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Abstract

Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus
may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic
immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines
of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic
mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable
genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities.
Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune
elements to the base-pair across thousands of microbial generations. This ‘trailer-end conservation’ occurs despite rapid
viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also
largely identical across a population. ‘Trailer-end clonality’ occurs despite predictions of host immunological diversity due to
negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this
lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining ‘trailer-end
conservation,’ we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom
even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random
genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses
to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to
an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-
mediated immunity against viruses reemerging from lysogeny or migration.
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Introduction

Innate immune systems with built-in self/non-self recognition

mechanisms have long been known to protect prokaryotic

genomes against insertions of foreign DNA [1]. For example,

well-studied restriction-modification systems often preserve geno-

mic integrity by methylating prokaryotic DNA, enabling prokary-

otes to recognize and cleave unmethylated foreign DNA [2]. Yet,

the foreign DNA attacking prokaryotes includes the most

abundant and rapidly diversifying members of the biosphere,

viruses [3]. With viruses quickly evolving counter-strategies against

prokaryotic immune systems, prokaryotes require immunological

plasticity to keep pace. Here we computationally predict and

directly document the evolution of an adaptive immune system

that enables prokaryotes to serially acquire new immunities against

diversifying viruses and plasmids. Importantly, the prokaryotic

adaptive immune system is genomically encoded (i.e., hereditable)

and acquires new immune elements unidirectionally, making this

adaptive immune system distinct from its eukaryotic analogues

[4,5].

The microbial adaptive immune system is mediated by a

genomic locus termed Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR). CRISPR loci have been found in

approximately 45% of sequenced bacteria and over 90% of
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sequenced archaea [6,7]. Utilizing adjacently encoded CRISPR-

associated (Cas) proteins [8], CRISPR loci incorporate short 21–

72 base-pair sequences from targeted regions in invading viruses

and plasmids [4,6,7,9,10,11,12]. Once transcribed and processed

into CRISPR RNAs, these viral and plasmid-derived sequences

confer sequence-specific immunity by binding and cleaving

cognate viral and plasmid regions during subsequent genomic

invasions [13,14].

The viral and plasmid binding sequences incorporated into host

CRISPR loci are termed ‘spacers,’ reflecting their addition

interspacing highly synonymous 23–47 base-pair sequences, termed

‘repeats’ [4,15,16]. Correspondingly, the targeted viral and plasmid

sequences are known as ‘proto-spacers’ [4,15]. With spacer

immunity specific to a matching proto-spacer sequence, viruses

can escape CRISPR targeting by mutating their proto-spacers or by

mutating nearby proto-spacer adjacent motifs (PAMs), regions

which likely act as recognition sites for the CRISPR/Cas machinery

[4,15]. Natural selection favors the emergence of viruses with

mutations in CRISPR-targeted regions, leading to a coevolutionary

arms race [17] as hosts incorporate new spacers to combat viral

adaptations [8,15,18]. Coevolutionary arms races have been well-

documented in other virus-microbe systems [19,20,21,22,23]. Yet,

unlike previously studied coevolutionary wars, CRISPR recorded

arms races naturally differentiate current host adaptations from

previous host adaptations. This is because new spacers are added

unidirectionally, adjacent to a leader sequence at a single end of the

locus termed the ‘leader-end.’ Previously acquired spacers are also

commonly maintained, leaving a cassette-like recording of current

(i.e., spacers closest to the leader-end) and past (i.e., spacers farther

from the leader-end) adaptations. Partial timelines of coevolution

can thus be constructed for host and viral species refractory to

laboratory challenge experiments [3].

Previously, we described one CRISPR recording through

metagenomic reconstructions of the CRISPR loci sampled from

floating microbial biofilms in an acid mine drainage (AMD) system

[24]. The prime advantage of probing these generally closed,

acidophilic environments is that they are dominated by relatively

few species [25]. Our AMD research targeted the extremophilic

archaeon I-plasma [18]. Growing in an AMD biofilm matrix at

temperatures ranging from approximately 30u to 48u Celsius and

pHs ranging from approximately 0.3 to 1.2, I-plasma is one of

around 12 species in the acidophilic order Thermoplasmatales

[26,27]. Reconstructing the CRISPR loci of I-plasma, we noted

that the newest, leader-end spacers emerged highly diverse and

cell-specific. In contrast, the trailer-end spacers (i.e., the oldest

spacers found farthest from the leader sequence) were highly

clonal population-wide, matching earlier observations of trailer-

end clonality in acidophilic Leptospirillum bacteria [28] and more

recent observations in bacterial Escherichia coli and archaeal

Sulfolobus islandicus [29,30].

Surprisingly, I-plasma’s trailer-end spacers appeared conserved

despite appearing to provide no immunity against current viruses

(Figure S1). In reconstructions (,20-fold coverage) of the I-plasma

locus in the AMD biofilm, only newly acquired leader-end

CRISPR spacers matched currently sampled viruses, implying that

previously targeted viral sequences had since evolved or

disappeared. Similarly, laboratory challenge experiments [4,15]

document rapid viral evolution in the face of CRISPR targeting.

Here we sought to understand why trailer-end spacers are often

conserved despite failing to confer immunity against current

viruses. Trailer-end conservation is especially surprising in light of

the genomic compactness of Bacteria and Archaea, whose

genomes rarely exceed 13MB [31]. Prokaryotes have also been

shown to delete genetic material approximately ten times as

frequently as they insert [32]. With a bias toward genomic

deletions, we hypothesized that bacteria and archaea would only

preserve CRISPR’s genetic material if natural selection favored it.

To find and probe the selection pressure driving the

preservation of CRISPR trailer-ends, we combined metagenomic

reconstructions of CRISPR loci across a multi-year period with a

population-genetic mathematical model of virus-CRISPR dynam-

ics in a natural system. Three previous studies have constructed

mathematical models of virus-host dynamics in the CRISPR

system [33,34,35], but none were built to explain why CRISPR

loci emerge with both trailer-end clonality and trailer-end

conservation. Building a model in which CRISPR locus length is

an emergent property of the model parameters, we probe whether

tuning parameters to increase trailer-end conservation increases

prokaryotic fitness even when viruses mutate rapidly. We further

capture the dynamics through which the trailer-ends of CRISPR

loci are purged of spacer diversity.

Model
A population-genetic model (see Text S1 for the full algorithm)

was built to analyze how the intracellular processes of CRISPR

and virus mutation drive the long-term development of natural

CRISPR loci captured via metagenomic analysis. For simplicity,

the model restricts its study of host and viral genomes to

monitoring host spacers and viral proto-spacers. All other elements

in the genomes are ignored. Host and viral populations are then

divided into ‘strains’: all hosts sharing the same ordered set of

spacers are assigned to a single host strain while all viruses with

identical proto-spacers are assigned to a single viral strain (Figure

S2). Each strain’s cumulative frequency is tracked across thousands

of iterations, as mutations alter host immunity and viral infectivity.

The iterations of the model are not directly dependent on time.

Each iteration is instead defined to be the period of variable

duration in which a large, preset number of virus-host interactions

Author Summary

Most microbes appear unculturable in the laboratory,
limiting our knowledge of how virus and prokaryotic host
evolve in natural systems. However, a genomic locus found
in many prokaryotes, CRISPR, may offer cultivation-
independent probes of virus-microbe coevolution. Utiliz-
ing nearby genes, CRISPR can serially incorporate short
viral and plasmid sequences. These sequences bind and
cleave cognate regions in subsequent viral and plasmid
insertions, conferring adaptive anti-viral and anti-plasmid
immunity. By incorporating sequences undirectionally,
CRISPR also provides timelines of virus-prokaryote coevo-
lution. Yet, CRISPR only incorporates 30–80 base-pair viral
sequences, leaving incomplete coevolutionary recordings.
To reconstruct the missing coevolutionary dynamics
shaping natural CRISPRs, we combined metagenomic
reconstructions with population-scale mathematical mod-
eling. Capturing rare and rapid sweeps of CRISPR diversity
by highly immune lines, mathematical modeling explains
why naturally reconstructed CRISPR loci are often largely
identical across a population. Both model and experiment
further document surprising proliferations of old viral
sequences against which hosts had preexisting CRISPR
immunity. Due to these deadly blooms of ancestral viral
elements, CRISPR’s conservation of old immune sequences
appears to confer a selective advantage. This may explain
the striking immunological memory documented in
CRISPR loci, which occurs despite rapid viral mutation
and despite rapid deletions in prokaryotic genomes.

Immunological Memory in Microbial CRISPR Loci
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occurs (Table 1). During each virus-host interaction, one of two

possible outcomes generally occurs. If the host and viral strains share

a spacer, the host survives and the virus is cleared. Conversely, if no

spacer is shared, the virus kills the host and the virus survives. Of

course, exceptions to both of these situations are allowed in the

model. Hosts are given a small probability of surviving even when

lacking spacers against an invading virus (Table 1). Further,

CRISPR is given a small probability of failing to provide immunity

even when a host spacer matches an infecting virus’ proto-spacer

(Table 1). This failure rate has been measured in viral plaquing

assays conducted by two independent groups [4,36].

With a large number of interactions per iteration, virus-host

interactions are assumed to be well-mixed and distributed according

to strain frequencies. Since viruses are most likely to encounter high-

frequency host strains, this selects for the viral lines that can kill the

dominant hosts, resulting in negative frequency-dependent selec-

tion, a process termed ‘kill the winner’ in microbial ecology [37].

During some interactions, stochastic mutations create new host and

viral strains, as hosts unidirectionally add spacers and viruses mutate

random proto-spacers. Old host and viral strains are simultaneously

depressed in frequency and driven extinct when no longer immune

and infective, respectively. At the end of an iteration, the model

takes a metagenomic snapshot of the surviving host and viral

populations. We analyzed these snapshots across model iterations to

capture patterns of CRISPR-driven immunity as they emerge.

Model assumptions. Here we describe the main assumptions

of the model; a more in-depth analysis of each model assumption can

be found in the Supplementary Information (Text S2). First, the model

assumes that virus and host populations do not go irreversibly extinct.

With host and viral populations continually extant, in each iteration

the model can simply wait until any preset number of virus-host

interactions occurs. We can thus define iterations to be the variable

duration period in which such a preset number of interactions occurs.

Empirical support for assuming the long-run coexistence of virus and

host in natural environments comes from two metagenomic studies. In

the first study, Rodriguez-Brito et al., [38] recovered consistently high

amounts of virus and host genomes in four aquatic regions across a

year-long period. Similarly, in the experimental part of our study, we

reconstructed the relative abundances of CRISPR loci and viruses in

an acid mine drainage system across the last two years of our six-year

metagenomic time series experiment. In each sampling, both host and

viral genomes were recovered.

Large microbial population sizes limit the effect of sampling

noise in modulating the frequencies (genetic drift) of established

strains in our model. But since new mutants arise at low

frequencies, we incorporated demographic stochasticity in their

ability to establish (i.e., avoid extinction due to a low initial

frequency). We did so by allowing new mutants randomly

distributed ‘emergence periods’ during which they were not

subject to the model’s clearance of low-frequency strains. All

strains, excluding new mutants in their randomly-sized emergence

periods, are cleared when their frequencies drop below a

threshold, effecting mutation-selection balance and preventing

the model from accumulating an uncontrollable number of strains

as new mutants are created. Thus, without the randomness

component, the emergence period allows new mutants a chance to

reach ‘establishment frequencies,’ after which each mutant can

compete in the model solely via its CRISPR-determined fitness.

By increasing the rate at which viable mutants establish, the

emergence period increases competition between distinct spacer-

adding lines (clonal interference). This promotes ‘kill the winner’

dynamics, making it harder for individual lines to sweep. Despite

this increase in competition among beneficial mutants, below we

capture losses of trailer-end diversity and rapid selective sweeps.

To assure that these results also occur without the emergence

period, we tested the model without an emergence period and

found both trailer-end clonality and stochastic sweeps (Figure S3).

Results

CRISPR trailer-end conservation across multi-year
reconstructions

Before analyzing the selective pressure responsible for trailer-

end conservation in the single snapshot of CRISPR loci shown in

Table 1. Table of parameters used in model.

Symbol Value (Range Probed) Description

K 106 (105–108) Interactions per iteration.

S 50 (1–300) Fixed number of proto-spacers per viral genome.

Pv_mut .003 (1024–3N1023) Probability that viruses mutate a random proto-spacer in an interaction. For bacteria and DNA-based viruses this has
been measured at ,.003 mutations per genome per replication [72].

Pb_add 8N1026 (1026–1024) Probability that hosts unidirectionally add a random spacer in an interaction, as measured in CRISPR laboratory
experiments [10]. With 106 interactions per iteration, numerous (e.g., 8) strains add new spacers per iteration, causing
clonal interference (‘kill the winner’) and multiple-mutation driven sweeps.

Pb_lose 0 (0–1) Expected frequency of spacer additions in which hosts delete a random spacer block.

f(n) 10(24+n) n.0 1–1029 n = 0 Given n shared spacers, the probability a virus-host interaction is productive (i.e., virus lives and host dies). When
n = 0, f is set to an extremely small but still positive number to prevent host extinction.

iB 0.1 (.01–0.5) Fraction of parent strain’s frequency that each host mutant is initialized with. Because CRISPR immunity is genetic,
fitness is inherited from parent strains.

iV 0.1 (.01–0.5) Fraction of parent strain’s frequency that each viral mutant is initialized with.

G 3 (0–3) Average of Poisson-distributed clearance-free emergence iterations given to each new host and viral mutant strain.

Vmin_freq 1026 (1028–1023) Frequency threshold below which viral strains beyond their emergence iterations are cleared.

Bmin_freq 1026 (1028–1023) Frequency threshold below which host strains beyond their emergence iterations are cleared.

Vlist_max 300 (100–5000) Maximum number of surviving viral strains beyond their emergence iterations.

Blist_max 300 (100–5000) Maximum number of surviving host strains beyond their emergence iterations.

doi:10.1371/journal.pcbi.1002475.t001
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Figure S1, we first sought to rigorously determine whether hosts

actually preserve CRISPR trailer-ends across evolutionary time-

scales. To do so, we metagenomically tracked CRISPR spacer

content and structure in a natural system over a six-year period.

Our analyses focused on an archaeal G-plasma population and

abundant viruses that target it. Like I-plasma, G-plasma is a

species in the order Thermoplasmatales [26,27]. Yet, G-plasma

and I-plasma are sufficiently divergent at the rRNA gene sequence

and amino acid level to be considered distinct genera [39].

Moreover, the lineages show limited genome synteny [39].

To evaluate the extent to which G-plasma CRISPR locus

spacers are conserved across time, we metagenomically recon-

structed G-plasma CRISPR fragments seven times during the six-

year study. In each sampling, the spacers in the CRISPR loci were

aligned based on flanking genome sequences and paired read

information (Methods). Notably, trailer-end spacers were con-

served in both loci across the multi-year period (Figures 1 and 2).

Spacer preservation occurs despite deletions of single and

multiple spacer-repeat units. Deletions of old spacers have also

been observed in previous studies [7,15,16,28]. With new spacers

more likely to provide immunity against current co-evolving

viruses [18], we wondered why trailer-end CRISPR spacers are

maintained. To probe whether natural selection conserves old

spacers to maintain immunity against persisting viruses, we used

the community genomic data across time to reconstruct putative

viruses throughout the multi-year period (Methods). We previously

noted that the first reconstructed virus, AMDV3, targets G-

plasma. We inferred G-plasma targeting by detecting matches

between G-plasma’s CRISPR spacers and corresponding ‘proto-

spacer’ sequences in AMDV3 [18]. In the current study, a variant

of AMDV3, denoted AMDV3b, was reconstructed and shown to

also target G-Plasma. Importantly, each viral population is

genomically heterogeneous due to single nucleotide polymor-

phisms (SNPs) and sequence insertions and deletions.

To test whether conserved trailer-end spacers may provide

immunity to persisting viruses, we mapped G-plasma CRISPR

spacers onto the reconstructed viral genomes (Methods). While

most spacers shared between host and viral genomes were found at

the new ends of G-plasma loci, several spacers with perfect identity

to AMDV3b persist in older regions across all sampled times. The

spacers matching AMDV3b are shown with black diamonds in

Figure 2.

Figure 1. Trailer-end conservation and clonality documented in G-plasma CRISPR loci #1. Metagenomic reconstructions of the first
CRISPR locus of a G-plasma population sampled in 2002 (1), 2005 (2), June 2006 (3), August 2006 (4) November 2006 (5), May 2007 (6) and August
2007 (7). In each sampling, the CRISPR spacers (boxes) are aligned horizontally according to their ordering in the metagenomic reads, with CRISPR
repeats removed for compactness. Overlapping 454 spacer patterns are also condensed (Methods). The left-ends are the leader-ends, where new
spacers are unidirectionally incorporated. Boxes filled with the same color represent identical spacers, with two exceptions. Black-filled boxes show
flanking genetic material and white-filled boxes denote cell-specific spacers found only once in the dataset. White gaps reflect unsequenced regions
in the metagenomic reconstructions. When separated spacers can be linked via paired reads, the intervening region is shown as a grey bar. Boxes
containing a black ‘X’ indicate probable spacer deletions. When spacers match reconstructed AMDV3b viral sequences, diamonds are inserted, with
filled diamonds showing perfect matches and open diamonds reflecting imperfect matches. Trailer-end conservation (presumed immunological
memory) and clonality are pronounced in this locus, with large numbers of matching spacers preserved across the six-year period. Another example
of trailer-end conservation and clonality—in the CRISPR loci of archaeal I-plasma—is shown in Figure S1.
doi:10.1371/journal.pcbi.1002475.g001
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Modeling reconstructs rapid depletions of CRISPR
diversity

In addition to maintaining trailer-end spacers (‘trailer-end

conservation’), reconstructed CRISPR loci show far less spacer

diversity at trailer-end positions than leader-end positions (‘trailer-

end clonality’). Unlike conservation, trailer-end clonality could

have been expected from single time-point reconstructions, as

have been reported previously [28,29]. Yet, previous analyses

could not explain the dynamics through which trailer-end clonality

emerges in natural CRISPR loci. In the I-plasma locus (Figure S1),

all but the four newest spacer positions are clonal population-wide,

indicating a recent selective sweep by an immune host lineage.

Such a selective sweep is surprising in light of the cell-specific

spacer diversity at the new ends of CRISPR loci. With a spacer

addition rate high enough to enable numerous lines to acquire

distinct beneficial spacers before any one line has swept (i.e., new-

end diversity), one expects that competition between spacer-

adding lines would prevent selective sweeps in a process known as

clonal interference [40]. Further complicating the question of how

trailer-end diversity is purged from CRISPR loci is the fact that

the loss of trailer-end diversity does not have to occur via selection:

it could result from the unidirectional nature of spacer addition.

With spacers only incorporated at new-ends, trailer-end spacer

diversity cannot increase once trailer-end positions have been

filled, because no distinct spacers are incorporated there. Thus, as

time progresses, all but one trailer-end lineage, the ‘coalescent,’

will necessarily go extinct even without selection, resulting in

trailer-end clonality.

To ascertain whether selection drives losses of diversity at

CRISPR trailer-ends despite high spacer addition rates (an

average of eight spacer additions occur per iteration; see

Table 1), we followed the spacer diversity of computationally

reconstructed locus positions for thousands of iterations. We aimed

to discover how rapidly locus positions evolved from highly

polyclonal to clonal, using rapidity as a marker for sweeps. For

simplicity, spacer deletions were removed from the model for this

step, as we focused on the role of beneficial mutations (spacer

additions) in driving losses of diversity.

As could be expected from the unidirectionality of spacer

addition, after thousands of iterations, long-run model trajectories

converge to the familiar pattern in which trailer-end spacers are

clonal population-wide, while only polyclonal new-end spacers

match co-evolving viruses (Figure 3 Left Panel). As in Figure S1,

the majority of the locus is clonal (as noted on the figure, 128

clonal columns were removed for space conservation). Despite the

eventual emergence of trailer-end clonality, CRISPR trailer-ends

were initially highly diverse leader-ends (Figure 3, Right Panel and

Figure S4). Interestingly, we reconstructed an intermediate stage in

which the trailer-ends can be grouped into several sub-populations

distinguished by their oldest spacers, indicating that gradual losses

of diversity occur in the model (Figure 3 Middle Panel). Trailer-

end sub-populations were similarly reported in metagenomic

reconstructions from natural environments [28,29]. By tracking

the frequencies of the top 14 spacers in one of the oldest CRISPR

locus positions across thousands of iterations, we further verified

that spacer fixations can require thousands of iterations (Figure

S5).

Yet, in addition to gradual fixations, model results demonstrate

rapid selective sweeps of individual host sub-populations. In order

to identify sweeps, we created an algorithm that clusters CRISPR

loci into an optimized number of sub-populations in any given

iteration (Text S3). To decide on an ‘optimal’ number of clusters

in an iteration, we utilized a machine learning cluster validation

technique called the ‘silhouette width’ [41]. We then captured

iterations in which the predicted number of CRISPR sub-

populations precipitously drops to one, indicating a sweep by a

member of one ancestral sub-population (Figure 4A). To verify

sweeps, we tracked the frequencies of all spacers in a new-end

locus position through the period during which the clustering-

predicted sweep occurs. Despite competition from numerous other

Figure 2. Trailer-end spacers of G-plasma CRISPR locus #2 match AMDV3b viral regions across the six-year period. Metagenomic
reconstructions of the second CRISPR locus of G-plasma at the seven sampled time points. Notably, several trailer-end G-plasma spacers match
reconstructed AMDV3b across all time points (filled diamonds).
doi:10.1371/journal.pcbi.1002475.g002
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spacers, a single spacer, unique to one diversifying host sub-

population (Text S3), rapidly rises to high frequency in this position

(Figure 4B). Importantly, the vast majority of virus-host interactions

are immune during the sweep period (Figure 5), showing that the

rapid loss of host diversity was due to a sweep by a highly immune

host rather a bottleneck due to a lack of host fitness.

To understand how a sweep could occur despite model-

implemented ‘kill the winner’ dynamics, we reconstructed the

strain containing the sweeping spacer identified in Figure 4B. We

noticed that the two subsequent spacers added on this strain

targeted distinct viral sub-populations, immunizing the host

against both dominant viral sub-populations (Figure 5). In this

particular case, the viruses were unable to mutate both matching

proto-spacers on a single line prior to the host sweep (Figure 5).

Thus, while adding spacers that confer immunity to one viral sub-

population is common in the model and results in clonal

interference among similarly partially immune lines, rapidly

acquiring immunity to all viral subpopulations is a rare, ‘multiple

mutation’ event [42], which leads to a uniquely immune line that

can sweep. More generally, this captures how ‘kill the winner’

cannot maintain spacer diversity in CRISPR loci. Viruses cannot

always make the requisite mutations needed to kill a host before

that host sweeps. Once trailer-end diversity is lost in even a single

rare sweep, trailer-end diversity cannot be regained because

distinct spacers are only added at the leader-end.

Incorporating deletions into the model explains trailer-
end memory

While unidirectional spacer addition alone explains the emer-

gence of trailer-end clonality, it does not explain the more basic

question of why trailer-end spacers are at all preserved despite rarely

matching current viruses (Figs. 1, 2). To probe the potential fitness

cost associated with rapidly deleting CRISPR spacers, we

introduced random spacer deletions into our in silico evolving

system. Spacer deletion was implemented by allowing a preset

fraction of spacer additions to occur with the loss of a randomly-

sized, contiguous spacer block from a random starting point in the

locus. A combined add/loss mechanism is consistent with

experimental evidence indicating that spacer deletion occurs via

homologous recombination [43,44] and data showing that losses

often occur with simultaneous new-end spacer additions [15,45].

If selection played no role (i.e., spacers conferred no immunity)

in CRISPR evolution, the equilibrium number of spacers in a

strain’s CRISPR locus would roughly be the ratio of spacer

addition to loss rates. This is the steady state of the linear

differential equation dN/dt = a2d*N, where N is the number of

spacers, a, the spacer addition rate, and, d, the spacer deletion rate.

Thus, even with selection extending the size of CRISPR loci to

maintain spacer immunity, the long-run equilibrium lengths of

CRISPR loci should be inversely proportional to their spacer

deletion rates. By incorporating the deletion process into our

model, we find that when only 5% of spacer additions occur with

deletions, CRISPR locus lengths look qualitatively similar to

model results with no deletions, with trailer-end conservation and

clonality largely preserved (Figure 6A). Conversely, allowing 50%

of spacer additions to result in deletions of random spacer blocks

purges CRISPR trailer-ends entirely (Figure 6B). Given our

experimental data showing that CRISPR loci conserve trailer-ends

over time (Figures 1,2), model results predict that the rate of spacer

deletion is maintained below a threshold in many natural systems.

Figure 3. Model captures the emergence of trailer-end clonality in CRISPR loci. Computational reconstructions show the loss of trailer-end
diversity from CRISPR loci. Reconstructions show the 45 most frequent host strains at the 100th, 500th and 7000th iterations of a representative
simulation without spacer deletion. In each panel, the rows show distinct host strains, with their spacers allayed across the columns from right to left
as in Figures 1, 2 and S1. Circles indicate spacers perfectly matching any of the 300 most frequent viral strains in that iteration. To preserve space, 128
clonal columns are removed in iteration 7000 prior to the divergence of sub-populations from a common ancestor (arrow). Notably one ancestral
population still at low frequency (,0.007 as shown in Figure S4) in the 100th iteration is the common ancestor of all surviving strains.
doi:10.1371/journal.pcbi.1002475.g003
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To understand why selection would maintain spacer deletion

rates below a threshold, we compared the mean fitness of host

strains across time under both low and high-loss regimes. Our

measure of host mean fitness in an iteration is the fraction of

virus-host interactions in which CRISPR provides immunity.

While a low-loss rate (5%) produces consistently high levels of

host immunity and thus fitness (Figure 6A Lower Panel), dramatic

dips in host immunity are observed when the probability of

spacer deletion is increased to 50% (Figure 6B Lower Panel).

Troughs in host immunity predict rapid viral blooms due to the

large number of productive virion producing interactions (Figure

S7).

Figure 4. A selective sweep of spacer diversity. (A) Hosts CRISPR loci from the simulation in Figure 3 are clustered (Text S3) into distinct sub-
populations every 100 model iterations to capture how trailer-end clonality emerges. Cluster heights represent the cumulative frequencies of all
strains in a given cluster, cluster widths show the number of distinct strains in that cluster, and the combined height of all clusters in an iteration
reflects the fraction of virus-host interactions that is immune (i.e., host mean fitness). A marked loss of host diversity occurs prior to iteration 3800
(R), after which the sweeping sub-population diversifies through distinct leader-end spacer incorporations (Figure S6). (B) The frequencies of all host
spacers at a single leader-end column are tracked during the clustering-predicted sweep. A single spacer (shown in black) rapidly rises in frequency
before iteration 3800 as predicted by the clustering. Subsequent ‘kill the winner’ oscillations occur before all competing hosts go extinct. A second
sweep purges the remaining diversity at this locus position.
doi:10.1371/journal.pcbi.1002475.g004
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To understand why host immunity is depressed when

CRISPR’s spacer deletion rate is increased, we reconstructed host

CRISPR loci from the time point at which the fraction of immune

hosts is at a trough (iteration 768 in Figure 6B). During this

predicted viral bloom, the few hosts immune to the top 300 viruses

are surprisingly protected by two older spacers (Figure 6B Upper

Panel). These older spacers were previously far more prevalent

among hosts (Figure S8). Viral proto-spacer mutation eliminated

the selection pressure maintaining the two spacers in the hosts,

resulting in the rapid loss of the two spacers from most hosts due to

the high spacer deletion rate. Viruses managing to preserve the

targeted proto-spacers while avoiding extinction could then

bloom, free from spacer-driven immunological control (Figure S8).

Importantly, the viral bloom is not monoclonal: a number of

sub-populations can be found within the blooming viral popula-

tion (Figure 7A). Further, the main viral sub-population, which

contains the two older proto-spacers, is rife with new mutants

containing polymorphisms in their proto-spacer sequences

(Figure 7A). Blooming viral diversity matches the host diversity

evident from the CRISPR loci reconstructed during the bloom

(Figure 6B). To quantify the correlation between virus and host

polyclonalities, we superimposed virus and host strains onto a

single matrix, with viral strains allayed along the rows and host

strains allayed along the columns (Figure 7B). Each (row, column)

entry of the matrix represents the number of shared spacers

between the row’s viral strain and the column’s host strain (i.e., the

level of immunity). This results in horizontal immunity vectors for

each virus and vertical immunity vectors for each host. We then

clustered the viral immunity vectors into an optimal number of

viral sub-populations by maximizing the ‘silhouette width’ as

above (Text S3) and analogously optimally clustered the column-

wise host immunity vectors. Immunity clustering shows a clear

pattern of specialization in which distinct host sub-populations

coexist through immunity to distinct viral sub-populations in what

could be termed ‘cloud on cloud’ immunity (Figure 7B). The

presence of distinct immunological niches explains why only seven

host strains matched the top 300 viral strains (Figure 6B); the other

hosts survived through immunity to less frequent viruses

(Figure 7B).

Matching model predictions of a deletion-induced polyclonal

viral bloom, we used the community metagenomic data to capture

a viral bloom of AMDV3b despite preexisting spacer immunity its

host G-plasma population. We tracked the relative abundances of

a number of host and viral species in the AMD consortium

through a series of samples collected at a single AMD location

between June 2006 and August 2007 (Figures 8 and S9). The G-

plasma CRISPR loci from these samplings were shown in Figures 1

and 2 as reconstructions (3)–(7). Relative abundances of host and

Figure 5. Sweep driven by spacer-mediated immunity against multiple viral sub-populations. In the upper panel, the frequency of the
sweeping spacer identified in Figure 4B is again shown in black. Also tracked, are the two adjacent spacers added by the black spacer’s successful
host line. The frequencies of these adjacent spacers in their respective locus columns are shown in red and blue. In green, we track the fraction of
immune virus-host interactions. The lower panel shows the frequencies of the three corresponding proto-spacers in the viral population. The inverse
fluctuations in viral proto-spacer frequencies show that the viruses fail to lose all three proto-spacers on a single line until just prior to iteration 3800,
after the sweep. The host line thus sweeps due to immunity to both viral sub-populations.
doi:10.1371/journal.pcbi.1002475.g005

Immunological Memory in Microbial CRISPR Loci

PLoS Computational Biology | www.ploscompbiol.org 8 April 2012 | Volume 8 | Issue 4 | e1002475



viral strains were determined by quantifying the number of reads

showing high sequence similarity to the reconstructed composite

sequences (Methods). While G-plasma was recovered from all

samples across time, G-plasma was highly depleted in the August

2006 sampling, coincident with a bloom in the viruses shown to

target it, AMDV3 and AMDV3b. Importantly, Figure 2 shows the

preexisting presence of trailer-end spacers in G-plasma exactly

matching AMDV3b (black diamonds), indicating a putative

selective advantage to preserving old spacers and suggesting that

spacer deletion between samplings may have driven the rapid

proliferation of AMDV3b.

Further supporting model predictions, the viral bloom is

polyclonal with a number of sub-populations clearly recogniz-

able (Figure 9). A monoclonal rather than polyclonal bloom is

the expected outcome when viruses out-mutate host immunity

(i.e., the successful viral mutant alone blooms), indicating that

the bloom was not the result of a recent viral mutation but

instead due to CRISPR failing against a wide range of extant

viral sequences. Correspondingly, there is no evidence of

diminished CRISPR diversity among bloom-surviving G-plasma

hosts. In fact, two G-plasma sub-populations, differentiated by

distinct trailer-end spacers, precede and survive the crash

(Figure 2) as occurs in model simulations in which the deletion

rate is high enough to prevent the formation of clonal trailer-

ends (Figure 6B).

Discussion

Here we metagenomically track virus and host populations

across time in a natural environment and use a mathematical

model to reconstruct the dynamics through which CRISPR loci

could evolve between these snapshots. We first capture surprising

selective sweeps through which highly diverse CRISPR ‘leader-

ends’ become clonal ‘trailer-ends’ across time. Our results also

explain why CRISPR loci maintain trailer-end immunities for

thousands of microbial generations (immunological memory). Both

model and metagenomic data capture blooms of persisting viral

sequences against which hosts had preexisting spacer immunity.

The model directly shows how accelerated spacer deletions drive

these blooms, with precipitous drops in host fitness occurring when

spacer deletion is increased. Without viral persistence as a selection

pressure favoring memory in CRISPR loci, genomically compact

prokaryotes would be expected to purge trailer-end spacers given

documented genomic deletion biases and the eventual cost of

maintaining excess genomic material [32].

Of course, the genomic cost is likely not significant for each

short spacer added. Yet, if CRISPR loci grew without bound, at

some point there would be a cost associated to maintaining and

transcribing enormous loci. Evidence for a genomic length cost

emerges in two recent studies. An elegant analysis noted that

highly expressed eukaryotic genes possess significantly shorter

Figure 6. Model shows trailer-end conservation protecting hosts against blooms of old viral sequences. The model is extended to allow
a parameterized fraction of (single) spacer additions in host CRISPR loci to occur with deletions of randomly-sized blocks of spacers from random
locus positions. The lower panels in (A) and (B) plot host immunity (blue) against maximum viral strain frequency (red) in each iteration. (A) When 5%
of additions occur with deletions, trailer-end memory and clonality are preserved. Only new-end spacers target current viruses and CRISPR’s antiviral
immunity is maintained at high levels across thousands of model iterations. (B) When 50% of spacer additions occur with deletions, trailer-end
memory and clonality are purged. Depletions in host immunity occur (lower panel), indicating viral blooms due to the large fraction of interactions in
which CRISPR fails to provide immunity (i.e., host and virus do not share spacers). During the predicted bloom at iteration 768, immunity against the
top 300 viral strains is conferred by two older spacers, which are lost from most host lines prior to the bloom (Figure S8).
doi:10.1371/journal.pcbi.1002475.g006
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introns than less expressed genes, a fact attributed to the ATP-cost

of transcribing even short DNA regions [46,47]. In Salmonella, Kuo

and Ochman [48] noted that bacterial pseudogenes are deleted

faster than they would be by drift alone (which has exponential

waiting times), pointing to selection as a driver of genomic

compactness [48]. As in the eukaryote study, the few enduring

bacterial pseudogenes in [48] appear to be less expressed.

Interestingly, elongated CRISPR loci may have an answer to

the transcriptional cost problem: they appear to disproportionately

produce CRISPR RNA at the leader end [6]. An intriguing

possibility is that CRISPR loci could bet-hedge [49,50], with

selection tuning the level of trailer-end spacer transcription to scale

with the probability of encountering matching viral sequences.

In pinpointing blooms of persisting viruses as the selection

pressure favoring CRISPR memory, we noted a surprising

polyclonality in both virus and host in the natural system. Had

this been the expected, laboratory-observed bloom in which a

virus simply mutates around host immunity [4,15], the result

would have been a monoclonal bloom of the viral variant for

which the hosts were not able to acquire spacers in time. For a

polyclonal bloom to occur, rather than a single lucky viral

mutation, host immunity must fail against a large swath of viruses.

There are thus two possibilities for how this polyclonal bloom

occurred: either the CRISPR system did not provide any

immunity at all (i.e., spacers are not immunogenic), or, as in the

model, the hosts prematurely deleted key spacers allowing

diversified viruses sharing these key old spacers to resurge and

bloom. While we cannot entirely dismiss the first possibility, we did

simulate the model under the null hypothesis in which spacers are

not immunogenic. In that case, when CRISPR loci evolve

neutrally, simulated loci emerge with few spacers and no trailer-

end clonality. In contrast, naturally sampled G-plasma loci contain

tens of spacers and exhibit dichotomous patterns of trailer-end

clonality and new-end diversity. More generally, because the rate

of neutral fixation of trailer-end spacers scales inversely with the

effective population size [51], large microbial populations make

genetic drift an unlikely driver of observed CRISPR locus patterns.

Three previous models have been built to study questions

surrounding CRISPR-based immunity. Haerter and colleagues

studied how viral diversity is maintained against CRISPR, but

their model did not track and reconstruct spacer patterns within

CRISPR loci [35]. Levin [34] focused on the fundamental

question of why CRISPR loci are found in some but not all

microbes, but did not include virus and host mutational processes.

It thus could not capture the long-run evolution of CRISPR loci

within microbes that do maintain CRISPRs. To model this long-

run evolution, He and Deem [33] elegantly applied an HIV-

derived differential equation model [52]. Yet, in using an HIV

model, He and Deem assumed that CRISPR-immunized Bacteria

and Archaea control viral abundances in the same way that

cytotoxic CD8+ T cells target HIV virions. Thus, viral populations

surprisingly decline in their system if all host strains (the viral

Figure 7. Clustering by immunity reveals diversity during viral bloom. (A) The 651 viruses at the model predicted bloom (iteration 768 in
Figure 6B) are shown along the rows, with the virus’ 50 aligned protospacers shown along the columns. Distinct proto-spacers are colored differently.
Strains are then clustered based on proto-spacer relatedness. The two proto-spacers providing immunity at the bloom (Figures 6B and S8), are shifted
to the two rightmost columns for clarity. Five distinct viral sub-populations are observed in the mosaic, with the largest blooming sub-population
characterized by closely related mutants sharing the two critical proto-spacers in their rightmost columns. (B) Viral and host sub-populations at the
bloom are superimposed on one another to reveal ‘cloud on cloud’ immunity at the bloom. The rows contain viral strains and the columns show host
strains. Each entry of the heat-mapped ‘immunity matrix’ shows the number of shared spacers between the respective host and viral strain. Pale
yellow color represents no shared spacers (susceptibility), yellow one shared spacer, orange two shared spacers, and red three shared spacers. The
silhouette width (Text S3) was maximized to cluster both hosts (columns) and viruses (rows) into an optimal number of sub-populations based on
immunity profiles. Distinct host sub-populations possess immunity to distinct viral sub-populations.
doi:10.1371/journal.pcbi.1002475.g007
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growth source) are increased by a constant factor, as roughly

occurs after an influx of resources. Further, in assuming pre-

stipulated locus lengths in which each leader-end spacer addition

occurs with a corresponding trailer-end spacer deletion, the model

in [52] could not probe whether reducing spacer deletions to

increase CRISPR locus lengths is an evolutionarily beneficial

strategy.

In protecting against blooms of old viral sequences, model

predictions and metagenomic data suggest that CRISPR’s

immune memory makes it suited for environments in which

viruses persist for long periods or remigrate from adjacent regions.

CRISPR-based immunity may thus be more prevalent in biofilms

than in dilute ocean environments [53]. Immunity against

persistent viruses may also explain CRISPR’s presence in 90%

of sequenced Archaea, which have disproportionately been

sampled from extreme environments where viruses tend not to

lyse their hosts [13,54].

More generally, proviral latency is a viral persistence strategy

and a clear barrier to eradicating pathogens. A fascinating study

recently showed that of the 132 spacers matching viruses in

CRISPR loci reconstructed from Pseudomonas aeruginosa hospital

populations, all spacers matched lysogenic but not lytic viruses

[55]. And while these spacers do not appear to block lysogeniza-

tion, the same group and others have demonstrated CRISPR-

mediated control on inserted lysogens, apparently preventing

lysogenic induction and infectious spread across susceptible

populations such as biofilms [56,57,58,59]. A potential explana-

tion for the demonstrated connection between CRISPRs and

lysogenic viruses could be CRISPRs immunological memory. By

maintaining old immunities, CRISPR may have evolved to

safeguard against reemergences of ancestral viruses from lysogenic

dormancies.

Methods

Metagenomic sample collection
For the 2006–2007 time series study, biofilms were sampled

from the acid mine drainage solution – air interface at the C

+75 m location in the Richmond Mine (Iron Mountain, CA -

40u40938.420N and 122031919.900W (Elevation ,3,1009)) in June,

August, and November 2006, as well as May and August 2007.

Environmental parameters of this site at the times of sampling

have been reported previously [60]. Samples were transferred to

dry ice on site and stored at 280uC.

Figure 8. Metagenomic sampling across time captures a natural viral bloom. Number of sequencing reads of G-plasma and its viral
populations, AMDV3 and AMDV3b, calculated from the community genomic data at a single location across five time points in 2006–2007. Relative
abundances of all archaeal, bacterial, viral and plasmid genomes reconstructed from this community during 2006–2007 are shown in Figure S9. Both
Figures 8 and S9, capture a bloom of AMDV3b virus (bright red) at the second time point, August 2006, coincident with the depletion of its archaeal
G-plasma host (bright green). Notably, the G-plasma CRISPR loci from these time points were reconstructed in samplings (3)–(7) of Figures 1 and 2. G-
plasma contained several spacers exactly matching the blooming AMDV3b sequences prior to the August 2006 bloom (black diamonds in Figure 2).
doi:10.1371/journal.pcbi.1002475.g008
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DNA extraction, preparation and sequencing of
metagenomic libraries

As described in detail previously [61], for each biofilm collected,

high molecular weight DNA was extracted from a 1 g subsample

using phenol-chloroform isoamyl. To further remove contaminat-

ing extracellular polysaccharides, the DNA was subsequently run

on a gel and purified via a QIAquick Gel Extraction Kit (Qiagen,

Venlo, Netherlands). Preparation of shotgun metagenomic

libraries and pyrosequencing using the 454 Genome Sequencer

FLX-Titanium system were performed at the W. M. Keck Center

for Comparative and Functional Genomics (University of Illinois,

Urbana-Champaign, IL) according to manufacturer’s instructions

(454 Life Sciences, Branford, CT) [62]. Signal processing and base

calling were performed using the bundled 454 Data Analysis

Software version 2.0.00.

Metagenomic data analyses
Sequencing reads from the five libraries were co-assembled

using Newbler (GSassembler v. 2.0.01, Roche) using default

parameters except for a 95% nucleotide identity and 40 nt

minimum overlap requirement. Replicated reads were identified

using a previously described protocol based on CD-HIT clustering

[63] (.95% identity, .five identical bases at the start of the read,

no equal length requirement). Within each CD-HIT cluster, reads

that shared the same start position on the assembled contigs were

identified and removed except for the longest read. Additional

filtering of reads containing ambiguous bases, resulted in a total of

990,386 reads (,350 Mbp). A second assembly, using identical

parameters, was performed using this filtered reads dataset.

For community profiling, read assignment to previously

identified genomic sequence bins was performed by blastn analysis

(e-value cutoff of e220) using a database of contigs previously

assembled and binned from four other Richmond Mine biofilm

samples: 5-way, collected in March 2002 [64,65], UBA and UBA

filtrate collected in June 2005 [27,61], and UBA-BS collected in

November 2005 [26].

Contigs representing virus genome fragments were identified

based on (a) similarity to previously identified virus contigs

recovered from the same system, (b) extreme high depth of

sequence coverage (in the case of AMDV3b), (c) assembly curation

into genome fragments with detectable sequence similarity to the

known viruses, and (in all cases) (d) targeting of the genome

sequence fragments by CRISPR spacers. Viruses were determined

to replicate in specific hosts based on extensive targeting of their

Figure 9. Natural viral bloom is polyclonal. Sequence variation within a gene of the blooming AMDV3b viral population (345 bp field of view).
The top bar of the figure represents an 18 kb contig sequence of AMDV3b, with predicted genes shown as boxes. Below the contig, is a close-up view
of sequence variation within a single gene. White bars represent aligned sequencing reads, while colored bars indicate SNPs relative to the composite
sequence. The black region is a large deleted sequence block in one individual viral genome. Distinct viral sub-populations are captured during the
bloom, each sharing common SNPs. Also shown in the figure are regions of the AMDV3b contig that match G-plasma spacers: closed circles in the
contig represent perfect matches and open circles represent imperfect matches. When the match between G-plasma spacer and AMDV3b
protospacer occurs within a predicted gene, the circle is placed inside the corresponding gene box; matches to intergenic regions are shown below
on the contig line.
doi:10.1371/journal.pcbi.1002475.g009
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genomes by spacers from host-specific CRISPR loci. Curation of

contigs containing reads identified as viral was carried out using

Consed [66]. Contigs were then imported into GSMapper and

extended manually and joined, where appropriate, so that regions

fragmented by elevated sequence divergence could be condensed.

Cases of extreme divergence were treated as separate contigs.

Locations where genomic datasets were fragmented by gene

content differences were noted, and the information used as part of

the binning procedure. Viral genomes related to the previously

studied AMD viruses but that assembled separately were

distinguished. For example, the deeply sampled AMDV3b genome

is related to the previously reported AMDV3 population and also

to a shallowly sampled AMDV3c population (results not shown)

that is also present in the C +75 m dataset.

Strainer [67] was used to visualize single nucleotide polymor-

phism patterns and other forms of variation. This made use of the

‘‘.ace’’ file generated by GSMapper and read re-mapping step that

corrects for homopolymer errors during import into Strainer.

Processing of sequencing reads for CRISPR analysis
CRISPR spacer analysis was performed on individual sequenc-

ing reads rather than contigs generated from an automated

assembly. Sanger reads (mate-paired ,800 bp sequences from

each end of an ,3 kb clone) from the 5-way, UBA, UBA-BS, and

UBA filtrate datasets, and 454 reads from the C +75 m series,

were used in the reconstruction of both G-plasma CRISPR loci

(data are separated by time points in Figures 1 and 2). Any 454

reads containing at least one ambiguous base (‘‘N’’) were removed.

Using a custom Ruby script, the ends of each 454 read were

trimmed until a base passed 20/15 NQS (neighborhood quality

standard) [68], with a variation described in [69]. Cross_match

(developed by P. Green, University of Washington) was used to

remove any remaining B adaptor sequences (from library

construction). Phred [70,71] was used to trim the Sanger

sequencing reads and Cross_match was used to filter vector

sequence.

CRISPR data analysis
Sequencing reads that sampled the CRISPR loci were identified

based on the presence of specific repeat sequences (see below).

Custom Ruby scripts were used to extract CRISPR spacer

sequences from 454 and Sanger sequencing reads. We allowed for

variation in the repeat sequences to avoid omitting spacer

sequences due to errors in sequencing (e.g., homopolymer runs).

Spacers were grouped using blastclust (using parameters of 85%

identity and 85% length overlap) to remove duplication of groups

due to sequencing error. Custom Ruby scripts were used to array

CRISPR spacers back onto sequencing reads. Assembly of each

locus was manually performed in Microsoft Excel based on

overlapping spacer patterns and sampling of the flanking genome

on part of the read or its mate pair (in the case of Sanger reads).

Where possible, 454 reads were arrayed so that patterns of

sequential spacers matched locus regions defined based on Sanger

reads. For data presentation in Figs. 2 and 3, unique patterns

defined by multiple overlapping 454 reads were condensed to

report the longest possible sequence of spacers.

Detection of spacer matches
Spacer matches were detected using blastn, with parameters for

short sequences (G = 2, E = 1, F = F). Perfect matches signify exact

matches (100% identity across entire length of spacer) while

imperfect matches require at least 85% identity across at least 85%

of the spacer. The databases used in the blast searches were

composed of AMDV3b sequences recovered in this study. While

the database used to detect imperfect matches only contained

contig sequences, the database used to detect perfect matches also

included the individual sequencing reads that comprised each of

the contigs.

Analysis of community composition in C +75 m time
series data

For each individual sample, each read was assigned to a

sequence bin (organism or virus type) based on blastn analysis

(cutoff,e220). The unassigned category indicates similarity to

contigs in the AMD sequence database with unknown affiliation.

Note that, as described previously [60], changes in solution pH

occurred at the sampling site over the time period studied. This

altered the overall community composition, particularly the

relative abundances of Bacteria and Archaea.

Modeling implementation
The mathematical model—see Text S1 for the complete

algorithm—was programmed and simulated in MATLAB (version

7.7). Model simulations recorded the spacers in all CRISPR loci

across iterations, storing distinct spacers as distinct numbers.

Images of CRISPR loci (i.e., spacer patterns) were then produced

in R (version 2.11). The R ‘Cluster’ package was used to track the

evolution and diversity of CRISPR lineages across time.

Supporting Information

Figure S1 Trailer-end conservation and clonality in I-
plasma. Metagenomic reconstructions of the CRISPR loci of an

archaeal I-plasma population sampled from the AMD system. As

in Figures 1 and 2 of the main text, CRISPR loci, with repeats

removed, were reconstructed according to spacer ordering in the

metagenomic reads. Identical spacer sequences share the same

colored box, except white boxes, which denote cell-specific spacers

and black boxes, which show flanking genome. White space

indicates unsequenced gaps. When spacers match reconstructed

AMDV5 viruses, triangles are inserted (filled triangles show perfect

matches, while open triangles show imperfect matches). Notably,

all virus-matching spacers occur near the diversifying leader-ends,

indicating viral evolution to avoid earlier spacer targeting.

(TIFF)

Figure S2 Schematic overview of the interaction-based
mathematical model. (A) Host strains (rectangles) are defined

by spacer content, with virus strains (stars) defined by correspond-

ing proto-spacer sequences. The full mathematical model

considers all proto-spacers in defining viral strains, but for ease

of display this cartoon only tracks the fitness-impacting viral proto-

spacers matching current host spacers. (B) Diagram of a

representative iteration. Model-stipulated ‘well mixing’ results in

dominant host strains being virally challenged more frequently

causing negative frequency dependent selection. Thus, the initially

frequent host strain (B1) is depleted by the newly dominant viral

strain able to productively infect it (V2). Clouds of host and viral

strains emerge as viral strains mutate (dotted black lines) and hosts

incorporate random new spacers unidirectionally (new colored

bars at left ends of hosts). The model is built to predict the patterns

of virus-host coevolution that emerge after thousands of iterations.

(TIFF)

Figure S3 Simulations without emergence period also
show trailer-end clonality and sweeps. In the top panel, we

plot the top 50 host strains, by frequency, after 5000 model

iterations. The remaining parameters are as in Figure 3, with

sufficient host addition to allow for ‘kill the winner’ dynamics. In
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the bottom panel, host diversity is tracked every 50 iterations

across a simulation as in Figure 4A, using the ‘silhouette’ technique

to choose an optimal number of clusters per iteration. Note that

prior to Iteration 4850, a diversity sweep occurs, implying that

sweeps are not artifacts due to the grace period preserving new

mutants.

(TIFF)

Figure S4 Successful lineage in Figure 3 was initially
infrequent. In our model implementation, distinct spacers are

represented as distinct numbers, with the exception of 0 which

reflects lack of a spacer at a locus position. Each of these nonzero

numbers is mapped to a unique color for clarity in the figures.

Here we simply identify the successful trailer-end spacer set

(highlighted in red) that fixes in Figure 3, noting that initially this

lineage was at a low frequency of approximately 0.007.

(TIFF)

Figure S5 Gradual loss in spacer diversity at one locus
position. Here we track the spacer diversity of the second locus

position for the simulation analyzed in Figures 3–5 of the main

text. In contrast to the rapid selective sweep observed for the 104th

locus column (Figures 4 and 5), the 2nd locus column is

characterized by the gradual fixation of one spacer (lineage).

Further, despite the presence of negative-frequency dependent

selection (‘kill the winner’) in individual model iterations (Figure

S2), positive frequency dependent selection is evident across

thousands of iterations. This occurs, because host lines of low

frequency go extinct throughout the simulation.

(TIFF)

Figure S6 New-end locus diversifications post-sweep. In

Figure 4A, optimal clustering analysis predicted a selective sweep

prior to the 3800th iteration. Yet, by the 4300th iteration, a

number of distinct sub-populations were identified by the

silhouette-based clustering algorithm. Reconstructions of host loci

at 3 representative time points–before the sweep, immediately

after the sweep, and 500 iterations after the sweep–show that the

clustering analysis correctly predicts new-end diversifications of the

sweeping sub-population (i.e., a return of diversity by iteration

4300). A second selective sweep (T = 4800 in Figure 4B) selects for

a lineage in one of these sub-populations.

(TIFF)

Figure S7 Higher loss rate increases likelihood of
inferred viral blooms. Predicted relative abundances for host

(blue) and viral (red) populations tracked across iterations. The left

panel (low-loss rate regime) shows the predicted relative virus and

host abundances for the simulation in Fig. 6A of the main text,

while the right panel (high-loss rate regime) shows predicted

relative abundances for the simulation in Fig. 6B. Host

abundances represent the number of immune host interactions

and viral abundances the number of productive interactions

multiplied by a laboratory-measured viral burst size of 200 virions

per interaction.

(TIFF)

Figure S8 Predicted viral bloom in high-deletion regime
occurs due to host spacer deletions. In the main text, a

nadir in host immunity was shown at the 768th iteration in

Figure 6B. Hosts with two key older spacers survived this predicted

viral bloom. Here we tracked the frequency of these two spacers

through the bloom in both host (top panel) and viral (bottom

panel) populations. Spacer 39184 is shown in black and spacer

49611 in red. Note that most hosts lose these two contiguous

spacers (Figure 6B) prior to the 740th iteration, when almost all

viruses have mutated the corresponding two proto-spacers. Yet, a

small remnant viral population maintains these two proto-spacers,

proliferating and diversifying against newly non-immune hosts.

(TIFF)

Figure S9 AMD community composition across time.
The relative abundances of all archaeal, bacterial, plasmid and

viral populations are metagenomically reconstructed during the

five sampling points in 2006–2007 (corresponding to (3)–(7) in

Figures 1 and 2). Each pie represents the total number of reads

found in a sample. As in Figure 8, which showed only G-plasma

and its viruses, a bloom of AMDV3b virus (bright red) is seen in

August 2006 coincident with the depletion of its G-plasma host

(bright green).

(TIFF)

Text S1 Algorithm of mathematical model. The full

algorithm of the CRISPR-virus mathematical model is given in

reproducible detail.

(DOC)

Text S2 Model assumptions. A description of key model

assumptions is provided, with explanations for why each

assumption is made and descriptions of how each assumption

affects the dynamics of the model.

(DOCX)

Text S3 Algorithm of optimal clustering routine. To

track host and viral genetic diversity across model iterations, we

developed a silhouette-based clustering routine. In a given model

iteration, the clustering routine distributes host and viral

populations into a chosen ‘optimal’ number of sub-populations.

Text S3 describes how this optimal number is chosen and how

strains are then divided into their respective sub-populations.

(DOC)
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