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Abstract

The dose response curve is the gold standard for measuring the effect of a drug treatment, but is rarely used in genomic
scale transcriptional profiling due to perceived obstacles of cost and analysis. One barrier to examining transcriptional dose
responses is that existing methods for microarray data analysis can identify patterns, but provide no quantitative
pharmacological information. We developed analytical methods that identify transcripts responsive to dose, calculate
classical pharmacological parameters such as the EC50, and enable an in-depth analysis of coordinated dose-dependent
treatment effects. The approach was applied to a transcriptional profiling study that evaluated four kinase inhibitors
(imatinib, nilotinib, dasatinib and PD0325901) across a six-logarithm dose range, using 12 arrays per compound. The
transcript responses proved a powerful means to characterize and compare the compounds: the distribution of EC50 values
for the transcriptome was linked to specific targets, dose-dependent effects on cellular processes were identified using
automated pathway analysis, and a connection was seen between EC50s in standard cellular assays and transcriptional
EC50s. Our approach greatly enriches the information that can be obtained from standard transcriptional profiling
technology. Moreover, these methods are automated, robust to non-optimized assays, and could be applied to other
sources of quantitative data.
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Introduction

The necessity of dose information in interpreting drug effects

has been recognized since the 16th century, when Paracelsus

observed: ‘‘All things are poison, and nothing is without poison:

the dose alone makes a thing not poison’’ [1]. Today, dose-

response models are routinely used to evaluate drug effects in

biochemical and cell-based assays. Pharmacological parameters

such as the widely used EC50 value (half-maximal Effective

Concentration) are central to any discussion of drug activities. In

contrast, transcription profiling experiments are typically per-

formed using replicate treatments at one dose, and effects are

identified by analysis of variance [2]. Single-dose experiments

cannot distinguish effects that have different potencies, and they

limit the utility of expression data relative to other bioassays. This

is regrettable given the many applications of transcriptional

profiling in drug discovery [3–8].

There is no inherent reason for transcription profiling not to use

the dose-response designs seen in every other area of chemical

biology [9]. Transcript levels are known to exhibit dose-responsive

behavior in response to ligands, toxins and pharmacological agents

[10–12]. Compound:target interaction at a single site that follows

the law of mass action is reflected by the sigmoidal dose response

seen in many bioassays [13]. Although the algorithms used to

quantify such dose responses in optimized bioassays are not ideal

for microarray data, they have been used successfully to identify

dose-responsive transcripts in two studies [11,14,15].

While transcriptional responses are typically controlled through

second messengers, it can be shown mathematically [16] and

empirically [12] that when intermediate steps have the same

characteristics, the sigmoidal response is preserved. An important

corollary of these properties is that if a compound binds with

distinct potencies to multiple targets, multiple biological responses

will occur, with EC50 values corresponding to the target-binding

EC50. Transcriptional profiling provides an informative genome-

wide view of biological responses [17], thus obtaining quantitative

dose-response information for transcript responses has obvious

application in characterizing compounds that have high potential

to interact with multiple targets. For example, establishing

selectivity of kinase inhibitors across the human kinome continues

to be difficult [18].

We describe analysis of transcription profiling studies of the dose

responses to four kinase inhibitors: imatinib, nilotinib, dasatinib

and PD0325901. Imatinib is a relatively selective [18] clinical ABL

inhibitor; nilotinib is a similar but more potent second-generation

compound [19]. Dasatinib is a highly potent clinical ABL inhibitor
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that has additional activities on Src family [20] and receptor tyrosine

kinases [21]. PD0325901 is a non-ATP competitive inhibitor of

MEK, a threonine/tyrosine kinase [22]. Like most pharmaceutical

agents, these compounds bind a single site on their target and elicit

sigmoidal dose responses in biochemical [23,24] and cellular [25–27]

assays. We developed novel methods to efficiently identify the

transcripts that exhibit a sigmoidal dose response, and to visualize

and further characterize groups of coordinated transcriptional

responses. These analyses allow comparisons of potency, establish

connection to other cellular assays, and provide insight into the

mechanism and selectivity of compounds.

Results

Identification of dose-responsive transcripts
Experimental data were obtained from the human lung cell line

A549, treated for four hours with imatinib, nilotinib, dasatinib and

PD0325901. This timeframe allows both down- and up-regulated

transcripts to be identified, since there is detectable mRNA turnover

for the majority of transcripts in four hours [28]. For the ABL

inhibitors, a 20 hour treatment was also performed. Treatments

used 12 concentrations from 170 pM to 30 mM (a three-fold

dilution series covering a six logarithmic range). This dose regimen

is modeled on other dose-response bioassays, and is amenable to

identifying responses with EC50s in the interval between 0.54 nM

and 10 mM. Each of the 22,215 probesets on an Affymetrix HG-

133A array was treated as an assay for the response of its

corresponding transcript; the 12 intensity values for each treatment

constituted the assay data. Only sigmoidal dose responses were

evident in a hierarchical cluster analysis of the data (Text S1).

A typical sigmoidal dose response curve is defined by an equation

with four unknowns corresponding to minimal response (A),

maximal response (B), EC50 (C), and slope (D) [13]. To identify

dose-responsive transcripts, we developed a grid search-based

algorithm named Sigmoidal Dose Response Search (SDRS). For

each probeset, the SDRS algorithm tests a series of candidate EC50

values (C) across the dose range. The goodness of fit at every grid

search dose is measured by an F-statistic, calculated as the ratio

between mean square of regression and mean square of error. When

the data for a given probeset fits a sigmoidal dose response, its F-

statistic plot has an inverted ‘V’ shape (Figure 1A), and the values of

A, B, C and D that generate the maximal F are the best fitting model

(Figure 1B), and C approximates the true EC50 for the assay data.

Given the normality of residuals (Text S1 and Table S9), the statistic

follows an F-distribution, and F-tables can be used to establish

significance. A probeset is designated as a ‘response transcript’ if its

maximal F-statistic is larger than the critical value for P,0.05 (see

Methods) In this work, this criterion for a response transcript is used

for benchmarking to other algorithms, and to retrieve gene sets for

study after their significance has been established with methods that

employ multiple test corrections.

The performance of SDRS compared favorably to XLfit (Text

S1 and Table S1), software that implements the Levenberg-

Marquardt algorithm [29]. Using SDRS, response transcripts were

identified for the four kinase inhibitors in the seven treatments

described (Table S2).

As diagrammed in Figure 1C, one output of SDRS is

qualitatively similar to that of an iterative algorithm: each probeset

has a predicted EC50, P value and fold-change (Table S2).

However, SDRS also generates an F-statistic for every probeset at

each grid search dose level. This output, which is unique to the

grid search method, allowed us to characterize and compare the

coordinated transcriptional dose responses using the novel

approaches described below.

Characterization of the transcriptional dose response
SDRS identifies the subset of transcripts that exhibit sigmoidal

dose response behavior, and estimates the potency of the effect.

While each probeset is an independent assay, transcript levels

respond to the treatment’s effect on a limited number of biological

targets. At doses where the treatment impacts a target, one might

identify coordinated sets of transcription responses. Identifying

more than one coordinated set of responses that occur at distinct

doses within a treatment series would point to multi-target

pharmacology of a drug. However, if one has only a single

EC50 value per probeset, it is impossible to identify such

coordinated responses without imposing binning criteria, which

are inherently arbitrary and not amenable to statistical evaluation.

The SDRS output allows an alternative, statistically rigorous

means to identify coordinated transcriptional responses. We exploited

the fact that SDRS provides a list of the F-statistic for every probeset

at each grid search dose. (To simplify presentation, we use only the F-

statistic lists from ‘Summary Doses’: a log-evenly distributed subset of

the SDRS search doses). A false discovery rate (FDR) correction was

applied to each Summary Dose list; this multiple test correction

effectively removes spurious response transcripts (Text S1 and Table

S8). A bar chart of the results for a given FDR revealed ‘peaks’ at

regions of the dose range, indicative of coordinated transcriptional

responses (Figure 2A). Since a single FDR criterion also represents an

arbitrary limitation of analysis, we computed the numbers of response

transcripts corresponding to FDRs from 1% to 35%.

We devised a novel and effective visualization for this data: a

heat map where columns correspond to the Summary Doses, each

row is a histogram of results at a given FDR, and intensity reflects

the number of response transcripts passing the FDR criterion.

Thus, the data presented in Figure 2A is the tenth row of the heat

map in Figure 2B. As with a histogram, ‘peaks’ were evident at

Author Summary

Transcriptional profiling is arguably the most powerful
hypothesis-free method for investigating biological effects
of drugs—so why do the experiments typically use
outmoded single-dose designs? Such single-dose experi-
ments will co-mingle effects that can occur with different
potency (e.g., effects on the known target versus effects on
additional undesired targets). Single-dose experiments
have little comparability to the dose-response bioassays,
which are now used throughout the drug discovery
processes. One reason for the disparity between experi-
mental approaches is that existing analytical methods for
dose-response bioassays can’t cope with the dimension-
ality of microarray data: a typical bioassay is optimized for
one response, then used to run a screen against thousands
of compounds; whereas transcriptional profiling measures
thousands of non-optimized responses to a single
compound. Conversely, existing methods for microarray
data analysis can identify patterns, but provide no
quantitative dose-response information. To overcome
these problems, we developed novel algorithms and
visualization methods that allow anyone to apply tran-
scriptional profiling as a conventional dose-response assay.
The approach provides far more information than limited-
dose designs, yet is economical (12 arrays/compound).
With this new analytical framework, it is now possible to
identify distinct transcriptional responses at distinct
regions of the dose range, to link these impacts to
biological pathways, and to make realistic connections to
drug targets and to other bioassays.

Transcription Profiling of Dose Responses
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distinct regions of the dose range (Figure 2B, 2C and Text S1).

These peaks reflect the likelihood that a coordinated transcrip-

tional response is occurring around a given dose. For example, the

MEK-specific inhibitor PD0325901 induced two separate peaks of

transcriptional responses at four hours (Figure 2B). The first peak

centered at 0.5 nM and contained 80 response transcripts at 35%

FDR. A second peak centered at 6 mM contained seven response

transcripts. Examination of loci with multiple response transcripts

suggested that the width of these peaks reflects the precision with

which an EC50 for a single target can be determined (Table S3).

Of the three ABL inhibitors, dasatinib induced the most potent

and populous transcriptional response at both time points,

consistent with its multi-kinase activity [21,23].

Comparison of treatments using their transcriptional
dose responses

Drug treatments are typically compared by evaluating the

overlap between the two lists of regulated transcripts. The SDRS

output allows a similar but more granular evaluation, since one

can see whether transcripts are regulated with the same potency in

each treatment. At each Summary Dose there is a list of probesets

that may be sorted based on F-score and truncated based on FDR

criteria. To compare the data from two treatments, we used a

Fisher’s exact test on each possible pair of Summary Doses,

incrementing the response transcript lists from 1% to 35% FDR

(see Methods). The resulting grid of P values is effectively

visualized as a heat map. Comparison of a treatment to itself

produced low P values at points on the diagonal (Text S1). If two

distinct treatments generate the same response transcripts but with

different EC50s, low P values occur at points off the diagonal. For

example, 4 hour treatment with PD0325901 gave a peak of

transcriptional responses centered around 6 mM (Figure 2B).

Imatinib affected an overlapping set of response transcripts with

EC50s around 500 nM. Conversely, a set of transcripts with

EC50s around 1 nM for PD0325901 had EC50s over 1 mM for

imatinib (Figure 2C,D and Text S1).

Figure 1. Implementation and output of SDRS algorithm. (A) SDRS analysis of intensity data for probeset 205016_at (Transforming Growth Factor
Alpha), following a four hour treatment with dasatinib. The plot shows the maximal F-statistic obtained for this probeset at each C value evaluated by
SDRS. The critical value of the F-distribution at P,0.05 is indicated. The global maximal F was obtained from fit of experimental data to a sigmoidal dose
response model with the values of A, B, C, D shown. (B) The experimental data for probeset 205016_at, and the curve obtained using the optimal model
parameters established by SDRS in the equation shown. (C) Schematic diagram of the data analysis flow. The SDRS report (left) contains the calculated
pharmacological parameters for each probeset, and can be used to identify individual response transcript of interest. This report is qualitatively similar to
the output of an iterative algorithm. The SDRS Summary Doses output (right) is unique to the grid search method. This dataset is used for the further
approaches shown, which characterize and compare the overall transcriptional responses. A more detailed flowchart of SDRS is provided in Text S1.
doi:10.1371/journal.pcbi.1000512.g001

Transcription Profiling of Dose Responses
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Figure 2. Characterization of the overall transcriptional responses to PD0325901 and imatinib, and a comparison between the two
treatments. (A) Bar chart displaying the number of probesets whose F-statistic for goodness of fit to a sigmoidal curve passes a 10% FDR criterion at
each SDRS Summary Dose. The results shown are from a four hour treatment with PD0325901. These results are also presented as the tenth row of
the heatmap in (B). (B–C) Heatmaps showing the number of probesets whose F-statistic for goodness of fit to a sigmoidal curve passes the given FDR
criterion at each SDRS Summary Dose. In (B), the horizontal axis contains the SDRS Summary Doses, and the vertical axis contains one row for each of
the 35 FDR criteria applied. Panel (C) is rotated 90u to clarify its relationship to panel (D). The results shown are from a four hour treatment with
PD0325901 (B) or a 20 hour treatment with imatinib (C). (D) The negative logarithm of P values from Fisher’s exact tests that compare response
transcripts for PD0325901 and imatinib. Values displayed are the lowest P value observed in tests performed between the (maximally) 35 lists of
probesets that underlie each dose in panels (B) and (C). The horizontal and vertical axes contain the SDRS Summary Doses for PD0325901 (four hours)
and imatinib (20 hours), respectively. The two boxed regions indicate shared transcript responses discussed in the text.
doi:10.1371/journal.pcbi.1000512.g002

Transcription Profiling of Dose Responses
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Connecting transcriptional dose response to effects on
pathways and processes

The heat maps in Figure 2B,C and Text S1 provide an

overview of transcriptional responses to a compound. To

understand the underlying mechanism, the responding genes

need to be mapped to cellular pathways. This typically involves

evaluating the overlap between the regulated genes and lists of

genes representing biological processes [30]. Results can be

prioritized by P-value, usefulness of the process grouping and

relevance to possible targets. The SDRS output allows a similar

but more granular evaluation of pathway impact, since one can

see the dose at which the cellular process is implicated. For each

treatment, the FDR-corrected response transcript list at each

Summary Dose was tested for overlap with lists of genes

connected to processes in the KEGG [31] and Gene Ontology

(GO, [32]) databases (see Methods and Table S4). For processes

meeting a P,0.001 criterion, impact on a discrete pathway at a

distinct region of the dose range was used to prioritize the

following examples.

For PD0325901, plotting the results of this analysis (Table S4,

Figure 3A) indicated that the two peaks of transcriptional

responses observed in Figure 2B represented distinct biological

effects. PD0325901 specifically inhibits cellular MEK activity with

an IC50 of around 1 nM in both Ras/Raf-mutant and wild-type

cell lines [33]. The response transcripts with EC50s around this

dose were enriched for components of the MAP kinase pathway,

which contains MEK (Figure 3B, upper panel, Table S5) and the

Jak-STAT pathway (Figure 3B, middle panel), which is reported to

be indirectly affected by MEK function [34–36]. These response

transcripts included MAP kinase phosphatases (DUSP1, DUSP4,

DUSP5, and DUSP6) [37] and STAT regulators (IFNGR1,

OSMR) and targets (BCL2L1, CCND1, MYC, LIF, IL15,

SOCS5, SOCS6) [38–40] (Figure 3B,C). In contrast, the response

transcripts with EC50s around 6 mM comprised 5 genes

(CYP1A1, CYP1B1, ALDH1A3, ALDH3A2, and DHCR24;

Figure 3B lower panel, Figure 3C), all mapped to the P450-

mediated xenobiotic metabolism and tryptophan metabolism

pathways. This transcriptional response was also provoked by

treatment with imatinib at around 500 nM (Figure 2D, and Table

S4), and could reflect a xenobiotic response to these compounds,

or another shared target activity.

Dasatinib had a complex transcriptional response across the

dose range (Figure 4A), reflecting its potent impact on numerous

kinases [21]. Combining dose information with pathway analysis

allows scientists to make realistic connections between these

target kinases and responses. For example, at Summary Doses

from 34–128 nM there is an enrichment of transcripts for genes

in the TGF-b signaling pathway, including the ID repressor

family and SMADs (Figure 4B,C). However since dasatinib’s

cellular activity on TGF-b family kinases is in the micromolar

range ([41], shown in Figure 4A) they are not the relevant target.

Instead, hypotheses should include the kinases that dasatinib

does inhibit in this dose region: some are known to impact the

TGF-b pathway, for example Src [42]. Another example is the

impact on MAP kinase signaling at higher concentrations of

dasatinib (Figure 4B,D). Dasatinib’s impact was distinct from

that of PD0325901 by both automated comparison (Text S1),

and by direct analysis of the response transcript lists (Table S5).

PD0325901 predominantly affected loci assigned to the

‘classical’ MAP kinase pathway containing its target, MEK.

Dasatinib regulated transcripts for a different set of loci in the

‘classical’ pathway, where it targets EGFR and Raf kinases.

Dasatinib also regulated transcripts for loci in the KEGG p38/

Jnk pathway, where it targets p38a, MLTK (ZAK), and

TGFbR2. The potency of the transcript responses was consistent

with known potencies for these targets ([21,41], see Figure 4A

and Table S5).

For imatinib, dose-dependent effects have been invoked to

explain discrepancies between pre-clinical studies [43]. In

examining imatinib’s transcriptional responses at 20 hours, we

used the efficacious clinical plasma concentration of 3 mM [44] as

a reference point. Of 245 response transcripts for imatinib (10%

FDR, .1.5-fold change, Table S2), only 44 have EC50s,3 mM

(Figure 5A, C). The remaining 201 response transcripts have

EC50s.3 mM (Figure 5B). The 201 response transcripts include

35 for endoplasmic reticulum-localized proteins such as XBP1

(Figure 5C), supporting observations that in vitro treatments with

imatinib at 5 mM affect the function of this compartment [45].

Pathway analysis identified enrichment of transcripts for the seven

KEGG pathways (P,0.0001) shown in Figure 5D. Transcripts

with EC50s.3 mM had enrichment for several pathways affecting

lipid metabolism, indicating distinct biological impacts as the dose

increases beyond the required clinical range.

Submicromolar doses of imatinib, dasatinib and nilotinib did

not produce shared effects on transcription (Text S1), indicating

that their shared potent inhibition of cellular targets such as ABL

and PDGFR [23,41] does not provoke transcriptional responses in

the A549 cell line. In the micromolar dose range, comparison of

transcriptional responses indicated shared effects at 20 hours (Text

S1). Pathway analysis indicated both shared and compound-

specific effects in this dose range (Text S1).

Connecting transcriptional dose responses to other dose
response assays

Pathway analysis found that a significant number of genes

involved in the cell cycle (KEGG pathway hsa04110) were

represented in the transcriptional responses to dasatinib and

nilotinib but not imatinib at 20 hours (Figure 6A and Table S4).

The broad peak for dasatinib reflects impact at two distinct dose

regions, based on the distribution of EC50s for individual response

transcripts (Table S6). The first group of 44 response transcripts

has EC50s around 10 nM and includes the DNA helicase

complex, cyclins and CDKs (Figure 6B,C). The second group of

35 response transcripts has EC50s in the micromolar range and

includes known transcriptional targets of p53: GADD45

(Figure 6C), CDKN1A and Stratifin [46], PCNA and MDM2.

Pathway analysis also confirmed dasatinib’s impact on

DNA replication (KEGG:hsa03030) and p53 signaling

(KEGG:hsa04115); Table S4). By contrast, nilotinib impacts the

cell cycle pathway in one dose region: 62/63 of the response

transcripts have EC50s in the micromolar range (Table S6). While

nilotinib also regulates transcripts for the DNA helicase complex,

cyclins and CDKs, it does not have a significant impact on the p53

signaling pathway (Figure 6B,C).

To compare these findings from transcriptional profiling with

typical cell-based assays for proliferation, we treated our A549 cell

line with the 12-point dose range of dasatinib, imatinib, and

nilotinib and assayed the ATP content of samples (a surrogate for

cell number) at 96 hours, and the DNA content of dasatinib and

nilotinib samples (a surrogate for cell-cycle stage) at 23 hours. The

results reflected our findings from pathway analysis: dasatinib and

nilotinib inhibited proliferation and decreased the S phase

population, whereas imatinib did not (Figure 6D,E). Importantly,

the potency in these conventional measures of cell cycle impact

agreed with the EC50s of transcripts for the DNA helicase

complex, cyclins and CDKs (EC50s around 10 nM for dasatinib

and 6 to 9 mM for nilotinib).

Transcription Profiling of Dose Responses
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Discussion

This paper is the first description of a systematic application of

genome-wide transcriptional profiling as a traditional dose-

response assay. Since most compounds act on multiple targets

with different potencies, target-specific effects of a compound

may not be distinguished by the limited dose selection of a

typical transcriptional profiling experiment. We show that with a

dose-response study design that uses just 12 arrays per

compound, one can use the existing technology in a more

informative way, and establish connection to other cellular dose-

response assays.

We present new algorithms and visualization methods that

allow one to identify, compare, and characterize transcriptional

responses. Sigmoidal dose responses are usually identified by

iterative nonlinear regression methods [29]. SDRS applies

nonlinear regression in a grid search, and performs equally well.

It is robust against natural variability, and will be amenable to

identifying dose responses in other sources of quantitative data.

The most important benefit of SDRS over iterative regression or

clustering methods is obtaining the fitting statistic (F) across the

dose range for each transcript. This provides a moving window to

evaluate the transcriptome’s coordinated responses across the dose

range. The full set of F-statistics permitted the further methods we

present, which easily characterize and compare the overall

transcriptional dose response with statistical rigor.

Our results demonstrate that transcription profiling has many

of the properties of traditional dose-responsive bioassays that

have been used for decades [47]. The ability to combine dose

information from diverse bioassays with dose-dependent path-

way analysis proves valuable in connecting transcriptional

responses with targets. For example, the MEK-specific inhibitor

PD0325901 produced a significant transcriptional response at

the known cellular potency for MEK inhibition [33], and had no

further effect on transcription until micromolar doses. In

contrast, the transcriptional response to dasatinib had multiple

EC50s, consistent with its known activities on multiple targets

[21]. Nonetheless pathway analysis allowed us to map cellular

processes to distinct regions of the dose range, and connect them

to likely kinase targets identified in other dose-response cellular

assays [41]. Connection to discrete kinase inhibition events can

be refined by numerous methods: kinases not expressed in the

experimental cell line can be excluded from lists of hits from

biochemical assays, and comparisons can be made with transcript

response profiles for compounds that have overlapping target

spectra, or with profiles generated following siRNA ablation of

kinase targets.

The power of a dose response study design stems from the

ability to rigorously compare pharmacological parameters across

assays [48]. For example, we show that PD0325901 affects STAT-

regulated transcripts with an EC50 of 1 nM, the same potency as

its cellular activity on MEK [33], and this connectivity provides

Figure 3. Pathway analysis applied to the transcriptional
response to PD0325901 at four hours. (A) Plot of significance
values obtained from Fisher’s exact tests performed between the lists
of gene loci corresponding to response transcripts (1 to 35% FDR), and
lists of gene loci representing the six biological pathways indicated.
PD0325901 causes ,50% inhibition of cellular MEK activity in the dose
region indicated [33]. (B) Signal intensity for 48 response transcripts (in
rows) identified by SDRS, across twelve doses of PD0325901 (columns)
at 4 hours. Top panel contains transcripts related to MAPK signaling
(KEGG:hsa04010). Middle panel contains transcripts related to Jak-

STAT signaling (KEGG:hsa04630). Bottom panel contains transcripts
mapped to the pathways for metabolism of xenobiotics by cyto-
chrome P450 (KEGG:hsa00980) and tryptophan metabolism
(KEGG:hsa00380). For visualization, RMA signal intensity data was
reverse-logged and scaled from zero (blue) to one (red) for each
probeset. (C) Experimental data for probesets corresponding to
DUSP4 (204014_at, EC50 0.9 nM, left panel), annotated to the pathway
for MAPK signaling (KEGG:hsa04010), and CYP1A1 (205749_at, EC50
6.0 mM, right panel), annotated to the pathway for metabolism of
xenobiotics by cytochrome P450 (KEGG:hsa00980), with dose
response curves obtained from the optimal model parameters
established by SDRS.
doi:10.1371/journal.pcbi.1000512.g003

Transcription Profiling of Dose Responses
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compelling support for earlier reports that the ERKs are STAT

kinases [34]. We also show connectivity between the EC50s for

transcriptional effects on cell cycle genes by dasatinib and

nilotinib, and their EC50s in conventional cell cycle and

proliferation assays. Such connectivity should be applicable across

diverse cell lines: while it is always possible for drug potency to be

modulated by extraneous factors, studies of these kinase inhibitors

across multiple cell lines (e.g. [33,42]) support the biochemical

prediction that a single site-binder has a defined potency for its

target.

Transcriptional dose responses can separate the biological

effects of a multi-target compound. Whereas a microarray

experiment at a single micromolar dose should identify dasatinib’s

impact on both DNA replication and p53 signaling, only a dose-

response design revealed that the impact on the p53 pathway

occurs at a micromolar dose, and thus is irrelevant to dasatinib’s

nanomolar anti-proliferative potency. Transcriptional dose re-

sponses also allow a more meaningful comparison to clinical

parameters such as plasma concentrations observed in treated

patients (200 nM for dasatinib [49]; up to 3 mM for imatinib [44];

3.6 mM for nilotinib [50]). With regard to imatinib, our

observation of numerous additional transcriptional responses as

dosing increases through the micromolar range supports the

assertion [43] that dosing level is critical in evaluating the

relevance of in vitro assays or pre-clinical models to imatinib’s

clinical effects.

There are some limitations to the current study. First, it is

impossible to measure all possible dose-responsive treatment

effects in a single cell line, as not all targets are functional. In the

non-ABL dependent cell line A549, we cannot evaluate and

compare the on-target activity of the three clinical ABL-

inhibitors. Second, the pathway analysis is limited by the quality

of annotation [30]. Third, not all dose responses fit a single

sigmoidal model [51]. The clustering analysis we apply for

quality control occasionally reveals treatments in which groups of

transcripts show sigmoidal induction at low doses but have

sigmoidal down-regulation at high doses or vice versa (Text S1),

presumably due to action on a second, counteractive target or

process. Such behavior could be routinely identified and

quantified by substituting the data model in the SDRS algorithm,

permitting the subsequent analytical approaches described in this

work.

In summary, we have developed new methods that enable

interpretation of transcriptome behavior, including dissection of

dose-dependent activities, fine differentiation between compounds,

and connection with other biochemical and cellular assays. This

analytical method has application at all the points of drug

development where transcription profiling is currently used. In

early discovery, we have compared transcriptional effects of target

knockdown to the dose responses for lead compounds. As lead

compounds are developed, we routinely compare the dose-

dependent effects of diverse chemotypes to identify the on-target

biology. Development candidates can be more clearly differenti-

ated from a first-in-class compound, and the relative potency of an

off-target activity is valuable information when assessing its

importance. On transition to the clinic, transcriptional biomarkers

have added validity when they are connected to target biology by a

clear dose response. Investigations of approved drugs have

successfully used transcriptional profiling to clarify biology (e.g.

[4]); such studies can only be facilitated by a more precise linkage

between dose and effects. Ultimately, dose response strategies

could be combined with a compendium database of response

profiles [17,52], enabling rapid cellular categorization of new

compounds.

Figure 4. Pathway analysis applied to the transcriptional
response to dasatinib at four hours. (A) Heatmap showing the
number of probesets whose F-statistic for goodness of fit to a sigmoidal
curve passes the given FDR criterion at each SDRS Summary Dose.
Known kinase targets of dasatinib are shown below, with the dose
interval for their binding EC50 in cells [41]. (B) Significance values
obtained from Fisher’s exact tests performed between the lists of gene
loci corresponding to response transcripts (1 to 35% FDR), and lists of
gene loci representing the three biological pathways indicated. (C)
Experimental data for probesets corresponding to ID3 (207826_s_at;
EC50 17.5 nM) and SMAD2 (203077_s_at; EC50 10.7 nM) annotated to
the TGF-beta signaling pathway (KEGG:hsa04350), with the dose
response curves obtained from the optimal model parameters
established by SDRS. (D) Experimental data for probesets corresponding
to HSP1A1 (200799_at; EC50 3.9 mM) and MAP2K6 (205698_s_at; EC50
3.6 mM) annotated to the MAPK signaling pathway (KEGG:hsa04010),
with the dose response curves obtained from the optimal model
parameters established by SDRS.
doi:10.1371/journal.pcbi.1000512.g004
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Figure 5. Dose-dependence and pathway analysis of the transcriptional response to imatinib at 20 hours. (A, B) Signal intensity for 245
SDRS response transcripts (FDR10%, .1.5-fold change; in rows) across twelve doses of imatinib (columns) following 20 hours of treatment. (A)
contains the subset of 44 response transcripts with EC50,3 mM. (B) contains the subset of 201 response transcripts with EC50.3 mM. For
visualization, RMA signal intensity data was reverse-logged and scaled from zero (blue) to one (red) for each probeset. (C) Experimental data for
probesets corresponding to Factor V (204713_s_at; EC50 824 nM) and XBP1 (200670_at, EC50 4.2 mM), with the dose response curves obtained from
the optimal model parameters established by SDRS. (D) Significance values obtained from Fisher’s exact tests performed between the lists of gene
loci corresponding to response transcripts (1 to 35% FDR), and lists of gene loci representing the seven KEGG biological pathways indicated.
doi:10.1371/journal.pcbi.1000512.g005
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Figure 6. Dose-dependence of impact on cell cycle for dasatinib, nilotinib and imatinib. (A) Significance values obtained from Fisher’s
exact tests performed between the lists of gene loci corresponding to response transcripts at each SDRS Summary Dose, and lists of gene loci
implicated in cell cycle regulation (KEGG:hsa04110). (B) Probeset signal intensity data from a 20 hour treatment with dasatinib (upper panel) or
nilotinib (lower panel) at the doses indicated. Rows contain data for 35 response transcripts that correspond to genes implicated in cell cycle
regulation (KEGG:hsa04110). For visualization, RMA signal intensity data was reverse-logged and scaled from zero (blue) to one (red) for each
probeset. (C) Signal intensity data for CCNB2 (202705_at; EC50 14.8 nM for dasatinib and 9.3 mM for nilotinib) and GADD45B (207574_s_at; EC50
1.7 mM for dasatinib, no curve fit for nilotinib), upon treatment with dasatinib or nilotinib for 20 hours at the doses indicated. The dose-response
curves obtained from the optimal model parameters established by SDRS are shown. (D) Luminescence assay for ATP content performed on cell
cultures treated with dasatinib, nilotinib or imatinib for 96 hours at the doses indicated. (E) Percentage of the treated cell population in S phase (3n
DNA content) in cell cultures treated with dasatinib or nilotinib for 23 hours at the doses indicated. The full data set is in Table S7.
doi:10.1371/journal.pcbi.1000512.g006
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Methods

Chemicals
Imatinib Cat.# PKI-IMTB-010 was purchased from Biaffin

GmbH & Co KG (Cat.# PKI-IMTB-010). Nilotinib, PD-0325901

and dasatinib were provided in pure form (. = 98%) by Bristol-

Myers Squibb Chemistry Division. Compounds stocks in DMSO

(10 mM) were stored at 220uC and diluted in culture media

before addition to cells.

Cell viability assay
Assays were performed in triplicate. A549 cells were seeded in

the interior 48 wells of 96-well plates at a density of 16104/cm2 in

180 ml of media, 4 hours prior to treatment with DMSO vehicle

or a 11-point dose range of compound (30 mM with 3-fold

dilutions down to 0.51 nM; final concentration of DMSO vehicle

was 0.5% for all treatments) for 96 hours. ATP content was

assayed using the CellTiter-Glo Assay (Promega, Madison, WI)

with a Victor plate luminometer (Wallac, Turku, Finland).

FACS analysis of DNA content
A549 cells were seeded in 6-well cell plates at a density of

16105/ml in 2 ml of media, 16 hours prior to treatment with

DMSO vehicle or a 12-point dose range of compound (30 mM

with 3-fold dilutions down to 0.17 nM; final concentration of

DMSO vehicle was 0.5% for all treatments) for 23 hours. Both

attached and detached cells were recovered, fixed with 0.25%

ultrapure formaldehyde (Polysciences #04018) in dPBS (Ca2+

Mg2+-free; Invitrogen #14190) followed by 80% methanol. Cells

were stained with dPBS/1%BSA containing propidium iodide

(5 mg/ml; Sigma #P4864) and RNAse (1 mg/ml) for 30 minutes

at RT in the dark. The samples were run on the FACSCanto with

Diva 6.1.1software (Becton Dickinson), and data was analyzed

using FlowJo 8.5.3. The experiment was performed twice (Table

S7).

Cell treatment and Affymetrix Gene Chip analysis
All handling was performed in 96-well format. Positions of the

12 levels of each treatment were randomized using an experi-

mental design that prevented row or column effects being

confounded with dose effect. A549 cells were cultured at 37uC
in RPMI1640 media containing 10% heat-inactivated Fetal

Bovine Serum (Mediatech, Manassas, VA). Cells were seeded at

1.76105/cm2 16 hours prior to treatment with vehicle or a 12-

point dose range of compound (30 mM with 3-fold dilutions down

to 0.17 nM; final concentration of DMSO vehicle was 0.5% for all

treatments). Cells were lysed with 16 Nucleic Acid Purification

Lysis Solution (Applied Biosystems, Foster City, CA) at 4 hours or

20 hours. Total RNA was extracted using the Prism 6100 (Applied

Biosystems, Foster City, CA), purified by RNAClean Kit

(Agencourt Bioscience Corporation; Beverly, MA), and evaluated

on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

cRNA preparation and hybridization on HT-U133A 96-array

plates followed manufacturer’s protocols (Affymetrix, Santa Clara,

CA). The CEL files were analyzed with the robust multi-array

analysis (RMA) algorithm [53], obtained from www.bioconductor.

org. Following quality control and removal of non-expressed

probesets (Text S1), RMA values were reverse-logged (base 2) for

use in sigmoidal dose response curve fitting.

Sigmoidal dose response search (SDRS) algorithm
See also Supplementary Methods (Text S1). A standard four

parameter dose response model was used to model gene expression

changes in response to varying compound concentration:

Y = A+(B2A)/(1+(X/C)D), where Y is the signal intensity value,

X is compound concentration, C is the EC50, D is the slope factor,

and A and B correspond to the signal intensity at low and high

plateau of the curve, respectively. The approach can be viewed as

a grid search, where a series of 542 values for C, distributed across

the experimental dose range, are tested for every probeset on the

array. For each probeset, ranges for A and B are based on signal

levels in the treatment dataset. At each value of C tested, the

algorithm evaluates 10,240 models against the experimental data.

Goodness of fit is measured by an F-statistic: F = MSR/MSE

where MSR is the mean square of the variance explained by the

model and MSE is the mean square of error). For every probeset,

at every C tested, the highest F-statistic and the corresponding A,

B, D parameters are recorded. Given the normal distribution of

residuals, the F-statistic follows an F-distribution, F(p-1, n-p),

where n is the number of experimental dose points and p is the

number of parameters in the model (i.e. 4: A, B, C, D). Note that

the number of dose points is the most important influence on the

degrees of freedom. A probeset was designated as fitted to a

sigmoidal curve and corresponded to a ‘response transcript’ if its

global maximal F-statistic (i.e. best fit) was larger than the critical F

(95% significance level, i.e. the F-distribution table was consulted

for 95 percentile with numerator degree of freedom of p-1 and

denominator degree of freedom of n-p). For each response

transcript, the values of A, B, C and D that gave rise to the

maximal F-statistic define the optimal model and the predicted

EC50. Thus the estimated EC50 presented in the SDRS report is

selected from 542 possible values for C.

Multiple test correction
After SDRS, each probeset is associated with an F-statistic at

each of the 542 test values of C. For use in further analytical

methods including data visualization, the results at a subset of 79

log-evenly distributed values for C were selected as ‘Summary

Doses’ (i.e. data reduction from 542 lists to 79 lists). Each F-statistic

was converted to the associated P-value. For each Summary Dose

list the number of response transcripts (i.e. probesets) whose P

value passed an FDR cutoff was calculated, using 1% increments

from FDR = 1% to FDR = 35%, resulting in a 35679 matrix. This

FDR correction used the Simes procedure, which employs a series

of linearly increasing critical values [54] and has been shown to

control the FDR at pre-specified levels for independent test

statistics [55].

Treatment comparison and pathway analysis
All comparisons of lists were based on Fisher’s exact test (FET)

using the right test, which evaluates the significance of the

intersection between two lists for positive association i.e. an

enrichment of elements of list A in list B or vice versa [56].

Comparisons between two compounds were performed at each

possible pair of Summary Doses (one from each compound), using

the lists generated by the FDR procedure described above. (Note

that there are as many as 35 distinct probeset lists for each

compound at each of the 79 Summary Dose values). For each of

the Summary Dose pairs, the lowest P value from the (maximally)

35635 FETs was retained. The resulting 79679 matrix is

visualized as a heat map, where the depth of the color is

proportional to the negative logarithm (base 10) of the P value.

Pathway analysis was performed using the lists generated by the

FDR procedure described above. Probesets were consolidated to

single gene loci to eliminate redundancy. (Note there are as many

as 35 distinct gene sublists at each of the 79 Summary Doses).

Each such gene list was evaluated by FET against a pathway gene

list, and the lowest P value from the (maximally) 35 comparisons at
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each of the 79 Summary Dose values was retained. For

comparisons that met a P,0.001 criterion, the resulting 79-point

dataset for each pathway of interest was plotted to examine

significant enrichment for pathway genes as a function of the dose

range.
Data accession. The microarray dataset is available at

ArrayExpress, E-TABM-585.
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