

defer its detailed description until the next section.

Independently to this work, a similar approach to network

consistency testing was recently proposed, called OnePrune [32].

OnePrune first converts each reversible reaction into two irrevers-

ible reactions, forming an augmented set J of irreversible-only

Fast Reconstruction of Metabolic Network Models
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reactions (as in LP-2 above), and then it employs an LP that

coincides with LP-7 for the above choice of J and e = 1.

However, such an approach is prone to the same drawback as LP-

2, namely, that the two irreversible copies of a blocked reaction

can carry equal positive flux at the solution of LP-7 due to the

presence of cycles introduced by the transformation. The authors

acknowledge this problem but they do not fully resolve it. In our

case, we avoid this problem by working with the original reactions

and a series of LPs with appropriate sign flips of the stoichiometric

matrix, thereby guaranteeing the completeness of the algorithm.

Context-specific network reconstruction
The reconstruction problem involves computing a minimal

consistent network from a global network and a ‘core’ set of

reactions that are known to be active in a given context. Formally,

given (i) a consistent global network fN ,SN g with reaction set

N~f1,2, . . . ,ng and stoichiometric matrix SN , and (ii) a set

C5N , the problem is to find the smallest set A(N such that

C(A and the subnetwork fA,SAg induced by the reaction set A
is consistent. (By SA we denote the submatrix of SN that contains

only the columns indexed by A.) This problem is known to be NP-

complete [27], suggesting that a practical solution should entail

some approximation. (We note that Acuña et al. [27] prove NP-

completeness of this problem by noting that a special case involves

C being the empty set, in which case the problem comes down to

finding the smallest elementary mode of the global network,

which, as the authors show, is NP-complete. However, this leaves

open the case of a nonempty core set C, since a solution to the

minimal reconstruction problem need not constitute an elemen-

tary mode. We conjecture that the problem remains NP-hard

when C is nonempty, but we are not pursuing this question here.)

Our approach hinges on the observation that a consistent

induced subnetwork of the global network can be defined via a set

of modes of the latter:

Theorem 1. Let V be a set of modes of the global network fN ,SN g,
and let A~|v[V supp(v) be the union of the supports of these modes. The

induced subnetwork fA,SAg is consistent.

Proof. For each v[V, let vA be the ‘truncated’ v after dropping all

dimensions not indexed by A. Clearly, SAvA~0, therefore each

vA is a mode in the reduced model fA,SAg. By construction of A,

each reaction inA is in the support of some v[V, and hence also in

the support of some mode vA of the reduced model.

This simple result allows one to cast the reconstruction problem

as a search problem over sets of modes of the global network:

min
V

card ðAÞ

s:t: A~
S
v[V

suppðvÞ

C(A
Vv[V : SN v~0, v[B:

ðNLP�8Þ

Note that this optimization problem involves searching for a set V
of modes of fN ,SN g, such that the union of the support of these

modes (the set A) is a minimal-cardinality set that contains the

core set C. In order to practically make use of this theorem, one

has to define a search strategy over modes. Next we discuss two

possibilities. The first gives rise to an exact algorithm, but this

algorithm does not scale to large networks. The second is a

scalable greedy approach that gives rise to FASTCORE.

Exact reconstruction via mixed integer linear

programming. Note that, without loss of generality, in NLP-

8 we can restrict the search for V over all elementary modes of the

global network, since the union of their supports covers the whole

set N . As we show next, if all elementary modes are available,

NLP-8 can be cast as a mixed integer linear program (MILP) and

solved exactly. This MILP is defined as follows. Let r be the

number of elementary modes, and fm1, . . . ,mrg be a set of length-

n binary vectors, where each vector mj captures the support of

elementary mode j (so, its ith entry is 1 if reaction i is included in

elementary mode j, and 0 otherwise). Also, let c~(c1, . . . ,cn) be a

length-n binary vector with ci~1 if reaction i is included in the

core set C, and ci~0 otherwise. The decision variables of the

MILP are a length-n binary vector x~(x1, . . . ,xn) and a length-r

real vector y~(y1, . . . ,yr). At an optimal solution of the MILP,

the set A is defined as A~fi[N : x�i ~1g.
Theorem 2. When all elementary modes are available, the following

MILP-9 solves NLP-8 exactly.

min
x,y

P
i

xi

�s:�t: x§
1
r

P
j

mjyj

cƒ
P

j

mjyj

y[½0,1�
x[f0,1g:

ðMILP�9Þ

Proof. By definition, x�i ~1 implies that reaction i will be

included in the reconstruction A, hence the objective minimizes

the cardinality of A. The sum
P

j mjy
�
j is a vector whose support is

the union of the supports of all selected elementary modes at the

solution, where an elementary mode j is selected when y�j w0. The

first constraint x§

1

r

X
j
mjyj therefore imposes that the set A

must contain the union of the supports of the selected elementary

modes at the solution. (The factor
1

r
ensures that

1

r

X
j
mjyjƒ1).

Since superfluous reactions are removed by the minimization ofP
i xi in the objective, the above implies that A is precisely the

union of the supports of the selected elementary modes at the

solution. The second constraint cƒ
P

j mjyj imposes that the core

set must be included in the union of the supports of the selected

elementary modes at the solution, and hence the core set must be

included in A. Therefore, all constraints of NLP-8 are satisfied at

the optimal solution of MILP-9, and since the two programs

minimize the same objective, an optimal solution of MILP-9 must

be an optimal solution of NLP-8.

Note, however, that MILP-9 does not scale to large networks,

for the following reasons: First, it requires computing all

elementary modes of the global network, which can be a very

large number [22]. Second, the binary decision variables xi index

all reactions of the global network, and therefore MILP-9 needs to

search over a binary hypercube of dimension n, which can be

prohibitive for large n. Nonetheless, it is reassuring to know that an

exact solution to the context-specific network reconstruction

problem is possible, albeit with high complexity. Next we describe

FASTCORE, an approximate greedy algorithm that scales much

better to large networks, and we compare it to MILP-9 in the

Results section.

Greedy approximation and the FASTCORE algorithm. An

alternative search strategy for computing V in NLP-8 is a greedy

approach, reminiscent of greedy heuristics for the related set

covering problem [33]. This is the idea behind the proposed FASTCORE

algorithm: We build up the set V in a greedy fashion, by

computing in each iteration a new mode of the global network.

Fast Reconstruction of Metabolic Network Models
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Further, as a means to approximately minimize card(A), each

added mode is constrained to have sparse support outside C. This is

implemented via L1-norm minimization, which is a standard

approach to computing sparse solutions to (convex) optimization

problems [31,34].

The overall FASTCORE algorithm is shown in Box 1. The

algorithm maintains a set J(C that is initialized with the

irreversible reactions in C, and a ‘penalty’ set P~(N \C)\A that

contains all reactions outside C that have not been added yet to the

set A. Each iteration adds to the set A the support of a mode that

is dense in J (i.e., contains as many nonzero fluxes in J as

possible) and sparse in P (i.e., contains as many zero fluxes in P as

possible), computed by the function FINDSPARSEMODE (Box 2).

This function first applies an LP-7 to compute an active subset K
of J , and then it applies the following L1-norm minimization LP

constrained by the set K:

min
v,z

P
i[P

zi

s:t: vi[½{zi,zi� Vi[P, zi[Rz

vi§e Vi[K
SN v~0 v[B:

ðLP�10Þ

The LP-10 minimizes
P

i[P Dvi D, the L1 norm of fluxes in the

penalty set P (expressed via epigraphs), subject to a minimum flux

constraint on the set K. However, some care is needed to preempt

false negative solutions arising from the minimization of L1 norm

in LP-10. For example, suppose in the network of Figure 1 that the

global network comprises all reactions except A«B, and

C~J~K~f6g and P~f1,3,4,5g. In this case, LP-3 could settle

to a solution ½v1,v3,v4,v5,v6�~½
e

2
,e,0,0,e�. The flux v1, being below

e, would be treated as zero by FINDSPARSEMODE, in which case the

reaction R2A would be erroneously excluded from the recon-

struction. A simple way to avoid this is to use a scaled version of e
(we used 105e) in the second constraint of LP-10, with an equal

scaling of all flux bounds in B.

The FASTCORE algorithm first goes through the I\C reactions

(step 2), and then through the R\C ones (and eventually through

each individual reversible reaction in the core set; when

singleton = True). The flipped variable ensures that a reversible

reaction is tested in both the forward and negative direction. The

algorithm terminates when all reactions in C have been added to

A, which is guaranteed since in the main loop the set J never

expands (step 10) and the global network is consistent. Note that

FASTCORE has no free parameters besides the flux threshold e.

The FASTCC algorithm for detecting the consistent part of an

input network (see previous section) can be viewed as a variant of

FASTCORE (N ,N ) in which the steps 10–14 of FINDSPARSEMODE

are omitted (and there is no P set). It is easy to verify that FASTCC is

complete, in the sense that it will always report consistency if the

network is consistent, and if not, it will reveal the set of blocked

reactions.

Related work
Several algorithms have been published in the last years for

extracting condition-specific models from generic genome-wide

models like Recon 1. Among them, mCADRE [26], INIT [13],

iMAT [35], MBA [10] and GIMME [8] are the most commonly

used (see Table 1 for an overview). Here we provide a short outline

of the different algorithms, and refer to [24] for a more extensive

overview. For GIMME, iMAT, and MBA, we briefly discuss some

notable differences to FASTCORE.

GIMME [8] takes as input microarray data and a biological

function to optimize for, such as biomass production. GIMME

starts by removing reactions with associated expression levels

below a user-defined threshold, and then it optimizes for the

specified biological function using linear programming. In case the

pruning steps compromise the input biological function, GIMME

reintroduces some previously removed reactions that are in

minimal disagreement with the expression data. Since GIMME

has not been designed to include all core reactions in the solution

(as FASTCORE does), the reconstructions obtained by GIMME and

FASTCORE can differ significantly: Running the createTissueSpecific

function of the COBRA toolbox on a set of liver core reactions (see

‘Results’ section) treating them as expressed reactions (and adding

a biomass reaction [26] and a sink reaction for glycogen to be used

as optimization function), only about 50% of the core reactions of

the GIMME model were consistent at the solution. A fairer

comparison would require adapting FASTCORE to explicitly deal

with omics data, which is outside the scope of the current work.

iMAT [35] was originally designed for the integration of

transcriptomic data. iMAT optimizes for the consistency between

Box 1. The FASTCORE Algorithm for Context-
Specific Metabolic Network Reconstruction.

Input: A consistent metabolic network model fN ,SN g and
a reaction set C5N .
Output: A consistent induced subnetwork fA,SAg of
fN ,SN g such that C(A.

1. function FASTCORE(N ,C)

2. J/C\I , P/N \C
3. flipped/False, singleton/False

4. A/FINDSPARSEMODE(J ,P,singleton)

5. J/C\A
6. while J=1
7. P/P\A
8. A/A|FINDSPARSEMODE(J ,P,singleton)

9. if J\A=1
10. J/J \A, flipped/False

11. else

12. if flipped

13. flipped/False, singleton/True

14. else

15. flipped/True

16. if singleton

17. ~JJ/J (1) (the first element of J )

18. else

19. ~JJ/J
20. end if

21. for each i[ ~JJ \I
22. flip the sign of the i’th column of SN and

23. swap the upper and lower bounds of vi

24. end for

25. end if

26. end if

27. end while

28. return A
29. end function
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the experimental data and the activity state of the model

reactions. iMAT tries to include modes composed of reactions

associated to genes with high expression value, and therefore a

threshold needs to be chosen to segregate between low, medium,

and highly expressed genes. The computational demands of

iMAT are high due to the repeated use of mixed integer linear

programming. As with GIMME, direct comparison of iMAT to

FASTCORE is problematic. Nevertheless, we applied iMAT (own

implementation) on the liver problem (see ‘Results’ section), by

setting the liver core reactions to RH (reaction high) and all non-

core reactions to RL (reaction low). iMAT determined 549 core

reactions as active, while 182 and 338 reactions were classified as

undetermined and inactive, respectively. This means that about

50% of the core reactions were lost during iMAT model building.

As with GIMME, this demonstrates the difficulty of directly

comparing FASTCORE to algorithms that optimize different

objectives.

mCADRE [26] is similar to MBA, except that the pruning

order is not random, but it depends on the tissue-specific

expression evidence and weighted connectivity to other reactions

of the network. Reactions that are associated to genes that are

never tagged as expressed and which are not connected to

reactions associated to highly expressed genes are first evaluated in

the pruning step. Reactions are effectively removed if the removal

does not impair core reactions and metabolic functions to carry a

flux (mCADRE removes core reactions if the core/non-core

reaction ratio is below a user-given threshold). mCADRE uses

mixed integer linear programming and therefore it does not scale

up to large networks (but it is in general faster than MBA).

INIT [13] uses data retrieved from public databases in order to

assess the presence of a certain reaction-respective metabolites in

the cell type of interest. INIT uses mixed integer linear

programming to build a model in which all reactions can carry

a flux. Contrary to other algorithms, INIT does not rely on the

assumption of a steady state, but it allows small net accumulation

of all metabolites of the model.

The closest algorithm to FASTCORE is the MBA algorithm of

Jerby et al. [10]. MBA takes as input two core sets of reactions, and

it searches for a consistent network that contains all reactions from

the first set, a maximum number of reactions from the second set

(for a given tradeoff), and a minimal number of reactions from the

global network. (FASTCORE can be easily adapted to work with

multiple core sets, by introducing a set of weights that reflect the

confidence of each reaction to be active in the given context, and

adding appropriate regularization terms in the objective functions

of LP-7 and LP-10 that capture the given tradeoff. We will address

this variant in future work.) Both FASTCORE and MBA involve a

search for a minimal consistent subnetwork, however the search

strategy of FASTCORE is very different to MBA: Whereas FASTCORE

iteratively expands the active set A starting with A~1, MBA

starts with A~N and iteratively prunes the set A by checking

whether the removal of each individual reaction (selected in

random order) compromises network consistency. As the pruning

order affects the output model, this step of MBA is repeated

multiple times. MBA builds a final model by adding one by one

non-core reactions with the highest presence rate over all pruning

runs, and it stops when a consistent final model is obtained. Due to

the multiple pruning runs, MBA has very high computational

demands. Consistency testing in MBA is carried out with the

CMC algorithm that is based on LP-3, as explained earlier.

Hence, FASTCORE’s search strategy differs to MBA in two key

aspects: First, consistency testing in fastcore involves the maximi-

zation of flux cardinality (LP-7) instead of sum of fluxes (LP-3),

which results in fewer LP iterations. Second, the search for

compact solutions in FASTCORE involves L1-norm minimization

instead of pruning. The advantage of the former is that it can be

encoded by a single LP, resulting in significant overall speedups

(see ‘Results’ section).

Results

Generic metabolic reconstructions like Recon 2 are inconsistent

models as they contain reactions that are not able to carry nonzero

flux due to gaps in the network (see next section). The first step

towards obtaining a consistent context-specific reconstruction is

therefore to extract the consistent part of a global generic model.

This can be achieved by FASTCC or other similar methods (see

‘Network consistency testing’ section). The consistent global model

serves then as input for the context-specific reconstruction with

FASTCORE. In Figure 2 we show a flowchart of the overall pipeline.

We report results on two sets of problems, the first involving

consistency verification of an input model, and the second

involving the reconstruction of a context-specific model from an

input model and a core set of reactions. The FASTCORE algorithm

Box 2. The FINDSPARSEMODE Function.

Input: A set J(C, a penalty set P(N \C, and the singleton
flag.
Output: The support of a mode that is dense in J and
sparse in P.

1. function FINDSPARSEMODE(J ,P,singleton)

2. if J~1
3. return 1
4. end if

5. if singleton

6. v�/ LP-7 on set J (1)

7. else

8. v�/ LP-7 on set J
9. end if

10. K/fi[J : v�i §eg
11. if K~1
12. return 1
13. end if

14. v�/ LP-10on sets K,P
15. return fi[N : Dv�i D§eg
16. end function

Table 1. Summary of the main characteristics of GIMME [8],
MBA [10], iMAT [35], mCADRE [26], INIT [13], and FASTCORE (this
paper) reconstruction algorithms.

GIMME MBA iMAT mCADRE INIT FASTCORE

Optimization LP MILP MILP MILP MILP LP

Computational
cost

low high high high high low

Function required yes no no yes yes no

Omics required yes optional yes yes yes no

Code available yes yes yes yes no yes

doi:10.1371/journal.pcbi.1003424.t001
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was implemented in the COBRA toolbox [29], using Matlab

2013a and the IBM CPLEX solver (version 12.5.0.0). Test runs

were performed on a standard 1.8 GHz Intel Core i7 laptop with

4 GB RAM running Mac OS X 10.7.5. In all experiments we used

flux threshold e = 1e-4. The software is available from bio.uni.lu/

systems_biology/software

Consistency testing
In the first set of experiments we applied FASTCC, the consistency

testing variant of FASTCORE, for consistency verification of four

input models, and compared it against the FastFVA algorithm of

Gudmundsson and Thiele [30], and an own implementation

(based on FASTCC but with LP-3 replacing LP-7) of the CMC

algorithm of Jerby et al. [10]. We also tested the FVA algorithm of

the reduceModel function of the COBRA toolbox [29], and the

MIRAGE algorithm of Vitkin and Shlomi [36], but we do not

include them in the results as they performed worse than the

reported ones. The input models were the following:

N c-Yeast (#N~1204), the consistent part of a yeast model [37].

N c-Ecoli (#N~1718), the consistent part of an E. coli model

[25]. (Here we set to 1000 the upper bounds of all fluxes that

were fixed to zero, and we multiplied all bounds by 1000 to

avoid numerical issues.)

N c-Recon1 (#N~2469), the consistent part of Recon 1 [4].

(Recon 1 was found to contain 1273 blocked reactions.)

N c-Recon2 (#N~5834), the consistent part of Recon 2 [6].

(Recon 2 was found to contain 1606 blocked reactions.)

The results are shown in Table 2. FASTCC is faster and it uses

much fewer LPs than the other two algorithms. We note that

fastFVA is based on an optimized Matlab/C++ implementation

with LP warm-starts, while FASTCC is based on standard Matlab.

These results confirm the appropriateness of flux cardinality (LP-7)

as a metric for network consistency testing, in agreement with the

theoretical analysis and the discussions above.

Reconstruction of a liver model
In the second set of experiments, we used the FASTCORE

algorithm to reconstruct a liver specific metabolic network model

from the consistent part of Recon 1 (c-Recon1, #N~2469), and

we compared against an own implementation of the MBA

algorithm of Jerby et al. [10]. We applied the two algorithms in

two settings. The first setting involves the liver specific input

reaction set of Jerby et al. [10], which is based on 779 ‘high’ core

and 290 ‘medium’ core reactions (the latter set is supported by

weaker biological evidence than the former). To allow a

comparison with FASTCORE, we defined a single core set as the

union of the high and medium core reaction sets, and we applied

the two algorithms on this core set. The second setting uses the

‘strict’ liver model of Jerby et al. [10], which contains 1083 high

core reactions and no medium core reactions, and therefore allows

a direct comparison with FASTCORE.

The results for the two settings are shown in Table 3. We note

that for MBA, the reported number of LPs and the runtime refer

to a single pruning iteration of the algorithm, whereas the size of

each reconstruction refers to the final model after 1000 pruning

iterations. In both settings, FASTCORE is several orders of magnitude

faster than MBA, achieving a full reconstruction of a liver specific

model in about one second, using a much smaller number of LPs.

As MBA employs a greedy pruning strategy for optimization, the

number of LPs that it uses and its total runtime can be very high,

as also indicated by Wang et al. [26] who reported runtime of a

single pruning pass of MBA in the order of 10 hours on a

2.34 GHz CPU computer.

The reconstructed models by FASTCORE are also more compact

than those obtained by MBA, with a difference of 70–80 non-core

reactions. For the standard liver model, 1687 out of the 1746

reactions (96%) of the FASTCORE reconstruction appear also in the

MBA reconstruction, whereas for the strict liver model the

common reactions are 1739 out of 1818 (95%). The two

algorithms turned out to use alternative transporters to connect

the core reactions: In the standard liver model, 46 out of 59

reactions that are present exclusively in the FASTCORE reconstruc-

tion are transporter reactions or other reactions which are not

associated to a specific gene and thus are not sufficiently supported

in the core set, whereas in MBA the corresponding numbers are

116 out of 139 reactions. (In Text S1 we provide more details on

the reconstructions obtained by the two methods.) Note that both

MBA and FASTCORE try to minimize the number of added non-

core reactions in order to obtain a compact consistent model. The

above difference in the number of added non-core reactions

Figure 2. Flowchart of the overall pipeline for generating
consistent context-specific models.
doi:10.1371/journal.pcbi.1003424.g002

Table 2. Comparing FASTCC to fastFVA [30] and CMC [10] on four input models.

c-Yeast c-Ecoli c-Recon1 c-Recon2

#LPs time* #LPs time #LPs time #LPs time

fastFVA 2408 3 3436 3 4938 9 11668 207

CMC 18 0.5 25 1 49 2 42 11

FASTCC 7 0.1 2 0.2 9 0.4 19 5

*in seconds.
doi:10.1371/journal.pcbi.1003424.t002
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between MBA and FASTCORE is the result of the different

optimization approaches taken by the two algorithms, and no

biological relevance should be attributed to each reconstruction

other than the one implied by the makeup of the core set. From

this point of view, FASTCORE performs in general better than MBA,

as it tends to add fewer unnecessary reactions.

We also compared FASTCORE’s reconstructions to the exact

solutions obtained from MILP-9, using core sets that are randomly

generated from a consistent subset of E. coli core [38]. This is a

small model with #N~53 and 414 elementary modes (unfortu-

nately, the dependence of the MILP-9 model on the number of

elementary modes did not allow testing larger models). In Figure 3

we show the size of the reconstructed models (mean values)

obtained with the MILP formulation vs. FASTCORE, as a function of

the size of the core set. FASTCORE is capable of obtaining very good

approximations to the optimal solutions, which improve with the

size of the core set.

To evaluate FASTCORE’s performance in correctly identifying

liver reactions, we performed repeated random sub-sampling

validation in which FASTCORE was used to reconstruct the liver

metabolism based on a reduced, randomly selected ‘subcore’ set of

80% of the original core reactions. As in [10], we wanted to test

whether FASTCORE is able to recover a significant number of the

20% left-out core reactions. To test for the enrichment of the left-

out core reactions in the reconstructed model, we used a

hypergeometric test, in which the total population is defined by

all non-subcore reactions in the global network, the number of

draws is defined as the number of non-subcore reactions included

in the reconstruction, and the left-out core reactions are the

‘successes’. Under the null-hypothesis that there is no enrichment

for the left-out core reactions when reconstructing the liver model

based on the subcore set, we can compute a p-value for including

at least the number of observed left-out core reactions in the

reconstruction. We repeated this random sub-sampling procedure

500 times and computed the corresponding p-values. The median

of these p-values was 0.0025, indicating the ability of FASTCORE to

capture liver-specific reactions that were included in the original

core set.

As argued above, the reconstructions obtained by FASTCORE need

not optimize for cellular functions other than the ones implied by

the composition of the input core set, and it is an interesting research

question how to modify FASTCORE so that it can explicitly capture

functional requirements in its reconstructions. Nevertheless, it is of

interest to test whether the current version of FASTCORE can produce

reconstructions that are functionally relevant, perhaps for slight

variations of the core set. To this end, as in [10], we checked

whether the (standard) liver model reconstructed by FASTCORE can

perform gluconeogenesis from glucogenic amino acids, glycerol,

and lactate (altogether 21 metabolites). If not yet included,

transporters from the extracellular medium to the cytosol were

added to the model (glycerol, glutamate, glycine, glutamine, and

serine). This was necessary as the transport reactions were not

sufficiently supported in the core set. This ‘extended’ liver model

was able to convert 17/21 metabolites (vs 12/21 metabolites of the

non-extended model). The extended liver model was then used to

simulate the liver disorders hyperammonemia and hyperglutame-

nia, which affect the capacity to metabolize dietary amino acids into

urea [10]. Loss of function mutations of three enzyme-coding genes,

argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL),

and ornithine transcarbamylase (OTC) were identified in patients

suffering from these disorders. The rates of the reactions controlled

by the three genes were fixed to 500, 250, or zero, to mimic the

healthy homozygote (no mutation), heterozygote (loss of one allele),

and the complete loss of function, respectively. To allow for a

comparison with the experimental study of Lee et al. [39] where

labeled 15N-glutamine was administrated to patients suffering from

inborn errors affecting the three genes, we explicitly shut down the

influx of other potential nitrogen sources in the liver model, thereby

simulating only the uptake and metabolism of glutamine. By

allowing the influx of only one nitrogen source, the fate of the latter

could be determined exactly in the model. The ratio of urea

secretion level over glutamine absorption was computed by

sampling over the feasible space [21]. In accordance with the wet

lab observations [39], the severity of the disorders, characterized by

the mean urea over glutamine ratio, increased with the level of loss

of function of the three genes ASS, ASL, and OTC (see Figure 4).

Null patients showed no native production of urea. Overall, the

ratios predicted by the FASTCORE model faithfully match the

Table 3. Comparing FASTCORE to MBA [10] on liver model reconstruction from c-Recon1.

liver core set (#C~1069) strict liver core set (#C~1083)

#A IR* #LPs time{ #A IR #LPs time

MBA 1826 1573 72279 7383 1887 1630 71546 6730

FASTCORE 1746 1546 20 1 1818 1627 20 1

*number of intracellular reactions.
{the reported time (in seconds), as well as the number of LPs, refer to a single pruning step of MBA, whereas #A and IR refer to the full MBA.
doi:10.1371/journal.pcbi.1003424.t003

Figure 3. Comparing FASTCORE to an exact MILP solver on a small
E. coli model [38]. Shown are mean values of sizes of reconstructed
models (over 50 repetitions for each core set; standard deviations were
small and are omitted to avoid clutter) as a function of the size of the
core set. FASTCORE computes near-optimal reconstructions, which
improve with the size of the core set.
doi:10.1371/journal.pcbi.1003424.g003
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experimentally observed ones [39]. (The corresponding ratios

reported by Jerby et al. when using the MBA algorithm [10]

matched less well the experimental observations, probably because

of the cross-feeding of nitrogen to urea from multiple nitrogen

sources. By running the above procedure on the MBA model, we

noticed that both models attained comparable urea/glutamine flux

ratios.) To summarize, the above experiments demonstrate that, by

an informed choice of the core set and influx bounds, FASTCORE can

indeed give rise to functionally relevant models.

Reconstruction of a murine macrophage model
We also used the FASTCORE algorithm to build a cell-type specific

murine macrophage model from the consistent part of Recon1bio

(comprising #N~2474 reactions). Recon1bio (#N~3745) is a

modified Recon 1 model that contains three extra reactions

(biomass, NADPOX, and a sink reaction to balance the glycogenin

self-glucosylation reaction) [15]. We used a core set comprising 300

(out of 382) proteomics derived Raw264.7 macrophage reactions, as

described by Bordbar et al. [15]. (The remaining 82 reactions could

not be added to the core set as they are situated in an inconsistent

region of Recon 1 and therefore carry a permanent zero net flux.)

For their macrophage reconstruction, Bordbar et al. used, among

other methods, GIMMEp—a variant of the GIMME algorithm [8]

that is similar to the MBA algorithm—and they obtained a network

model containing 1026 intracellular reactions. Our main interest

was to investigate whether FASTCORE can obtain a functional

network that is at least as compact as the one obtained with

GIMMEp. FASTCORE generated (in about one second and using 11

LPs) a consistent network model of 953 reactions, 831 of which are

intracellular reactions. This is a much more compact model than

the one obtained with GIMMEp.

Discussion

FASTCORE is a generic algorithm for context-specific metabolic

network reconstruction from genome-wide metabolic models, and

it was motivated by requirements of fast computation and

compactness of the output model.

The key advantage of having a fast reconstruction algorithm is

that it permits the execution of multiple runs in order to optimize

for extra parameters or test different core sets extracted from the

input data [14,26]. For example, when working with gene

expression data, the definition of the core set may depend on the

threshold used to segregate between high expression genes (core

reactions) and low expression genes (non-core reactions) [8]. As

the choice of threshold is rather arbitrary, a practical approach

could involve evaluating the robustness of the output model as a

function of the chosen threshold. FASTCORE can perform this

analysis in a few minutes, whereas for the same problem other

algorithms would need hours or days. (Algorithms like GIMME

or GIMMEp that require manual curation and assembly of

subnetworks, would also fail in this kind of task.) Another

example where fast computation is imperative is cross-validation.

In the current study (see ‘Results’ section) we ran a random sub-

sampling validation procedure 500 times, an operation that took

a few minutes with FASTCORE but that would barely be

manageable with other reconstruction algorithms. Other exam-

ples where fast computation is important are time-course

experiments or experiments involving different patients or

conditions [40]. There FASTCORE could more easily identify

differential models over time and/or input conditions.

Compactness is a key concept in various research areas of

biology, such as the minimal genome [41,42]. Notwithstanding,

the requirement of model compactness seems to be in disagree-

ment with the observation that biological systems are fairly

redundant and this redundancy serves a specific purpose, namely,

the fast adaptation to changes in the environment. Alternative

pathways that perform similar functions are known to be

expressed in different environmental conditions, allowing for

instance to metabolize another type of sugar when glucose is not

available [43]. At any rate, the pursuit of compactness in

metabolic network reconstruction need not be in conflict with

the notion of redundancy. Alternative pathways will be included

in a reconstructed model as long as ‘redundant’ reactions

that are supported by biological evidence are included in the

core set.

Supporting Information

Text S1 Detailed comparison of the liver models
generated with MBA and FASTCORE. (See main text,

Section ‘Reconstruction of a liver model’).

(PDF)
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guide. In: Böck A, Curtiss III R, Kaper JB, Karp PD, Neidhardt FC, et al.,

editors, Escherichia coli and Salmonella: Cellular and Molecular Biology,
Washington, DC: ASM Press. doi:10.1128/ecosal.10.2.1.

39. Lee B, Yu H, Jahoor F, O’Brien W, Beaudet AL, et al. (2000) In vivo urea cycle

flux distinguishes and correlates with phenotypic severity in disorders of the urea
cycle. Proceedings of the National Academy of Sciences 97: 8021–8026.

40. Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via
genome-scale metabolic modeling. Clinical Cancer Research 18: 5572–5584.

41. Morowitz HJ (1984) The completeness of molecular biology. Israel journal of

medical sciences 20: 750.
42. Maniloff J (1996) The minimal cell genome: ‘‘on being the right size’’.

Proceedings of the National Academy of Sciences 93: 10004.
43. Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, et al. (1996)

Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions
and analysis of the resulting phenotypes on the basis of the protein structure.

Journal of molecular biology 261: 509.

Fast Reconstruction of Metabolic Network Models

PLOS Computational Biology | www.ploscompbiol.org 10 January 2014 | Volume 10 | Issue 1 | e1003424


