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Abstract

For samples of admixed individuals, it is possible to test for both ancestry effects via admixture mapping and genotype
effects via association mapping. Here, we describe a joint test called BMIX that combines admixture and association
statistics at single markers. We first perform high-density admixture mapping using local ancestry. We then perform
association mapping using stratified regression, wherein for each marker genotypes are stratified by local ancestry. In both
stages, we use generalized linear models, providing the advantage that the joint test can be used with any phenotype
distribution with an appropriate link function. To define the alternative densities for admixture mapping and association
mapping, we describe a method based on autocorrelation to empirically estimate the testing burdens of admixture
mapping and association mapping. We then describe a joint test that uses the posterior probabilities from admixture
mapping as prior probabilities for association mapping, capitalizing on the reduced testing burden of admixture mapping
relative to association mapping. By simulation, we show that BMIX is potentially orders-of-magnitude more powerful than
the MIX score, which is currently the most powerful frequentist joint test. We illustrate the gain in power through analysis of
fasting plasma glucose among 922 unrelated, non-diabetic, admixed African Americans from the Howard University Family
Study. We detected loci at 1q24 and 6q26 as genome-wide significant via admixture mapping; both loci have been
independently reported from linkage analysis. Using the association data, we resolved the 1q24 signal into two regions. One
region, upstream of the gene FAM78B, contains three binding sites for the transcription factor PPARG and two binding sites
for HNF1A, both previously implicated in the pathology of type 2 diabetes. The fact that both loci showed ancestry effects
may provide novel insight into the genetic architecture of fasting plasma glucose in individuals of African ancestry.
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Introduction

Genome-wide association studies are conventionally performed

with an implicit assumption that the prior probability of

association is uniform across loci [1]. This assumption can be

useful in discovery or hypothesis-generating analysis because the

entire genome is scanned rather than limiting the scan to regions

selected according to preconceptions of where disease susceptibil-

ity loci or trait loci ought to be. However, for admixed samples,

this assumption means that any prior evidence from admixture

mapping of ancestry effects is completely ignored. Thus, the main

motivation of this study is to develop an approach that integrates

heterogeneous data types that operate at different scales, i.e.,

ancestry and genotype effects, in order to maximize statistical

power in mapping disease susceptibility loci or trait loci in

admixed samples.

Three approaches to combine admixture mapping and

association mapping have been described. Tang et al. [2] derived

a joint test for case-control data under a family-based design based

on the transmission-disequilibrium test. Lettre et al. [3] described a

combined test for samples of unrelated individuals. They

performed association mapping by linear regression, modeling

local ancestry as an additive covariate [3]. They estimated

separate x2 summary statistics for association and local ancestry

effects, summed the two statistics, and converted the sum into a

combined p-value, assuming that the sum was x2-distributed with

two degrees of freedom [3]. Two limitations of this approach are

that local ancestry and genotype are not independent and the test

costs a second degree of freedom. Pasaniuc et al. [4] described a

combined test that does not suffer from these two limitations.

Notably, none of the three tests takes advantage of the reduced

testing burden of admixture mapping relative to association

mapping. Here, we describe a joint test called BMIX for

admixture mapping and association mapping in unrelated

individuals that addresses all three issues.

We illustrate application of the joint test by analyzing fasting

plasma glucose among 922 non-diabetic, admixed African

Americans from the Howard University Family Study (HUFS)

conducted in the Washington, D.C metropolitan area. The

prevalence of type 2 diabetes (diagnosed mainly on the basis of
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elevated fasting plasma glucose levels) among adults in the USA is

currently 11.3%, ranging from 10.2% among European Ameri-

cans to 18.7% among African Americans [5]. It is unknown how

much genetics contribute to this difference in prevalence. If

genetics does contribute, then admixture mapping is an appro-

priate and efficient approach to use to identify relevant loci [6] and

association mapping can be used for fine-mapping.

Results

Characterization of Local Ancestry
We first describe the characterization of local ancestry for the

922 admixed African Americans using 797,831 autosomal SNPs.

The mean proportion of African ancestry was 0.797 (95%

confidence interval 0.770 to 0.819, Supplementary Figure S1).

The mean number of ancestry switches per person was 186.0,

leading to an estimated 8.1 generations since admixture began [7].

The Testing Burdens of Admixture Mapping and
Association Mapping

To empirically estimate the testing burdens of admixture

mapping and association mapping, we fit autoregressive models

and estimated the effective number of tests based on autocorre-

lation. For example, for the first individual in our sample, there

were five ancestry switches along chromosome 22 (Figure 1) and

the effective number of tests was 5.5, based on fitting an AR(1)

model (see The Bayesian Model subsection of Materials and
Methods for the definition of this model). Summed across

autosomes for each individual and averaged across individuals, the

effective number of tests for admixture mapping was 368.8. Thus,

the genome-wide significance level for admixture mapping was

a~
0:05

368:8
~1:36|10{4 and the noncentrality parameter for the

alternative density for admixture mapping was 21.7. Similarly, the

average, genome-wide effective number of tests for association

mapping was 345,450.3. Thus, the genome-wide significance level

for association mapping was a~
0:05

345450:3
~1:45|10{7 and the

noncentrality parameter for the alternative density for association

mapping was 37.2. We stress that both testing burden estimates

are sample-based (i.e., based only on observed markers rather than

all possible markers) and account for correlation for all markers

chromosome-wide.

The Necessity of Controlling for both Local Ancestry and
Global Ancestry

Adjusting for global ancestry will not completely control

confounding due to local ancestry in association mapping [8,9].

Wang et al. [10] concluded that adjusting for local ancestry is sufficient

to control confounding due to either local or global ancestry.

However, their conclusion was based on conflating two definitions of

local ancestry. The conventional definition of local ancestry is the

number of copies of chromosomes inherited from a parental

population at a given marker. In the Appendix, Wang et al. [10]

unconventionally defined local ancestry as either ‘‘local ancestry at

one locus (referred to as stratification due to local ancestry difference)

or the combinations and possibly interactions of ancestries at multiple

loci (referred to as stratification due to global ancestry difference)’’. An

indicator of ancestry defined in the latter way is not equivalent to an

indicator of ancestry defined solely by local ancestry. By simulation,

we show that adjusting for global ancestry controls confounding due

to global ancestry whereas adjusting for local ancestry is insufficient to

control confounding due to global ancestry, evident by an inflated

type I error rate for association (Supplementary Table S1). Thus,

adjusting for local ancestry is necessary to control confounding due to

local ancestry and adjusting for global ancestry is necessary to control

confounding due to global ancestry.

Power Analysis
If the posterior probability of a local ancestry effect is smaller

than the prior probability of association in the absence of

performing admixture mapping, i.e.,
1

345450:3
~2:89|10{6,

then more compelling evidence of association is needed to achieve

genome-wide significance by our joint test. Conversely, if the

posterior probability of a local ancestry effect exceeds 2:89|10{6,

then less compelling evidence of association is needed to achieve

genome-wide significance by our joint test. To quantify such

behavior, we calculated the change in sample size corresponding

to different p-values from admixture mapping while maintaining

power and the genome-wide significance level for association. As

expected, a large p-value from admixture mapping implies that the

locus is less likely to affect the phenotype, thereby increasing the

sample size necessary for association to reach genome-wide

significance (Figure 2). The complete absence of local ancestry

Figure 1. Local ancestry for an admixed African American
estimated using LAMPANC version 2.3 [28]. For this individual, the
chromosome is a mosaic of six segments, reflecting five ancestry
switches.
doi:10.1371/journal.pcbi.1002325.g001

Author Summary

Most genome-wide association studies performed to date
have focused on individuals with European ancestry.
Admixed African Americans tend to have disproportion-
ately higher risk for many common, complex diseases.
Disease or trait mapping in admixed individuals can
benefit from joint analysis of ancestry and genotype
effects. We developed a joint test that is more powerful
than either admixture mapping of ancestry effects or
association mapping of genotype effects performed
separately. Our joint test fully capitalizes on the reduced
testing burden of admixture mapping relative to associ-
ation mapping. The test is based on generalized linear
models and can be performed using standard statistical
software. We illustrate the increased power of the joint test
by detecting two loci for fasting plasma glucose in a
sample of unrelated African American individuals, neither
of which loci was detected as significant by traditional
association analysis.

Joint Ancestry and Association Testing
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effects costs the equivalent of a 26.5% increase in the association

sample size. Conversely, a small p-value from admixture mapping

implies that the locus is more likely to affect the phenotype,

thereby decreasing the sample size necessary for association to

reach genome-wide significance (Figure 2). The break-even point

occurs at admixture mapping p-values of 0.31, i.e., all admixture

mapping p-values,0.31 increase the power of subsequent

association mapping in our joint test. This break-even point is

larger than the point-wise significance level of 0.05, indicating that

weak ancestry effects or weakly differentiated markers are capable

of improving the power of association mapping. A genome-wide

significant p-value from admixture mapping equates to a 63.7%

reduction in association sample size. For our data, the average

prior probability for association mapping conditional on local

ancestry was 6:86|10{4, more than two orders of magnitude

larger than the prior probability for association mapping in the

absence of performing admixture mapping, indicating a substan-

tial gain in average power.

We also compared the average power of our joint test to the

MIX score [4]. The MIX score is based on the ancestry odds ratio

defined as
pE,0Rz1{pE,0

pA,0Rz1{pA,0
, in which pE,0 and pA,0 are the allele

frequencies among controls in the two parental populations and R

is the allelic odds ratio [4]. We simulated 10,000 independent data

sets consisting of one marker for 1,500 controls and 1,500 cases,

assigning biologically realistic local ancestry and genotype effect

sizes and marginalizing over local ancestry and allele frequencies.

To mimic the size of chromosome 22, we set the testing burden of

admixture mapping to be 8.067 and the testing burden of

association mapping to be 6,039, as estimated from our real data.

Correspondingly, the significance level for MIX was set at
0:05

6039
~8:280|10{6. We first note that the MIX test is valid

[4], and that the false positive error rate of our joint test is not

different from that of MIX (p~0:666, Fisher’s exact test, Table 1),

indicating that the joint posterior probability of 0.5 is properly

calibrated with respect to the admixture mapping and association

mapping type I and type II error rates. Our joint test was generally

one to two orders of magnitude more powerful than MIX

(Table 1). Notably, MIX is less powerful than our joint test when

the ancestry and genotype effects oppose each other (i.e., one effect

increases risk and the other effect decreases risk). Given that the

ratio of the testing burdens for association mapping to admixture

mapping for chromosome 22 is smaller than the ratio genome-

wide, the gain in power demonstrated by these simulations

underestimates the gain in power of BMIX over MIX at the

genome-wide scale.

High-Density Admixture Mapping for Fasting Plasma
Glucose

We performed admixture mapping for fasting plasma glucose by

linearly regressing fasting plasma glucose on local ancestry, adjusted

for age, global ancestry, and sex. We detected two genome-wide

significant loci (Figure 3), one at chromosome 1q24 (LOD~3:37)

and the other at chromosome 6q26 (LOD~3:12). The signal at the

1q24 locus consisted of 93 consecutive genome-wide significant

SNPs (posterior probabilities ranging from 0.637 to 0.711) at which

increased African ancestry correlated with increased fasting plasma

glucose. This locus explained 1.8% of the variance in fasting plasma

glucose. The signal at the 6q26 locus consisted of nine consecutive

genome-wide significant SNPs at which increased African ancestry

correlated with increased fasting plasma glucose. This locus

explained 1.7% of the variance in fasting plasma glucose.

Association Mapping for Fasting Plasma Glucose
We performed association mapping for fasting plasma glucose

by linearly regressing fasting plasma glucose on genotype stratified

by local ancestry, assuming an additive genotype model, adjusted

for age, global ancestry, and sex. The genomic control inflation

factor was 1.009 (Supplementary Figure S2). We used the

posterior probabilities from admixture mapping as the prior

probabilities for association mapping. For comparison, using a

uniform prior probability of
1

345450:3
~2:89|10{6, there were

no genome-wide significant findings (Figure 4A). In contrast, using

the joint test, we detected two genome-wide significant SNPs,

Figure 2. Potential gain in power in association testing using
prior admixture mapping evidence. The change in association
sample size as a function of p-values from admixture mapping was
calculated relative to the x2 statistic corresponding to genome-wide
significance under the uniform prior for association, given that the
posterior probability of admixture mapping equals the prior probability
of association.
doi:10.1371/journal.pcbi.1002325.g002

Table 1. Average power for our Bayesian joint test compared
to the MIX test for simulated case-control data in African
Americans.

Local Ancestry
Odds Ratio

Genotype
Odds Ratio BMIX MIX

1.000 1.000 0.0004 0.0002

1.200 1.000 0.0263 0.0004

1.000 1.200 0.0508 0.0289

1.200 1.200 0.1804 0.0670

1.200 0.833 0.1610 0.0220

1.500 1.000 0.7006 0.0070

1.000 1.500 0.2954 0.3588

1.500 1.500 0.8572 0.3777

1.500 0.667 0.8829 0.1850

Data sets consisted of 1,500 cases and 1,500 controls with the average
admixture proportion of 80% and population differentiation of FST ~0:12

mimicking empirical values for African Americans. Simulations mimicked
chromosome 22, such that the significance level was 6:198|10{3 for
admixture mapping and 8:280|10{6 for association mapping.
doi:10.1371/journal.pcbi.1002325.t001

Joint Ancestry and Association Testing
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rs7523538 and rs1932355, both at the 1q24 locus detected by

admixture mapping (Figure 4B and Supplementary Table S2).

To functionally annotate these two SNPs, we first identified the

intervals based on linkage disequilibrium surrounding these two

SNPs containing all SNPs with pairwise r2
§0:3. For the top SNP,

rs7523538, we identified a 248.6 kb interval from 166,110,586 bp

to 166,359,212 bp that lies upstream of the gene FAM78B. The

FAM78B protein has no known function. However, within the

promoter for FAM78B, three binding sites for the transcription

factor PPARG (from 166,140,317 bp to 166,140,340 bp; from

166,148,656 bp to 166,148,677 bp; and from 166,134,895 bp to

166,134,911 bp) and two binding sites for the transcription factor

HNF1A (from 166,153,088 bp to 166,153,103 bp and from

166,153,241 bp to 166,153,256 bp) have been identified (http://

www.sabiosciences.com and [11]). Both PPARG and HNF1A are

known susceptibility genes for type 2 diabetes [12]. For the second

SNP, rs1932355, we identified a 180.6 kb interval from

163,581,663 bp to 163,762,232 bp. This interval does not overlap

any known genes or promoters [11].

Discussion

We present a joint test of ancestry and association applicable to

mapping disease susceptibility loci or trait loci in admixed

individuals. Although we proceed through the calculations

sequentially by performing admixture mapping first followed by

association mapping, equivalence to a joint test can be seen by

recognizing that the joint probability of ancestry and association

effects equals the product of the probability of an ancestry effect

and the probability of association conditional on ancestry.

Conditional independence of association given ancestry is

necessary for validity of the joint test. For any given marker,

admixture mapping is based on the ‘‘between’’ component of local

ancestry strata and association mapping is based on the ‘‘within’’

component of local ancestry strata, so that even though both

admixture mapping and association mapping are fundamentally

based on observed genotypes the data are not used twice. Our

joint test is based on generalized linear models and so can be

performed with standard statistical software. The admixture

mapping step can also accommodate a case-only test [4].

Our joint test of ancestry and association are both genome-wide

at equivalent high marker density. Every marker in a sample is

tested by both admixture mapping and association mapping, i.e.,

every marker is tested for genotypic association regardless of the

significance of the admixture mapping. Consequently, there is no

‘‘winner’s curse’’ [13] in our procedure, because we do not test for

association conditional on significance from admixture mapping.

As another consequence, our joint test has power to detect loci

which do not achieve significance in admixture mapping if the

association signal is sufficiently strong. This is in direct contrast to

conditional two-stage approaches in which only a subset of

markers based on stage one analysis are carried forward to stage

two [14,15]. By design, such conditional approaches have zero

power to detect loci that are not selected for analysis in stage two.

Compared to previous approaches, our joint test has several

favorable characteristics. The approach of Deo et al. [16] is based

on sparse panels of ancestry informative markers, whereas high

density panels of random markers capture more of the information

content regarding ancestry [9]. Lettre et al. [3] perform association

mapping by linear regression, modeling local ancestry as an

additive covariate. However, this approach is not recommended

because local ancestry and genotype are correlated. We recom-

mend stratifying genotype by local ancestry because association

cannot be confounded by local ancestry within a homogeneous

stratum of local ancestry [9]. Perhaps most importantly, our

approach fully capitalizes on the reduced testing burden of

admixture mapping relative to association mapping while

generating a x2 test statistic with only one degree of freedom.

For example, using our approach, a p-value from admixture

mapping of 1:80|10{4 combined with a p-value from association

mapping of 1:56|10{3 achieves a posterior probability of 0.5.

However, using the approach of Lettre et al. [3], the posterior

probability would be 0.105. The MIX score [4] also fails to

capitalize on the reduced testing burden of admixture mapping,

resulting in a combined test not as powerful as our joint test. The

main limitation of BMIX is that if the local ancestry effect is so

strong that the posterior probability after admixture mapping is 1,

then the posterior probability will not be updateable with the

association data.

By sequentially updating the probability that a locus is a trait

locus based on ancestry with the probability that the locus is a trait

locus based on genotypic association conditional on ancestry, our

procedure estimates the joint probability that a locus has ancestry

and association effects. At chromosome 1q24, association mapping

resolved the admixture signal into two regions, i.e., association

Figure 3. Bayesian Manhattan plot for high-density admixture mapping. The y-axis shows the posterior probability that a locus affects the
phenotype. The red line indicates the genome-wide significance level.
doi:10.1371/journal.pcbi.1002325.g003

Joint Ancestry and Association Testing

PLoS Computational Biology | www.ploscompbiol.org 4 December 2011 | Volume 7 | Issue 12 | e1002325



mapping effectively fine-mapped the admixture signal. Chromo-

some 1q21–q25 is one of the three most often replicated loci from

genome-wide linkage analysis for type 2 diabetes, having been

replicated in samples of European ancestry (Amish, French, UK,

Utah), East Asian ancestry (Chinese, Hong Kong), and Native

American ancestry (Pima Indians) [17]. However, candidate gene

analyses and dense genotyping have failed to identify common

causal variants explaining linkage [17,18]. Our index SNP

rs7523538 is not located in a known functional element but may

be in linkage disequilibrium with genetic variation altering

transcription factor binding sites, thereby providing a new lead

to investigate in terms of locating functional variation as well as

determining the functional mechanism. At chromosome 6q26,

association mapping eliminated the significance of the admixture

signal. One possible interpretation is that the original admixture

signal was a false positive finding and the association data

appropriately decreased the posterior probability that the 6q26

locus is a trait locus. Alternatively, if the original admixture signal

is truly positive, then the association data may be indicating that

there is at least one untyped and untagged marker within the

interval driving the admixture signal. Given that chromosome

6q26 has been previously linked to insulin sensitivity in a sample of

obese African Americans [19], the latter explanation seems more

likely.

In summary, we describe a joint test of ancestry and association

for mapping disease susceptibility loci and trait loci in admixed

individuals. Key properties of our test are that it maintains

conditional independence of genotype and local ancestry and that

it fully capitalizes on the reduced testing burden of admixture

mapping relative to association mapping, making it more powerful

Figure 4. Bayesian Manhattan plot for association. The y-axes indicate the posterior probability that a locus affects the phenotype. The red
lines indicate the genome-wide significance level. (A) Association testing under the uniform prior probability. (B) Joint ancestry and association
testing.
doi:10.1371/journal.pcbi.1002325.g004
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than all existing joint tests. Upon application to fasting plasma

glucose in African Americans, we identified two loci at genome-

wide significance levels, whereas conventional association mapping

yielded no new discoveries. Both loci have been identified

previously by genome-wide linkage analysis, providing evidence

of replication and indicating that linkage analysis, admixture

mapping, and association mapping are all converging on the same

loci. By taking advantage of fine-mapping afforded by association

mapping and background linkage disequilibrium, we resolved one

locus into two separate intervals. One of these intervals contains a

promoter with multiple binding sites for transcription factors

previously implicated in type 2 diabetes. The fact that both loci

were discovered via admixture mapping directly implies that the

genetic architecture of fasting plasma glucose is different in

individuals of European ancestry vs. individuals of African

ancestry.

Materials and Methods

The Bayesian Model
First, we briefly review Bayes’ Theorem [20]. Let P :ð Þ represent

a probability and let P :j:ð Þ represent a conditional probability. For

a given locus, let H0 be the hypothesis that the locus does not affect

the phenotype and let H1 be the hypothesis that the locus does

affect the phenotype, subject to the constraint that

P H0ð ÞzP H1ð Þ~1. According to Bayes’ Theorem, conditional

on data D, the posterior probability that the locus affects the

phenotype is P H1jDð Þ~ P DjH1ð ÞP H1ð Þ
P DjH1ð ÞP H1ð ÞzP DjH0ð ÞP H0ð Þ. The

quantity
P DjH1ð Þ
P DjH0ð Þ is the marginal likelihood ratio, also known as

the Bayes factor, and indicates the strength of evidence for either

hypothesis.

Let the likelihood function P DjH0ð Þ be the x2
df ,l distribution

with degrees of freedom df and noncentrality parameter l~0 and

let the likelihood function P DjH1ð Þ be the x2
df ,l distribution with

degrees of freedom df and noncentrality parameter lw0. Thus,

we can analyze x2 statistics or p-values that can be transformed

using quantile functions. Given a type I error rate a and a type II

error rate b, for a one-tailed test, 1{b~W
ffiffiffi
l
p

{W{1 1{að Þ
� �

and for a two-tailed test, 1{b~W
ffiffiffi
l
p

{W{1 1{
a

2

� �� �
z

W {
ffiffiffi
l
p

{W{1 1{
a

2

� �� �
, in which W is the standard normal

cumulative distribution function and W{1 is the standard normal

quantile function [21]. As is conventional, we specify power to be

1{b~0:8. To complete the specification of the alternative

densities, we need the type I error rates for admixture mapping

and association mapping. We assign the type I error rates to be

0.05 divided by the effective number of tests (i.e., both type I error

rates are partially Bonferroni-corrected). We therefore need

estimates of the effective number of tests for both admixture

mapping and association mapping, which we obtain based on

autocorrelation. For admixture mapping, we first estimate the

effective number of tests for each chromosome for each individual

by fitting an autoregressive model to the vector of local ancestries

(0, 1, or 2 chromosomes of African ancestry) and evaluating the

spectral density at frequency zero [22]. The notation for an

autoregressive model of order p is AR pð Þ and the model is defined

as xt~cz
Xp

i~1

Qixt{izet, in which c is a constant, Q1;€_; Qp are

the parameters, and et is white noise. The order of the fitted

autoregressive model is chosen by minimizing the Akaike

information criterion [22]. We sum the effective number of tests

for the chromosomes for each individual and then average across

individuals. For association mapping, we use the vector of

genotypes (recoded as 0, 1, or 2 copies of the minor allele) instead

of the local ancestries.

Bayesian Inference
Two main quantities in Bayesian inference are Bayes factors

and posterior probabilities. One advantage of Bayes factors over p-

values is that the latter accounts only for the density under the null

hypothesis whereas the former also accounts for the density under

the alternative hypothesis. On the other hand, a disadvantage of

Bayes factors is that they, like p-values, reflect the probability of the

data rather than the probability of a hypothesis. In contrast,

posterior probabilities directly measure the probability of a

hypothesis. A natural, objective threshold of posterior probabilities

is 0.5, which is the point at which the hypothesis favored by the

posterior odds switches.

The Algorithm
The algorithm consists of six steps.

1. Using generalized linear regression, perform admixture

mapping by regressing phenotype on local ancestry, adjusting

for global ancestry (and other covariates as appropriate). For

example, let yi be the observed phenotype for the ith of

individual, f yið Þ be the link function, Aij be the local ancestry

for the ith individual at the jth marker (e.g., for African

Americans, 0, 1, or 2 copies of African chromosomes), and ei

be the residual variance. The basic model for admixture

mapping is f yið Þ~b0zb1Aijzb2
�AAi:zei, in which �AAi: repre-

sents the global ancestry for the ith individual (local ancestry

averaged across all markers). We require the p-value from the

test of b1.

2. Convert the p-values from Step 1 into posterior probabilities.

First, transform the p-values from admixture mapping into x2

statistics using the quantile function. Then, convert the x2

statistics into posterior probabilities using P H1jDð Þ~
P DjH1ð ÞP H1ð Þ

P DjH1ð ÞP H1ð ÞzP DjH0ð ÞP H0ð Þ , in which P DjH0ð Þ is the

density function x2
1,0, P H0ð Þ is the prior probability defined by

1 divided by the effective number of tests in admixture

mapping, P DjH1ð Þ is the density function x2
1,l with l equal to

the noncentrality parameter for admixture mapping, and

P H1ð Þ~1{P H0ð Þ.
3. Using generalized linear regression, perform association

mapping by regressing phenotype on genotype, stratified by

local ancestry, adjusting for global ancestry (and other

covariates as appropriate). For example, let y
kð Þ

i be the

observed phenotype for the ith individual in the kth stratum,

f y
kð Þ

i

� �
be the link function, G

kð Þ
ij be the genotype for the ith

individual in the kth stratum at the jth marker (e.g., 0, 1, or 2

copies of the minor allele), and e
kð Þ

i be the residual variance.

The basic model for association mapping is f y
kð Þ

i

� �
~

b
kð Þ

3 zb
kð Þ

4 G
kð Þ

ij zb
kð Þ

5
�AA

kð Þ
i: ze

kð Þ
i . We evaluate each stratum of

local ancestry independently, yielding one estimate of b4 and a

standard error per stratum. For African Americans, there are

three strata of local ancestry. Stratifying by local ancestry in

this step maintains conditional independence of local ancestry

and genotype.

4. Combine the regression coefficients for genotype for the strata

of local ancestry using inverse variance-weighted fixed effects.

The pooled estimate of the genotype effect is given by
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and the pooled estimate of the

standard error is given by SEpooled~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

X
k

1

SE b
kð Þ

4

� �2

0
B@

1
CA

vuuuuut

:

5. Obtain association p-values for the pooled estimates of the

genotype effects combined over strata. The association test

statistic zpooled~
bpooled

SEpooled

follows the standard normal distri-

bution.

6. Convert the association p-values into posterior probabilities

using posterior probabilities from admixture mapping as prior

probabilities. First, transform the p-values from association

mapping into x2 statistics using the quantile function. Then,

convert the x2 statistics into posterior probabilities using

P H1jDð Þ~ P DjH1ð ÞP H1ð Þ
P DjH1ð ÞP H1ð ÞzP DjH0ð ÞP H0ð Þ, i n w h i c h

P DjH0ð Þ is the density function x2
1,0, P H0ð Þ is the prior

probability which is equal to the posterior probability from

Step 2, P DjH1ð Þ is the density function x2
1,l with l equal to the

noncentrality parameter for association mapping, and

P H1ð Þ~1{P H0ð Þ.

All calculations were performed in R [23]. Code is provided in

Supplementary Text S1.

Simulating Local Ancestry and Global Ancestry
The procedure to simulate admixed data under a vicariance

model has been detailed previously [24,25]. Briefly, two isolated

parental populations were generated with an average value of FST

of 0.12, mimicking the amount of population differentiation

between the African and European ancestors of African

Americans. A sample of admixed individuals was generated with

an average of 80% of the genome inherited from the first parental

population, mimicking the amount of African ancestry in African

Americans. For each marker and individual, the genotype was

coded as 0, 1, or 2 copies of the derived allele and local ancestry

was coded as 0, 1, or 2 copies inherited from the first parental

population.

To investigate whether adjusting for local ancestry is sufficient

to control confounding due to global ancestry, we simulated two

independent SNPs for a sample of 1,000 admixed individuals. The

first SNP was the test SNP and the second SNP was untested. We

estimated global ancestry by averaging local ancestries.

Ethics Statement
Ethical approval was obtained from the Howard University

Institutional Review Board and written informed consent was

obtained from each participant.

Study Sample
We used BMIX to analyze fasting plasma glucose among 922

non-diabetic, unrelated African Americans from the HUFS

(Supplementary Table S3). Fasting plasma glucose was measured

from blood samples obtained from participants after an overnight

fast using the COBAS INTEGRA Glucose HK Gen.3 test (Roche

Diagnostics, Indianapolis, IN). Non-diabetics had fasting plasma

glucose levels ,126 mg/dL (7.0 mmol/L). Genotyping was

performed using the Affymetrix Genome-Wide Human SNP

Array 6.0, with quality control as described previously [26,27].

Local ancestry estimates (0, 1, or 2 chromosomes of African

ancestry) were obtained for 797,831 autosomal single nucleotide

polymorphisms (SNPs) using LAMPANC version 2.3 [28] and

HapMap Phase II+III CEU and YRI reference allele frequencies

(http://hapmap.ncbi.nlm.nih.gov/downloads/frequencies/2010-08_

phaseII+III/). We note in passing that we did not include imputation

in our study because there is no agreed-upon standard approach to

perform imputation in admixed samples at this time. Admixture

mapping was performed by linearly regressing fasting plasma glucose

on local ancestry, adjusted for age, global ancestry (equal to the

individual admixture proportion), and sex. Association mapping was

performed assuming an additive genetic model by linearly regressing

fasting plasma glucose on genotype stratified by local ancestry,

adjusted for age, global ancestry, and sex.

Supporting Information

Figure S1 Average proportion of African ancestry across the

genome, estimated using LAMPANC version 2.3 [28].

(EPS)

Figure S2 Quantile-quantile plot for association p-values.

(EPS)

Table S1 Adjusting for local ancestry does not control

confounding due to global ancestry.

(DOC)

Table S2 Association results for 1q24 stratified by local ancestry.

(DOC)

Table S3 Clinical characteristics of the 922 participants.

(DOC)

Text S1 R code implementing the BMIX joint test.

(TXT)
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