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Abstract

Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and
chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP)
followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-
quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations.
Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We
also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted
protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature,
whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-
domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using
molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new,
complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided
as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

Citation: Mazloom AR, Dannenfelser R, Clark NR, Grigoryan AV, Linder KM, et al. (2011) Recovering Protein-Protein and Domain-Domain Interactions from
Aggregation of IP-MS Proteomics of Coregulator Complexes. PLoS Comput Biol 7(12): e1002319. doi:10.1371/journal.pcbi.1002319

Editor: Christian von Mering, University of Zurich and Swiss Institute of Bioinformatics, Switzerland

Received March 14, 2011; Accepted November 7, 2011; Published December 29, 2011

Copyright: � 2011 Mazloom et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by NURSA grant U19-DK62434 including the Collaborative Bridging Project and NIH Grants 1P50GM071558-01A27398,
R01DK088541-01, RC2LM010994-01, 5UL1RR029887-02, and RO1GM054508. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: avi.maayan@mssm.edu

Introduction

CoRegs are members of multi-protein complexes transiently

assembled for regulation of gene expression [1]. Assembly of these

complexes is affected by ligands that bind to nuclear receptors

(NRs), such as steroids, retinoids, and glucocorticoids [2–5]. CoRegs

complexes exist in many combinations that are determined by post-

translational modifications (PTMs) and presence of accessory

proteins [6,7]. To date, over 300 CoRegs have been characterized

in mammalian cells [8] and it has been shown that CoRegs

complexes control a multitude of cellular processes, including

metabolism, cell growth, homeostasis and stress responses [6,9,10].

Many CoRegs complexes are considered master regulators of cell

differentiation during embryonic and post-developmental stages

[10,11], and evidence suggests that malfunction of these proteins

can lead to the pathogenesis of endocrine-related cancers [3,12] and

diabetes [13]. Importantly, it is believed that development of better

chemical modulators of CoRegs will lead to a ‘new generation’ of

drugs with higher efficacy and selectivity [14,15].

To accelerate research in the area of CoRegs signaling, the

Nuclear Receptor Signaling Atlas (NURSA) [16] have been

applying systematic proteomic and genomic profiling related to

CoRegs [17,18]. Recently, the NURSA consortium released a

massive high-throughput (HT) IP/MS study reporting results

from 3,290 related sets of proteomics pull-down experiments

[19]. The results from these experiments are protein identifica-

tions with semi-quantitative spectral count measurements,

which can be used to approximate protein enrichment in

individual IPs. Multiple IP experiments that sample different

protein complex subunits can be integrated to gain a global

picture of protein complex composition [20–22]. Several prior

studies applied to human cells have proposed strategies to

reconstruct protein complexes by combining results from HT-

IP/MS [23–28]. Some of the results from such studies have

been processed by algorithms that probabilistically predict

binary protein-protein interactions (PPIs). In some cases, such

predictions were validated using known PPIs from the literature,

where in few cases predicted interactions were further validated

experimentally. For example, Washburn and colleagues imple-

mented the multidimensional protein identification technology

(MudPIT) method to pull down complexes using 27 bait

proteins from the Mediator complex to suggest 557 probabilistic
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interactions between the baits and their pulled preys [23]. They

used the Jaccard distance to integrate protein co-occurrence in

the different experiments, and compared their ‘high-confidence’

interactions with those listed in a literature-based database, the

human protein reference database (HPRD) [29]. Experimental-

ly, the study validated few predicted interactions using co-IP

and western blots. In a follow up study, different clustering

approaches to extract sub-complexes from related affinity

purification (AP)-MS experiments using three distance mea-

sures: Manhattan, Euclidian, and Correlation Coefficient for

clustering are described [30].

The aforementioned work, and other similar prior studies,

ranked predicted associations and provided probabilities for

interactions between baits and preys, building on the explicit

nature of bait-prey relationship in epitope-based purifications.

However, due to secondary cross-reacting proteins, bait-prey

relationships are rarely explicit in IPs carried out with primary

antibodies. Hence, here we developed and compared different

ways, coded into mathematical functions, to score prey-prey

interactions from a large, recently published, HT-IP/MS

dataset. The equations predict direct protein-protein interac-

tions between prey proteins without considering the specific

baits. We also used the same equations to predict domain-

domain interactions underlying the protein-protein interac-

tions. We evaluated the performance of these equations using

known protein-protein and domain-domain interactions from

the literature and validated one protein-protein interaction

experimentally, and one domain-domain interaction using

computational docking. By combining the data from the

3,290 IP-MS experiments collected by NURSA we predicted

binary interactions between prey proteins and their domains.

We offer a global view of CoRegs complexes in human cells,

and provide the predicted networks for exploration on the web

through a web-based application with downloadable tables

freely available at http://maayanlab.net/HT-IP-MS-2-PPI-

DDI/.

Methods

IP-MS experiments
A detailed description of the IP-MS procedure can be found in

references [19,26] and the list of experiments in Dataset S1. The

data we analyzed is provided as supporting material tables for

reference [19]. These supporting tables contain GeneIDs for

identified protein products, as well as the spectral count (SPC)

measurements, and ‘abundance’ values, defined as SPCs/MW,

where MW is the molecular weight for the largest isoform of the

gene product. The latter normalization approximately accounts

for the number of peptides expected from a protein. Abundance is

logically similar to the normalized spectral abundance factor

(NSAF) scores previously proposed [30], except the values are not

scaled per experiment.

Equations
To score prey-prey interactions from the HT-IP/MS data table,

containing the ranks of proteins from the 3,290 IP-MS

experiments, we evaluated existing and developed new equations

implemented as algorithms in MATLAB and Java.

Sørensen Similarity
Sørensen similarity coefficient (Sor) provides a symmetric

similarity coefficient for comparing two finite sets. The coefficient

ranges between 0 and 1, where 0 denotes no similarity, and 1

denotes identical sets. The Sørensen coefficient is calculated as the

ratio of the cardinality of shared members between two sets and

the sum of the cardinalities of the same sets.

Sor(A,B)/
2 MA,Bj j

MAj jz MBj j ð1Þ

The Sørenson coefficient was applied to determine the likelihood

that proteins A and B directly interact. MA and MB are the sets of

all experiments that reported either protein A, B or both as present

in the lists of pulled prey proteins. MA,B are lists where both A and

B are present.

Pearson’s Correlation
Pearson’s Correlation coefficient (Pr) characterizes the linear

dependency of two variables. Here we used the Pearson’s

Correlation coefficient to quantify the correlation the SPC scores

of two proteins across all IP/MS experiments.

rA,B/
cov(Q½A�,Q½B�)

sQ½A�sQ½B�
ð2Þ

rA,B is the Pearson’s Correlation coefficient between proteins A

and B where Q denotes the reported ‘abundance’ which is SPC/

MW (MW, molecular weight). Qa and Qb are the column vectors

of Q at indices a and b. Cov is the covariance and sQa and sQb
are

the standard deviations of Qa and Qb.

Equation 3
Equation 3 (E3) was developed through an intuitive manual

symbolic search for functions that perform well, based on

benchmarking, using known protein-protein interactions. E3

calculates a ratio between the sum of the SPC scores in experiment

j (qajzqbj ) and the difference between the ranks of protein pairs

based on their SPC scores in the same experiment. The average

E3 scores across all experiments is the final score that is used to

quantify the likelihood that two prey proteins interact. The

Author Summary

In response to various extracellular stimuli, protein
complexes are transiently assembled within the nucleus
of cells to regulate gene transcription in a context
dependent manner. Here we analyzed data from 3,290
proteomics experiments that used as bait different
member proteins from regulatory complexes with different
antibodies. Such proteomics experiments attempt to
characterize complex membership for other proteins that
associate with bait proteins. However, the experiments are
noisy and aggregation of the data from many pull-down
experiments is computationally challenging. To this end
we developed and evaluated several equations that score
pair-wise interactions based on co-occurrence in different
but related pull-down experiments. We compared and
evaluated the scoring methods and combined them to
recover known, and discover new, complexes and protein-
protein interactions. We also applied the same equations
to predict domain-domain interactions that might underlie
the protein interactions and complex formation. As a proof
of concept, we experimentally validated one predicted
protein-protein interaction and one predicted domain-
domain interaction using different methods. Such rich
information about binary interactions between proteins
and domains should advance our knowledge of transcrip-
tional regulation by CoRegs in normal and diseased human
cells.

PPI and DDI from HT-IP/MS CorRegs Proteomics
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rationale behind the E3 equation is to reward pairs of proteins that

have similar SPC scores and similar ranks across all experiments,

rewarding pairs of proteins with high SPC scores that appear in

the same complexes.

E3(A,B)/
XN

e~1

Qe½A�zQe½B�
Ranke½A�{Ranke½B�j j ð3Þ

AB Correlation
The AB correlation was also developed through an intuitive

manual symbolic search for functions that perform well based on

benchmarking using known protein-protein interactions. The AB

correlation computes the mean of the product of SPC scores

normalized by dividing by the sum of mean SPC scores across all

experiments.

AB/
Q½A�:Q½B�

Q½A�zQ½B�
ð4Þ

The AB method also rewards pairs of proteins that have higher

SPC scores in the same subset of experiments.

PPIs from literature for validation
To evaluate the predicted prey-prey protein interactions using

the four equations, we used an updated version of the human

literature-based protein-protein interactome we developed for the

program Genes2Networks [31]. The PPIs are from 12 databases:

HPRD [29], MINT [32], DIP [33], MIPS [34], PDZBase [35],

PPID [36], BIND [37], Reactome [38], BioGRID [39], SNAVI

[40], Stelzl et al. [41], and Vidal and co-workers [42]. These

databases contain direct physical interactions for mouse, rat, and

human proteins containing 11,438 proteins connected through

84,047 interactions extracted manually from publications. We

converted all IDs to human IDs using homologene (http://www.

ncbi.nlm.nih.gov/homologene).

Domain-domain interactions from the literature for
validation

To identify domains for proteins, we used the Pfam domain

database release 24.0. The file ‘Pfam-A.full.gz’ was downloaded from:

ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam24.0/

on November 1st 2010.

Domain-domain interactions (DDI) were obtained from the

Domine database [43]. The Domine database contains 26,219

domain-domain interactions. Among these domain-domain inter-

actions, 6,634 were inferred from the protein data bank (PDB) and

21,620 were computationally predicted by one or more of 13

prediction methods. In order to score domain-domain interac-

tions, we developed a prediction vector vU
i containing a combined

score for all predicted PPIs that contain domain-pairs at each side

of a scored PPI. We assigned the score of the predicted PPI to the

DDI vU
i (j) score.

Western Blots and IPs to validate the interaction between
STRN and CTTNBP2NL

Antibodies for STRN, also called Striatin, are polyclonal rabbit,

and were purchased from Millipore Corp. Antibodies for

CTTNBP2NL were purchased from GeneTex. MCF-7 cells were

lysed in immunopreciptation buffer containing Hepes (50 mM,

pH 7.4), NaCl (150 mM), EDTA (1 mM), Tween-20 (0.1%),

glycerol (10%) and protease inhibitors. The lysates were pre-

cleared in the presence of rabbit IgG and protein A beads. The

input sample was collected after pre-clearing. Samples were

rotated overnight with IgG or Striatin antibody and subsequently

incubated for two hours with Protein-A beads. The washed

protein-containing beads were denatured and analyzed by

Western blot.

Molecular dynamics simulations to validate interactions
between the HEAT and PKinase domains of PPP2R1A and
STK25

The MolSoft ICM software was used to perform the domain-

domain docking simulation. ICM uses a two-step method: pseudo-

Brownian rigid-body docking followed by biased probability

Monte Carlo minimization of the ligand side-chains, to sample

conformational space in order to identify the global energy

minimum for a given interaction [44]. For this specific simulation,

the protein PPP2R1A (PDB ID: 1B3U), the receptor, was kept

rigid, while conformations of the ligand STK25 (PDB ID: 2XIK)

were sampled around the receptor and corresponding docking

scores were retrieved. Domains were then examined for

interactions based on these scores.

Results

We analyzed the experimental data from 3,290 IP-MS

experiments targeting 1,083 antigens (bait proteins) using 1,796

different antibodies. These experiments detected 11,485 non-

redundant proteins (Dataset S1). Some of the baits were pulled-

down with several different antibodies. Some of the experiments

with the same baits and antibodies were repeated several times but

conducted under different conditions, i.e., stimulated/un-stimu-

lated cells, or different cell types. Complexes are mostly isolated

from nuclear fractions but some experiments use cytosolic

fractions. Summary of the experimental conditions, cell types,

antibodies and baits used, counts of normalized peptides identified

in each experiment per protein, and size of the lists of proteins

identified in each experiment can be directly obtained from the

primary publication provided as reference [19].

IP-MS proteomics profiling have several known experimental

challenges that need to be considered when applying functional

global analyses on such data. First, it is well established that the

proteins identified in such experiments are enriched for highly

abundant and ‘‘sticky’’ proteins. This results in numerous proteins

appearing frequently in almost all pull-downs regardless of the cell

type, cellular fraction or experimental conditions. To address this

we used a list of ‘‘non-specific’’ proteins to filter protein

identifications that appear frequently in many pull-downs (Dataset

S1). For all further analyses we removed these proteins from the

results. Such a ‘‘non-specific’’ protein list can be useful as a

guideline for filtering other IP-MS proteomics data applied to

human cells. However, it should be noted that the concept of

filtering IP-MS proteomics data based on a ‘‘non-specific’’ list is

only meant as a guide. The sticky non-relevant proteins may play

an important biological role that would be missed by removing

them. In general, proteins that appear in the list are enriched in

heat shock, ribosomal, and heterogeneous nuclear ribonucleopro-

teins (hnRNPs). Also, the majority of proteins on the non-specific

list were selected based on the purifications from nuclear extracts,

so some abundant cytosolic proteins may be over represented in

the protein-protein and domain-domain interaction predictions

since these may not have been removed. In order to integrate and

visualize the results from the 3,290 IP-MS experiments, we first

used the Jaccard Distance (JD) to construct a CoRegs complex

PPI and DDI from HT-IP/MS CorRegs Proteomics
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similarity graph were nodes represent protein lists from each

experiment and links represent overlap between experiments (Fig.

S1). Nodes and links are preserved in the network if the similarity

is greater than the Jaccard distance of 0.7. This retained 491

experiments and 2233 links between them, which are a small

portion of all possible experiments and their similarities (Fig. S2A).

On average, pull-down experiments reported the identification of

,30–200 proteins but the distribution has a heavy tail with few

experiments identifying over 1000 proteins (Fig. S2B).

Our aim in this study is to assign confidence scores to binary

prey-prey protein-protein and domain-domain interactions by

integrating information from the 3,290 IP-MS experiments. The

rationale for this approach is that the experiments, reporting lists

of ,30–200 proteins for each pull-down, taken together, provide

enough information to reconstruct high-fidelity, small-sized

complexes and potentially enough to recover direct physical

interactions between pairs of proteins and domains. We reasoned

that if we use all the information across all experiments to score

each pair of proteins for potential direct interaction, we will be

able to identify novel associations in addition to recovering known

interactions better than by chance. In contrast with most prior

methods that focused on scoring bait-prey interactions, our

equations predict interactions between prey proteins that com-

monly reappear together in different pull-downs. Although the

data collected for this study was aimed at the recovery of

interactions between the intended antigens (baits) and other

proteins, the majority of primary antibodies cross-react with

multiple secondary antigens and those antigens interact with other

proteins. This complicates bait-prey scoring of HT-IP/MS data.

Yet, logically, if two proteins reappear together at the top of lists in

many different pull-downs, we can guess that they may physically

interact regardless of which baits were used to pull them down,

making it possible to predict likely binary interactions by utilizing

the spectral counts, not just co-occurrence. To encode such logic

into mathematical functions we devised four scoring schemes, each

attempting to address the problem in a slightly different way. To

evaluate the performance of the four scoring schemes we used

known PPIs we consolidated from online databases [31]. The

overall schema for this approach is depicted in Fig. 1.

To compare the performance of the different scoring methods

we visualized the results as either receiver operator curve (ROC)

(Fig. S3), random walks (Fig. S4), or a sliding window (Fig. S5).

Visualization of overlap between a ranked list and a gene set using

a random walk was borrowed from the popular Gene-Set

Enrichment Analysis method [45]. The three equations AB, E3,

and Pr can be combined with the Sørenson coefficient to slightly

improve the predictions by the AB and E3 equations, and

significantly improve the predictions made with the Pr equation.

AB and E3 perform best when combined with the Sørenson

coefficient because these equations take into account the

quantitative levels of the peptides, rewarding interactions that

appear on top of the same pull-downs and penalizing potential

interactions where the two proteins are not present in the same

pull-down, or when one protein appears at the top and the other at

the bottom. The different methods recover different sets of

interactions and in some cases complement each other, suggesting

perhaps that a combined weighted score may provide better results

than using a single equation (Fig. S6, Dataset S2).

Next, we used ball-and-stick diagrams to visualize the results

across all experiments. We first visualized all overlapping

interactions listed in the top 10% of predicted protein-protein

interactions by each method (AB, E3 and Pr combined with Sor).

This resulted in a network made of 2,509 proteins (nodes) and

28,886 interactions (edges) (Fig. 2). Using Cytoscape’s organic

visualization algorithm, the hubs of this network self-organize into

an interesting hierarchical structure that may reflect their complex

formation relationship. This network provides a global view of the

CoRegs interactome, allowing zoom-in to view the identity of high

confidence predicted protein-protein interactions and the com-

plexes that these interactions form. To accomplish this zoom-in

view, we increased the threshold to only include interactions from

the top 1% of predicted interactions by all three scoring methods

and include only three-node cliques. Three-node cliques are

triangles in the network topology where three proteins are

connected to each other with a maximum of three links. The

resultant network contains 543 proteins and 1,893 interactions

organized into 63 tightly connected protein complexes containing

3 to 25 proteins (Fig. 3). Many of the interactions and complexes

that emerged are already known from low-throughput protein-

protein interactions studies. However, some of the complexes

within this network and many of the predicted protein interactions

are novel. As a proof of concept, we focused on one predicted

complex where most of the members of the complex were

exclusively prey proteins in all experiments, and most interactions

in the complex were not previously known (Fig. 4A). The complex

contains ten densely connected proteins with the protein STRN in

the center, predicted to interact with all other nine members.

STRN, STRN3 and STRN4 are scaffolding proteins with a

calmodulin binding domain. Interestingly CTTNBP2NL has been

previously reported with STRN and STRN3 in another IP/MS

study [46]. To experimentally validate one of the interactions

within this complex we used IP and western blotting to demon-

strate a direct interaction between STRN and CTTNBP2NL

which is another member of the predicted complex (Fig. 4B). We

chose this interaction based on antibody availability. Our

experiment clearly shows that the two proteins interact. Such a

demonstration of physical interaction experimentally does not

prove that our prediction method works well, but it demonstrates

how predicted interactions can be further validated experimen-

tally. To prove that the predictions are of high quality, many such

experiments need to be performed with appropriate controls to

show statistically that the combined equations can predict, with

high fidelity, physical interactions.

Before analyzing all of the 3,290 IP-MS experiments published

by Malovannaya et al [19], we had access to a subset of the data

before it was published. Therefore, we developed our analysis

methods on a subset of 114 IP-MS experiments that are a fraction

of the entire set of the 3,290 IP-MS experiments. In order to

integrate and visualize the results from these 114 IP-MS

experiments, similarly to the network shown in Fig. S1, we

created the Jaccard Distance (JD) CoRegs complex similarity

graph (Fig. S7). Most of these initial 114 experiments used

Estrogen Receptor a (ESR1) and nuclear receptor co-activator 3

(NCOA3), also called SRC3, as baits in different cellular

conditions. Both proteins play an important role in breast cancer,

where SRC3 serves as the main co-activator of estradiol-

dependent ESR1 [47,48]. The experiments that used ESR1 and

NCOA3 as baits resulted in similar protein lists (clusters in the

subnetwork in Fig. S7) compared with the other pull-downs. Using

the same prediction combined scores with the three equations,

with lower thresholds, we identified five distinct high confidence

complexes we named: SMARC, CSTF, RCOR, MBD, and

SIN3A (Fig. S8). These five complexes have been previously

reported in the Corum database [49] and some have been

functionally characterized (Fig. S9). Specifically, the SMARC

complex highly overlaps with complex IDs 238, 714, 803, and 806

in Corum, a database of reported protein complexes [49]. The

CSTF complex is listed as complex number 1147 in Corum,

PPI and DDI from HT-IP/MS CorRegs Proteomics
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RCOR is listed as 626, and MBD and SIN3A have associated IDs

with highly overlapping entries for complexes in Corum. The

SMARC and CSTF complexes were recovered mostly from ESR1

pull-down experiments, while the other three complexes are

formed by combinations of many other types of baits. Notably, the

SMARC and CSTF complexes are nearly mutually exclusive to

two different antibodies targeting ESR1, and are recovered in the

control experiment from HeLa cells that do not express ESR1.

Thus, one antibody is likely cross-reacting with a member of the

SMARC complex, whereas the other antibody cross-reacts with a

member of the CSTF complex (Fig. S10). This result highlights the

importance of protein complex reconstruction from HT-IP/MS

Figure 1. Workflow of the analysis of aggregated IP-MS experiments.
doi:10.1371/journal.pcbi.1002319.g001
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based on prey-prey co-occurrence alone, independently of the

intended baits.

Since PPIs are often the result of interactions between the

structural domains of the interacting proteins, and since we know

most of those domains for all pulled prey proteins based on their

amino-acid sequences, we can use the scores for PPIs to also score

and rank domain-domain interactions (DDIs). The scoring of

domain interactions is slightly more complex since most proteins

have several different domains and the domains can appear more

than once within the same protein. To resolve this we used the

score for PPIs containing domains between all possible domain

pairs from each side of the PPI and normalized the score across all

the domains (see methods). The aggregated score for all DDIs was

accumulated across and within all 3,290 IP-MS experiments. The

idea of predicting DDIs from PPIs is not new [50–52]. DDIs can

also be predicted using structural biology methods or by

evolutionary conservation of sequences across organisms [53].

To evaluate which PPI scoring method works best to predict

DDIs, we compared the predicted scores for DDIs with reported

DDIs from the Domine database. The Domine database contains

both structurally observed and computationally predicted DDIs

[43]. ROC curves and random-walk plots were used to evaluate

DDI predictions, similarly to how we evaluated the PPI prediction

methods (Fig. S11 and S12, Dataset S3).

The plots show that we can reliably recover known and predicted

DDIs. In addition to the four equations used to score PPIs, we

introduced another scoring scheme, l, for scoring DDIs. l is an

index that counts the number of times two predicted interacting

prey proteins have a domain on each side of the PPI. Such an index

improves DDI predictions. In addition to the type of analysis we did

for PPIs, we also attempted to further combine different prediction

methods to optimize DDI predictions. Finally we visualize our

predicted DDIs with known DDIs as a network diagram to visually

explore interactions among all domains (Fig. S13) and within the

STRN centered complex identified by the PPIs predictions (Fig. 5A).

To further validate one of the predicted DDIs we pursued a

computational structural biology approach. We attempted to dock

the PKinase domain of STK25 to the HEAT domain of PPP2R1A.

We chose these two proteins because they had a crystal structure in

PDB. Although the DDI is already listed in Domine, the prediction

of this DDI interaction is based on sequence and homology. Hence

there is no direct evidence of such interaction between these two

Figure 2. Network of predicted interactions comprised of 2509 proteins (nodes) and 28,886 interactions (edges) ranked by all three
methods in the top 10% of predicted interactions. Yellow nodes are prey only and blue nodes were used as bait at least once. Edges are
colored according to the following criteria: Blue edges are predicted interactions that do not have reported direct or indirect interaction in the
literature; Green edges are predicted interactions that have one or more reported indirect interaction (one intermediate); Red edges are recalled
direct interactions.
doi:10.1371/journal.pcbi.1002319.g002

PPI and DDI from HT-IP/MS CorRegs Proteomics
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Figure 3. A network of predicted protein complexes containing 543 proteins and 1,893 interactions. Complexes are assembled by
selecting and visualizing cliques formed by predicted protein-protein interactions ranked in the top 1% by all three methods. The resulting network
composed of 63 protein complexes containing 3 to 25 proteins. Yellow nodes are prey and blue nodes are bait proteins. Edges are colored according
by the following criteria: White edges are predicted interactions that do not have reported direct or indirect interaction in the literature; Green edges
are predicted interactions that have one or more reported indirect interaction; Red edges are recalled direct interactions.
doi:10.1371/journal.pcbi.1002319.g003

Figure 4. Confirmation of a binding interaction within the STRN complex. (A) Selected complex from Fig. 3 was further analyzed. (B) MCF-7
cells were lysed and STRN was immunoprecipitated. The species-matched immunoglobulin (rabbit IgG) was added to lysates in place of antibody as a
negative control condition. The resulting immunoprecipitates were analyzed by Western blot for the presence of CTTNBP2NL (top panel). The blot
was stripped and re-probed for STRN (lower panel).
doi:10.1371/journal.pcbi.1002319.g004
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proteins and their domains. Using the Molsoft ICM software we

obtained a docking score of 246.75 kcal/mol. This score is

considered high and as such confirms the interaction. By examining

the confirmation of this interaction it appears that the Pkinase

domain of the STK25 protein binds to the HEAT domain of

PPP21RA. The energy gap of approximately 2 kcal/mol (ICM

score units) between the best obtained and next consecutive docking

score clearly suggests strong recognition of the HEAT domain by

the Pkinase domain (Fig. 5B–D).

Discussion

In this study we combined results from 3,290 experiments that

identified nuclear protein complexes in human cells using IP-MS.

We implemented and evaluated four different equations assessing

their ability to predict direct physical PPIs from the aggregated

proteomics data using known PPIs from the literature. The highest

scoring predictions were visualized as networks with many densely

connected clusters that are likely made of real protein complexes.

The prediction scores for potential interactions could be

considered as surrogates to real affinity constants. However, since

we do not know the exact quantities of proteins, it is not possible to

compute exact dissociation constants. Such binding constants can

be useful for dynamical simulations where we could stochastically

trace the transient dynamics of CoRegs complex formation in-

silico. Scoring PPIs by only using the prey measurements may

become more robust as more IP-MS experiments are published.

However, careful attention should be given to weighting the

repetitiveness of experiments so interactions from similar pull-

downs, if repeated, are not mistakenly given higher scores.

Regardless of possible limitations, the ability to recover direct

PPIs based on such a massive dataset is an important step toward

utilizing HT/IP-MS datasets for reconstructing networks and

generating hypotheses. In addition, we show that the equations

can be extended to predict interactions between structural

domains. We also demonstrated two ways to further validate

predicted PPIs and DDIs, using experimental and computational

approaches. In summary, our analyses explored new methodol-

ogies for scoring PPIs and DDIs using data from related IP-MS

experiments, providing many hypotheses about mammalian

Figure 5. Validation of a domain-domain interaction. (A) Network showing the predicted DDIs for the predicted STRN protein complex. The
network was constructed by importing domains for each protein from the PFAM database, associating protein domains to each of the proteins in the
STRN complex, and using top predicted DDIs to connect the domains. In the network yellow octagons are domains and circles are proteins. Domains
are connected to proteins using red, solid-black and dashed-blue edges. Black edges signify true positives and dashed-blue predicted DDIs. In the
complex, PPIs that did not have a matching predicted DDI were eliminated. (B) Validation of a DDI interaction using molecular docking. The lowest
energy conformation predicted by the docking simulations of STK25 to PPP2R1A. The interaction of the Pkinase domain with the HEAT domain is
shown. (C) Binding energy landscape of all generated docking scores between STK25 and PPP2R1A. (D) Histogram of generated docking scores.
doi:10.1371/journal.pcbi.1002319.g005
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CoRegs complexes formation, and allowing users to explore novel

complexes, PPIs and DDIs online at http://maayanlab.net/HT-

IP-MS-2-PPI-DDI/. This resource can help us advance the

catalogue of transcriptional regulation by CoRegs in normal and

diseased mammalian cells.

Supporting Information

Dataset S1 Information on each IP/MS experiment, quantity of

proteins purified in each IP/MS experiment, size of protein lists

purified in each IP/MS experiment, list of sticky proteins.

(XLSX)

Dataset S2 Scores for top 1% predicted PPIs by each method.

(XLS)

Dataset S3 Scores for top 1% predicted DDIs by each method.

(XLSX)

Figure S1 Each node in the network represents a list of proteins

identified in one of the 3,290 IP-MS experiments color coded

according to the bait protein targeted by an antibody in a single

experiment. An edge represents the similarity between two lists

using the Jaccard distance. A node is preserved if it has at least one

edge with Jaccard distance ,0.7. The network contains 491 nodes

and 2233 edges. The diameter of a node represents the size of a list

from a specific experiment.

(EPS)

Figure S2 (A) Histogram of Jaccard distances between pairs of

3,290 experiments. (B) Histogram of the size of pull-down lists

from all IP-MS experiments.

(EPS)

Figure S3 (A) Receiver operator curve (ROC) of the recovery of

known interactions using the different scoring methods. Recall rate

of known PPIs (y-axis) is computed and displayed as a ratio

between ranked predicted PPIs by each scoring method and

known PPIs. (B) Area under the curve (AUC) computed for each

method.

(EPS)

Figure S4 Running-sum of the top 1,563,309 predicted PPIs,

predicted with the equations: (A) E3, (B) AB, and (C) Pr. The

running-sum increases by !((u2t)/t) units if it encounters a known

PPI, and decreases by !(t/(u2t)) units otherwise. The magenta line

in each chart shows the walk when incorporating the Sørensen

similarity. u and t are counts of predicted and known interactions

in the current dataset respectively. The running-sum for a random

sample of scrambled ranks of the same set of interactions along

with the mean of running-sums of 1000 random samples are also

included in each chart.

(EPS)

Figure S5 Moving average of a window of 2,000 ranks predicted

PPIs visualized as a line graph. Sørensen similarity between pairs

of proteins combined with other scoring schemas. The inset in

each chart shows the recall for PPIs with evidence of indirect

interaction, i.e., one intermediate. (A) E3, (B) AB, and (C) Pr.

(EPS)

Figure S6 (A) Venn diagram showing the overlaps between the

three different scoring methods for the top 10% of predicted

interactions. (B) Overlaps of known PPIs from predicted

interactions represented in (Fig. 7A).

(EPS)

Figure S7 Similarity graph created from a subset of 114 IP-MS

experiments. Nodes represent baits and links represent similarity

using the Jaccard index. Nodes are colored based on the bait. Most

experiments used Estrogen Receptor a (ESR1) and nuclear

receptor co-activator 3 (NCOA3), also called SRC3, as baits

under different conditions.

(EPS)

Figure S8 (A) Hierarchical clustering of the quantities of

identified proteins from the subset of 114 experiments. Only

proteins that were present in three or more IP experiments were

included. (B) Network of predicted complexes. Complexes are

formed by visualizing predicted protein-protein associations

ranked in the top 1000 by all three scoring schemes. All nodes

with connectivity of one were removed. Edges are colored

according by the following criteria: Light blue are predicted

interactions that do not have reported direct or indirect interaction

in the literature; Green are predicted interactions that have one or

more reported indirect interaction; Red edges are recalled direct

interactions. Dotted gray edges are direct interactions which were

not ranked in the selected range by the methods but are present in

the literature. Nodes with a pink circle around them represent

members of previously characterized complexes from the Corum

database; Blue nodes represent proteins that were also used as

baits it at least one of the experiments.

(EPS)

Figure S9 Heatmap of the percent overlap between the five

complexes predicted from the subset of 114 experiments (columns)

and complexes from the Curom database (rows).

(EPS)

Figure S10 Left: Hierarchical clustering of the quantities of

identified proteins from the subset of 114 experiments (same as

Fig. 12A). Right: Zooming into two clusters to visualize the

segregation of two complexes pulled by two different antibodies

targeting the same bait.

(EPS)

Figure S11 (A) Recall rate for previously reported DDIs from

DOMINE (y-axis) as a function of the ratio of predicted DDIs

ranked by one or a combination of the scoring schemes. (B) Area

under the curve (AUC) for the ,728 K ranked DDIs (left y-axis,

dark bars) and AUC for the top 7 K predicted DDIs (right y-axis,

light bars).

(EPS)

Figure S12 A comparative chart of running-sums, as described

for Fig. 5, for the 728,632 predicted domain-domain interactions

sorted based on the scores that have been calculated using three

different methods: E3, AB, and Pearson’s computed individually

and combined with the Sørensen Similarity and l; the chart also

shows the running-sum for randomly shuffled ranks of the same set

of predicted DDIs.

(EPS)

Figure S13 Network representation of the top 10% of predicted

DDIs where nodes having 50 or more predicted interactions were

removed for visualization clarity. The network contains 357

domains (octagons) and 773 edges (red and blue lines). Node sizes

are proportional to their connectivity. Predicted and recalled DDIs

are colored in light blue and red respectively.

(EPS)
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