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The translation efficiency of most Saccharomyces cerevisiae genes remains fairly constant across poor and rich growth
media. This observation has led us to revisit the available data and to examine the potential utility of a protein
abundance predictor in reinterpreting existing mRNA expression data. Our predictor is based on large-scale data of
mRNA levels, the tRNA adaptation index, and the evolutionary rate. It attains a correlation of 0.76 with experimentally
determined protein abundance levels on unseen data and successfully cross-predicts protein abundance levels in
another yeast species (Schizosaccharomyces pombe). The predicted abundance levels of proteins in known S. cerevisiae
complexes, and of interacting proteins, are significantly more coherent than their corresponding mRNA expression
levels. Analysis of gene expression measurement experiments using the predicted protein abundance levels yields new
insights that are not readily discernable when clustering the corresponding mRNA expression levels. Comparing
protein abundance levels across poor and rich media, we find a general trend for homeostatic regulation where
transcription and translation change in a reciprocal manner. This phenomenon is more prominent near origins of
replications. Our analysis shows that in parallel to the adaptation occurring at the tRNA level via the codon bias,
proteins do undergo a complementary adaptation at the amino acid level to further increase their abundance.
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Introduction

DNA microarrays are now commonly used to measure the
expression levels of large numbers of genes simultaneously
[1]. Since proteins are the direct mediators of cellular
processes, the abundance level of each protein is likely to
be a better indicator of the cellular state than its correspond-
ing mRNA expression level. However, genome-wide technol-
ogies to detect protein abundance are still lagging behind
those that measure mRNA, and only few studies that measure
protein abundance on a large scale are currently available [2–
6].

The relationship between mRNA and protein abundance
levels has been studied by several groups. Genes with similar
mRNA levels may have very different protein abundance
levels [7]. Yet, the correlation between protein and mRNA
abundance after a log-transform was shown to be quite high
[8]. A more recent study, combining three technologies for
measuring mRNA expression, has yielded correlation levels of
about 0.7 with protein abundance [9]. Several studies have
aimed at correlating protein abundance to various other
features of proteins, such as their codon bias, molecular
weight, stop codon identity, and more [3,4,10,11] These
investigations and other previous proteomic studies [12–14]
were usually based on small- to medium-scale measurements.

The current study revisits these issues and presents a
comprehensive investigation of the relationship between
factors that influence protein abundance and the associated
protein levels. We begin by constructing a predictor for
protein abundance levels, which, in contrast to previous
studies, is tested and validated on unseen data (see Methods).
To this end, we rely on two large-scale protein abundance
datasets [2,5]. Overall, to our knowledge this is the first time
that the whole body of data currently available is collated and

analyzed to this aim, and we obtain a predictor with a
correlation of 0.76 with experimentally determined abun-
dance levels. Applying the resulting predictor to pertaining
mRNA expression data testifies to its utility. Our analysis
provides new key insights concerning the regulation of
translation efficiency and its evolution.

Results

Genome-wide studies have measured mRNA and protein
levels in the yeast Saccharomyces cerevisiae growing either in rich
medium (yeast extract, peptone, and dextrose [YEPD]) or on
poor, defined medium (synthetic dextrose [SD]) [2,3,5]. When
protein abundance is compared to the corresponding mRNA
levels in a given medium, the translation efficiency (TE), i.e.,
the ratio between protein abundance and mRNA levels,
exhibits a large variability among genes (spanning across six
orders of magnitude; Figure 1A and 1B). However, when the
TEs of a given protein are compared across the two different
growth conditions, notably very little variation is observed
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(Figure 1C): the ratios between the TEs of most proteins in
the two conditions are close to 1, with .90% of the proteins
showing a ratio between 0.5 and 2. This observation, albeit
currently limited to the two types of media for which
genome-wide data are available, suggests that the efficiency
of translation per mRNA molecule of many genes may be
largely invariable under different conditions. This fairly
constant TE of yeast genes has motivated us to create a
large-scale predictor of protein abundance, with the aim of
studying its utility for inferring protein abundance levels
across different conditions.

The simplest predictor we studied is a linear one based on
mRNA expression levels. Training this predictor on a
randomly selected subset of the full complement of yeast
mRNA and protein levels yields a Spearman rank correlation
coefficient of rs ¼ 0.55 on held-out test data (the protein
abundance was from [2] and mRNA levels were from [15]; see
Methods). To improve the prediction accuracy, we examined
the potential utility of combining 32 additional protein
attributes into a multivariable linear predictor, some of
which have been previously shown to have predictive value
(Table S1). A greedy feature selection algorithm identified
two useful protein attributes, while the inclusion of all other
features resulted in a marginal and insignificant improve-
ment in the performance of the linear, mRNA-based
predictor. Performing the prediction by a support vector
machine (SVM) using a variety of nonlinear kernels did not
improve the results (Methods).

The two protein features yielding a significant improve-
ment in prediction accuracy were the tRNA adaptation index
(tAI) [16,17], and the evolutionary rate (ER) [18,19]. tAI is
based on the synonymous codon usage bias and gene copy
number of different tRNAs and is related to the codon
adaptation index (CAI) [16,17]. ER measures the rate of
evolution of a protein by comparing its orthologs across
related species [18,19]. These two features have been shown
previously to be correlated with protein abundance levels

[18,20]. Combining tAI with mRNA levels increases the
prediction accuracy from the levels of rs ¼ 0.55 obtained
using mRNA levels alone to a Spearman rank correlation
coefficient of rs ¼ 0.61 on the same dataset as above. Adding
evolutionary rate values increases the correlation to 0.63. The
incremental improvement of consecutively adding these two
features to the basic linear regression protein abundance
predictor is statistically significant (Figure 2 and Methods).
Large-scale measurements of mRNA and protein levels

tend to be noisy. Thus, in the (yet rare) cases where several
independent measurements of mRNA and protein levels at
the same conditions are available, they can be used to reduce
potential individual measurement biases by pooling them
together [9] (the correlation between two proteomic datasets
generated by two different techniques and in different labs
are between rs ¼ 0.6 and rs ¼ 0.8; see Text S1). We thus
averaged mRNA and protein abundance results obtained with
different technologies (see Methods for the description of the
pertaining datasets used to this end). This results in a further
notable improvement of prediction accuracy (rs¼0.76; Figure
2), suggesting that a considerable fraction of the variability in
the datasets is due to experimental measurement errors (the

Figure 1. Distribution of TE and RTE in S. cerevisiae

(A) Top: S. cerevisiae genes sorted by their TE (log scale) in YEPD (rich)
medium. A large variability of TE values (more than six orders of
magnitude) is observed. Bottom: histogram, mean, and variance of TE in
YEPD.
(B) Top: S. cerevisiae genes sorted by their TE (log scale) in SD (poor)
medium. A similar large variability of TE values is seen. Bottom:
histogram, mean, and variance of TE in SD.
(C) Top: S. cerevisiae genes sorted by the log-ratio of their TEs [RTE¼ (pSD/
mSD)/(pYEPD/mYEPD)] in SD versus YEPD (log scale). A total of 91% of the
genes have an RTE value between 0.5 and 2. Bottom: histogram, mean,
and variance of RTE.
doi:10.1371/journal.pcbi.0030248.g001
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Author Summary

DNA microarrays measuring gene expression levels have been a
mainstay of systems biology research, but since proteins are more
direct mediators of cellular processes, protein abundance levels are
likely to be a better indicator of the cellular state. However, as
proteomic measurements are still lagging behind gene expression
measurements, there has been considerable effort in recent years to
study the correlations between gene expression (and a plethora of
protein characteristics) and protein abundance. Addressing this
challenge, the current study is one of the first to introduce a
predictor for protein abundance levels that is tested and validated
on unseen data using all currently available large-scale proteomic
data. The utility of this predictor is shown via a comprehensive set of
tests and applications, including improved functional coherency of
complexes and interacting proteins, better fit with gene phenotypic
data, cross-species prediction of protein abundance, and most
importantly, the reinterpretation of existing gene expression micro-
array data. Finally, our revisit and analysis of the existing large-scale
proteomic data reveals new key insights concerning the regulation
of translation efficiency and its evolution. Overall, a solid protein
abundance prediction tool is invaluable for advancing our under-
standing of cellular processes; this study presents a further step in
this direction.
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improvement of the correlations observed upon averaging
can also be due to the blurring of the effects of different
posttranscriptional regulation processes taking place in the
different conditions in which the measurements were done
[temperature, strains, media, technique], but since we
averaged over relatively similar conditions, we expect this
effect to be relatively minor). In the following investigations
reported in this paper, multiple independent measurements
at the same conditions were not available, and the results
reported are hence without pooling and averaging the data.

Examining the performance of our YEPD-trained predic-
tor on a new unseen dataset of 238 genes whose protein
abundance levels were measured under very different
conditions (exposure to pheromone [13]) resulted in a high
correlation of rs¼0.69. The correlation between mRNA levels
solely and protein abundance levels was 0.62, in comparison.

The standard deviation of 1,000 cross-validation runs of the
predictor was 0.016, and the improvement compared to
mRNA-based prediction was significant, with p , 10�16.
Further information on the predictors’ performance on
specific Gene Ontology (GO) annotation gene sets is provided
in Table S2. This table also shows that the predictor improves
the prediction of protein abundance levels (compared to
mRNA levels) in 92% of the GO annotation categories. Our
predictor obtains higher correlations with protein abun-
dance levels than using mRNA alone across numerous ranges
of protein abundance; however, this correlation is not
statistically significant in the lowest protein abundance range
(Figure 2C).
Using our multivariate linear predictor, expression of

genes whose products are members of the same complex
(according to SGD [21]) exhibits significantly higher coher-

Figure 2. Performances of the Linear Predictor of (log) Protein Abundance

(A) The accuracy of various linear predictors of (log) protein abundance, measured by the Spearman rank correlation coefficient over a held-out test set,
using a single data source of protein abundance [2] and mRNA levels [15]. ER values are from [19], and tAI data are taken from [20]. The numbers below
the arrows denote the t-test p-values for checking the null hypothesis that the predictor with the new added feature has identical performance to its
predecessor (see Methods). The final predictor for protein abundance (PA) is log(PA) ¼ 3.97þ 0.4 3 log(mRNA) þ 10.34 3 tAI � 3.35 3 ER.
(B) Accuracy of various linear predictors, in the case where protein and mRNA levels are generated by averaging measurements from at least two data
sources. The final predictor for protein abundance obtained in this case is log(PA) ¼ 3.47þ 0.63 3 log(mRNA) þ 10.89 3 tAI � 2.923 3 ER.
(C) The Spearman correlations (y-axis) of predicted protein abundance (mRNA) with measured protein abundance levels, binned at various levels of
protein abundance p (x-axis, natural log). All the correlations are higher and significant in the case of predicted protein abundance (p , 2 3 10�5),
except for the lowest bin log(p) , 7.
doi:10.1371/journal.pcbi.0030248.g002
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ency than when calculated from their corresponding mRNA
levels. Table 1 displays the pertaining Spearman rank
correlation coefficients for pairs of genes that are part of
the same complex. For the cases of experimentally deter-
mined and predicted protein abundance levels, we also
computed the partial correlations after controlling for the
effect of mRNA expression levels (Methods). A similar, but
weaker trend is also observed when examining the abundance
coherency of protein pairs that exhibit a protein–protein
interaction (Text S2). These results indicate that our
prediction approach is likely to be more appropriate for
proteins in large macromolecular complexes than for
proteins involved in signaling and transcriptional control,
since the latter are heavily posttranslationally modified. This
notion is further supported by noting that in the highest
protein abundance bin (Figure 2C), there are 26 genes that
are related to the ‘‘Ribosome’’ GO category, providing a
hyper-geometric enrichment of p , 4.2 3 10�4.

Given the observation that the TE of most proteins is fairly
similar across the two different conditions analyzed, we
examined the utility of the protein abundance predictor in
interpreting the results of two yeast mRNA gene expression
datasets, obtained under a variety of environmental con-
ditions (see Text S3). The first dataset investigated the yeast
response to low-shear modeled microgravity. It included 12
different conditions (six under low-shear and six controls)
[22]. To analyze this dataset, we clustered and bi-clustered the
genes in the microarray data in accordance with the mRNA
expression patterns, in a conventional manner. In parallel, we
used our predictor to generate predicted protein abundance
levels from the expression levels, and repeated the clustering
and bi-clustering process on the resulting protein abundance

data. We then compared the resulting cluster sets with
respect to their functional enrichment in GO annotations
(Methods). We performed a similar analysis on a gene
expression dataset consisting of 36 timepoints taken from
yeast cells growing in continuous, nutrient-limited conditions
[23] (the first dataset includes gene expression measurements
of a system that is close to equilibrium, while the second
includes gene expression measurements of a system in a
transient state; see Text S4).
Table 2 shows that the use of the predicted protein

abundance values in these datasets results in a significant
increase in the percentage of clusters that exhibit enrichment
for specific GO terms (for comparison, random predictors
significantly deteriorate the clustering enrichment scores; see
Text S5). In the case of Sheehan’s data [22], the protein
abundance predictor improved both the separation and the
homogeneity. In the case of Tu’s data [23], the homogeneity
improved while the separation score deteriorated (Table 2). A
closer analysis provides evidence for the advantage of using
the predictor: in the first dataset, a new bi-cluster is detected
(cluster 4) in the protein abundance analysis that does not
appear in the mRNA level analysis. This bi-cluster spans over
11 of the 12 conditions and is enriched with many GO
annotations (mainly related to metabolism; Table S4).
Similarly, in the second dataset, cluster 7 in the predicted
protein abundance analysis is a novel group that does not
appear when analyzing mRNA levels. This cluster shows a
striking periodic expression that coincides with the respira-
tory bursts observed under continuous nutrient-limited
conditions [23]. Thus, using predicted protein abundance
levels, a simple conventional clustering method suffices to
reveal novel central clusters that were not apparent in the

Table 1. The Spearman Rank Correlation Coefficients and Partial Spearman Correlations between mRNA, Protein Abundance, and
Predicted Protein Abundance Levels in YEPD and SD for Gene Pairs That Are Part of the Same Complex

Description Correlation p-Value Partial Correlation p-Value

YEPD, mRNA level 0.1378 6.31 3 10�10 — —

YEPD, protein abundance 0.1908 ,10�16 0.1296 1.2 3 10�8

YEPD, predicted protein abundance 0.1897 ,10�16 0.1 4.5 3 10�5

SD, mRNA level 0.0863 5.5 3 10�4 — —

SD, protein abundance 0.1758 1.4 3 10�12 0.1321 3.8 3 10�7

SD, predicted protein abundance 0.1487 2.3 3 10�9 0.0957 3.6 3 10�4

Measuring the coherency of expression levels of proteins that are part of the same complex or are interacting neighbors in the protein network. Methods and Text S8 include a detailed
description of how these values were computed.
doi:10.1371/journal.pcbi.0030248.t001

Table 2. The Percentage of GO-Enriched Clusters and the Percentage of GO-Enriched Bi-Clusters Obtained by Analyzing mRNA Levels
or Predicted Protein Abundance Levels in Two Gene Expression Datasets, and the Total Homogeneity and Separation Scores for the
Clustering Results

Dataset Percentage Enriched Clusters Homogeneity Separation Percentage Enriched Bi-Clusters

Sheehan et al. [22] mRNA 57 0.77 �0.58 100

Sheehan et al. [22] predicted protein abundance 85 0.78 �0.6 100

Tu et al. [23] mRNA 85 0.68 �0.28 100

Tu et al. [23]predicted protein abundance 100 0.71 �0.23 100

doi:10.1371/journal.pcbi.0030248.t002
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original study at the mRNA expression level. Tables S3, S4, S5,
and S6 provide a detailed analysis (list of clusters, bi-clusters,
and GO enrichments) for the two datasets.

We used our protein abundance predictor to reanalyze the
intriguing results reported by [24], showing that only a very
small fraction of the genes whose expression is significantly
elevated under a specific condition actually cause a signifi-
cant decrease in fitness when deleted. Overall, we find that
the fraction of expressed genes that lead to a significant
reduction in fitness when deleted is 2-fold to 3-fold higher
than the corresponding fraction reported using mRNA levels
(e.g., 2.9% versus 0.76% in the case of yeast cells responding
to 1.5 M sorbitol, and 13.2% versus 6.4% in the case of 1 M
NaCl). Although the absolute fraction of genes accounted for
still remains small, the relative increase observed by using the
predictor is substantial.

Finally, we tested our predictor’s ability to correctly
estimate protein abundance levels from mRNA expression
data in a different organism, Schizosaccharomyces pombe. To this
end, we used mRNA and protein data from a recent genome-
wide study that reported a Spearman rank correlation
coefficient of 0.61 between the two measurements [25].
Focusing on a subset of S. pombe genes that have an ortholog
in S. cerevisiae, the Spearman rank correlation of the predicted
protein levels with actual protein abundance measurements
was 0.675. Notably, for the same subset of genes, the
Spearman rank correlation between the protein abundance
and mRNA levels of S. pombe was only 0.629 (and the rank
correlation between the mRNA levels of the two organisms
was 0.48). These results are quite remarkable, since the
predictor used to predict protein abundance in S. pombe was
based on the ER and tAI values of the corresponding
orthologs in S. cerevisiae.

Like previous studies [4,26], we have also found a significant
correlation between the abundance of a particular protein
and the frequency of certain amino acids composing it, the
most prominent being alanine and valine (positive correla-
tion), and serine and aspargine (negative correlation; Figure
S1). This observation has been previously attributed to the
different values of the tAI (or the CAI) of these amino acids,
which can modulate translation efficiency [16,17]. However,
we find that even after controlling for the effect of their
different tAIs, the frequency of these amino acids remains

significantly correlated with protein abundance, and their
frequency at abundant proteins remains highly significant
(see partial correlations reported in Figure 3, and similar
results after controlling for CAI in Figure S2). The Spearman
rank correlation of amino acid frequencies and protein
abundance remains significant even after additionally con-
trolling for the effect of mRNA expression levels (Table S7).
This finding suggests that in parallel to the adaptation
occurring at the tRNA level via the codon bias [27,28],
proteins do undergo a complementary adaptation at the
amino acid level via amino acid substitution to further
increase their protein abundance. The small, neutral, and
nonpolar amino acid alanine is probably ideally suited for
this putative substitute role, given its known neutral effect on
protein stability [29]. Both alanine and valine are present at
relatively high concentrations within the yeast cell, and their
corresponding acyl-tRNA synthases are also expressed at high
levels (Table S8), aiding in their efficient incorporation
during transcription (however, adding frequencies of amino
acids to our predictor did not improve its performance
significantly; see Text S6).
The recent direct measurement of absolute protein levels

under two distinct growth conditions [5] enabled us to
compare the ratio between the translation efficiency ob-
served in cells grown on poor medium versus the one
observed in rich medium, i.e., the relative TE (RTE; (p/m)SD/
(p/m)YEPD). There is a significant negative correlation (�0.213;
p , 10�50) between the RTE and the change in transcription
levels between the two growth conditions. Even when
focusing only on genes that change their protein abundance
between the two conditions in a considerable manner
(protein abundance ratio . 1.4 or , 1/1.4), the resulting
negative correlation remains significant (r¼�0.08; p¼ 0.018).
This may suggest that there is a global homeostasis between
transcription and translation, with a tendency to increase
translation when transcription decreases, and vice versa. The
average RTE is 1.091 (about half the genes, 1,072 out of 2,204,
have RTE . 1). Since the relative decrease of the ribosomal
protein abundance (pSD/pYEPD ¼ 0.88) is higher than the total
relative decrease of mRNA levels (mSD/mYEPD ¼ 0.98), the
number of ribosomes per mRNA is lower in SD. Thus, the
findings of average RTE . 1 are probably due to lower
protein degradation rates or other causes of higher trans-

Figure 3. Partial Correlations between the Frequencies of Amino Acids Composing a Protein and Its Abundance Level (after Controlling for the Effect of

tAI)

doi:10.1371/journal.pcbi.0030248.g003
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lation rates in SD, rather than increased ribosomes per
mRNA levels (Figure S3 depicts the mean RTE levels of
different GO annotation groups; Text S7 displays the
variance in protein abundance levels in the two growth
conditions).

While the large majority of the genes have RTE levels
ranging between 0.5 and 2 (Figure 1B), two sets have extreme
RTE values, one with RTE . 2.5 (48 genes), and the other with
RTE , 0.45 (65 genes; Tables S9 and S10). The distribution of
mRNA and protein abundance levels of genes within each of
these groups is similar to that of the rest of the genes (see
Figure S4A and S4B), and extreme ratios of protein
abundance or mRNA levels do not necessarily imply extreme
RTE values (see Figure S4C). Interestingly, our predictor
obtains more significant improvement in the correlations
with actual protein abundance levels on genes with extreme
RTEs (see Figure S4D). In contrast to the inverse (homeo-
static) relation observed in general, the set with extremely
high RTE also exhibits extremely high mSD/mYEPD ratios (an
average mRNA ratio of 5.35, 14 times the general average).
This indicates that the extreme RTE values reflect the fact
that the cell is making a concerted effort to maintain their
protein abundance levels at the extreme levels needed. By the
same token, the mean mRNA ratio for the set with extremely
low RTE is 0.36, somewhat below the total average.

The group of genes exhibiting extremely high RTE levels is
enriched for mitochondrial genes (21/48 are mitochondrial
genes; chi-square p ¼ 10�16), with many of these genes being
related to mitochondrial biosynthesis and metabolism. Thus,
the increase in the level of mitochondrial proteins, reflecting
the need for higher-yield energy production in poor growth
conditions, is achieved mainly by boosting translation
efficiency. Interestingly, the high RTE group is also enriched
with genes that map very close to origins of replication
(autonomously replicating sequence [ARS]), including four

genes abutting at the origin of replication (out of a total of 24
genes with a similar location in the yeast genome, providing a
chi-square p¼ 1.1 3 10�6), and twice the expected number of
genes located within 1 kbp from an ARS (p , 0.05; see Figure
4). A possible explanation for this intriguing connection is
that the replication machinery, when binding to origins of
replication, attenuates transcription, either by steric hin-
drance or by competition for DNA binding [30]. This
interference is then compensated in turn by higher trans-
lation efficiency and a more flexible regulation of translation,
as reflected by its high RTE levels. Indeed, the average mSD /
mYEPD ratios of genes that have extremely high RTE and that
are less than 1 kb from an ARS is only 0.8. One putative
mechanism that may underlie this intriguing phenomenon is
that certain proteins that participate in replication and
transcription (e.g., Rap1 and Abs1) could be incorporated
into the mRNA, exported from the nucleus, and differentially
affect the rate of translation at the ribosome. Similar
mechanisms have been suggested for the activity of proteins
such as Yra1, Sub2, and the THO complex, which affect
transcription, splicing efficiency, and nuclear export [31].

Discussion

The availability of whole-genome measurements of protein
abundance provides a unique opportunity to analyze the
forces that affect protein translation and abundance.
Combining several protein features yields a predictor of
protein abundance that can serve as a useful tool for
analyzing gene expression measurements. Our results indi-
cate that highly expressed proteins undergo adaptation at the
amino acid level, and that proximity to an origin of
replication enhances the efficiency of translation.
Translation efficiency is determined by invariant, condi-

tion-independent factors such as the amino acid and codon
composition of the protein and the availability of the
different tRNAs. It is also modulated by dynamic factors
such as ribosome occupancy and ribosome density (determin-
ing the total number of ribosomes per mRNA), which are
dependent on environmental clues [10]. Assuming that TE is
constant to a first approximation for most genes (as its levels
across poor and rich media testifies), this study has focused on
the first group of factors, and has shown the utility of such a
predictor in interpreting biological data. We anticipate that
as information gradually accumulates concerning the second
group of factors, more accurate protein abundance predic-
tors will emerge that can incorporate information on
posttranscriptional regulation [32–34]. Recent work has
suggested that transcription factors and signaling genes tend
to be posttranscriptionally regulated [32]. Indeed, a large
proportion of the genes with extreme RTE levels belong to
these two categories (see Tables S9 and S13). However, not all
genes regulated at the posttranscriptional level exhibit
extreme RTE values: a recent genome-wide study in yeast
has identified 16 genes with extreme TE levels, presumably
regulated posttranscriptionally [9]. Examination of the RTE
levels of these genes reveals that only one has extreme RTE
levels (MET6, with RTE ¼ 0.47); the rest have RTE levels
between 0.93 and 1.38 (see Table S13). Finally, protein
degradation and turnover are obviously important modula-
tors of protein abundance, and should be considered in
future predictors as pertaining reliable data accumulates.

Figure 4. The Distribution of Genes with High RTEs at Different Distances

from Origins of Replication

The distribution of genes with high RTE (RTE . 2.5), and distribution of
all genes at different distances from origins of replication. The number of
genes with high RTE is 49; the total number of genes studied is 2,200.
The number of genes with high RTE that are located within 1 kbp from
an ARS is statistically significant using a hyper-geometric text (p , 0.05).
doi:10.1371/journal.pcbi.0030248.g004
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That said, it is interesting and encouraging to see how far one
can go in predicting protein abundance levels even without
this information.

An important corollary of our work is that gene expression
results obtained with DNA microarray technology may in
some cases be misleading. For example, Tables S11 and S12
include a subset of genes that exhibit inversely correlated
regulatory trends at the transcription versus the translation
level. An increase in mRNA expression levels of a particular
gene does not necessarily mean a higher level of its protein.
The corresponding protein abundance could not be differ-
entially expressed or could even be differentially expressed
but in the opposite direction. As Tables S11 and S12 include
about 5% of the yeast genes, this type of error may be
nonnegligible at times. Our predictor cannot solve this
problem; its solution will probably require much larger
biological datasets than those currently available.

We demonstrated that our predictor (which is based on S.
cerevisiae) can be used to successfully predict protein
abundance levels in a different organism (S. pombe), which
has an evolutionary distance of 350–1,000 million y from S.
cerevisiae [35]. It will be interesting to examine the effect that
evolutionary distance may have on determining the ‘‘trans-
ferability’’ of protein predictors across species. However,
answers to this question will need to wait until protein
abundance data of additional organisms becomes available.

Building on the existing large-scale protein abundance
data, this study has shown that a predictor of protein
abundance levels can improve the interpretation of gene
expression measurements and provide new insights into the
regulation and evolution of protein translation. The utility of
such a tool should be further enhanced as our understanding
of the determinants affecting protein abundance and trans-
lation improves and the pertaining data continues to
accumulate.

Methods

Generating a predictor of protein abundance. For training the
predictors, we used all the genes whose required features (mRNA
measurements, protein abundance, ER, tAI) were available. The series
of linear predictors studied were generated using a linear regressor
and using the following cross-validation procedure: (1) randomly
choose 80% of the genes (training set) and use them for generating a
linear predictor; (2) use the resulting predictor for predicting the
protein abundance of the remaining 20% of the genes (test set); and
(3) for the genes in the test set, calculate the Spearman rank
correlation coefficient between the predicted and experimentally
measured protein abundance values.

This cross-validation procedure is repeated 105 times, and the
mean of the Spearman rank correlation coefficient (computed in step
3) is the predictor accuracy reported in the main text.

As reported in the main text, we generated a sequence of linear
predictors of protein abundance, each time adding the most
informative feature in a greedy manner. During this process, we
checked if the resulting incremental improvement in prediction
performance is statistically significant by performing a t-test,
comparing the distribution of Spearman rank correlation coefficients
obtained by each predictor over the 105 cross-validation runs. Note
that in the case of a multivariate linear predictor, this cross-
validation procedure may lead to similar prediction accuracy values
as those obtained by training a multivariate regressor on the whole
dataset. However, in the general scope of nonlinear predictors
investigated in this study, the cross-validation prediction scenario
used is conceptually different from a multivariate regression, and the
results obtained significantly differ.

Going beyond a linear predictor, we used two implementations of
SVMs, SVM-light [36] and Partek (Partek Software, http://www.par-
tek.com), and examined radial, polynomial, and sigmoid kernels. The

initial set of features included all the 32 features described in Table
S1, and we also examined various forward and backward algorithms
for feature selection. Quite surprisingly, none of these SVM
predictors gave a significant increase in prediction performance
compared to the best linear predictor reported upon in the main
text. In constructing the predictors we used the following data
sources.

Protein abundance and mRNA expression data. We analyzed four
protein abundance datasets: (1) a dataset generated by merging (with
the appropriate normalization) protein abundance data from
numerous small-scale datasets [3]; (2) a large-scale measurement of
protein abundance in yeast (normal log phase) [2]; and (3) protein
abundance large-scale measurements by [5] in two different growth
media conditions (YEPD and SD). We analyzed two major mRNA
expression datasets: (1) one generated by combining 36 microarray
datasets (wild-type yeast grown in YEPD without any stress) [10]; and
(2) an mRNA measurement of wild-type yeast grown in YEPD [21].

The dataset of [5] also includes the ratio (but not the absolute
values) between the mRNA levels in the two conditions (SD and
YEPD), mSD /mYEPD. This information, combined with the protein
abundance measurements in these two conditions, enabled us to
compute the RTEs across growth conditions. Combined with the
absolute mRNA measurements from [2], it was used to calculate the
absolute mRNA levels in SD.

For computing mean protein abundance levels in constructing the
pooled-data predictor, we averaged at least two of three measure-
ments reported in [2,5,8]. For computing mean mRNA abundance
levels to this construction, we averaged at least two of three
measurements reported in [21,37,38]. The averaging was done
following the procedure described in [9].

Sources of additional data. Protein half-life measurements were
obtained from Belle et al. [39]. The protein properties examined in
the construction of the protein abundance predictor (properties 1–
28 in Table S1) were obtained from the Saccharomyces genome
database [21]. The tAI data were downloaded from [20]. Evolutionary
rates of proteins were taken from Wall et al. [19]. The mRNA gene
expression data, protein abundance data, and list of 447 relevant
orthologous genes needed for testing the predictor performance on
S. pombe were from [25]. Relative protein abundance and mRNA levels
after exposure to pheromone were downloaded from [13].

Clustering, bi-clustering, and GO enrichment analysis of mRNA
and predicted protein abundance levels. We used two mRNA gene
expression datasets that were generated by the same technology as
that used for training the predictor. The two datasets are measure-
ments by affymetrix GeneChip, and were downloaded from National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db¼gds). The first dataset includes the 12 samples from [22].
The second dataset includes the 36 samples from [23]. Clustering and
bi-clustering was performed by using the Expander program [40]. We
used CLICK for clustering and SAMBA for bi-clustering. Gene
enrichment was computed using the GO categories of [21] (by
computing the hyper-geometric probability of seeing at least x
number of genes out of the total n genes in the cluster/bi-cluster
annotated to a particular GO term, given the proportion of genes in
the whole genome that are annotated to that GO term), examining
the three ontologies of molecular function, biological process, and
cellular components. The resulting enrichments were filtered by false
discovery rate (FDR) to correct for multiple testing [41].

Measuring the coherency of expression levels of proteins that are
part of the same complex or are interacting neighbors in the protein
network. Protein complex data were downloaded from [21]. We
measured coherency of mRNA levels, protein abundance, and
predicted protein abundance of genes that are part of the same
complex (in SD and YEPD) by the following steps: (1) we listed all
pairs of genes in the dataset which are both comembers in one of the
complexes; (2) for each case (mRNA levels, protein abundance, and
predicted protein abundance), we generated two vectors, u and v,
such that u(i) and v(i) denote a pair of proteins that are part of the
same complex; we calculated the Spearman rank correlation
coefficient between the two vectors (u and v); and we compared the
resulting correlation to the correlations between pairs of vectors with
the same length that include measurements of randomly selected
pairs of genes.

For predicting protein abundance, we used a predictor that was
trained on a different dataset (i.e., the predictor used for YEPD was
trained on the SD measurements and vice versa; training the
predictor on the same dataset gives an even better result, so we
wanted to demonstrate that the results are significantly good even if
the trained set and the test set are different.). The computation of the
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pertaining partial correlations and their associated p-values are
described in Text S8.

For computing the coherency of expression/abundance of neigh-
boring proteins in the protein interaction network, we used the yeast
protein interaction network from the work of [42].

We used a similar procedure to that used to compute the
complexes’ coherency, but this time u and v are composed of protein
pairs that are adjacent in the protein interaction network.

Comparing mRNA expression profiling and fitness profiling. For
comparing the number of genes that exhibits both an increase in
expression levels (mRNA levels and predicted protein abundance)
and a significant decrease in fitness when adding NaCl or sorbitol, we
used the mRNA levels from [43] and fitness profiling from [24]. For
each of the two cases (mRNA levels and predicted protein
abundance), we used five measurements of expression levels and
four measurements of fitness. We focused on the set of genes for
which we had all the predictor’s features. In the case of fitness
profiling, a gene was considered ‘‘significant’’ if it had significant
value (as defined in [24]) in at least one of the four fitness
measurements. In both cases of protein abundance or mRNA
expression levels, a gene was considered significant if it exhibited a
log ratio of at least 0.25 in one of the five measurements.

Supporting Information

Figure S1. Variables That Have Significant Correlation and Partial
Correlation with Protein Abundance, TE, and RTE

(A) Variables that have significant correlation with protein abun-
dance, TE, and RTE.
(B) Variables with significant correlation with protein abundance
given mRNA, given CAI, and given mRNA and CAI. The full names
and the description of each variable appear in Table S1. The
correlation with amino acid distribution at the C and N terminus was
substantially less significant than the general correlations of amino
acid distribution (it was not significant for most of the amino acids).

Found at doi:10.1371/journal.pcbi.0030248.sg001 (82 KB DOC).

Figure S2. Partial Correlations of Amino Acid Frequencies and
Protein Abundance after Removing the Effect of CAI

Found at doi:10.1371/journal.pcbi.0030248.sg002 (53 KB DOC).

Figure S3. The Average RTE of GO Annotation Groups

The average RTE of each GO annotation group for the three
ontologies (molecular function, cellular component, and biological
process).

Found at doi:10.1371/journal.pcbi.0030248.sg003 (71 KB DOC).

Figure S4. mRNA Levels, Protein Abundance, mRNA Ratio, Protein
Abundance Ratio, and Correlation with Protein Abundance of mRNA
and Predicted Protein Abundance of Genes with Extreme RTE

(A) mRNA levels and protein abundance of genes with RTE . 2.5
(blue), RTE , 0.45 (red), and the rest of the genes (yellow) in YEPD.
(B) mRNA levels and protein abundance of genes with RTE . 2.5
(blue), RTE , 0.45 (red), and the rest of the genes (yellow) in SD.
(C) mRNA ratio (mSD/mYEPD) levels and protein abundance ratio (pSD/
pYEPD) of genes with RTE . 2.5 (blue), RTE , 0.45 (red), and the rest
of the genes (yellow).
(D) Correlation with protein abundance of mRNA and predicted
protein abundance for genes with modest RTE (0.5 , RTE , 2), and
for genes with extreme RTE (RTE , 0.5 and RTE . 2). The
correlation increase after implementing the predictor is more
significant for the group with extreme RTE.

Found at doi:10.1371/journal.pcbi.0030248.sg004 (86 KB DOC).

Table S1. Protein Features Used in the Study

Abbreviation and full description of all the protein features that were
used in our study. We also checked the frequency of amino acids at
the N and C terminus of the protein.

Found at doi:10.1371/journal.pcbi.0030248.st001 (52 KB DOC).

Table S2. The Correlation of the Predicted Protein Abundance of the
Predictor with Real Protein Abundance, mRNA, tAI, and ER for Each
GO Annotation Group Separately, and the Performances When
Inferring a Different Predictor for Each Cellular Component GO

(A–C) The correlation of the predicted protein abundance of our
predictor with real protein abundance, mRNA, tAI, and ER for each
GO annotation group separately. The last column includes the
correlation of mRNA level with protein abundance for each GO

group (blue, cases where the predictor improved the correlation with
protein abundance; red, cases where the mRNA level has higher
correlation with protein abundance).
(A) The results for the cellular component GO annotation groups.
(B) The results for the biological process GO annotation groups.
(C) The results for the molecular function GO annotation groups.
(D) The performances (correlation of predicted and real protein
abundance) when inferring a different predictor for each cellular
component GO annotation group. The average performances in this
case are not better than the original predictor (one predictor for all
the GO groups).

Found at doi:10.1371/journal.pcbi.0030248.st002 (209 KB DOC).

Table S3. Clustering (Sheet 1) and Bi-Clustering (Sheet 2) of the
mRNA Gene Expression, from the Work of Sheehan et al.

The list of genes in each cluster and bi-cluster is depicted together
with the GO enrichment categories (for each of the ontologies:
process, function, and component) of each cluster/bi-cluster. The
score of each bi-cluster (by Expander) is depicted near the name of
the bi-cluster (as mentioned by the authors of the pertaining
Expander software used there, these scores are good only for
comparing bi-clusters with the same size). The mean pattern of each
bi-cluster and the index of conditions that are related to it (x-axis)
appear near each bi-cluster.

Found at doi:10.1371/journal.pcbi.0030248.st003 (1.2 MB XLS).

Table S4. Clustering (Sheet 1) and Bi-Clustering (Sheet 2) of the
Predicted Protein Abundance from the work of Sheehan et al.

The list of genes in each cluster and bi-cluster is depicted together
with the GO enrichment categories (for each of the ontologies:
process, function, and component) of each cluster/bi-cluster. The
score of each bi-cluster (by Expander) is depicted near the name of
the bi-cluster (as mentioned by the authors of the pertaining
Expander software used there, these scores are good only for
comparing bi-clusters with the same size). The mean pattern of each
bi-cluster and the index of conditions that are related to it (x-axis)
appear near each bi-cluster.

Found at doi:10.1371/journal.pcbi.0030248.st004 (1.6 MB XLS).

Table S5. Clustering (Sheet 1) and Bi-Clustering (Sheet 2) of the
mRNA Gene Expression from the Work of Tu et al.

The list of genes in each cluster and bi-cluster is depicted together
with the GO enrichment categories (for each of the ontologies:
process, function, and component) of each cluster/bi-cluster. The
score of each bi-cluster (by Expander) is depicted near the name of
the bi-cluster (as mentioned by the authors of the pertaining
Expander software used there, these scores are good only for
comparing bi-clusters with the same size). The mean pattern of each
bi-cluster and the index of conditions that are related to it (x-axis)
appear near each bi-cluster.

Found at doi:10.1371/journal.pcbi.0030248.st005 (3 MB XLS).

Table S6. Clustering (Sheet 1) and Bi-Clustering (Sheet 2) of the
Predicted Protein Abundance from the Work of Tu et al.

The list of genes in each cluster and bi-cluster is depicted together
with the GO enrichment categories (for each of the ontologies:
process, function, and component) of each cluster/bi-cluster. The
score of each bi-cluster (by Expander) is depicted near the name of
the bi-cluster (as mentioned by the authors of the pertaining
Expander software used there, these scores are good only for
comparing bi-clusters with the same size). The mean pattern of each
bi-cluster and the index of conditions that are related to it (x-axis)
appear near each bi-cluster.

Found at doi:10.1371/journal.pcbi.0030248.st006 (2.1 MB XLS).

Table S7. Partial Correlations of Amino Acid Frequencies and
Protein Abundance for All the Genes and for Genes with Low mRNA
Levels and High Protein Abundance

(A) Partial correlations of amino acid frequencies and protein
abundance for all genes. The correlations for the amino acids alanine
and valine are significant and positive, and the correlations for
asparagine and serine are significant and negative.
(B) Partial correlations of the frequencies of amino acids and protein
abundance for genes with low mRNA levels (lower 20%) and high
protein abundance (top 20%). The correlations for the amino acids
alanine and valine are positive but not significant (due to the low
number of genes).

Found at doi:10.1371/journal.pcbi.0030248.st007 (13 KB XLS).
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Table S8. Protein Abundance of the Various tRNA Synthetases and
the Stechiometry of the Different Amino Acids

Protein abundance of the various tRNA synthetases and the
stechiometry of the different amino acids (downloaded from the
work of Förster et al. [44]). Alanine and valine tRNA synthetases have
high levels of protein abundance, and the amino acids exhibit a high
concentration in the yeast cell. These factors also make the
translation of alanine and valine more efficient. Data that do not
appear in our dataset are denoted by ###.

Found at doi:10.1371/journal.pcbi.0030248.st008 (15 KB XLS).

Table S9. Genes with RTE . 2.5

Table includes the open reading frame (ORF), name, RTE, and
description of each gene. Genes that are related with regulation are
marked in blue. GO enrichments according to SGD for this group of
genes appear below.

Found at doi:10.1371/journal.pcbi.0030248.st009 (27 KB XLS).

Table S10. Genes with RTE , 0.45

Table includes the ORF, name, RTE, and description of each gene.
Genes that are related to regulation are marked in blue. GO
enrichments according to SGD for this group of genes appear below.

Found at doi:10.1371/journal.pcbi.0030248.st010 (29 KB XLS).

Table S11. Subset of Genes That Exhibit Counteracting Regulatory
Trends at the Transcriptional versus the Translational Levels (RTE ,
1/1.5 and mSD/mYEPD . 1.5)

Subset of genes that exhibit counteracting regulatory trends at the
transcriptional versus the translational levels. Each gene in the set has
RTE , 1/1.5 and mSD/mYEPD . 1.5. For each gene, the table includes its
ORF ID, name, RTE, and the ratio between the mRNA levels in SD
and YEPD.

Found at doi:10.1371/journal.pcbi.0030248.st011 (11 KB XLS).

Table S12. Subset of Genes That Exhibit Counteracting Regulatory
Trends at the Transcriptional Versus the Translational Levels (RTE .
1/1.5 and mSD/mYEPD , 1.5)

Subset of genes that exhibit counteracting regulatory trends at the
transcriptional versus the translational levels. Each gene in the set has
RTE . 1/1.5 and mSD/mYEPD , 1.5. For each gene, the table includes its
ORF ID, name, RTE, and the ratio between the mRNA levels.

Found at doi:10.1371/journal.pcbi.0030248.st012 (32 KB XLS).

Table S13. RTE of Genes with Extreme TE

(A) The RTE of the genes that were reported by Lu et al. as genes with
high TE. The table includes the name, ORF, and RTE of each gene.
(B) The RTE of the 14 genes with extreme TE; in this case, the TE was
calculated using the protein abundance of Ghaemmaghami et al. [2]
and the mRNA levels of Holstege et al. [15] The table includes the

name, ORF ID, RTE, TE, and TE rank (among all the genes) of each
gene.

Found at doi:10.1371/journal.pcbi.0030248.st013 (12 KB XLS).

Text S1. Correlation Between Independent Measurements of Protein
Abundance

Found at doi:10.1371/journal.pcbi.0030248.sd001 (24 KB DOC).

Text S2. Correlation Between mRNA Levels, Protein Abundance, and
Predicted Protein Abundance between Interacting Proteins

Found at doi:10.1371/journal.pcbi.0030248.sd002 (25 KB DOC).

Text S3. Clustering and Bi-Clustering Predicted Protein Abundance

Found at doi:10.1371/journal.pcbi.0030248.sd003 (24 KB DOC).

Text S4. The Analysis of Steady-State and Transient Gene Expression
Datasets

Found at doi:10.1371/journal.pcbi.0030248.sd004 (21 KB DOC).

Text S5. Clustering the Protein Abundance Levels Obtained from
Random Predictors of Protein Abundance

Found at doi:10.1371/journal.pcbi.0030248.sd005 (25 KB DOC).

Text S6. Nonsignificant Improvement of the Predictor when Adding
Amino Acid Frequencies

Found at doi:10.1371/journal.pcbi.0030248.sd006 (20 KB DOC).

Text S7. Variance in Protein Abundance for the Two Sets with
Extreme RTEs

Found at doi:10.1371/journal.pcbi.0030248.sd007 (24 KB DOC).

Text S8. Supplementary Methods

Found at doi:10.1371/journal.pcbi.0030248.sd008 (25 KB DOC).
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