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de Recherches sur la Cognition Animale, UMR-CNRS 5169, Université Paul Sabatier, Toulouse, France, 4 CNRS, Centre de Recherches sur la Cognition Animale, Toulouse,

France, 5 Ecole Polytechnique de l’Université de Nantes, Nantes, France, 6 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey,

United States of America

Abstract

We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis
technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times.
Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between
concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone
concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone
concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning
angle. The response to pheromone was found to follow a Weber’s Law, such that the difference between quantities of
pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This
proportional response is in apparent contradiction with the well-established non-linear choice function used in the
literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based
simulations implementing the Weber’s Law response function led to the formation of trails and reproduced results reported
in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for
collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we
have established in our experiments when directional noise around the preferred direction of movement of the ants is
assumed.
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Introduction

Many ant species produce large dendritic patterns of trails

around their nests (figure 1). These patterns are among the most

important examples of transportation networks built by animals:

they mediate the exploration of space and the coordination of

foraging activities across the whole colony [1,2] and channel the

daily movements of hundreds or thousands of ants. Empirical

observations [3–6] and models [7,8] have shown that ant trail

networks provide efficient solutions for transporting and searching

for food.

In spite of having coherent and efficient organization on a large

scale, ant trail formation can be explained as the result of a

completely self-organized process. Simulations supported by

experiments have shown that the trails are the result of an

autocatalytic process: ants move in response to local concentra-

tions of pheromone and in turn change these same concentrations

by laying new pheromone where they go [9–17].

The link between models and experiment is weak in one

important respect: the exact nature of how individual ants move on

the trail and respond to pheromone remains unknown. Important

work in the direction of answering this question was done by Jean

Louis Deneubourg and collaborators [11,18–21], (see [22] for a

review). In Deneubourg’s model, when individual ants face a

bifurcating trail, their behaviour depends on pheromone concen-

trations on the trails ahead with a function of the form

PL~
(hzL)a

(hzL)az(hzR)a and PR~
(hzR)a

(hzL)az(hzR)a ð1Þ

where the probability PL (PR) for an ant to select the left (right)

branch of a bifurcating trail is expressed as a function of the

concentrations of pheromone on the left (L) and right (R) branches.

The parameter a determines the degree of nonlinearity of the

choice. A high value of a means that even if one branch has only

slightly more pheromone than the other, the ant will have a

disproportionally large probability of choosing it. If a = 1 the ants

react in a linear, proportional manner to pheromone concentration.

The parameter h acts as a threshold for response to pheromone. For

larger values of h, more marking is necessary for the choice to

become significantly non-random.
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Equation 1 (or variants of it) accounts well for the results of

experiments in which ants face a branching point in their trail,

usually in the form of a double bridge. For example, Deneubourg

et al. [23] studied a colony of Argentine ants (Linepithema humile),

which was given access to a bridge with two bifurcating branches

leading to the same source of food. At the beginning of the

experimental trials, ants took both branches in similar numbers,

but ultimately selected one of the two bridges [18,23]. Selection of

one single branch is only possible if the choice function has a

sigmoidal shape, i.e. when aw1. The exact value of the exponent a

that reproduced experimental results the best changes for different

experimental setups. In ref. [23] it was found that an exponent

a^2 reproduces experimental results, while another experiment

with ants moving in a corridor found a = 4 [24]. Beckers et al.

[19,20] went on to establish similar results for Lasius niger, also

finding an exponent a^2. This work has led to an established

‘wisdom’ that ants react disproportionally (i.e. aw1) to pheromone

concentration. Equation 1 with a = 2 has further been the basis of

models of self-organised trail formation (e.g. [9]) re-enforcing the

idea that a disproportional response by ants at an individual level

is required for trail formation.

Double bridge experiments do not however capture individual

ant behaviour and are instead fitted directly to the global outcome.

Many different mechanisms in which individual preferences are

amplified by positive feedback can all explain the selection of one

single branch (see e.g. [25]) while little is known about the actual

rules used by individual ants to respond to pheromone concentra-

tions. Questions such as how ants adjust their turning angle

depending on pheromone concentrations, or whether they

integrate pheromone information over a certain distance before

committing to a decision, remain open.

How insects perceive and react to environmental stimuli has

been studied in many contexts other than pheromone trails. For

example, various studies have established that perceptual errors

are proportional to the magnitude of the stimuli [26–28]. Such

observations are what we expect if insect perception follows a

Weber’s Law [29]. A Weber’s Law holds if the response U to a

difference between two stimuli S1 and S2 is proportional to ratios

of the type ‘‘signal difference’’/‘‘average signal’’. In the case of

stimuli for which S1 and S2 are equivalent and represented in

similar proportion in the sensory field we have

U~c
S1{S2

S1zS2
ð2Þ

where c is a constant. The ratio S1{S2ð Þ= S1zS2ð Þ in equation 2

is known as the ‘‘Michelson contrast’’ of the stimulus pattern.

Weber’s Law is known to hold for insects (e.g. [30]), and is

particularly well studied for human perception in different

sensorial modalities (musical pitch, sound loudness, image

brightness, length, speed, shape, time and numerosity). Equation

2 is a linear function of difference and is thus analogous to a

version of equation 1 in which a = 1 (see methods).

Studying individual responses to the trail pheromone is non-

trivial since pheromone density is not readily visible. Two possible

approaches are to test the ants’ response to synthetic pheromone

[31–33] or to place strips removed from trails formed under

controlled conditions [34,35]. The former of these approaches

allows us to control concentration, but it does not reproduce the

physical and physico-chemical properties of the trails. It is difficult

to relate the concentrations of synthetic pheromones to the actual

concentrations present on the trail. For instance, pure (Z)-9-

hexadecenal -the active compound of Argentine ant trail

pheromone- is 200 times less active when presented alone than

in the form of ant gaster extracts with an equivalent amount of

molecule [31]. Trails formed on strips capture physical charac-

teristics of the trail but do not allow us to tightly control

concentrations. In addition, trails on paper strips are necessarily

one-dimensional and cannot be easily used to study pheromone

response in two dimensions.

In our study we use novel imaging and analysis techniques to

overcome these limitations and study trail following behaviour

Figure 1. Evolution of the pattern formed by one colony (T09) over time. Each picture is obtained by summing all the ants detected from
arena-level snapshots during 5 minutes (300 snapshots). The contrast and gamma are adjusted to make single ants visible in the images.
doi:10.1371/journal.pcbi.1002592.g001

Author Summary

Many ant species produce large dendritic networks of trails
around their nest. These networks result from self-
organized feedback mechanisms: ants leave small amounts
of a chemical -a pheromone- as they move across space. In
turn, they are attracted by this same pheromone so that
eventually a trail is formed. In our study, we introduce a
new image analysis technique to estimate the concentra-
tions of pheromone directly on the trails. In this way, we
can characterise the ingredients of the feedback loop that
ultimately leads to the formation of trails. We show that
the response to pheromone concentrations is linear: an ant
will turn to the left with frequency proportional to the
difference between the pheromone concentrations on its
left and right sides. Such a linear individual response was
rejected by previous literature, as it would be incompatible
with the results of a large number of experiments: trails
can only be reinforced if the ants have a disproportionally
higher probability to select the trail with higher phero-
mone concentration. However, we show that the required
non-linearity does not reside in the perceptual response of
the ants, but in the noise associated with their movement.

Trail Pattern Formation in Argentine Ants
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over a large number of tracking events. We assume that the

concentration of pheromone at a particular position in the arena

at a particular time is proportional to the number of ants that have

previously passed that position. We use various assumptions about

evaporation to test the robustness of our results. In this way, we

can derive the response function of individual ants to pheromone

concentrations directly on the trails produced by the ants

themselves.

Results

Arena-level observations of trail formation
The ants explore the arena uniformly in all directions around

the entrance in the beginning of the experiment, but soon start to

form trails that persist for some time. Later in the experiment these

trails are either abandoned or amplified (see figure 1). The kinetics

of arena exploration is shown in figure 2. The figure reports the

total number of ants in the arena (figure 2A) and of those along the

arena border (figure 2B) as a function of time from the beginning

of the trial. Ants start entering the arena soon after they are given

access to it and start concentrating along the border of the arena

about 10 minutes later. Usually the number of ants in the arena

reaches a maximum about 30 minutes after the beginning of the

experiment and then decreases slightly during the rest of the

experiment. Roughly at the same time as the number of ants in the

arena reaches its maximum, the number of trails also attains a

maximum.

Individual-level behaviour
A first characterisation of individual ant motion is provided by

the measure of ant speed (figure 3A). Speed, measured over time

intervals of 0.4 seconds for all the 600,000 tracking events,

averaged to slightly less than 2 cm/s. The distribution of speeds is

wide, and a few ants were observed to move at speeds of up to

6 cm/s.

We tested whether speed depends on pheromone concentra-

tions experienced by the ants. Figure 3b gives box plots of ant

speeds measured over the 0.4 seconds immediately after the ant

experienced a given pheromone concentration in the two sectors

of radius 1 cm L and R as illustrated in figure 4 (see methods). The

speed is clearly not influenced by pheromone concentration at this

short time scale. This does not exclude the possibility that ‘‘over a

longer time scale ants move faster on marked than on unmarked

substrates. For example, a higher turning rate on substrates with

little pheromone might result in lower distance travelled than

when walking directly down a well-marked trail.

Let us consider the angle changes made by ants in response to

pheromone concentrations. For each level of total pheromone

(LzR) we look at how the average turning angle depends on the

difference between the two concentrations of pheromone on the

left and on the right, i.e. (L{R). Figure 5 shows this plot for six

different values of total pheromone. Here (and in figure 6)

individual tracking data from all the trials are combined together

(table 1 provides statistics for the individual trials when assuming

no significant pheromone evaporation and table 2 reports the

same data when pheromone evaporation is assumed). Ants tend to

turn in the direction of higher pheromone concentration. For all

concentrations of total pheromone (LzR), the turning angle

increases linearly with the difference between pheromone on the

left and on the right of the ant

a~k L{Rð Þ ð3Þ

The slope k of the linear relation changes from one plot to the

other. In particular, the maximum turning angle is always of the

order of +35 degrees, occurring when all the pheromone is

concentrated on one side of the ant. This also coincides

approximately with the typical standard deviation in the angle

given the fit of equation 3, indicating that 35 degrees is the

relevant scale for changes in direction for our chosen observation

scale.

In order to visualize how the slope k changes with the total

pheromone concentration (LzR), figure 6 plots k versus LzRð Þ.
For a wide range of pheromone concentrations, the values of k

follow a straight line in the log-log plot. This indicates a power-law

relationship of the type

k~A LzRð Þ{b ð4Þ

for some constant b, or substituting equation 3

a~A L{Rð Þ LzRð Þ{b ð5Þ

The curve bends down for low concentrations of total pheromone

(LzRv50 pheromone units). This probably reflects the fact that

ants cannot sense pheromone concentrations below a certain

threshold. This can happen because the substrate was not properly

Figure 2. Arena level statistics of exploration. A. Number of ants
in the arena over time. B. Number of ants along the arena border (i.e.
less than 2.5 cm from the border) over time. For each plot the curve
gives the mean and standard deviation over all trials.
doi:10.1371/journal.pcbi.1002592.g002

Trail Pattern Formation in Argentine Ants
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marked (because real ants mark intermittently [36] and could have

skipped that patch) and/or because the concentration of

pheromone is lower than the minimal amount that one ant can

sense (the sensory detection threshold of the ant). If the ant does

not sense the pheromone, we expect it on average to continue

moving forward without changing direction, i.e. we expect the

curves of figure 6 to go to zero when LzR is equal to the

detection threshold. Assuming a threshold of 50 pheromone units,

we can fit equation 4 directly to all 12 trials (table 1). In all cases

b^1 and when all trials are combined the best-fit slope is b~1:06.

For b~1, equation 4 becomes

a~A
L{Rð Þ
LzRð Þ ð6Þ

which expresses a relation between pheromone concentrations and

turning angles of the same type we would expect based on Weber’s

Law.

It is important to notice that this relation does not depend on

the specific scale used to measure pheromone: the same relation

holds if we multiply both L and R by the same constant. This

makes the result independent of the assumption used in the

methods that ants mark one square millimetre of arena with one

unit of pheromone every one second: whatever the amount of

pheromone laid down per time step, we will find the same result.

Another implication of the form of equation 6 is that this result is

not likely to be strongly affected by pheromone evaporation.

Evaporation decreases pheromone in proportion to its quantity, on

average producing an effect similar to multiplying both L and R

by some constant smaller than one. In fact, assuming an

evaporation rate of pheromone with l~30 min leads to a curve

(in figure 6B) very similar to the one obtained without evaporation

at all (in figure 6A). Nonetheless, evaporation at a much faster rate

would probably have an effect because pheromone quantity drops

below the detection threshold.

We also made the assumption that pheromone marking is

reasonably constant in time. This implies that the values of L and

R on which we base the analysis are proportional to the actual

pheromone concentrations. We know that the marking rate of real

ants is not constant, but it is likely to vary both because of random

Figure 3. Speed distribution for individual ants (plot A) and distribution of speed as a function of the total pheromone
encountered (LzR) (plot B). The graph in A is from all data, while the one in B is limited to ‘‘moving’’ ants (ants that move at least 0.4 cm in each
of the two time intervals; see methods) because of the difficulty in defining regions L and R for ants that do not move. The speed measured in both
graphs is the average speed over 0.4 second intervals. The median and other percentiles are affected by small quantization effects, because ant
position is recorded in pixel coordinates (1pixel*0:8mm, with small differences in different trials). The sample sizes of the boxplots in B are different.
The whiskers in all the boxes represent data within 1:5IQR of the quartiles; circles represent outlier data points.
doi:10.1371/journal.pcbi.1002592.g003

Figure 4. Regions used for estimating the concentrations of
pheromone around the ant. For each tracking event we get the
position of the ant at time t and its direction at times immediately prior
to or after t (average directions during 0:4s intervals). The angle a is the
change from previous direction. L and R are the integrals of all
pheromone in two circular sectors ahead of the ant on the left and right
side, respectively. In order to avoid spurious correlations between ant
movement and the pheromone added by the ant during that same
movement, we always calculate correlations with the pheromone map
as it was 16 seconds before the tracking event (tmap~t16).
doi:10.1371/journal.pcbi.1002592.g004

Trail Pattern Formation in Argentine Ants
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fluctuations and inter-individual variability. However, provided

this variability is uncorrelated with pheromone concentrations it

will only add noise to the data, but won’t change our results. It

remains to be thoroughly tested whether ants might modulate their

trail laying behaviour depending on the concentration of already

present pheromone. The existing evidence does not however

support such a hypothesis. Aron and collaborators [37] report that

Argentine ant colonies keep marking the substrate over time, but

they do not test if the marking frequency (or the amount of

pheromone per marking event, which is more difficult to test)

remains constant. In his master thesis, Gerbier describes a control

experiment for the paper [38]. In this experiment, Argentine ants

were allowed to move between a nest and a food source through a

narrow bridge. Focusing on two cm of the bridge, he measured the

proportion of ants marking with pheromone, both 10 and

20 minutes after the beginning of the experiment. For ants

directed towards the food source (which can be better compared to

our experiments, in which there is no food at all in the arena) he

measured a proportion of marking ants of 0:31+0:03 after

10 minutes and 0:26+0:03 after 20 minutes: in spite of the fact

that the ant traffic in these conditions is much higher than in our

experiments (because the whole colony is foraging for food along a

narrow bridge) the proportion of marking ants did not change

significantly over time. Earlier experiments by Beckers and

collaborators [19] on Lasius niger had also found ‘‘that negative

feedback between the trail strength and the trail laying is not so

clearly in evidence’’. Even if these studies are not directly

comparable to ours because they involve the presence of food, it

is reasonable to believe that if ants were to modulate their trail

laying behaviour, they would be more likely to do it when there is

food than when there is no food in the arena, and for this reason

we should not expect such a modulation of pheromone deposition

in our experimental conditions.

In our analyses, we assumed that ants respond to pheromone in

front of them and up to a distance of one centimetre. We still have

no real knowledge of what regions around their position ants

actually use to detect pheromone. This raises several questions.

For instance, we would like to know the perception radius over

which ants can respond to pheromone, or at which points in front

of the ant pheromone concentrations have the greatest effect on

movement decisions. We would also like to check whether

locations behind the ant are important. If this were the case, it

would imply integration of pheromone concentrations over some

time before deciding to change direction.

Figure 5. Measured angles of changes in direction made by ants as a function of pheromone difference (L{R). Each graph is for a
different range of values of total pheromone (LzR). Given the large number of data points involved in the plot, and to improve visualization, we
only report the mean and standard deviation of data binned in intervals of 20 pheromone units. The red line is a linear fit (on the unbinned data) of
the form y~kx. Statistics on the fitted slope k are as follows: (A) k~0:4981; F33953,1~741 , pv0:001; R2~0:0214. (B) k~0:2820; F27112,1~1171,

pv0:001; R2~0:0414. (C) k~0:1416; F22152,1~1836, pv0:001; R2~0:0766. (D) k~0:0662; F17799,1~2303, pv0:001; R2~0:1146. (E) k~0:0307;
F17591,1~3558, pv0:001; R2~0:1682. (F) k~0:0146; F10864,1~2102, pv0:001; R2~0:1621. Angles increase anticlockwise: positive angles indicate an
ant turn to the left. The data from all the trials are merged for this figure.
doi:10.1371/journal.pcbi.1002592.g005
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In order to explore these issues we recomputed the predicted

turning angle, but this time instead of integrating over the entire

regions R and L we calculated LDx,Dy and RDx,Dy for each

combination of two pixels at positions Dx and Dy relative to the

position of the ant (see figure 4). Dx is always positive, while Dy is

either positive or negative, depending on whether we are looking

at points in front or behind the ant. We then calculated

SaT~A
LDx,Dy{RDx,Dy

LDx,DyzRDx,Dy

ð7Þ

for each distance combination Dx and Dy. For each pixel pair we

measured the correlation coefficient ra,SaT between the real turning

angles a observed in all tracking events and the angles SaT
predicted by equation 7. Figure 7 reports the resulting correlation

map for one replicate of the experiment. The maximum

correlation is found at about one cm from the ant position and

Figure 6. Log-log plot of the slope k of the angle change k~a=(L{R) vs. the total pheromone around one ant (LzR). Error bars
associated with each data point are 95% confidence intervals on the slope estimation. A. no pheromone evaporation. B. pheromone evaporation with
half-life of 30 min. The red line is a power-law fit of the form (non-weighted linear least squares of the log-transformed data; fitting parameters for
the curve in A: A~42:41(95%CI : 36:90,48:74); b~1:058(95%CI : 1:079,1:037); R2~0:9982; F20,1~11084; pv0:001. curve in B: A~43:46(95%CI :
34:13,55:34); b~1:064(95%CI : 1:102,1:026); R2~0:9949; F18,1~3489; pv0:001); fit restricted to the data point with LzRw50 pheromone units.
Assuming b~1 and fitting directly a function of the form a~A0 L{Rð Þ= LzRzT0ð Þ to all the original data, where T0 is a threshold for pheromone
detection, gives the best fitting values A0~30:80 and T0~10:53 for the condition without evaporation and A0~30:61 and T0~8:61 for the
condition with evaporation.
doi:10.1371/journal.pcbi.1002592.g006

Table 1. Fit of eq. 4 parameters from individual replicates;
pheromone evaporation is not assumed.

Trial
I.D. A(95%C:I :) b(95%C:I :) R2 F Pval:

T01 30:94(19:66,48:68) 1:020(0:946,1:094) 0:9816 F16,1~856 pv0:001

T02 39:65(26:32,59:73) 1:034(0:968,1:101) 0:9854 F16,1~1077 pv0:001

T03 33:99(27:85,41:48) 1:031(0:999,1:064) 0:9965 F16,1~4530 pv0:001

T04 30:62(21:36,43:90) 1:014(0:954,1:074) 0:9886 F15,1~1299 pv0:001

T05 34:38(26:05,45:37) 1:031(0:983,1:079) 0:9940 F13,1~2136 pv0:001

T06 56:84(41:54,77:78) 1:097(1:043,1:152) 0:9932 F13,1~1893 pv0:001

T07 48:90(39:04,61:26) 1:085(1:048,1:122) 0:9959 F16,1~3922 pv0:001

T08 34:52(20:37,58:47) 1:006(0:914,1:097) 0:9774 F13,1~563 pv0:001

T09 40:86(30:45,54:81) 1:032(0:982,1:082) 0:9929 F14,1~1960 pv0:001

T10 53:62(28:40,101:25) 1:090(0:972,1:208) 0:9769 F10,1~423 pv0:001

T11 23:38(8:85,61:76) 0:990(0:821,1:159) 0:9250 F13,1~160 pv0:001

T12 42:96(20:00,92:28) 1:023(0:885,1:162) 0:9598 F11,1~263 pv0:001

The table reports for each trial the values of a power law fit of the type

k~A LzRð Þ{b , where k is the slope of the angle change vs. pheromone
difference k~ a

(L{R)
. Fit values are obtained through non-weighted linear least

squares fit of the log-transformed data.
doi:10.1371/journal.pcbi.1002592.t001

Table 2. Fit of eq. 4 parameters from individual replicates
when assuming pheromone evaporation.

Trial
I.D. A(95%C:I :) b(95%C:I :) R2 F Pval:

T01 31:91(21:36,47:69) 1:030(0:960,1:101) 0:9835 F16,1~954 pv0:001

T02 35:13(23:31,52:96) 1:020(0:951,1:089) 0:9816 F16,1~961 pv0:001

T03 26:30(19:44,35:58) 0:991(0:938,1:045) 0:9898 F16,1~1559 pv0:001

T04 30:07(22:84,39:59) 1:009(0:958,1:059) 0:9924 F1,41~1821 pv0:001

T05 42:48(35:46,50:87) 1:072(1:038,1:106) 0:9972 F13,1~4627 pv0:001

T06 55:36(36:89,83:08) 1:104(1:024,1:184) 0:9881 F11,1~913 pv0:001

T07 58:67(34:19,100:68) 1:138(1:043,1:234) 0:9758 F16,1~644 pv0:001

T08 38:03(25:59,56:51) 1:026(0:952,1:101) 0:9854 F13,1~867 pv0:001

T09 32:82(22:31,48:28) 0:993(0:920,1:066) 0:9852 F13,1~867 pv0:001

T10 46:96(29:62,74:45) 1:078(0:985,1:172) 0:9851 F10,1~659 pv0:001

T11 26:16(12:28,55:70) 1:007(0:865,1:150) 0:9471 F13,1~233 pv0:001

T12 33:99(11:68,98:92) 0:990(0:773,1:207) 0:9118 F10,1~103 pv0:001

The same as table 1, but assuming pheromone evaporation with a half-life of
30 minutes (l~30 in equation 9).
doi:10.1371/journal.pcbi.1002592.t002
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around +45 degrees from the heading direction. This value could

be compatible with the position of the antennae. Care should

however be taken in interpreting this result, since for small Dx the

pheromone field is necessarily highly correlated. In other words,

LDx,Dy{RDx,Dy is small in such cases.

Negative correlations behind the ant are small, and can probably

result from sensory adaptation at the level of the antennae: the left

and right antenna would underestimate the amount of pheromone if

they have just been exposed to high pheromone concentrations.

The correlation becomes positive around the position of the ant,

indicating a small temporal delay between perception and response

(absence of integration). Given the measured ant speed of about

2 cm/s, if ants required a processing time of, for example,

0.5 seconds from the moment when they sense the pheromone

until the moment when they change direction, then the correlation

should become positive already *1cm behind the position of the

ant, which is not observed.

Modelling collective patterns
The response rules of individual ants to pheromone concentra-

tions established here are, at first sight, different from the

disproportional response (equation 1) found in the literature for

large-scale binary choice experiments. To explain this discrepancy

we ran an agent based simulation in a binary bridge setup where

each agent (each ant) responds to pheromone according to the

same rules identified from the experiments (see methods).

Figure 8B reports the percentage of ants on each of the two

branches for one run of the simulations. The selection reaches a

plateau at about 70% of the ants taking one of the two branches.

This response can be made stronger or weaker depending on the

size of the bridge, the noise term and the interaction zone of the

ant. A quantitative comparison with experiments reported in the

literature is not directly possible, as our parameters for ant

movement were estimated in an open arena, where thigmotactic

responses are not important. These responses are no longer

negligible in a binary bridge setup. However, the simulations

indicate that a Weber’s Law response to pheromone concentra-

tions is compatible with the collective selection of one single

branch of the bridge.

To see why a proportional response inherent in Weber’s law

produces a disproportional outcome, consider the case of one ant

approaching the branching point in which there is slightly more

pheromone on the right than on the left and the total pheromone

concentration is low (i.e. RwL and LzR small). Assuming that

the journey towards the branching point is a random walk with a

bias proportional to equation 6 (toward the ‘‘target direction’’ in

figure 8C), then the point at which the ant reaches the branching

point will be determined by a Normal distribution around the

target direction. The probability of arriving at a point left of the

branching point is then given by the integral of the Normal

distribution over all values on the left of the branching point (from

{? to 0 in figure 8C):

PL(t)~
1

2
1zerf

(L{R)t

(LzR)
ffiffiffiffiffiffiffiffiffiffi
4D2t
p

� �� �
ð8Þ

where t is the number of steps in the random walk before the

branching point and D2 is a measure of the directional error in the

ant movement. A more formal derivation of equation 8 is provided

in the methods. The error function (erf) is, like equation 1, a

sharply increasing non-linear function. For practical purposes,

both equation 8 and equation 1 would provide equally good fits to

double bridge data and have similar mathematical properties.

Figure 8D plots the bifurcation diagram for the density of ants on

one of the two branches of a binary bridge when the individual

choice function is of the form of equation 8 (see methods). This

diagram is similar to the one obtained from equation 1.

When the simulation is run with the same parameters in a

circular open arena, it leads to the formation of distinct trails

(figure 9). The timescale for the formation of trails is similar in the

simulation and in the experiments, although the trails start

appearing a bit earlier in the simulations. This discrepancy is in

part because real ants show some latency for entering the arena at

the beginning of the experiment. The most important difference

between real and simulated trails is that simulated paths are more

winding and more prone to form loops than real ones. Loops can

form in the experiments as well. They are often stable for a long

time, but usually they result from two trails connecting the nest to

the arena border and a third one forming an arc of a circle around

the border of the arena, a region where the density of ants is

always high (see figure 1 and figure 2-B).

Discussion

Weber’s Law has previously been established in a wide range of

animals and for different sensory stimuli [39,40]. Using such an

internal metric allows animals to process different sensorial stimuli

over a wide range of scales using a limited number of neurons [41].

The presence of Weber’s Law for Argentine ants is partially

explained by their need to respond to pheromone at very different

concentrations [42]. Weber’s Law implements a mechanism of

perception where the response only depends on the ratio between

pheromone concentrations L and R: multiplying both L and R by

the same number does not change the ants’ response. Pheromone

evaporation essentially corresponds to multiplying both L and R
by the same constant smaller than one. Hence, Weber’s Law-like

mechanisms offer the additional advantage of determining stable

responses even in the presence of evaporation.

Figure 7. Correlation map between the observed turning angle
a and the angle SaT predicted using pheromone information at
positions Dx and Dy (equation 7). The colour associated with each
point (Dx, Dy) represents the value of the correlation coefficient
between the observed turning angle ½a1,a2,,aN � and the turning angles
predicted from equation 5 ½Sa1T,Sa2T,:::,SaNT�. The ant is situated in
the centre of the map, facing upwards, and its approximate dimensions
are given by the cyan rectangle. The scale for the figure is provided
by+symbols, which are spaced 1 cm. apart. The map is for trial T09 and
no pheromone evaporation. Similar maps are found in all the trials.
doi:10.1371/journal.pcbi.1002592.g007
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We have shown that the use of Weber’s Law also explains the

formation of ant trail networks. In the context of social

interactions, the perceptual response is coupled with positive

feedback to generate collective patterns. In our case, positive

feedback is mediated through leaving pheromone, and the

collective pattern is the trail network. We can imagine that other

collective phenomena, such as group decision-making, could also

be founded on coupling between Weber’s Law and simple

feedback mechanisms.

In contexts where groups of animals are faced with choosing

between multiple options, such as the shortest path to food or the

best direction to move [43,44], disproportional non-linear

responses are often implicated [23,45,46]. The Weber’s Law we

have established here is essentially a proportional linear response

to stimulus differences. Indeed it is similar to a Deneubourg model

(equation 1) with a~1. This raised a potential contradiction

between our current results and earlier double bridge and binary

choice experiments, which have established aw1. We can explain

this apparent contradiction by noticing that the actual end point of

one ant approaching a branching point depends not only on the

pheromone concentrations, but also on the directional noise. The

probability of entering the left or right branch of a binary bridge is

then obtained by integrating over all the possible outcomes on the

left and on the right sides of the bifurcation. This integral is a non-

linear error function, which is in many respects equivalent to a

Deneubourg model for collective decision.

While our observations are consistent with double bridge

experiments, we do not have a complete explanation for the

formation of trail networks. Comparing figures 1 and 9 we see

several differences. The general structures of the trail networks are

similar, but the trails obtained in the simulations appear earlier,

are more winding and as a result contain more loops. By tuning

the error we can improve some of these properties, but usually at

the expense of realism in some other property. More specifically,

the formation of trails in the experiments is often preceded by a

short phase of isotropic exploration around the entrance (see

figure 1). In the simulations, this pattern can be reproduced by

increasing the error. However, doing so makes the trails appear

later and can produce extremely winding trails that form loops just

around the entrance. Our model shows to what degree trail

networks can be explained by the ant response to a single

pheromone, leading us to conclude that this response alone is not

sufficient to completely explain the structure of the trails. Even if

Linepithema humile ants are known to rely predominantly on

Figure 8. Simulation and analytical results implementing Weber’s Law type response to pheromone in a binary bridge. A. Illustrative
drawing of the simulation domain; the blue dot near the top of maze represents the nest, while the large blue region at the bottom is the food
source. B. Percentages of simulated ants on each branch of the maze at different times in one run of simulation (each point represent the average
over three minutes of simulation). C. Schema providing an intuitive explanation of equation 8. The target direction of one ant depends linearly on
(LR). The probability for the ant to choose the left branch depends on the target direction and the directional noise. More precisely, if we assume
that the branching point between left and right branch is at direction zero, the probability that the ant chooses the left branch is given by the
integral of the curve in panel B from {? to 0. D. Bifurcation diagram for the density of ants on one branch of the bridge (Y1) as a function of the
total flow of ants in the setup.
doi:10.1371/journal.pcbi.1002592.g008

Figure 9. Output of the multi-agent simulation implementing the individual level parameters observed experimentally. Each image
is obtained by summing 300 snapshots of the simulation taken at equal intervals of 1 second of simulation time (corresponding to 5 minutes of
simulation) in a similar way to what had been done for the experimental data.
doi:10.1371/journal.pcbi.1002592.g009
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chemical signals for orientation [37], we can imagine that they

complement information carried by pheromone with more global

inferences of their position and direction of movement. Many

mechanisms such as path integration or klinotaxis can provide this

additional information. Path integration in particular could

explain some of the differences between real and simulated trails.

In fact, the simulations are a direct implementation of the rules of

response to pheromone measured experimentally over single time

steps. As such, they reproduce exactly the pattern of movement of

ants at the time scale of one time step. At a longer time scale,

however, the trails produced in simulation bend in different

directions, whereas the real trails are straighter. Path integration

would imply that the turning angles of the ants are anti-correlated

at longer time scales, ensuring that they remain more or less

straight in spite of the noisier movement of ants at single time

steps. This would effectively produce trails that preserve the same

local structure, but are straighter at a larger scale. For a subset of

the data we traced individual ant movement over a relatively long

time period. From these traces we looked at the correlation

between the turning angle of one ant at time t and its turning angle

at time tzDt. This analysis showed a slight positive correlation on

a short time scale (Dt small): an ant turning left at time t is likely to

also turn left one or two seconds later. These correlations decayed

for longer time intervals, but never inverted sign, indicating that

there is no ‘‘oscillatory’’ movement around a trail with a fixed

periodicity, though the ants might still have an increased

probability of turning in the opposite direction after a variable

interval of time. However, the set of data for which reliable

individual tracking was available over multiple time steps was

relatively small and did not allow us to discern whether the

autocorrelations in turning angles are due to path integration, or

whether they simply reflect correlations with the pheromone map

experienced by the ants.

Antennal contacts can also help an ant head toward the nest, or

away from it, by sensing whether or not colony mates travelling on

the same trail have recently come out of the nest. Another aspect

that is not reproduced in our model but is often seen in ant trails is

branching. Surprisingly, however, trail branching is not particu-

larly prevalent in arena-level observations. The branching that

does occur maybe only be explainable in terms of trails ‘‘colliding’’

instead of an active formation of bifurcations. We can speculate

that crowding and ant interactions on the trail are the main factors

that determine branching [47]. Once formed, we would expect

that Weber’s Law response would aid the stability of branches. We

can see this by noting that large LzR in equation 8 results in each

branch of a trail being nearly equally likely to be chosen even in

the presence of small differences between L and R.

To answer these remaining questions more detailed arena-level

observations of trail formation are needed, combined with detailed

observations of how the ants interact with each other on the trails.

We believe that the computer-automated approach we have used

here can be further refined to produce such analyses.

Methods

Experiments and data analysis
We used colonies of the Argentine ant Linepithema humile

(Formicidae, Dolichoderinae) collected on the University Campus

in Toulouse, France. In the south of France, Argentine ants are an

invasive species that forms a single gigantic colony extending along

the Mediterranean coast from Italy to Portugal [48]. Ants were

housed in artificial plaster nests and reared in an experimental

room at a constant temperature of 26 deg C under constant light

conditions (L:D 12:12) and fed ad libitum with a mixture of eggs,

carbohydrates, and vitamins [49] and with Musca domestica

maggots. Twelve groups containing 1,000 workers each, no queen

and no brood were counted about one week prior to the

experiments and placed in separate nests 10 cm in diameter,

connected to a small foraging arena also 10 cm in diameter. These

groups were starved for 24 hours before each experiment to

stimulate exploratory behaviour.

Argentine ants leave pheromone both when moving out of the

nest in search for food and when going back to the nest in food

recruitment [50] as well as during exploration [51]. In the

experiment, the ants were left free to explore an initially unmarked

circular arena (diameter 1 m). The arena was enclosed by 20 cm

high walls covered with FluonH to prevent ants from escaping. The

floor of the arena was covered with a sheet of chlorine free paper,

replaced after each trial. The entire setup was surrounded with

white homogeneous curtains to eliminate as many orientation cues

as possible. No food source was present in the arena at any time.

Prior to the beginning of each trial, one colony was put under the

arena and given access to it through a plastic tube opening on the

arena centre. Each trial began when the first ant enters the arena

and lasted for one hour. We conducted 12 such trials in total.

Under these conditions, Argentine ants start exploring the arena

homogeneously around the entrance, but soon end up forming

trails, some of which are then abandoned after some time and

some of which are reinforced (figure 1).

Two sets of data were collected for each trial. Snapshots of the

whole arena were collected every 1 s with a digital photo camera

(Canon EOS 20D) and stored as 350462336 pixels RGB colour

images. Image quality was sufficient to clearly see all the ants in the

arena. These images were used for all arena-level observations of

trail formation. At the same time, a smaller portion of the arena

*47x38cm was filmed at 25 FPS and 720x576 pixel resolution.

The videos offered the additional temporal resolution necessary to

analyse individual-level behaviour and were used for all quanti-

fications of individual ant movement and response to pheromone.

Each trial involved the recording of 3600 snapshots of the whole

arena and 90000 video frames.

The positions of all the ants were detected from each frame (and

from each camera snapshot) with standard image analysis

techniques (see e.g. [52,53]: subtraction of a reference image,

binarization (by thresholding independently the red, green and

blue channel to detect pixels that were significantly darker than in

the corresponding reference image for all channels), detection and

labelling of connected components. Each connected component

usually represented a single ant, but in rare cases it could mark two

(and very rarely more) ants close together. We could easily detect

the number of ants in a component by comparing its size with the

typical size of single ants on the image (estimated as the mode of

the number of pixels in each connected component detected

throughout the experiment).

Pheromone levels cannot be measured directly in our experi-

mental setup. Instead, as a proxy for the concentration of

‘‘pheromone’’ at each particular point in the arena we use the

number of passages of ants over that point. Here we used only data

from the individual-level film camera. An empty ‘‘pheromone

map’’, corresponding to the field of view of the camcorder was

initialized at the beginning of each trial. Then, at each frame, the

‘‘pheromone’’ of all the pixels that were covered by one ant was

incremented by a fixed amount d, where d is chosen in such a way

that every ant marked on average the equivalent of one square

millimetre of surface with one unit of pheromone every one

second. This scaling with d is purely arbitrary, but it allows us to

compare between different trials. Supplementary video S1

illustrates the outcome of the above process on a sample movie.
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The pheromone map M at time t on site (x,y) is defined as

M x,y,tð Þ~d
Xt

t~0

2
{t{t

l C x,y,tð Þ ð9Þ

where C x,y,tð Þ~1 if patch (x,y) is covered by (at least) one ant at

time t and 0 otherwise. We explore two possible scenarios: in the

first scenario (l~?) the pheromone does not undergo evapora-

tion throughout the duration of the trial. The second scenario is

one in which the pheromone evaporates with a half-life time

l~30min. The choice of these two different scenarios is motivated

by previous results by Van Vorhis Key and collaborators. In

particular, from the data reported in [31] it appears that the

synthetic argentine ant pheromone (Z)-9-hexadecenal is active

with a half-life of the order of 30 minutes. However, when gaster

extracts obtained directly from ants were used [54] the compound

was active for a much longer time, with a half-life of the order of

4 hours. So, 30 min is a lower bound for the half-life time of

pheromone evaporation. The results with and without pheromone

evaporation are similar; when not specified our figures report

results in the condition without evaporation.

In order to characterise the movement of ants we automatically

tracked all the ants in the individual level videos over short time

periods. This involves about 50,000 tracking events for each

experimental trial, for a total of *600,000 tracking events

throughout the whole experiment. Every twenty frames (0.8 sec-

onds) we mark the positions of all the ants in the field of view of the

camera (see supplementary video S2), follow them for ten frames,

mark their positions again, follow them for ten more frames and

mark their final positions. Occasionally, ants moved very little (less

than 0.4 cm) in either of the two 10 frames intervals. Given the

difficulty of estimating directions of movement and turning angles

in these conditions, these data were discarded from all the analyses

(except for computing the distribution of ant speeds in figure 3A).

This provides us with a simplified description of ant movement in

terms of two straight segments and a turning angle. (See

supplementary video S2 for a visual representation of these

operations).

We looked at the total pheromone within a one centimetre

radius of the ant. In particular, we define L to be the total

pheromone in a 90 degrees front-left sector relative to the ants

position (see figure 4 and supplementary video S2). Similarly, R is

the total pheromone in a 90 degrees front-right sector. During an

exploratory phase of data analysis we investigated multiple sectors

with angles of 45 degrees and/or larger radius. The results were

robust to such changes.

Simulation
In order to test the ability of the individual response rules to the

pheromone concentration to explain trail formation at a larger

scale, we set up an agent-based model of Argentine ant arena

exploration using the NetLogo 4.1.1 modelling environment. The

NetLogo world consists of square patches each with its own

pheromone concentration. We run the simulation both in an open

arena setup (diameter = 1000 patches) and in a ‘‘binary bridge’’

setup (total length of the setup 440 patches, all other proportions as

in figure 8A, with one nest at one extremity of the bridge and a

‘‘food source’’ at the opposite extremity. Parameters for patch size

(one patch = 1 millimetre) and time step (one time step = 0.1 se-

conds) were chosen so as to provide a convenient scaling with the

experiments.

1000 ants are initialized inside the nest at the beginning of the

simulation; each ant enters the arena with a probability of 1/1000

per time step. Once in the arena, ants move at a constant speed (2

patches per time step, equal to the average speed of ants measured

in the experiment). Their movement is not bound to the

dimensions of the patches (ants move off-lattice), while pheromone

concentrations are updated at the grain size of the grid, as

pheromone is a property of the patches themselves. The ants move

at every time step and update their direction of movement every

four time steps (equivalent to 0.4 s, the same interval used when

analysing the data). The new direction of movement is determined

by the concentration of pheromone within two circular sectors

oriented 45 degrees to the left (L) and to the right (R) of the ants

position. Each sector subtends an angle of 45 degrees, with a

radius of 20 patches (2 cm). The angle of direction change a is

then given by

a~
L{RzE1ð Þ

LzRð Þ zE2 ð10Þ

where A is determined by fitting the data and E1 and E2 are

random normal variables distributed with mean 0 and standard

deviations s1 and s2, respectively. In our simulations s1~50 and

s2~15. Once an ant moves to a new location, it leaves 0.1 units of

pheromone at that location before making its next move.

All the simulation parameters are chosen to match as closely as

possible the experimental measures on real ant behaviour. We do

not have experimental data to characterise the behaviour of ants

along the arena border. In the simulation, ants heading against the

border align with it, pointing to the direction that involves the

minimum change from previous direction. In the binary bridge

setup, ants heading against the border align with the border

pointing away from the latest visited site (either nest or food

source).

Ants that have been out in the arena for a long period can be

marked with a special ‘‘back-to-nest’’ label. If such a labelled ant

happens to be within two centimetres of the nest, then it will set its

heading towards the nest and go directly there. In the open arena

simulation, the ants are given a back-to-nest label randomly, with

probability of 1 every 10 minutes of simulation time; in the binary

bridge setup, the label is given to all the ants that have reached the

food source at the distal extremity of the bridge (the dark blue

region in figure 8A).

The simulations implement a very simplistic model of ant

behaviour: ants respond only to local concentrations of phero-

mone, with no memory of past position and direction of

movement. There are no direct ant-ant interactions. As such their

purpose is to test to what degree the observed pheromone trail

patterns are explainable simply in terms of their reaction to

pheromone concentrations using equation 10.

Relationship between Weber’s law and the Deneubourg
model

In the introduction, we stated that equation 2 is similar to

equation 1 with a~1. To see this, impose a~1 (and h~0) in

equation 1 we obtain

PL~
L

LzR
and PR~

R

LzR
ð11Þ

Assume that a trail-following ant experiences pheromone concen-

tration L to its left and R to its right and it moves to the left or to

the right with probability PL, respectively PR. After following this

procedure for c time steps the expected position of the ant is equal

to
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c PL{PRð Þ~c
L{R

LzR
ð12Þ

which has the same form as equation 2.

In the derivation of equation 8 for the double bridge experiment

the question is not about expected position, but rather the

probability of ants arriving at either side of a branching point on

the bridge. Consider ants which move up a single bridge toward a

branching point. We can model the time evolution of the probability

density P(x,t) of an individual to be at a particular position x as

LP(x,t)

Lt
~{D1

LP(x,t)

Lx
zD2

L2P(x,t)

Lx
ð13Þ

where D1 and D2 are respectively the drift and the diffusion

coefficients. In our case the drift is, from equation 12, equal to

D1~
R{L

LzR
ð14Þ

and we assume it to be constant for the whole duration of the walk in

the decision zone between the left and right branches of the bridge.

We further assume the diffusion, D2, to be constant.

The initial condition is a delta function at zero, d(x), so that

initially the ant enters the middle of the bridge. The solution of

equation 13 subject to this initial condition is

P(x,t)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD2t
p exp {

x{D1tð Þ2

4D2t

 !
ð15Þ

The survival probability, that is, the total probability at time t of

finding the individual in the region from {? to X is

S(X ,t)~
ÐX

{? P(x,t)dx~

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD2t
p

ðX

{?
exp {

x{D1tð Þ2

4D2t

 !
dx ð16Þ

We are interested in the probability that the ant ends up to the left

of its starting point, i. e. X~0, which, after integrating, is given by

S(0,t)~ 1zerf
D1

ffiffi
t
pffiffiffiffiffiffiffiffiffi

4D2

p
� �� �

ð17Þ

where erf is the error function. Since the time t and variance D2

are arbitrary parameters we can without loss of generalization set

them both equal to unity and obtain

1zerf
R{L

LzR

� �
ð18Þ

Like equation 1 with aw1, this equation is a sigmoidal function of

D1.

Bifurcation diagram for ants on a binary bridge
Let y1 and y2 be the densities of ants on each of the two

branches Y1 and Y2 of a binary bridge setup (figure 8A). The

evolution equation for the density of ants on each branch of the

bridge can be written as

dy1

dt
~Qf y1,y2ð Þ{y1 ð19Þ

dy2

dt
~Qf y2,y1ð Þ{y2 ð20Þ

The first positive terms in equations 19 and 20 correspond to the

traffic on Y1 and Y2 respectively. Here Q is the total flux of

individuals per unit time and f is the probability of taking a

particular branch. The negative term corresponds to the

spontaneous retirement of ants from each branch. The particular

form of f chosen here is consistent with equation 18, i.e.

f y1,y2ð Þ~ 1

2
1zerf

y1{y2

y1zy2zT0

� �� �

f y2,y1ð Þ~ 1

2
1zerf

y2{y1

y1zy2zT0

� �� � ð21Þ

The additional parameter T0 captures the threshold level of

response found in the experiment (see figure 6).

At the stationary state, putting dy1=dt~0, dy2=dt~0 and

adding equation 19 and 20 we have

Q~y1zy2 ð22Þ

replacing 22 in 19

Q

2
1zerf

2y1{Q

QzK

� �� �
{y1~0 ð23Þ

which can be solved numerically.

Figure 8D gives the bifurcation diagram of y1=(y1zy2) against

Q. We see that the figure displays a pitchfork bifurcation,

reminiscent of the behaviour of Deneubourg’s model on a bridge

experiment with two equal paths: the homogeneous state, stable

for small values of flow, loses its stability at a critical value where

two new inhomogeneous solutions appear. The stability has been

checked by integrating equations 19 and 20 numerically.

Supporting Information

Video S1 Video illustrating how the pheromone maps
are inferred from the movement of the ants. Whenever a

portion of the arena is covered by one ant for one frame, the

pheromone map at that location is incremented by a constant

amount. Notice that the video is made for illustrative purposes:

real experiments involved filming a larger portion of the arena

from above and from the very beginning of the trial; pheromone

quantities were stored with 24 bit precision.

(MOV)

Video S2 Video illustrating how the movement of the
ants is analysed and correlated to the pheromone maps.
Every twenty frames (0.4 s) each ant present under the field of

view of the camcorder is detected and its position marked. The ant

is followed over two intervals of 10 frames each and its path is

described by two paths of ten frames each and a turning angle a.

These measures of ant movement are stored together with the

whole pheromone map around the ant position in correspondence

with the turning angle (more precisely with the map computed
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16 seconds before the tracking event). This analysis is repeated

every twenty frames for the whole duration of the arena level

videos. Only the tracking events for which the ant was clearly

detected in all the frames and did not meet any other ant were kept

for the analyses.
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