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Abstract

It is now recognized that molecular circuits with positive feedback can induce two different gene expression states
(bistability) under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number
of stable states (multistability) is however largely unknown. Here, we first examine how autoregulation, a common attribute
of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules’
parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches) or
multistable (decision switches) regimes. We demonstrate the potential of decision switches for multifaceted stimulus
processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store
short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate
commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous
developmental scenarios. Indeed, many of the presented information-processing features of decision switches could
ultimately demonstrate a more flexible control of epigenetic differentiation.
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Introduction

The capability of cells to present different stable expression states

while maintaining identical genetic content plays a significant role in

differentiation, signal transduction and molecular decision-making.

These epigenetic phenotypes are partly associated to changes in

genomic structural features, including several types of chromatin

and DNA modifications [1]. Alternatively, it is also believed that in

some cases they are induced by the action of underlying genetic

regulatory circuits, exhibiting a positive feedback loop configura-

tion. Recent studies have experimentally confirmed this latter

prediction, both in natural and synthetic systems, e.g., [2,3], which

originated back in the early days of microbial molecular genetics [4]

and systems theory [5].

A positive feedback topology is nevertheless not sufficient to

generate distinct epigenetic states. In addition, the circuit should

display some degree of nonlinearity, i.e., sigmoidality, on its

constituent interactions [6–8]. This sigmoidal behavior is typical of

many molecular interactions and endows these genetic modules,

now interpreted as dynamical systems, with multistability, i.e., the

possibility to find the system in alternative steady states under

conditions in which all its biochemical parameters are fixed. These

equilibria define the different stable expression states regulated by

means of the molecular loop.

How does the particular structure of a given positive feedback

influence its function? Considering multistability as the most

prominent attribute of these architectures, one could argue that

genetic design does not really matter, as soon as sigmoidal

interactions are achieved in some effective way. Careful analysis of

some of the recent experimental reports seems to indicate the

contrary. Two general patterns can be suggested. First, positive

feedback loops at the core of more complex regulatory networks

generally consists of simple structures controlling cell fate

decisions. This is normally associated to two complementary

expression states, i.e., bistability (like the p42–Cdc2 system

involved in Xenopus oocytes maturation [9], or the bacteriophage

l genetic switch [10]), but three states is also been recently

discussed [11,12]. In comparison, loops relevant to signal

transduction, or more broadly to conditions where complex

biochemical information-processing is required, are commonly

constituted by many components [13–15]. These architectures can

even regulate the plain presence of mono or bistability, e.g., as a

function of the time the activating stimulus is applied [16].

The proposed patterns lead to a set of interesting questions.

When is multistability, understood as at least three possible

expression states, relevant in differentiation as opposed to

bistability? Which simple feedback loop architectures can produce

it, and what biologically relevant parameters do we need to

quantify in order to predict these behaviors? Moreover, we can

also ask to what extent complex feedback topologies are

necessarily required for multifaceted information-processing and

for the execution of elaborated developmental programs.

To address some of these issues, we first investigate the number

of available expression states of two minimal complementary

systems—a two-component mutual-activation and mutual-inhibi-

tion circuits—whose constituents are autoregulated (Figure 1A and
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1B). Autoregulation is a pervading feature of many eukaryotic

master regulators [17,18], a property usually believed to merely

impart stability to the associated regulations [18–20]. In this

context, we show how it determines, in competition with the

crossregulatory interactions, the ranges of mono, bi and multi-

stability. Second, we discuss how these topologies facilitate two

main switch classes involving transition between expression states

in bistable and multistable regimes. We term these classes

progression and decision switches, respectively. While multistable

decision switches have been recently suggested as a rationale to

explain co-expression of antagonistic master regulators in lineage

specification scenarios [21,22], we show that these switches not

only appear in mutual-inhibition architectures. More importantly,

we analyze several complex information-processing tasks in

decision switches, such as signal strength [23] and duration [24]

discrimination, stochastic fate control [25,26] and flexible

discrimination [27,28]. This demonstrates that simple architec-

tures can indeed show rich computations, an ability related to the

presence of multistability and thus to autoregulation. We revisit

this relation next to highlight how autoregulation compensates or

amplifies transient expression differences between circuit compo-

nents to induce robust coexisting stable expression states. We close

by discussing the implications of these findings, and the specific

architectures considered, in various cellular contexts.

Results/Discussion

Models
To describe dynamical aspects of genetic regulatory networks

one can generally adopt two contrasting strategies. The first one is

to collect all available molecular information about the regulatory

interactions of a specific system. This allows to present the putative

regulatory network involved in the mechanism under study, which

can then be quantitatively described by using a particular

mathematical formalism, e.g., a set of ordinary differential

equations. While this method can be helpful to describe the

dynamics of a very specific system, it usually incorporates a degree

of complexity that can sometimes hide the key dynamical aspects,

and molecular players, determining network behavior (with the

additional drawback that new molecular agents could always be

discovered and thus modify both network topology and dynamics).

An alternative approach is to propose simplified mathematical

models based on a number of realistic assumptions. Simple models

help in the identification of basic design principles, might act as

effective descriptions of more complex circuits and, as we see

below, can actually correspond to extant regulatory modules found

in several biological scenarios. These models also circumvent the

lack of quantitative molecular details required in the more specific

studies. We follow here this second approach.

We thus introduce a two-component mathematical model to

analyze the dynamical behavior of the mutual-activation/mutual-

inhibition topologies (see equations in Materials and Methods,

Figure S1, Figure S2, and also Text S1 for further details). In this

model, autoregulatory and crossregulatory interactions between

components were represented by Hill equations. This is a widely

used approximation as molecular interactions are usually known to

behave in a sigmoidal fashion [6]. Indeed, similar simplified models

have been used to describe the coexistence of several expression

states in specific cell fate systems, such as those involved in

hematopoiesis [11,12,22] or embryonic stem cell differentiation

[29]). In our case, we present this model as part of a general

framework in relation to a broad number of biological scenarios (see

Table 1), and fully characterize the type of information-processing

features these circuits exhibit and their potential significance for a

more flexible control of epigenetic differentiation.

Biological Determinants and Circuit Control of
Multistability

What specific biological features determine multistability? We

address this question by identifying a minimal set of biological

determinants able to characterize circuit behavior. This analysis

also helps us to highlight some unexpected features of the relation

between module structure and epigenetics, and to introduce two

main types of switches associated to the circuit dynamics.

Phenotypic map. The epigenetic profile exhibited by a

particular positive feedback topology depends on the activation

(inactivation) of the expression of its molecular constituents. This

expression pattern is determined by the number of available

equilibrium states of the system, which in turn depends on the

specific values of its parameters. Thus, by changing the

Figure 1. Circuit topologies and canonical differentiation
types. Mutual-activation (A) or mutual-inhibition (B) circuits constitut-
ed by two master regulators (denoted 1 or 2). Both modules exhibit
autoregulation of their components. (C,D) Differentiation as a
progression or decision. In (C) a cell changes its expression state to a
new one as a result, for instance, of a signalling event (wiggle arrow).
This is implemented by a progression switch only requiring two
expression states. Alternatively, a decision switch can drive the initial
expression state to two different ones and thus needs three expression
states, corresponding to the states before and after the decision.
Different cell colors correspond to distinct expression states. See main
text for details.
doi:10.1371/journal.pcbi.1000235.g001

Author Summary

An essential attribute of living cells is the capacity to select
among various alternatives when confronted with external
or internal cues. These decisions can be directly linked to
survival, as the sporulation/competence choice in the
bacterium Bacillus subtilis, or be involved in the establish-
ment of developmental programs from pluripotent stem
cells. How are these decisions controlled at the molecular
level? Recent studies have identified the presence of a few
master regulator genes whose activity is crucial to drive
cells to a particular fate. These genes usually exhibit
autoregulation and appear in combination with a second
molecular partner constituting a minimal regulatory circuit.
Here, we investigate how such two-component architec-
tures endow cells with more than two epigenetic states.
This ability not only enhances the number of potential
developmental outcomes, in a given context, but also
drastically increases cell signal processing. We show how
these control modules can implement a number of
complex computational tasks such as discrimination of
stimulus amplitude, duration, or relative timing. Similar
aspects have been discussed in relation to neural dynamics
in cortical circuits, which suggests the use of equivalent
computational strategies and circuit design in the control
of biological decision-making.

Decision Switches for Control of Differentiation

PLoS Computational Biology | www.ploscompbiol.org 2 November 2008 | Volume 4 | Issue 11 | e1000235



parameters, we can ultimately predict all the potential epigenetic

regimes that a circuit can present. Such parameter space,

commonly used in the study of dynamical systems [30], acts in

this context as a truly phenotypic map, since it fully predicts the

circuit potential behavior and can also guide its experimental

characterization [2,3,11,31]. What defines the phenotypic maps of

the mutual-regulation topologies? Three main biologically relevant

parameters influence their structure (see also Materials and

methods): the relative strength between auto (r) and

crossregulatory (n) links, the ratio between the thresholds of

activation of these two link types (s), and the magnitude of the

basal production rate (a). Note also that regions within these maps

could only display areas with one to four possible epigenetic

states—(low,low), (low,high), (high,low) and (high,high), with low/

high denoting expression levels of the corresponding gene—as

these are two-component systems.

We show several phenotypic maps in Figure 2. In a first glimpse,

we see different regions associated to the coexistence of distinct

expression patterns. Strong autoactivation appears here as a

necessary condition for the existence of more than one single

expression state (r.18, Figure 2A and 2B). Beyond this threshold

two broad regimes are found, depending on which regulatory

interaction is dominant. In a regime where the autoregulation is

more likely than crossregulation (s%1), a symmetric state with

high levels of expression is available (IV and IIIH, Figure 2A and

2B). This possibility is lost when crossregulation becomes more

active (IIIL and IIA, Figure 2A and 2B). We can also see how the

low-expression symmetric state disappears as autoactivation

strength increases (IVRIIIH and IIILRIIA, respectively). We

further observe a qualitatively similar phenotypic map for both

mutual inhibition (Figure 2A, n = 0) and weak mutual activation

(Figure 2B, n = 2). The map is thus structurally stable for small

changes in n, even though they represent fundamentally different

circuits.

The previous stereotypic behavior changes for strong cross-

activation (n&1, Figure 2C). In this case, coexistence of more than

two expression states is not possible. For r<n, we see the expected

map of a simple switch based on mutual activation without

Table 1. Genetic circuitry in eukaryotic differentiation.

System Components Mediators Interaction Type Output Fates

Mutual activation
topology

Embryonic stem cells [36,39] (Oct4/Sox2,Nanog) Direct [58] Transcriptional (low,low)Rdifferentiation

(high,high)Rself-renewal

Neurogenic network [59] (Ac,Sc) Da Transcriptional (low,low)Repidermal

(high,high)Rneural

Myogenic differentiation [17] (MyoG,Mef2C) myogenic bHLH
factors

Transcriptional (low,low)Rprecursor cells

(high,high)Rmuscle cells

Pancreatic development [54] (Sox9,FoxA2) Direct [54,60] Transcriptional (low,low)Rself-renewal

(high,high)Rendocrine diff.

Xenopus oocyte maturation [9] (p42,Cdc2) Mos, Myt1 Post-translational (low,low)Rimmature oocyte

(high,high)Rmature oocyte

Apoptosis [61] (Casp3, Casp9) Direct Post-translational (low,low)Rcell survival

(high,high)Rapoptosis

Mutual inhibition
topology

Mammalian embryogenesis [37] (Cdx2,Oct3/4) Direct Transcriptional
cooperative

(high,high)Rprecursor cells

(high,low)Rtrophectoderm

(low,high)Rinner cell mass

Hematopoietic development
[12,41]

(GATA1,PU.1) Direct Transcriptional
cooperative

(low,low)Rpriming state

(high,low)Rerythroid/
megakaryocytic

(low,high)Rmyelomonocytic

T-cell differentiation [62] (T-bet,Gata3) ITK Post-translational (high,high)Rpluripotent state

(high,low)RTh-1 cells

(low,high)RTh-2 cells

Visual system specification [63] (Pax6,Pax2) Direct Transcriptional (high,high)Rearly eye epithelium

(high,low)ROptic cup

(low,high)ROptic stalk

Drosophila eye development [26] (Wts,Melt) Unknown Transcriptional (high,low)R‘Yellow’ photoreceptor

(low,high)R‘Pale’ photoreceptor

C. elegans gustatory neurons [64] (die–1,cog–1) miRNAs Transcriptional (high,high)Requipotent

(high,low)RASEL neuron

(low,high)RASER neuron

doi:10.1371/journal.pcbi.1000235.t001

Decision Switches for Control of Differentiation
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autoregulation. This is characterized by the existence of two

symmetric expression states—(low,low) and (high,high)—with a

bistability region (IIS). A different behavior arises when autoac-

tivation strength dominates crossactivation, r&n. In this situation,

two anti-symmetric states are available for s<1, i.e., when auto

and crossinteraction thresholds are comparable. This is a

somehow unexpected effect, since one would not anticipate that

a module with high strength of both types of interactions could

produce as stable expression levels two anti-symmetric states.

Finally, an increase in basal rates (a), the third relevant parameter

of the system, normally unstabilizes low-expression states. This

implies shrinkage, or total disappearance, of regimes IV and IIIL

in Figure 2A and 2B, as autoactivation would additionally enhance

such high basal production (Figure 2D and Figure S3A and S3B).

Progression and decision switches. How can the

epigenetic state of these circuits be modified? A change of gene

expression is induced by external factors, e.g., due to a signalling

event, which effectively modify the parameters of the circuits, and

thus their location on the phenotypic map. This can generally

happen in two ways. In some situations, the initial expression level

progresses to a new one, this being the only possible steady state of

the system (Figure 1C). For instance, a transition from a state in

which both genes are highly expressed to one in which they can

only be weakly expressed, e.g., IISRIL in Figure 2C (by means of a

change in autoactivation strength, r). Alternatively, the change of

gene expression can be understood as a decision, in which the

initial expression state could evolve towards several alternative

ones (Figure 1D). This could happen when a circuit in a symmetric

high expression state changes to either one of the two asymmetric

ones (for instance, a IIIHRIIA transition in Figure 2A).

Combinations between these canonical types of binary choices

are likely at the core of more complex scenarios [12,21].

Accordingly, we suggest that molecular switches driving these

transitions can be classified as progression or decision switches. A

progression switch drives the system to a final monostable

epigenetic regime, while a decision switch takes the circuit towards

a bi- or multistable regime. The phenotypic map shows then

different parameter areas between which a particular topology

could enable these switches.

It is also important to distinguish how the state previous to the

expression change is abandoned. In a progression switch, this

equilibrium is no longer available after a given stimulus strength,

and the system necessarily jumps toward a new expression state. In

comparison, the initial state of a decision switch does not disappear

but becomes unstable. While both situations seem equivalent

experimentally, their implications for switch function are totally

different. The unstable state acts effectively as a boundary splitting

mutually exclusive domains of expression (see below and also next

section). This qualitative reasoning can be formally described using

the language of Dynamical Systems Theory, where the previous

transitions correspond to steady state bifurcations [30]. Thus, a

progression switch corresponds to a saddle-node bifurcation and a

decision switch to a pitchfork bifurcation (insets Figure 3). We

illustrate this by plotting the response curves or nullclines (solving

Equation 1 in Materials and Methods for dx
dt

~ dy
dt

~0), whose

intersections identify the steady states of the system, and their

basin of attraction.

In Figure 3A, a cell population exhibiting transient states of the

circuit components (x, y) whose levels of expression were scattered

through the dark grey basin converge after some time to the

Figure 2. Phenotypic map for mutual-inhibition and mutual-activation circuits. This map shows the areas of coexistence of several
expression states (multistability) in a s-r parameter space (a = 0.1, A–C). These regions are: I{L,H}; one (low,low)/(high,high) expression state, II{S,A};
coexistence of (low,low)–(high,high), symmetric, and (low,high)–(high,low), antisymmetric, expression states, III{L,H}; tristability with two antisymmetric
states and one symmetric state, low or high, IV; coexistence of four expression states. The phenotypic map for mutual-inhibition (A, n = 0) is
structurally similar to that of weak mutual-activation (B, n = 2). Multistability generally arises when increasing autoactivation, r, while balancing the
threshold of activation between the auto and crossregulation. Strong crossactivation (C), n = 20, enables only mono or bistability. Note also that an
increase in basal rates (D, a = 1 with n = 0) reduces the presence of low expression states.
doi:10.1371/journal.pcbi.1000235.g002

Decision Switches for Control of Differentiation

PLoS Computational Biology | www.ploscompbiol.org 4 November 2008 | Volume 4 | Issue 11 | e1000235



(high,high) steady state. The presence of an inhibitory signalling

event makes this state disappear by means of a saddle-node

bifurcation (insets in Figure 3A and 3B). The whole population

abruptly switches now to the (low,low) state (Figure 3B, note that

there is just a single basin of attraction in this regime).

Analogously, transient expression levels within the white domain

of Figure 3C. evolve to the (high,high) state. However, the

presence of an inhibitory signal in this case unstabilizes, rather

than destroys, this state through a pitchfork bifurcation (inset

Figure 3C and 3D). The population then is divided in two different

ones by expressing two exclusive states—(high,low) or (low,high) in

Figure 3D. This is due to the fact that the initial distribution falls in

the two different basins of attraction in the new situation (dark grey

and light grey in Figure 3D). This process acts as an example of a

decision which is in this case irreversible and all-or-none

(subcritical pitchfork, inset Figure 3C and 3D) but that could also

be reversible and graded (supercritical pitchfork, Figure S4).

Decision Switches as Rich Signal-Processing Units
What type of signal processing enables the presented switches?

In the following, we show the potential of decision switches to

robustly discriminate several characteristics of biochemical stimuli,

e.g., strength, duration, timing, etc. These capacities offer flexible

control of epigenetic expression, far beyond that attributed to

bistable (progression) switches.

Differential signal processing. We first imagine a situation

in which a decision switch, initially in a symmetric state of high

expression—(x, y) = (high,high)—is subjected to a transient signal

pulse. This pulse acts on both components by increasing their

degradation rate with the very same strength, as it could be the

case, for instance, when some sort of post-translational

modification effectively inactivates the corresponding proteins.

While the signal is affecting the two components for the same

amount of time, the module remains in the symmetric expression

state. A situation that simply reflects the pre-existing balance

between crossinteractions, which is not changed by the

(symmetric) pulse. However, as soon as there exists some

disparity in duration, this leads to the dominance of one of the

crossinteractions and to the disappearance of the symmetric steady

state. The circuit is driven for this reason to one of the asymmetric

expression states. Decision switches can in this way discriminate

differences in signal duration and encode this computation in the

state expressed after the signaling event.

How reliable is this discrimination? For instance, how big

should the duration difference be to correctly recognize this

distinction? We quantify this ability in Figure 4A and 4B, where

we particularly studied a mutual-inhibition decision switch (n = 0).

The circuit is initially again in the symmetric high expression state.

Because of molecular noise (consequence of the inherent

stochasticity of biomolecular reactions [32], see Text S1), this

state fluctuates in time around its mean (deterministic) value. This

variability could be alternatively understood as the distribution of

steady state values that would exhibit a cell population expressing

this very same state at a given fixed time (Figure 4A, top). We then

consider a stimulus pulse acting on the y-element of the module for

a longer time (insets Figure 4A). After the pulse, the switch could

be driven to the (high,low) expression state, due to the time lapse in

which only the y protein experiences a larger degradation rate,

which in turn weakens its repression on x. This epigenetic change

depends both on the characteristic time scales of the module

response and the magnitude of duration difference between pulses.

Thus, if the pulses showed difference in duration and the system is

driven to the (high,low) state, we say that it correctly discriminated

signal differences.

Figure 4A shows four instances of population distribution after

this processing, for increasing differential duration. We find that

the larger the difference the bigger the number of cells expressing

the expected target state (Figure 4A, top to bottom). A more

quantitative analysis reveals that correct discrimination, measured

as the percentage of cells in the (high,low) expression state,

Figure 3. Switch classes as changes (bifurcations) in gene expression. The intersection between the circuit response curves or nullclines
(lines in the x-y planes) identifies the system steady states, these being either stable (filled circles), or unstable (empty circles). In this way, a range of
different initial concentrations of the circuit components (basin of attraction; white and light/dark gray areas) ends up in the same expression state. A
progression switch is associated to a transition from a high (A) to a low (B) expression state, crossing a bistable regime. This is a saddle-node
bifurcation, insets (A,B), where the magnitude and types of available equilibria are plotted as a given parameter changes in the x-axis (solid line;
steady state, dotted line; unstable state). A decision switch corresponds however to a transition in which the initial symmetric expression state
(high,high) becomes unstable (C), and thus only two expression states, (high,low) and (low,high), remain (D). This transition could proceed in a all-or-
none (C,D) or graded fashion (Figure S4) and is linked to a pitchfork bifurcation, insets (C,D). Note that in this case the circuit goes from having three
to two coexisting expression states.
doi:10.1371/journal.pcbi.1000235.g003

Decision Switches for Control of Differentiation
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presents a threshold performance following a sigmoidal curve

(Figure 4B). This behavior is associated to the two different time

scales determining switch response. On the one hand, differential

duration induces a large asymmetry in the space of variables which

causes the (high,high) stable state to disappear in a saddle-node

bifurcation. The remnant of this stable state produces a slowdown

of the dynamics close to this point (a ghost state [30]), the switch

exhibits a finite response, and a threshold in discrimination

performance arises. This threshold could be biologically impor-

tant, as it effectively works as a fail-safe mechanism to filter out

small signal fluctuations in signal duration. On the other hand, the

slope (Hill coefficient) of the sigmoidal response is determined by

the switch characteristic dynamics. For the same threshold, a

system with larger autoregulation will produce a steeper (all-or-

none) behavior in discrimination performance. This is illustrated

in Figure S5, where two switches differing only in autoregulation

strength are compared.

Stochastic fate determination. Discrimination of

differences in stimulus strength rather than duration works in a

similar vein as before, but it additionally displays other features. A

particularly interesting one is linked to the phenomenon of

stochastic fate commitment. Cells appear in some occasions to

choose among two different phenotypes (cell classes) in a random

manner, e.g., [25,26]. An open question in this context is how such

stochastic decision-making leads though to a fixed proportion of

classes in a given population, e.g., fixed 20:80 ratio of competent to

noncompetent cells in B. subtilis ([33] for a recent review). We

discuss here how genetic decision circuits provide a feedback-

based mechanism to drive stochastic fate decisions and, in the

same way, determine fixed phenotypic proportions. This is

achieved as response to signals affecting both circuit components

for approximately the same time, but differences in signal strength.

This could be also produced by signals with similar strength by

operating on circuits with asymmetric properties, e.g., kinetic

parameters. Such asymmetry in the kinetic parameters modifies

the basin of attraction of the available steady states and ultimately

determines the final distribution of the population.

To examine this, we start as in the previous section with a

population of cells in the symmetric high expression state, i.e., we

consider noisy gene expression. The signal is acting in both

components but this time with the very same duration. As a result of

this stimulus the circuit remains in the symmetric state, as with

duration discrimination, while signal strength is below a particular

value. However, when this value crosses a threshold, the symmetric

states becomes unstable (insets Figure 3C and 3D). The circuit is

then randomly driven to either one of the asymmetric states. The

consequence of this fair choice is a final population divided in a 50%

ratio in terms of expression. The important issue here is that this

balance, and thus the proportion of cell classes, can be modulated by

differences of signal strength (Figure 4C). In this sense, the ratio of

expression states in the population is encoding the output of the

strength discrimination task.

Figure 4. Signal duration and strength discrimination. (A) A signal pulse inducing degradation of x and y species (insets) is acting with the
same strength but different duration in both circuit components (solid and dotted lines for x/y, respectively). The initial population of cells, all in the
symmetric (high,high) expression state (x/y-component in black/red, respectively), is allowed to evolve after signal removal to the steady state.
Increasing differential duration populates the asymmetric (high,low) expression state—the opposite difference in duration would populate the
(low,high) state. Circuit parameters are r = 5, n = 0, s = 0.2, a = 1. (B) The fraction of cells going to the correct asymmetric equilibrium is plotted as a
function of differential signal duration (filled circles), with a fit to a sigmoidal function (exponent 3.5, threshold 17.5). (C) Strength discrimination: An
initial population of cells in the (high,high) state is transiently stimulated with a stronger degradation pulse than (A), but with the same duration in
both components (t = 50 in adimensional units). With this stimulus, the symmetric equilibrium state becomes unstable and cells compete for the
asymmetric (low,high) and (high,low) states. Note that for the same signal strengths, the population is stochastically divided 50% between both
attractors, while for increasing differential amplitudes the population is biased towards one of the asymmetric states (filled circles). Solid line in
Figure 5C is a fit to a Weibull function. Notably, this fit denotes a similar discrimination performance to that found in cortical circuits [28].
doi:10.1371/journal.pcbi.1000235.g004

Decision Switches for Control of Differentiation
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Several features of this process are of interest. First note that, as

compared with differential duration, it lacks any threshold. Why is

this? Examination of the way the symmetric state is abandoned

provides the answer. For strength discrimination this state does not

disappear, as in the previous section, but becomes unstable. This

distinction is relevant from a biological point of view, although it

might not seem to be so a priori by simply looking at the

equilibrium distributions after the computation. Indeed, both

behaviors are quite different from a dynamical perspective since

response times in the latter case are much faster. This can be seen

by contrasting the discrimination curves (Figure 4C as compared

with Figure 4B), where one can see that small differences in signal

strength may already produce a large bias in phenotypic

proportions. Second, the performance of the strength discrimina-

tion follows a Weibull, or stretched exponential, function

(Figure 4C). This fit is equivalent to that found in cortical circuits

in monkeys [28], where coherence of visual stimulus is

discriminated. Reduced neural network models based on known

neurophysiology have been proposed to explain such decisions.

Interestingly, these models present a mutual inhibition and

recurrent self-excitation structure. This similarity emphasizes the

presence of equivalent dynamical principles in biological circuits

underlying seemingly unrelated functions [34].

Influence of signal noise and dynamics. In the examples

above, we considered deterministic pulses acting post-

translationally (fast time scale). However, realistic signaling

events fluctuate in several ways and may also act in slower

scales, e.g., by transcriptional regulation. We now briefly study

these aspects in connection with stimulus strength and duration

computations.

Signal fluctuations originate opposite effects when considering

duration and strength detection. To dissect the role of this noise,

we consider again a post-translational (fast) signal and introduce

stimulus stochastic dynamics as a birth-death process (see Text S1).

In Figure 5A, we compare differential duration discrimination

tasks with and without stimulus noise (following poissonian

statistics). We find that fluctuations greatly enhance this processing

when considering small difference in duration, while it only slightly

deteriorate this task in the case of large differences. This noise-

induced enhancement is caused by the fact that signal fluctuations

help the circuit to abandon the previous ghost state with the

corresponding change of gene expression.

What about the discrimination of signal strength? Signal noise

modifies this task (stochastic fate determination) in a completely

opposite way. In this case, we obtain that correct discrimination gets

worse with the presence of stimulus fluctuations (Figure 5B), as noise

could drive the system to the complementary asymmetric expression

state. These tasks could be also influenced by the signal intrinsic

time scale. Slow signals generally require larger differences in

stimulus to be properly discriminated, but discrimination perfor-

mance is less influenced by signal noise (Figure S6).

Flexible discrimination. Cells need to discriminate not only

relatively simultaneous stimuli, as discussed previously, but also

stimuli received with certain time delays. This task is generally

linked to the cellular capacity to maintain a memory of recent

signaling events, i.e., bistability and positive feedback regulation

[10,13], that could influence future responses. Positive loops can

also process delayed signals by inducing a different type of history-

dependent dynamics when interlinked with negative feedbacks

[16]. In this case, the response of the circuit, gradual or all-or-

none, is modulated by the readout of a previous stimulus. We

propose now a third scenario, in which a decision switch is able to

discriminate delayed signals based on the capability of these

circuits to store short-term memories.

We consider two signal pulses separated by a particular time

delay, which are operating alternatively on the x and y components

of a decision switch (Figure 6, pulses modify degradation as

previously). The first pulse takes the system from an initial

symmetric expression state to a new asymmetric state (low,high).

When a new stimulus is received, the previous asymmetric state

can represent an effective short-term memory linked to the cell’s

signaling history. This is reflected on how the switch responds to

the second signal. When the duration of this signal is similar than

the previous one, the circuit goes back to the precursor initial state

(Figure 6A and 6B, where we plot time and phase plane evolution),

i.e, the memory of the stimulus is erased. A longer pulse would

take the system to the opposite asymmetric state (Figure 6C and

6D). The switch thus discriminates the duration of two signals

acting on successive times. Such flexible discrimination resembles

the one found in cortical circuits, where intermediate stable states

serve as a working memory to compare the magnitude of

sequential stimuli [27].

Autoregulation and Multistability
The preceding section discussed several new computational

features associated to the presence of multistatibility in these

systems. We also argued before how multistatibility is linked to

autoregulation, a connection that we now further elaborate.

Autoregulation favors multistability by either amplifying or

compensating transient differences in expression between the

circuit constituents. This modifies the type of steady states usually

found in two-component switches; (low,low) or (high,high)

Figure 5. Discrimination performance of a decision switch to differential stimulus duration (A) and amplitude (B). The switch
parameters are the same as those in Figure 4, but signal dynamics is now stochastic with fluctuations independent from the circuit components (see
Text S1). Signal noise affects duration and amplitude discrimination in different ways.
doi:10.1371/journal.pcbi.1000235.g005
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expression for mutual-activation and (low,high) or (high,low)

expression for mutual-inhibition, but see also [35]. Specifically,

amplification habilitates activation switches with asymmetric

expression states, while compensation induces the presence of a

third symmetric equilibrium state in inhibition switches. This dual

role requires autoregulation to be strong enough and dominant

over crossregulation (r.n, s,1) (Figure S7).

How does autoregulation-based amplification work? We

consider a mutual-activation circuit in an initial (transient)

asymmetric expression state, i.e., x0?y0, with x0, y0, being the

concentration of each circuit component in non-dimensional units.

We plot the time evolution of the species concentration (Figure 7A)

and the probabilities of occupation of the associated binding

sites—by the corresponding autoregulatory and crossregulatory

species (Figure 7C). Despite the initial asymmetry, both compo-

nents reach the same equilibrium expression (or present a

monomodal distribution around this value, inset Figure 7A, when

considering noisy gene expression [32]). The activation of the

species with higher initial concentration leads to the increase in

expression of the second component, mediated by the cross-

interactions. This effect ultimately balances the probability of

occupation of each binding site by their own species, which filters

out the initial concentration disequilibrium (Figure 7C). Could the

initial asymmetry be amplified, so that an asymmetric steady state

is favored? When crossactivation is weaker (Figure 7B–D, n = 2),

the autointeraction of the species with smaller initial concentration

does not become active. Autoregulation is only effective then on

the species with higher concentration (Figure 7D). The circuit

amplifies in this way the initial differences allowing the coexistence

of symmetric and asymmetric equilibria (we now find three peaks

in the distributions obtained by considering noisy gene expression,

inset Figure 7B). Moreover, autoregulated-based compensation, by

comparison, avoids expected unbalances in mutual-inhibition

switches working in regimes with hardly active crossinteractions

(small s’s), since the autoregulation on both species dominates

(Figure S8).

Multistability is however generally not expected in circuits

exhibiting relatively strong mutual activation, as this might imply

unrealistically strong autoregulation (Figure 2 and Figure S7).

What would be then the influence of autoactivation? We suggest

that it provides switches with a more flexible behavior. For

instance, modulation of its strength can enlarge the bistable region,

making the module respond to some external signals that would

not be sensed otherwise (Figure S9). Autoregulation may change

also the combinatory of signals to which a mutual-activation

switch responds (Figure S10).

Biological Scenarios of Progression and Decision
Switches

How biologically relevant is the general framework that we have

proposed? We investigated how these topologies enable different

epigenetic regimes (the phenotypic map), characterized the

Figure 6. Flexible discrimination. Stochastic time evolution (A,C) of the concentration of the x (dotted) and y (solid) circuit components
implementing flexible discrimination. (B,D) shows the same dynamics in the phase plane, where dashed and dotted lines are the system nullclines
(r = 50, n = 0, s = 0.2, a = 0.1). The decision switch, initially in the symmetric expression state, is subjected to two delayed stimuli (gray bars). The first
signal, a pulse increasing the degradation rate of the x species, takes the system to the (low,high) asymmetric state. This state acts as a short-term
working memory. This memory permits the system to discriminate the duration of the next pulse, now acting on y, with respect to the previous one.
When the second pulse is similar to the first one, the circuit ‘‘erases’’ its memory. Trajectory 1-2-3-1 in (A,B). A larger second pulse drives the system to
the (high,low) state; 1-2-3-4 trajectories. Short-term memories enhances thus the reliability of the (high,high)R(high,low) decision and provides a
feedback-based mechanism to the dynamics of transient expression states.
doi:10.1371/journal.pcbi.1000235.g006
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molecular switches driving transitions between them, and

discussed several information-processing features exhibited by

these switches. To put these ideas in a biological context, we now

first identify the presence of these regulatory architectures in

specific scenarios, and then discuss several signal discrimination

features that have been analyzed in these and related settings.

Indeed, we found a number of differentiation programs

controlled by circuits constituted by two molecular regulators in

a mutual-activation or mutual-inhibition configuration (Table 1).

The main components of these circuits are usually master

regulators, i.e., transcription factors involved in the determination

of cellular fate, which exhibited autoactivation (a prevalent

characteristic of master regulators, see Table S1). Interactions

between module constituents are sometimes direct, normally

transcriptional, or indirect, mediated by other molecular species.

Recently studied examples include the embryonic stem-cell master

regulators Oct4, Sox2, and Nanog [36–38]. These factors establish

mutual-activation architectures between them—to maintain

pluripotency—or mutual inhibition circuits, in combination with

additional elements, to induce specific developmental fates

[29,39,40]. Common instances of the latter involve Cdx2,

promoting differentiation to trophectoderm [37], or Gata4/Gata6

linked to endodermal differentiation [39], see also [40].

Similarly, various stages of hematopoietic lineage specification

are driven by modules exhibiting these architectures. In this

situation, the presence of a third expression state, or priming state, is

currently under inspection [12,21,22,41]. In particular, genes in

various lymphoid lineages are coexpressed at low levels in common

lymphoid progenitors (CLPs) and in common myeloid progenitors

(CMPs) [42,43]. Specialization to different cell types from these

common lineages proceeds through sequential steps where some

genes are silenced and other activated [44,45]. This is the case in B

and T cell development (from CLP) [19,46,47] as well as in the

macrophage/neutrophil decision (from CMP)—where a graded

decision switch was proposed [11] with a similar architecture to the

ones discussed here, but see additionally [12]. As in the previous

case of embryonic stem cell differentiation, genes common to several

lineages, i.e., at the top of the regulatory hierarchy, control the

expression of other transcription factors involved in more specific

lineage commitment. In summary, the collected scenarios in Table 1

suggest that the presence of mutual-activation circuits correlate with

differentiation as a progression, while mutual-inhibition topologies

appear mostly when alternative decisions from a precursor (priming)

cellular state are made (Figure 1).

What sort of signal discrimination is found in these contexts? The

influence of signal attributes in various developmental scenarios

hints at the possibility that more elaborated signal processing could

be at work. One example of this influence is the role of signal

strength in thymocite differentiation [23,48]. In particular, CD4/

CD8 T-cell fate commitment is determined by the strength of the T-

cell receptor signal, with strong and weak signals favoring either the

CD4 and CD8 lineages, respectively [48]. Another interesting case

of processing of stimulus strength is morphogen gradient interpre-

tation [49–51]. In Xenopus mesoderm formation, activin, a member

of the TGF-b family, acts on downstream genes in a concentration-

dependent manner, with high concentrations inducing expression of

the transcription factor Gsc and low concentrations activating the

Xbra transcription factor, both regulating each other in a double

negative feedback loop [51]. Similarly, a gradient of Shh signaling

can be read by complementary complementary pairs of homeodo-

main proteins that cross-inhibit each other in a cell autonomous

manner [52], specifying neural differentiation in the spinal cord.

Finally, processing of signal duration has also been shown to be

important in both T-cell fate commitment [53] and morphogen

signalling [50]. The latter case is a good example of a more

elaborated processing task in which Shh interpretation integrates

both strength and duration of a signal to control differential gene

expression.

Moreover, the precise temporal expression programs exhibited

by genes involved in cell differentiation suggests that discrimina-

tion between signals at different times could be also important in

these situations. For instance, during pancreas development

(Table 1) one of the key factors promoting endocrine development

(Foxa2) is already expressed in the first stage of development (the

gut endoderm) but other essential factor (Sox9) appears later in the

first pancreatic progenitor cells [54].

Signal processing ultimately leads to a fate decision. Two

models, not necessarily exclusive, have been proposed. In a first

model (sometimes termed ‘instructive’ or ‘selective’ regulation

[25]), an external signal imposes the specific fate by activating or

repressing a particular set of genes. This probably corresponds to

the more standard scenario of how signaling determine fates. An

alternative model is that in which a given fate is stochastically

chosen among different pre-existing programs. An open issue in

this latter model, and one that partially answers our analysis, is

how the proportion between alternative stochastic fates is

regulated in a population.

Conclusions
What specific molecule is critical for this particular physiological

response? This question is usually asked when a given cellular

Figure 7. Autoregulation-based amplification. Deterministic
trajectories (A,B) and time evolution of different promoter occupancies
(C,D) for a mutual-activation switch with strong autoregulation (r = 50)
and intermediate crossinteraction threshold (s = 0.3, basal production
a = 1). Black lines correspond to the time evolution for the x species,
and red lines for y species. Initial asymmetric conditions are x0 = 1, y0 = 3
(non-dimensional units). Insets correspond to a population distribution
for the x species if stochastic gene expression is considered (Text S1).
(A,C) Moderate mutual interaction strength (n = 5). Only a symmetric
high expression state exists (see inset). In (C), solid lines correspond to
probabilities of auto occupation of the promoter sites, while dashed
lines to the probabilities of cross occupation. (B,D) Weak mutual
interaction strength (n = 2). Three stable states coexist (see inset). The
same initial expression conditions—(x0, y0)—evolve towards an
asymmetric (low,high) state.
doi:10.1371/journal.pcbi.1000235.g007

Decision Switches for Control of Differentiation

PLoS Computational Biology | www.ploscompbiol.org 9 November 2008 | Volume 4 | Issue 11 | e1000235



behavior comes under scrutiny. The search for such master

regulators is specially relevant in the context of differentiation,

where they become lineage specification factors, whose expression,

or the lack of it, is associated to distinct cell fates. This approach,

however, does not seem to be sufficient anymore. Indeed, an

increasing number of studies confirm the view that regulators do

not work in isolation, and that we need to study them as parts of

genetic control circuits to properly recognize their function

[9,11,17,19,37].

Even though the molecular components of such control circuits

are obviously diverse, their architectures do exhibit two main

unifying attributes. First, they represent a relatively simple positive

loop structure, and second, this structure is constituted by

interactions with a degree of sigmoidality (threshold-like action)

that enables circuits to exhibit bistability [6–8]. Does the

coexistence of more than two expression states lead to a

fundamentally different type of regulation and signal processing?

If so, how can we determine multistability and to what extent is

this feature linked to more complex loop architectures?

To analyze these issues, we characterized the function of two-

component circuits with the use of mathematical models. An

additional property in these systems is that their main constituents

are autoregulated. We made use of the phenotypic map, a

parameter space characterizing the patterns of expression associated

to these modules. Transitions between expression states were then

considered to be induced by two major switch classes. A progression

switch corresponds to a transition in which at most two expressions

states should be available. Alternatively, a decision switch needs of

three expression states, one before and two after the decision. Both

types correspond to distinct bifurcations of the system equilibria

[30]. This analysis also highlighted the fundamental role that

autoregulation plays in these designs. Specifically, autoregulation in

the mutual-inhibition circuit favors multistability, and thus decision

switches, while it provides mutual-activation switches with more

flexibility and enlarged stimulus reaction (but only two coexisting

expression states, i.e., progression switch).

We examined a number of scenarios where master regulators

and their interactions have been experimentally uncovered. We

identified several architectures corresponding to the analyzed

circuits, i.e., constituted by two principal autoregulated molecular

agents in a mutual-activation/mutual-inhibition topology. Our

study also provided an elaborated rationale of why master

regulators largely exhibit autoregulation. In addition, we correlat-

ed mutual-activation/mutual-inhibition switches with differentia-

tion as a progression or decision, respectively. These theoretical

arguments helped thus to unify a wide range of biological data,

and present progression and decision switches as fundamental

design principles in the control of epigenetic differentiation.

We specially studied the abilities of these modules to respond and

monitor stimuli, with special emphasis on decision switches. This

revealed a series of findings. First, decision switches are able to elicit

richer responses to differential signal parameters, like strength or

duration, enhancing signal specificity [14,24,55]. Second, decision

switches provide a circuit-based explanation to stochastic, but biased,

cell fate determination [25,26]. Identical cells can exhibit heteroge-

neous responses when experiencing similar external cues. These

switches originate stochastic differentiation when an external stimulus

is able to unstabilize the current expression state of an homogeneous

population. The remaining system equilibria are then potentially

reachable to each member of the population in a stochastic manner,

e.g., due to biochemical noise [32]. The population distribution of

gene expression can be further modulated by any asymmetry

presented in the signal or the circuit main characteristics. Last,

decision switches appear as a module able to process delayed signals.

In particular, we showed how this switch can implement two-interval

discrimination tasks. This capability allows cells to adapt to varying

environments by holding the history of a previous condition in a kind

of short-term memory (working memory). Cells would modify their

identities by comparing the first conditions with those found in a

second environment. Some of these discrimination performances are

similar to the one found in cortical circuits in monkeys, where neural

network models of mutual inhibition with recurrent self-excitation

have been hypothesized to mediate these decisions [27,28], which

emphasizes the presence of similar dynamical principles in circuits

underlying apparently non-related biological functions [34]. The

presence of a state of working memory also offers an alternative

mechanism to the dynamics of transient gene expression. While most

studies focused on the role of DNA structural modifications to

transform these short-term states into stable long-term memories,

[56,57] for two recent examples, decision switches would accomplish

a similar function by means of feedback regulation.

Materials and Methods

To derive the mathematical models used in this study, we

consider all biochemical reactions involved in transcription

regulation and expression of two interacting genes (dimerization

reactions, binding/unbinding of transcription factors to promot-

ers, transcription, translation and degradation, see Text S1 for

details). Separation of time scales and standard quasi-steady state

assumptions lead to the following model for the time evolution of

the two gene products:

dx

dt
~ax

1zrxx2znxsxy2zmxsxyx2y2

1zx2zsxy2zsxyx2y2

� �
{dxx,

dy

dt
~ay

1zryy2znysyx2zmysyxx2y2

1zy2zsyx2zsyxx2y2

 !
{dyy:

ð1Þ

Here, x, y describe protein concentrations in non-dimensional

form. We introduce two types of parameter sets. One is linked to

the activation/inhibition strengths in units of basalproduction, i.e.,

ri, ni, mi with i = {x, y}. Specific ranges of n determine the various

modules under study, i.e, mutual inhibition with nM[0,1), or mutual

activation with n.1. The second parameter group is associated to

the protein threshold values required for an interaction, i.e., its

response, to become active. Specifically, the s’s quantify the ratio

of response threshold of each link, e.g., ratio of binding affinities in

the case of transcriptional interactions. In addition, ai and di

correspond to the basal production and degradation rate,

respectively. We further assume a symmetric parametric regime

(parameters equal in both species, e.g., r = rx = ry), and that

sxy = 0, i.e., non-cooperative interactions (to see the role of

cooperativity see Figure S3C and S3D). Finally, we scale the time

by the corresponding protein degradation rate which results in an

average production rate, a = a/d (note also that larger Hill

coefficient implies a higher degree of non-linearity but qualitative

conclusions hold, Figure S11). These parameters can be quantified

experimentally, and represent a minimal set of biologically

relevant features able to characterize circuit behavior.

Phenotypic maps are obtained numerically by sampling the

parameter space with different initial conditions and letting the

system to reach all available steady states. Moreover, stochastic

gene expression is simulated by using the Gillespie’s algorithm in

most cases (taking into account mRNA dynamics, see Equation 7

in Text S1). For the specific situation of signal discrimination, a

Langevin method was implemented to reduce computational time

(Text S1 for details).
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Supporting Information

Figure S1 Deterministic dynamics for the reduced two-variable

model (black lines) compared to the four-variable model with

different ratios of mRNA and protein degradation (D). Red line:

D= 10. Blue line: D= 1. Solid lines correspond to the time evolution

of the x component, and dashed lines to the y component. The

system is in the tri-stability regime with rx =ry = 10, nx = ny = 0

(mutual inhibition), sx =sy = 0.2 and ax =ay = 1.

Found at: doi:10.1371/journal.pcbi.1000235.s001 (0.88 MB EPS)

Figure S2 Comparison of different algorithms and intrinsic

noise sources. Probability distribution of the x component

concentration for a population of cells in a symmetric high

expression state. Solid lines: simulations with Gillespie’s algorithm.

Dashed lines: solution of the chemical Langevin equations. Black

lines correspond to a burst parameter b = 1 and a volume factor

V= 10 (V = V0?V). Blue lines: effect of translational bursting

(b = 10, V= 10). Red lines: Effect of finite size noise (b = 1, V= 1).

Other parameters of the model for the stochastic simulations are

rx = ry = 10, nx = ny = 0, sx =sy = 0.2 (mutual inhibition, tri-

stability regime), ax = ay = 1 and kx
x = ky

y = 0.001 nM22.

Found at: doi:10.1371/journal.pcbi.1000235.s002 (0.79 MB EPS)

Figure S3 (A,B). Phenotypic map of the circuit with average

production rate a = 1 and different cross-interaction strengths. (A)

n= 2, (B) n= 20 (the cross-inhibition case n= 0 is shown in Fig. 2B).

In these panels, like in Figure 2, promoters are completely

overlapping (sxy = 0). (C,D) A possible role played by cooperativity

among species. Here we plot the phenotypic map for a = 1, as a

function of the autoregulation and the joint interaction strength

parameter m, Eq. (1) main text, for slightly non-overlapping

promoters (sxy = 0.001) and cross-interaction strengths n= 2 (C)

and n= 20 (D). In the case of total competition for the same

promoter site, panels (A,B), positive cross-interaction is not able to

generate bistability of symmetric expression states (0,0), (1,1), since

at an average production rate a = 1 the lower (0,0) state is not

stabilized. Strong cooperativity (recall that m= r6n for indepen-

dent regulation) together with competition for the same binding

sites favors the appearance of a low (0,0) expression state and

bistability (stability regions correspond to the areas inside cusps).

Found at: doi:10.1371/journal.pcbi.1000235.s003 (1.34 MB EPS)

Figure S4 Reversible (graded) deci-switch. The intersection

between the circuit response curves or nullclines (lines in the x-y

planes) identifies the system steady states, being these either stable

(filled circles), or unstable (empty circles). In this way, a range of

different initial concentrations of the circuit components (basin of

attraction; light and dark grey areas) ends up in the same

expression state. A reversible deci-switch is associated to a

transition in which the initial expression state (0,0) becomes

unstable (A). Two new asymmetric states appear in a graded

fashion (B). This is a supercritical pitchfork bifurcation, insets (A–

B), where the magnitude and types of available equilibria are

plotted as a given parameter changes in the x-axis (solid line;

steady state, dotted line; unstable state). Note that in this case there

exist no hysteresis. The transition is reversible, which means that

the appearance of new expression states strongly depends on the

presence of a external factor (acting as bifurcation parameter).

This could represent, for instance, a primary master regulator.

Found at: doi:10.1371/journal.pcbi.1000235.s004 (0.78 MB EPS)

Figure S5 (A) Increased autoregulation enhances duration

detection. Here we examine how the response of a decision switch

to stimulus duration depends on autoregulation strength. The

response for an autoregulation strength r= 10 (red line and filled

circles, the same as in Fig. 4B) is compared to the response at

r= 50 (blue line, open squares) for a fast signal producing the same

threshold in duration detection. Larger autoregulation induces a

sharper discrimination performance. Other parameter values are

n= 0, a = 1. (B) Increased autoregulation, however, delays

differential amplitude detection in stochastic decision switches.

Same symbols and parameters than those in panel (A).

Found at: doi:10.1371/journal.pcbi.1000235.s005 (1.10 MB EPS)

Figure S6 Effect of fast and slow signals on strength discrimi-

nation. A mutual inhibition switch is placed in a regime (r= 30,

n= 0, s= 0.2, a = 0.1) where a symmetric (high,high) expression

state becomes unstable with similar amplitudes for: A. fast and B.

slow degradation signals. Red lines and circles show the

performance using deterministic signal pulses, and blue lines

(squares) adding noise to the signals such that the mean number of

signal molecules is the same in both cases. Lines are fits to Weibull

or stretched exponential functions.

Found at: doi:10.1371/journal.pcbi.1000235.s006 (1.15 MB EPS)

Figure S7 Multistability domains as a function of relative

interaction strength (a = 1). For moderate to large average

production rates and autoregulation strengths, the boundaries

between monostable and multistable domains follow a linear

relation, r/n/1/s. For instance, r/n.20 indicates a tri-stable

domain at s= 0.2. Notice that for high s values the symmetric

expression state (1,1) is no longer available and only two

asymmetric equilibria coexist.

Found at: doi:10.1371/journal.pcbi.1000235.s007 (0.84 MB EPS)

Figure S8 Autoregulation as a compensation mechanism. For

mutual inhibition (n= 0) and moderate autoactivation (r= 5), the

ratio of binding affinities (s parameter) determines if the circuit

behaves as a toggle switch (A,C) or generates tri-stability (B,D). (A)

With similar binding affinities (s= 0.6), the autoregulation is

acting at the same time than cross-interaction. Then mutual

inhibition dominates, amplifying the expression of the ‘winner’

species in detriment of the ‘looser’ one. In this regime, only two

asymmetric states exist [(low,high), (high,low)]. This is illustrated in

the inset by the probability distribution of the x component,

obtained by solving the stochastic system. (C) The probability of

promoter occupation for autoactivation of the looser species (in

this case, x-auto, black solid line) never reaches the necessary level

for effective activation. (B) If relative binding affinity is strongly

favored for autoactivation (s= 0.2), the species with smaller initial

expression is rapidly increased, compensating the initial difference.

Here a new (high,high) expression state is available compared to

the previous case (see inset). (D) Probability of occupation for

autoregulation is increased faster in the less abundant species

(black solid line).

Found at: doi:10.1371/journal.pcbi.1000235.s008 (1.14 MB EPS)

Figure S9 Role of positive autoregulation in mutual-activation

switches. (A) Response to a signal increasing the degradation of

both components as a function of cross-interaction strength, for a

switch without autoregulation (a = 1). The system is initially (no

stimulus) in a monostable high expression regime. For n,12, the

signal decreases gradually the expression. For higher n values, a

low expression state is also stabilized and a progression (1,1)R(0,0)

can take place depending on signal strength. (B) For the same

stimulus, we take a cross-interaction strength of n= 10 (no

response regime) and examine the response as a function of

autoregulation. For r.10 a bistability regime, and eventually a

progre-switch, transition can take place. Thus, the presence of

autoregulation enables a circuit to work as a switch in a signaling

environment where it would not work as such otherwise, i.t.,

without autoactivation. Other parameters in (B) are a = 1, s= 0.2.
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Found at: doi:10.1371/journal.pcbi.1000235.s009 (1.65 MB EPS)

Figure S10 Autoregulation favors flexibility in signal processing.

Normalized response after a sustained degradation signal with

different intensities in x and y components. (A) A switch without

autoregulation in a symmetric bistable regime (a = 0.1, n= 20)

responds to signal asymmetries. In a color code, we show the

concentration of the x species normalized by the initial equilibrium

value (no signal). Note that for signal larger than {similar, tilde

operator } 0.1 in one component a transition (1,1)R(0,0) is

attained, irrespective of the strength of the signal in the other

component. (B) For the same value of crossinteraction (n= 20) but

strong autoregulation (r= 20, s= 0.1, see Figure 2 in main text) a

switch transition requires higher signal strengths and a minimum

signal threshold in both components.

Found at: doi:10.1371/journal.pcbi.1000235.s010 (1.50 MB EPS)

Figure S11 Influence of Hill coefficients on phenotypic maps.

This map shows the areas of coexistence of several expression

states (multistability) in a s-r parameter space for a Hill coefficient

of n = 4, e.g., x, y species acting as tetramers. These regions are: IL;

one (low,low) expression state, IIA; coexistence of (low,high)-

(high,low), antisymmetric, expression states, III{L,H}; tri-stability

with two antisymmetric states and one symmetric state, low or

high, IV; coexistence of four expression states. (A) Phenotypic map

for mutual-inhibition with low basal production rate (n= 0,

a = 0.1) corresponding to Fig. 2A in main text. (B) Phenotypic

map for mutual inhibition and higher basal production (n= 0,

a = 1) corresponding to Fig. 2D, main text. Note that larger Hill

coefficient implies a higher degree of non-linearity but that

qualitative conclusions hold, e.g., there exits a decision switch

transition from IVRIIIL if the initial expression state is (high,high),

Fig. S11.A.

Found at: doi:10.1371/journal.pcbi.1000235.s011 (1.21 MB EPS)

Table S1 Positive autoregulation of the factors involved in

mutual activation/inhibition architectures in Table 1.

Found at: doi:10.1371/journal.pcbi.1000235.s012 (0.05 MB PDF)

Text S1 Further discussions on the mathematical models and the

approximations considered.

Found at: doi:10.1371/journal.pcbi.1000235.s013 (0.12 MB PDF)
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