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Abstract

Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission
dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and
analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito
vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito
behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes,
we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate
a host. The results show that two different models of chemotaxis are capable of producing comparable results given
appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor
plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success
near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor
plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial
density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host
aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly
model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability
models for mosquito behavior, such as Lévy distributions.
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Introduction

The transmission of infectious agents is heterogeneous in the

sense that the risk for infection and infectiousness are unevenly

distributed over the population [1]. This heterogeneity is an

important factor in predicting the spread of an infection; ignoring

it may result in misleading inference about transmission dynamics

by underestimating the probability that an infectious agent will

persist [2]. Sources of heterogeneity in mosquito-borne disease

transmission include uneven distribution of hosts and breeding

sites [3], differences in host susceptibility to infection [4], and the

nonuniform distribution of mosquito bites among spatially

distributed hosts [5] (per-capita biting rates). The number of

mosquitoes that bite a host depends, among other things, on the

number that find it. Host finding by mosquitoes is largely driven

by olfactory cues that are given off by individual hosts [6]. The

spatial arrangement of hosts is likely to affect the spatial

distribution of the odor plume and thus the mosquitoes’ ability

to locate and feed on them. For example, it may be easier for a

mosquito to find a large roost of birds than to find an single bird.

Unless the probability of finding a host is exactly proportional to

the density of hosts, unevenly distributed contact rates on

individual hosts, and thus heterogeneous disease transmission, will

result. Understanding the dynamics of odor-driven mosquito-host

interaction is fundamental to a detailed mechanistic understanding

of mosquito-borne transmission.

Despite its important epidemiological implications, experimen-

tal data on the relationship between host aggregation and

mosquito-host contact rates are sparse, and thus, little is known

definitively about mosquito strategies for finding hosts. The goal of

this work is to propose a modeling framework that can provide

preliminary insights into the relative effectiveness of different host-

seeking strategies used by mosquitoes. In this paper, we develop,

assess, and utilize a mathematical model to simulate both the odor

plume in the presence of wind and the host-seeking behavior of

mosquitoes in response to that odor plume. Mosquitoes are

modeled as discrete agents that fly continuously in search of discrete

hosts (birds). The flight direction and speed of individual

mosquitoes is influenced by wind and odors emitted by the hosts.

The wind is composed of a deterministic, large-scale component

plus a stochastic component to represent small-scale eddies and

fluctuations. In this study we focus on mosquito host-seeking

behavior within meters of a host, motivated by indoor experiments

involving mosquito-bird interactions [7]. The Discussion section

describes the potential for larger scale simulations that incorporate

more of the host-seeking process. We hope that the model may

serve as a virtual laboratory for testing different hypotheses for

how mosquitoes use odor plumes to locate potential hosts and may

offer guidance both to the planning of experimental studies and to

the interpretation of experimental data.

This contribution joins a group of other important mathemat-

ical models for simulating the host-seeking dynamics of mosqui-
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toes. Commonly, models are based on parameters such as contact

rates and probabilities (of feeding, diversion, dying, etc.). Often

these models assume homogeneous mixing and do not include

space explicitly, so that the probabilities and contact rates are

independent of location. In [8], the authors describe a kinetic,

non-spatially explicit model to determine how much coverage is

enough to protect individuals who do not use insecticide-treated

nets (ITNs) in the context of malaria transmission. The model has

also been modified to explore the effects of bed nets [9] and to

introduce ‘bloodless’ hosts such as baited traps [10]. The latter also

modeled the host-seeking process as a non-host oriented kinesis

followed by a host-oriented taxis once the mosquito has

encountered an odor cue. A related model for the mosquito

feeding cycle addressing the effect of ITNs on malaria transmission

is found in [11]. One model that does include space explicitly is

that in [12] for plume finding in the context of an underwater

substrate. The authors use a model in which the probability of

detecting the plume depends on the seeker’s movements, on the

fluid motion, and on the plume shape in space and time. They

report that as plume-detection success increases, the efficiency

decreases (the process is slow). Our results are consistent with this

observation.

Mosquito host-seeking behavior
We provide a review of the biological literature that influenced

our modeling choices. The scenario that we consider is illustrated

in Fig. 1, where hosts are distributed in groups, or patches, and

they emit an odor (e.g. CO2) that gets carried by and diffused in

the wind in the same way that a puff of smoke dissipates in time.

Uniform, laminar wind extends host odor into a long, thin plume

with sharp transverse gradients and shallow longitudinal gradients.

If the wind is turbulent, the odor plume is highly intermittent, but

still retains relatively shallow average longitudinal gradients

compared to the transverse gradients [13]. We class mosquito

host-seeking behavior as either plume finding, which is flight in

search of an odor plume, or plume tracking, which is flight within the

odor plume (these terms are adopted from [12]).

Plume finding: Absence of odor cues. There is little

consensus in the literature about mosquito host-seeking behavior

in the absence of odor cues. If wind is absent, orientation may be

determined by large visual features in the environment [14] or

may be characterized as a directionally unbiased random walk,

also called kinesis [10]. If wind is present, then mosquitoes may

deliberately choose to fly upwind, downwind, or crosswind in

search of a host, which are types of directional searching referred

to as anemotaxis [15].

Each of the three anemotactic behaviors has been described as

plausible based on either experimental or theoretical work.

Mosquitoes typically fly upwind in laboratory wind tunnels even

when there is no odor present [16,17]. In wind tunnel

experiments, a low velocity artificial wind is blown across an odor

source down an enclosure toward a mosquito entrance. Mosqui-

toes are released into the tunnel and their flight path is videotaped.

In control experiments where no odor is added to the wind, many

mosquitoes fly upwind and some even locate the ‘‘source’’ – the

wind entrance into the tunnel. However, a set of field experiments

reported in [18] provided evidence for downwind flights in host-

seeking Mansonia spp. In these experiments, a human subject was

surrounded on the downwind side by a tall, hemispherical fence of

radius 18 m, to exclude mosquitoes using an upwind search

strategy. By comparison with controls, the authors concluded that

some mosquitoes employ a downwind plume-finding strategy. In

[19] it is argued using geometry that crosswind searching is the

most effective when the odor plumes are long and thin. If the

variability of the wind direction is greater than 30 degrees, then a

mathematical argument shows that upwind or downwind search-

ing is optimal [20].

Mosquito response to wind depends on the strength of the wind.

A typical mosquito flight speed is 1 m/s [15,17]. As reviewed in

[21], mosquitoes fly faster than the wind speed when they are in

the low velocity boundary layer that forms adjacent to the ground.

If they ascend too far (especially during the daytime when

turbulence is greater), they are swept up and transported passively

for long distances. Some mosquitoes may have adapted to use this

as a deliberate migration mechanism. However, most of the flights

that mosquitoes make are short-range, appetitive flights seeking a

blood meal or oviposition site near the mosquito’s home territory.

Appetitive flights are disrupted by sufficiently high wind speeds,

although the wind speeds at which this happens vary by species

and geographic region. Wind speeds as low as 0.8 m/s (3 km/h)

have been reported to drastically reduce the number of mosquito

host-seeking flights, but no reduction in mosquito flight was

documented in other situations for speeds as high as 3–8 m/s (11–

29 km/h).

Plume tracking: Presence of odor cues. When a mosquito

encounters an odor plume, it uses the odor plume and the wind to

guide its flight to locate the host. Odor cues are complex olfactory

signals released from a host’s skin and breath. Many compounds

are known to excite the chemoreceptors of mosquitoes. CO2, for

example, is an important component in the odor plume that

activates and helps maintain plume tracking [17,22,23]. Labora-

tory wind tunnel experiments indicate that sustained flight only

occurs in the presence of an intermittent CO2 signal and not in

uniform concentrations [23]. Other wind tunnel experiments

suggested that broad, well-mixed CO2 plumes may inhibit upwind

flight while turbulent plumes of the same concentration induce

upwind flight [16,24,25]. The importance of lactic acid, various

aldehydes, and whole host odors for the location of hosts by

mosquitoes has also been demonstrated [16,22,25,26]. Dekker et

al. [25] note that there is not a single model that fits mosquito

flight response to all relevant host odors, even within a single

species.

Mosquitoes exhibit different behavior in windy and windless

conditions. In the absence of wind within the odor plume,

mosquitoes must rely solely on odor cues [13] or on large features

in the visual environment [14]. Mosquitoes probably estimate the

direction of odor increase (the gradient) by the mechanism of

klinotaxis, as is conjectured for tsetse flies [27]. During klinotaxis, an

Author Summary

Mosquito-borne diseases can spread when a mosquito
bites a vertebrate host to obtain a blood meal for egg-
laying. The first step in the transmission process consists of
the mosquitoes seeking and finding a host. Mosquitoes
use the wind direction and odors, such as carbon dioxide,
emitted by the hosts in order to locate a host to bite. We
present a spatial computational model of the host-seeking
process in a region where hosts are heterogeneously
distributed in clusters. The model is used to analyze the
success in finding hosts once the mosquitoes are close to
the host. We show that the number of mosquito-host
contacts increases as hosts become more widely spaced
within their clusters; that mosquito flight perpendicular to
the wind leads to greater success in locating a host; and
that the number of bites per host decreases when hosts
aggregate into larger clusters.

A Spatial Model of Mosquito Host-Seeking Behavior
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organism samples the host odor at one location, then moves and

samples it again, using its memory of the concentration to choose

the next direction [13]. Laboratory and field wind tunnel

experiments suggest that under windy conditions within the odor

plume, the mosquitoes travel upwind to locate the source

[16,24,28]. Mosquitoes appear to infer wind direction from the

optical flow of ground features relative to their position [27]. It is

known that many organisms have characteristic turns in their

upwind flight path (e.g. moths [13,27]), but mosquitoes exhibit

highly irregular upwind flight [29].

Model

We formulate our model for the intermediate range flights of

night-active mosquitoes such as Culex quinquefasciatus feeding on

roosting birds, incorporating the biological information from the

previous section. We construct a model that accommodates

different plume-finding and plume-tracking mosquito behaviors,

wind velocities and host locations. The model is two-dimensional

and all of the dynamics are assumed to take place at a fixed

distance from the ground.

Odor plumes
In the model, hosts emit a single gaseous compound that attracts

mosquitoes, is convected by the wind, and diffuses in the air. For

the purpose of this paper, we assume that the attractant is CO2.

The CO2 distribution over time is modeled by a convection-

diffusion partial differential equation. The convection velocity of

the wind is given by a vector ~VV (x,y,t), and the concentration

C(x,y,t) of CO2 is described by the equation

LC

Lt
z+:(~VVC)~D+2CzCs(x,y), ð1Þ

where t is time and (x,y) are spatial coordinates on a square

domain of length L. Throughout the paper, we refer to this square

computational domain as the ‘‘CO2 simulation region.’’ The

constant diffusion coefficient D reflects the rate at which CO2

Figure 1. Computational domain. This is a schematic of the CO2 simulation region where the odor plume is computed. At the edges of the
simulation region, the CO2 concentration is carried out by the wind. The patches represent smaller subregions where the hosts are located. The
spatial distribution of hosts within each patch is uniform and there can be multiple patches. The hosts are stationary in the following simulations,
although this is not a limitation of the model. The mosquitoes are initially placed in a subregion inside the CO2 simulation region but are allowed to
leave it (and possibly reenter it) during the simulation. The wind exists everywhere, even outside the CO2 simulation region.
doi:10.1371/journal.pcbi.1002500.g001
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diffuses in air in the absence of wind. The term Cs(x,y) represents

the odor cue emitted at a constant rate by the hosts in units of

ppm/s:

Cs(x,y)~
J0, at host locations

0, elsewhere:

�

The wind velocity ~VV consists of two components:

~VV (x,y,t)~~UU(x,y,t)z~UUr(x,y,t),

where ~UU is used to introduce drifts or relatively large features

produced by the air and ~UUr is a stochastic velocity vector used to

approximate the effect of small-scale wind variations in the

domain. The direction of ~UUr at each point in the domain is chosen

uniformly from ½0,2p) and the magnitude is chosen from a normal

distribution centered around zero. The large-scale velocity field
~UU~½0,U2� is a constant speed flow from bottom to top (see Fig. 2)

in most of our simulations. However, we sometimes use a

meandering plume ~UUm in place of the straight plume ~UU , which

is given by the expression

~UUm~
U2

2

{
ffiffiffi
3
p

cos(ay)
xz0:1L

1:1Lffiffiffi
3
p

1:1La
sin(ay)z1

2
664

3
775, ð2Þ

where the frequency a is p=2. It is easily checked that this flow is

incompressible.

Equation (1) is numerically evolved using second-order centered

differences to approximate the Laplacian and a first-order

conservative upwind finite difference method for the convection

term (similar to page 636 of [30]). The normal components of the

concentration gradient are zero at the boundary (Neumann

conditions). We integrated the equations with a forward Euler

method and confirmed that our solution converged by verifying

that significantly decreasing the spatial grid size and time step size

had a minimal change in the solution.

In most of the simulations in this paper, we consider length scales

and time frames consistent with the mosquitoes being in close

proximity to the hosts. The length of a side of the square domain L
is 10 m and the simulations cover time periods of 50–500 seconds.

The hosts are situated in the middle of the domain, 5 m from the

top and bottom domain edges (see Fig. 2). Initially, the domain is

bare of CO2 and it takes about 45 seconds for the plume to reach

the domain edge. At that point, the mosquitoes are released into the

domain, with starting positions dependent on their particular flight

behavior. For upwind plume-finding behavior, the mosquitoes are

all released downwind of the hosts; for downwind and crosswind

behaviors, the entry is along the upwind side of the domain.

Mosquito behavioral rules
Mosquitoes and hosts are modeled as discrete individuals, or

agents. Hosts are stationary, motivated by the interaction between

nocturnal Cx. quinquefasciatus mosquitoes and their roosting bird

prey. In this section we explain the mosquito navigation model,

which differs during plume finding and plume tracking. Assump-

tions about mosquito agent behavior include:

N The mosquitoes do not affect each other.

N The mosquito motion is not restricted to the CO2 simulation

region and may leave and re-enter the region during their

random walks.

N Below a CO2 threshold C0, the mosquitoes navigate only using

wind direction and move according to a predetermined

upwind, downwind, or crosswind pattern. This is plume-

finding behavior.

N For concentrations above the threshold C0, the mosquitoes

respond by changing to plume-tracking behavior: moving

upwind and toward larger levels of CO2. There is a saturation

concentration level Csat above which no further changes in

concentration can be detected.

N Large concentration levels strongly bias the mosquito flight

direction and result in flights that are on average closer to the

target direction. Conversely, low concentrations weakly bias

the mosquito flight direction and result in greater variability in

flight direction.

N When a mosquito comes within a predetermined radius rc of a

stationary host, the mosquito is removed from the simulation

and a ‘‘contact’’ is recorded. In this context, a contact means

an attack on the host, regardless of whether it results in a blood

meal, a diversion, or death [10]. The term ‘‘contact rate’’

refers to the number of contacts per time period, usually the

length of one simulation.

N Mosquito agents may move toward higher concentration levels

by one of two mechanisms – temporally sampling the

concentration level or directly sensing the spatial gradient of

the concentration (klinotaxis and tropotaxis respectively in

chemotaxis literature [13]).

Mosquito flight direction based on CO2 concentration
(klinotaxis). During plume-tracking behavior, the mosquito

chooses a flight segment direction by comparing the current CO2

concentration level with the concentration previously encountered

(CO2 levels are interpolated to the mosquito location). If the CO2

level is higher, the mosquito is biased to continue in the same

direction. If it is lower, the mosquito is biased to turn around. So

the target direction of the mosquito, h, is either plus or minus its

previous direction. Given that there is inaccuracy in the ability for

Figure 2. Examples of mosquito trajectories. Example mosquito
trajectories for upwind (UW), downwind (DW), and crosswind (CW)
plume-finding behaviors. The stationary hosts are distributed into two
groups and the contour of the odor plume marks a snapshot of the
CO2 sensing threshold of the mosquito. The UW and CW mosquitoes
successfully locate a host; the DW mosquito is unsuccessful. The CW
mosquito leaves and re-enters the domain.
doi:10.1371/journal.pcbi.1002500.g002
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a mosquito to sense CO2 levels, we add stochasticity to the

ultimate choice of direction by constructing a window of width 2a
centered around h, ½h{a,hza� (see Fig. 3).

The quantity a is dependent on the magnitude of the CO2

change. To calculate it, we set a maximum concentration change

that can be sensed, calling it DCsat, and a minimum concentration

change DC0~b0 DCsat, with 0vb0v1. Concentration changes

below DC0 are imperceptible. We define a relative concentration

change by b~DC(xn,yn){C(xn{1,yn{1)D=DCsat, where (xn,yn) is

the mosquito location at time tn. Then a is computed from

a~amax{(amax{amin)F (b,b0) ð3Þ

where amax and amin are the maximum and minimum allowable

window half-widths and F is a ramp function that takes values

between 0 and 1:

F (b,b0)~

0, bvb0

b{b0

1{b0
, b0ƒbƒ1

1, 1vb

8>><
>>:

:

The mosquito direction influenced by the CO2 concentration,

hc, is chosen randomly from a uniform distribution in the window

interval:

hc[½h{a,hza�: ð4Þ

The interval size is largest when the sensory input is lowest, leading

to greater uncertainty in direction choice. We refer to this rule as

the ‘‘sampling method’’ in the remainder of the paper.

Mosquito flight direction based on CO2 gradient
(tropotaxis). Gradient chemotaxis models use the concentra-

tion gradient, +C~(LC=Lx,LC=Ly), as the variable sensed by

mosquitoes or other chemotactic agents [31,32]. This model is

incorporated into our framework by computing the CO2 gradient

on the grid and interpolating it to the mosquito location. The

direction of the gradient is the target direction h for the mosquito’s

next flight segment. Following the procedure in the previous

section, we set Gsat as the maximum and G0~b0 Gsat as the

minimum gradients that can be sensed, and define the relative

gradient at the mosquito location by b~D+CD=Gsat. Mosquito

direction is then computed as in Eqs. (3)–(4). We refer to this as the

‘‘gradient method.’’

Mosquito flight direction based on wind velocity. Mosquito

agents have a preassigned plume-finding strategy: downwind,

upwind, or crosswind. The target angle for wind, denoted hv,

depends on the wind direction at the mosquito location, which is

evaluated from the large scale wind ~UU plus a random component

interpolated from the grid in the CO2 simulation region. For

example, if wind is blowing from South to North, a mosquito with a

downwind strategy would have a target angle pointing North; a

mosquito with an upwind strategy would have a target angle pointing

South; and one with a crosswind strategy would have a target angle

pointing either East or West (Fig. 2).

The size of the angle window is chosen according to the strength

of the wind ~VV sensed by the mosquito. We assume that mosquitoes

can distinguish wind speeds up to a saturation value Vsat. The

direction is chosen randomly from a precision window

hw[½hv{av,hvzav�, ð5Þ

where av~âamax{(âamax{âamin)F (b,b0) with b~D~VV D=Vsat similar to

Eq. (3). The threshold speed for mosquito response to wind is a

percentage of the saturation value, V0~b0 Vsat. During crosswind

plume-finding behavior, the duration of travel in one direction is a

parameter in the model. We choose the duration to be uniformly

selected from an interval Tcwd~½Tmin,Tmax�.
Mosquito flight speed. A mosquito agent chooses a flight

speed s between a minimum Smin and a maximum Smax

depending on the local CO2 level. Unlike the random choice of

direction, the speed of the mosquito is defined by a deterministic

formula similar to Eq. (3):

s~Smax{(Smax{Smin)F (b,b0),

where the variable b represents the scaled CO2 concentration

C=Csat at the mosquito location. If the concentration is below the

threshold C0, then the mosquito speed is Smax. Similarly, if the

concentration is above Csat, then the segment speed is Smin. This

allows mosquitoes to remain near areas of high CO2 concentra-

tion. A change in speed due to the presence of a chemical signal is

properly called orthokinesis [33].

Mosquito position updating. The direction of the flight

segment and the speed of each mosquito are updated every DT
time units. The updated mosquito position is calculated by

xnz1

ynz1

� �
~

xn

yn

� �
zs(DT)~ddz~VVDT ,

where (xn,yn) is the mosquito position at time step n. The last term

is passive convection of the mosquito in the ambient wind. The

quantity ~dd is a direction vector that varies between plume finding

and plume tracking:

Figure 3. Mosquito flight direction choice. Schematic of the
mosquito direction choice in the host-seeking model. At each discrete
flight segment, the angle h represents the ideal target direction of the
mosquito, which can only be sensed or followed to a precision of a.
doi:10.1371/journal.pcbi.1002500.g003
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~dd~c
cos hw

sin hw

� �
z(1{c)

cos hc

sin hc

� �
,

where hw from Eq. (5) is based on the wind and hc from Eq. (4) is

based on the CO2. In plume finding, when there are no odor cues,

c~1, and the flight direction depends only on the assigned plume-

finding behavior of the mosquito. During plume tracking, c~1=2
and the flight direction is the average of the directions chosen from

the concentration and from an upwind strategy. Mosquitoes that

have a downwind or crosswind plume-finding behavior will begin

to fly upwind in the presence of CO2.

Assessment of the model
We assess model performance by comparing different mosquito

navigation strategies and by evaluating the sensitivity of the model

to a subset of the simulation parameters. We find that the gradient

and sampling methods can exhibit comparable performance and

that, in general, the parameter set in Table 1 is robust to small

changes.

Comparison of simulated host-seeking mechanisms. One

might expect that perfect knowledge of the gradient would result in

better performance than perfect knowledge of the CO2 concentra-

tion. However, the model includes a window around the gradient

direction from which the direction of motion is chosen randomly; in

other words, the knowledge of the gradient is imperfect. We find

that sufficiently imperfect knowledge of the gradient direction can

result in overall behavior that is comparable to the sampling method

(with different parameter values). This is an important observation

since many existing models use the popular Keller-Segel approach

that assumes knowledge of the concentration gradient [31,32].

We placed nine hosts in a regular square grid at 1 ft (0.3 m)

intervals in the center of the simulation region in the presence of a

meandering velocity field. We examined upwind, downwind, and

crosswind plume-finding behaviors, each in combination with the

gradient and sampling methods for CO2 sensing. For the gradient

method, we used the parameters amin~p=6, G0~0:001 (40 ppm/

meter), and Gsat~0:198 (7900 ppm/meter). The last two param-

eters are analogous to DC0 and DCsat for the sampling method.

See Eq. (2) for the formula governing the wind and Table 1 for all

other simulation parameters. For convenience, all numerical

simulations were computed using dimensionless variables, but we

report parameters in dimensional units.

We also simulated a random walk strategy (with equal

probability of stepping in all directions) in which the odor plume

is not sensed at all and the wind has no effect. This mimics

mosquito dispersal (mathematical diffusion) independent of the

chemical concentration and wind. The comparison of the

chemotactic rules to this random walk provides a baseline for

determining how different two rules are. The random walk

mosquitoes started at the same location as the downwind strategy,

but chose a direction at every time step from a uniform

distribution on ½0,2p). Their speed was constantly Smax, the

same speed as the plume-finding behavior of the host-seeking

mosquitoes. There are many other possible choices for random

walks; see [12].

Table 1. Parameter choices.

Parameter Value Description

Smin 0.4 m/s* minimum mosquito flight speed

Smax 1.5 m/s* maximum mosquito flight speed

C0 40 ppm* CO2 sensing threshold (no ambient CO2)

Csat 4000 ppm CO2 sensing saturation (no ambient CO2)

DC0 0.2 ppm DC sensing threshold

DCsat 80 ppm DC sensing saturation

amin p=36* minimum DC interval half-width

amax p maximum DC interval half-width

âamin p=6* minimum wind-sensing interval half-width

âamax p=2 maximum wind-sensing interval half-width

V0 0 m/s wind-sensing threshold

Vsat 0.5 m/s wind-sensing saturation

Tcwd [0.5, 0.9] s* duration of crosswind flight

rc 0.5 m* critical radius for mosquito-host contact

U2 0.2 m/s speed of large-scale wind

~UUr
[X(t), Y(t)]0.15 m/s* superposed stochastic small-scale wind velocity

X (t),Y (t) mean 0, std dev 0.5 Gaussian random variables resampled every 2 s

D 1:6|10{5 m2=s* diffusion coefficient of CO2 in air

J0 1680 ppm/s* rate of CO2 release from a host

L 10 m length of a side of the square domain

Tf up to 500 s simulation time length

Nv 200 number of mosquitoes per simulation

Parameter symbol, value, and description for the simulations in the Methods and Results sections. The first 14 parameters are related to mosquito navigation. The
remainder control the simulated wind, CO2 spread, and size of the simulations.
*Starred values were locally varied in the sensitivity analysis.
doi:10.1371/journal.pcbi.1002500.t001
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The proportion (P) of mosquitoes that found a host after 150 s is

shown in Fig. 4 for all the mosquito heuristics discussed above.

The values shown in the bar graph are averages over 15

simulations in which the time series of random velocity fields is

fixed, but the mosquito behavior stochastically varies. The thin

error bars represent +2 standard deviations. The random walk

(black bars) had by far the fewest contacts, while the gradient and

sampling methods have overlapping error bars. After 500 s, there

was almost no change in either of the host-seeking methods, but

the proportion of mosquitoes that found a host during the random

walk increased to 0.25.

For these particular parameter choices, the gradient method

and sampling method show similar results and both are

substantially different than a random walk. There are enough

free parameters in our model of host-seeking so that behavioral

heuristics based on either spatial gradient sensing or temporal

sampling can deliver approximately the same results. Since

mosquitoes almost certainly navigate using klinotaxis [27], we

will use the sampling method in the remainder of this work.

However, we emphasize that our observations support the use of

the Keller-Segel model of gradient sensing as in [31,32].

Sensitivity analysis. The goal of this paper is to characterize

the effect of host aggregation and mosquito plume-finding

behavior on the mosquito-host contact rate for the parameters

in Table 1. In this section, we consider a single host distribution

and locally vary a subset of our model parameters independently

to assess the robustness of the model with respect to our target

parameter set. We find (with a few exceptions) that the parameter

set we use with our model is robust to small changes in input

parameters.

We simulated crosswind, downwind, and upwind plume-finding

behaviors in the presence of a straight odor plume produced by an

arrangement of nine hosts spaced 1 ft (0.3 m) in a square patch in

the center of the domain. For each plume-finding behavior, we

varied each of the ten starred parameters in Table 1 by +10%
while holding all other parameters constant. To capture the

average mosquito behavior, the simulations were repeated 15–20

times for each plume-finding behavior (upwind, downwind, and

crosswind), until a mild convergence criterion was satisfied. In

each set of simulations, we used the same sequence of random

velocity fields and the same set of random numbers for mosquito

behavior, so that the differences between sets were due solely to

the parameter perturbations and not to the stochastic nature of the

agents or wind. We analyzed two output variables:

N the proportion of mosquitoes that find a host anywhere in the

domain, P, and

N the average time to locate a host, Tavg.

When calculating Tavg, we exclude mosquitoes that never locate

a host.

A local sensitivity index, SI , is a partial derivative of an output

variable with respect to an input parameter that is scaled to allow

comparisons across variables. High sensitivities are synonymous

with large rates of change, while low sensitivities (and model

robustness) are associated with small derivatives. The sign of SI
indicates if the change is in the same direction (positive) or the

opposite direction (negative) as the perturbation. To calculate SI

values, we used a centered difference approximation to the partial

derivative multiplied by the baseline value of the input parameter

over the baseline value of the output variable. Symbolically, if we

let I be an input parameter, we have

SI~
Pz{P{

2dI

I

P

� �
, ð6Þ

where P{,P, and Pz are the values of the output variable

corresponding to the varying input parameter: I{dI , I , and

IzdI , respectively. Since we consider variations of +10%, we

choose d~0:1. We estimated the error in this method by taking

half of the difference between the one-sided partial derivatives:

SI Error~
1

2

Pz{P

dI

I

P

� �
{

P{P{

dI

I

P

� �����
����: ð7Þ

We show the combinations of plume-finding behavior, input

parameter, and output variable with the highest sensitivity indices

in Table 2. SIs that are small compared to 1 in absolute value

indicate a robust response to parameter variation. In the first row,

SI~{1:8 means that if the maximum speed of a mosquito (Smax)

engaging in upwind plume finding increases by 10%, then the

average time for a mosquito to find a host will be decreased by an

estimated 18% with error bounds of +3%. This is a large response

and represents high sensitivity.

In Table 2, there are two SIs very close to 0.3, and five greater

than 0.6. The values greater than 0.6 represent moderate to high

sensitivities, while the two values near 0.3 are reasonably low. All

combinations that are not shown in Table 2 have DSI Dv0:3. The

total number of combinations tested were 20 per plume-finding

behavior, or 60 total. We see low values of SI in most of the

combinations tested, indicating that our model is locally robust to

the parameter set in Table 1, although we do not characterize

variability due to stochastic effects. The biggest exception to this

robustness is the maximum flying speed of the mosquitoes (Smax),

which strongly affects Tavg in upwind and downwind behaviors and

moderately affects P in crosswind plume-finding behavior. Overall,

the average time to locate a host, Tavg, is more sensitive to input

changes than the proportion of mosquitoes that find a host, P.

Figure 4. The proportion of mosquitoes finding a host within
150 s. The black bars are the results for a random walk (RW) without
wind and CO2, the gray for the gradient method (G) of concentration
sensing, and the white for the sampling method (S) of concentration
sensing. UW = upwind plume finding, DW = downwind plume finding,
and CW = crosswind plume finding. The thin error bars are +2 standard
deviations. If the simulation is allowed to progress beyond 150 s, then
no appreciable changes occur in the results for the host-seeking
methods, but the random walk continues to accrue contacts.
doi:10.1371/journal.pcbi.1002500.g004
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Results

We use the model introduced in the previous section to address

several questions pertaining to space-dependent small-scale plume

encounter and host localization.

N How do the different plume-finding behaviors compare in

terms of effectiveness in finding a host?

N How does the number of contacts vary between two unequally-

sized host groups?

N How does the number of contacts vary as the density of hosts

changes in a small patch?

In the following subsections, we describe the simulations

addressing these questions and we summarize our findings. We

find that the most contacts occur when the mosquitoes use a

crosswind strategy and are allowed sufficient time to either find a

host or leave the domain permanently. We conclude that the

larger of two unequally-sized groups has a smaller per capita

number of contacts. Finally, we find that the number of contacts

increases as hosts occupy a larger subregion within the compu-

tational domain.

Assessing plume-finding behavior
Intuitively, a crosswind flight strategy should result in a larger

number of contacts than upwind or downwind behavior if the

plume is straight. This is because mosquitoes close to the plume

are more likely to intercept it if their motion is primarily crosswind.

But for a meandering plume, it is not obvious if a crosswind flight

strategy is more effective than an upwind or downwind strategy.

We simulated mosquito behavior in both straight and meandering

plumes and recorded the proportion of mosquitoes that found a

host and the average time that it took a mosquito to locate a host.

We estimated the effectiveness of each plume-finding behavior

using these results and found that a crosswind strategy is superior

to upwind and downwind strategies, but is less efficient.

The odor plumes were produced by a regular arrangement of

nine hosts with a density of 1 host per 1 ft 2 (0.09 m2) located in a

single small patch in the center of the square simulation domain.

The time series of random velocity fields superposed over the

large-scale flow was the same for all simulations. See Table 1 for

parameter choices and Eq. (2) for the formula for the meandering

plume. An example of the general form of the meandering plume

is shown in Fig. 5, alongside a straight plume for comparison. The

meandering plume covers more area and achieves a greater width

than the straight plume. The outermost contour in both plots is

C0, the CO2 sensing threshold of the mosquito. The other

contours are equally divided between C0 and the maximum

concentration within each plume. The meandering plume has a

Table 2. Most sensitive local variation.

plume-finding
behavior

output
(baseline value) input SI SI Error

upwind Tavg (11.6 s) Smax 21.8139 0.3155

upwind Tavg (11.6 s) J0 0.3035 0.1661

downwind Tavg (4.6 s) Smax 20.6432 0.6093

downwind Tavg (4.6 s) rc 21.0265 0.8221

downwind Tavg (4.6 s) C0 20.6312 0.6741

downwind P (0.20) rc 0.3156 0.0374

crosswind P (0.36) Smax 0.7292 0.2666

This table lists the highest sensitivity indices over all plume-finding behaviors
and starred input parameters in Table 1 for the output variables P (proportion
of mosquitoes that found a host) and Tavg (the average time to a contact). The
second column is the output variable with its baseline value at the parameter
set given in Table 1. The third column lists the input parameters associated with
the highest sensitivity indices. The fourth and fifth columns are the sensitivity
index SI and its error from Eqs. (6)–(7). If DSI D%1, then the measured output is
not sensitive to small variations in the input parameter. All combinations not
shown have DSI Dv0:3.
doi:10.1371/journal.pcbi.1002500.t002

Figure 5. Examples of straight and meandering plumes with a superposed random velocity field. The triangles denote host position. The
contours show concentration level, with darker bars indicating lower concentration. The lowest contour is C0 and is the same in both plots. The other
contours are not the same in both plots because the maximum concentration is roughly three times higher in the meandering plume.
doi:10.1371/journal.pcbi.1002500.g005
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maximum concentration that is approximately three times higher

than that of the straight plume. Since the CO2 sources are the

same in both simulations, the concentration difference is due solely

to the differing velocity fields.

The results in Table 3 show the proportion of mosquitoes that

found a host, P, and the average time to locate a host, Tavg. The

column labeled P35 gives the value of P after only 35 s of host

seeking. We make the following observations from the table.

N Given unlimited time, the proportion of mosquitoes that found

a host was larger in the meandering plume for all plume-

finding behaviors, but it took much longer on average to reach

a host.

N In both plumes, a larger percentage of mosquitoes found a host

using the crosswind strategy, but they took substantially longer

to do so.

N If the mosquitoes were time-limited to 35 s, then results for

upwind and downwind behaviors were essentially unchanged,

but crosswind behavior went from being the most effective

strategy to being the least effective in the meandering plume.

Assessing host distribution
We explored the number of contacts that occur in two host

groups of equal density but unequal number. An equal per capita

contact rate across both host groups would indicate that

distributing the hosts into two separate patches has no effect.

However we found unequal per capita rates between groups,

indicating that a mosquito is less likely to detect a large group of

hosts than it is to detect the same number of hosts distributed in

smaller groups or as individuals. We also found unequal numbers

of contacts between two unequally-sized groups, indicating that

one group was easier to find than the other.

We performed a set of simulations in which we held the total

number of hosts constant in the domain (10 birds), but split them

between two groups in pairs of 9 and 1, 8 and 2, etc., down to 5

and 5 hosts per group. Fig. 2 shows an example of the 7-3

distribution. All other parameters were the same as in the previous

section for the straight plume. The two straight plumes from the

host groups were well separated from each other and from the left

and right domain edges. The exact positions of the hosts were

allowed to vary from one simulation to the next, and this affected

the plume shape and the internal distribution of CO2 over the

plume.

To compare results between groups we plotted the ratio of the

mosquito-host contacts in the smaller group divided by the

mosquito-host contacts in the larger group (S/L) against the ratio

of the number of hosts in the smaller group over the larger group

(see Fig. 6). Each point in the error bar plot shows the mean and

standard deviation over 150 simulations for each S/L ratio. The

diagonal line in Fig. 6 denotes the case when the per capita contact

rates are the same between groups. A value of 1 on the y{axis
represents the case when the number of contacts was the same

between both groups. When there are 5 hosts in both groups the

number of contacts is the same, confirming that there is no left-

right bias in the velocity field. When the group sizes are unequal,

the per capita contact rates are higher in the small group, but the

total number of contacts is higher in the large group (except for the

nearly equal 6-4 distribution). This occurs in the region between

the lines y~1 and y~x. The crosswind strategy is closest to

having equal numbers of contacts in both host groups, which

corresponds to equal ease in locating either group.

Assessing changing host density
In this section, we consider the effect of varying host density

given a constant number of hosts. Intuitively, the size of the region

where the hosts are congregated will affect the number of

mosquito-host contacts for two reasons. First, a larger host area

is more likely to be found by mosquitoes; second, the spatial

arrangement of the hosts affects the size and shape of the odor

plume they generate. We performed a set of simulations in which

10 hosts were distributed in a single patch in the center of the

domain. Patch area was varied from 10–80 ft 2 (1–7.4 m2) with a

corresponding host density varying from 1–8 ft2 per host (0.1–

0.74 m2). Our CO2 simulation region was 1076 ft2 (100 m2), so

that the patch occupied less than 10% of the simulation region.

For each host density, we ran 150–450 simulations to average the

effects of host position and individual mosquito choices, with more

simulations performed for larger patch areas.

Table 3. A comparison of plume-finding behaviors in straight
and meandering plumes.

plume-finding
behavior

plume
type P std dev Tavg std dev P35

upwind straight 22% 1.7% 11.6 0.5 22%

upwind meander 38% 2.5% 15.9 0.4 38%

downwind straight 20% 1.8% 4.6 0.9 20%

downwind meander 39% 1.9% 9.7 0.6 38%

crosswind straight 35% 3.5% 28.5 1.4 27%

crosswind meander 57% 4.2% 56.9 2.0 14%

The third and fourth columns, P and std dev, are the average and standard
deviation of the proportion of mosquitoes finding a host taken over 15
simulations of the same plumes with stochastic mosquito behavior. Each
simulation is sufficiently long to ensure that all the mosquitoes either find a
host or leave the domain. Tavg is the average time to a host taken over all
simulations. The associated standard deviation taken over the means of the
simulations. The final column recalculates P assuming that the simulation halts
after 35 s of host-seeking.
doi:10.1371/journal.pcbi.1002500.t003

Figure 6. Ratio of contacts between a small and a large host
group. Mean and standard deviation of the ratio of contacts in the
small group to that in the large group (S/L) vs the ratio of group sizes.
The line y~x denotes an equal per capita contact rate between groups,
while the line y~1 denotes an equal number of contacts at each group.
The data corresponding to a given ratio of hosts have been separated
slightly in the figure for visual purposes only.
doi:10.1371/journal.pcbi.1002500.g006
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The proportion of mosquitoes P that made contact in the group

is shown by the solid markers in Fig. 7, with the bars

corresponding to + one standard deviation. All three plume-

finding behaviors exhibit a slight upward trend in P with

increasing host patch area. Crosswind plume finding resulted in

the most contacts, while upwind and downwind plume finding

exhibit nearly identical results. In Fig. 7, P is plotted against the

percentage b|100%, where b is the side length of the square host

patch divided by the square computational domain side length. b
is a dimensionless ratio that relates a length scale important to the

host distribution to one that is important to the mosquito

distribution. As b increases, the hosts are spread over a larger

area and the host density decreases.

We approximated the results by the line P&P0zb(1{P0),
where P0 is the proportion of contacts made in the hypothetical

case where the area of the host patch is zero. P0 depends on

plume-finding behavior, wind velocity, number of hosts, and other

simulation parameters. We performed a least squares fit to find P0

for each plume-finding behavior (P0,uw&0:16, P0,dw&0:17, and

P0,cw&0:33) and the lines are shown in Fig. 7. In the Discussion,

we present a first attempt to link this linear approximation from

our agent-based model to a contact rate that has been used in

standard (nonspatial) epidemiology models.

Discussion

We developed an agent-based/continuum model to explore the

effect of behavioral decisions and spatial heterogeneity on the

contact rate between mosquito vectors and bird hosts and used it

to address three issues of potential interest to researchers in

epidemiology and vector control.

Assessing plume-finding behavior
Our results generally show that crosswind plume finding most

reliably led mosquitoes to a blood meal source. The effectiveness

of the crosswind strategy over periods of minutes is compatible

with the conclusions of the mark-release-recapture studies of

Anopheles gambiae Giles in [34], where the dispersion of recaptured

mosquitoes was related primarily to the distribution of human

settlements (over time scales of days). We find that this

effectiveness was accompanied by a high cost in time, as also

seen in [12]. If the success of host location was restricted to occur

within 35 s of mosquito release, then crosswind flight was the

superior strategy only in a straight odor plume. In a meandering

plume under the time limit, up- and downwind searching were

better than crosswind flight. These results are similar to the

conclusions drawn by Sabelis and Schippers [20], who used a

geometric argument to show that crosswind plume finding is less

effective when wind direction is highly variable.

Assessing host distribution
When hosts were arranged in two groups of different size, the

larger group consistently attracted more mosquitoes regardless of

the plume-finding strategy, although the difference was less

pronounced for crosswind flight (Fig. 6). At the same time, the

smaller group experienced a higher per capita contact rate. These

results are consistent with Foppa et al. [7], which reports on indoor

experiments of Cx. quinquefasciatus feeding on roosting chickens.

They found that the per capita feeding rate on a single chicken was

about 4.27 times higher than that on a chicken in a group of nine.

We find similar mean per capita ratios (4.3 and 4.4) for the upwind

and downwind plume-finding behaviors when ten hosts are split

into a group of nine and a singleton. The close match is surprising

since our simulations included wind, whereas the experiments

were conducted indoors. However, the uncertainty in the

simulations and experiments is high.

The results indicate that it is advantageous for birds to roost

together in larger groups on this spatial scale, because on average

they will receive fewer bites. This phenomenon of attack

abatement is well-known in the literature on predator-prey

interactions [35], and likely has two causes in the situation

considered here. First, the odor plume exuded by a group does not

grow linearly with the number of hosts, because the hosts are

clustered together. This leads to fewer mosquitoes locating the

group than would find the same number of well-spaced individuals

(an avoidance effect). Secondly, mosquitoes only need a fixed

amount of blood, and so they will not attack additional individuals

even if they are available. This is a dilution effect, also seen in the

reduction of groups at risk for malaria resulting from urbanization

[36]. The resulting contact heterogeneity arising from attack

abatement could have important implications for transmission

dynamics.

Assessing changing host density
Standard models of mosquito-borne transmission assume that

the mosquito contact rate on one host is inversely proportional to

the numbers of hosts (reviewed, e.g. by [37]). This is likely true

when hosts are so abundant that a mosquito will always be able to

locate one. Our simulations indicate that the probability that a

mosquito will locate a host is largely determined by the shape of

the odor plume (see Table 3). However, the shape of an odor

plume is difficult to predict, since it depends on local wind velocity

and turbulence due to landscape features. We therefore propose

an approximation that does not depend on plume shape, and is

instead based on b, which can be viewed as a patchiness parameter

(Fig. 7). This allows us to model contact rates when hosts are

variably distributed over patches within a larger domain more

realistically even if exact features of the relevant odor plumes are

unknown.

We derive a patchiness-driven contact rate model by starting

with the contact rate for malaria transmission from Chitnis et al.

Figure 7. The proportion of mosquitoes finding a host as a
function of host density. The simulation results are given by the
solid markers with + one standard deviation (UW = upwind,
DW = downwind, CW = crosswind). The lines are linear fits to the data
using the formula P~P0zb(1{P0), where P0 is a free parameter and
b is the length of a side of the square host patch divided by the length
of a side of the simulation region. As b increases, the hosts spread out
(i.e., decrease in density) and the number of mosquitoes locating a host
increases. The x{axis is b labeled as a percentage.
doi:10.1371/journal.pcbi.1002500.g007
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[38] which applies specifically in the case of homogeneous mixing

in a fixed area without considering host-seeking mechanisms. They

propose a vector-host contact rate of

C~ svNvshNh

svNvzshNh

,

where sv is the number of contacts each mosquito wants per unit

time, sh is the maximum number of contacts a host can receive per

unit time, Nv is the total number of vectors and Nh is the total

number of hosts. This implies that svNv is the approximate

contact rate when the mosquito population is small since every

mosquito in a small population is expected to locate a host when

the populations are homogeneously mixed.

We seek to modify this expression to account for host patch

area, as depicted in Fig. 1, and mosquito behavior. When the hosts

are limited to a small patch of area within a larger region, we make

two modifications to the formula above. First, not every mosquito

in a small population can be expected to find a host, since not all of

the mosquitoes will come into contact with the odor plume. For

this reason, we replace the contact rate with bsvNv, where b
represents the ratio of the diameter of the patch where the hosts

are located to the diameter of the CO2 simulation region. The

second modification comes from the fact that even when the patch

size becomes small (and b&0), the number of contacts must be

nonzero since even a tiny area produces a plume that mosquitoes

can follow to a host. We want our modified contact rate function

to be consistent with the original function in [38] when b~1,

which is the case where the host patch is equal to the entire CO2

simulation region. Based on these observations we propose the

modified contact function

Cm~
bsvNvshNh

bsvNvzshNh

zP0(1{b)svNv, ð8Þ

where P0 represents the proportion of mosquitoes that find a host

as the patch of area containing the hosts becomes infinitesimally

small.

We note that when the host patches are small (i.e. small b), Eq.

(8) can be linearized to read Cm&svNv½P0zb(1{P0)�, where the

factor in brackets, P0zb(1{P0), is interpreted as the proportion

of mosquitoes that find a host for a given patch-to-region length

ratio b. This proportion can be computed from the simulations, as

shown by the lines in Fig. 7. Therefore, reasonable assumptions

about the patchy distribution of hosts in the domain allow us to

devise a quantitatively reasonable estimate of the host-finding

probability of mosquitoes for the space and time scales considered

here.

Limitations
The length and time scales in the simulations presented here

were motivated by the indoor experiments in [7] and a desire to

quantify mosquito success near the end of a host-seeking flight.

Our conclusions must be validated for spatial domains or time

periods that are significantly larger. Furthermore, there are other

probability distributions that can be used for mosquito naviga-

tional choices (see e.g. [12]) and a variety of initial mosquito spatial

arrangements that may affect our conclusions.

Such parameter choices are within the capabilities of the model,

and to demonstrate we briefly present a simulation of a growing

odor plume in a large domain. Mosquitoes engaging in all three

types of plume finding (2000 mosquitoes each) were initially

uniformly distributed over a disk of radius 100 m centered on four

clusters of ten roosting birds each. The wind meandered according

to an incompressible flow appropriate for the large domain size

and the crosswind mosquitoes flew in the same direction for a

number of decisions chosen from a Lévy distribution having a

power law in the tail of p(‘)*‘{2 [39]. The Lévy distribution was

centered at 0.7 s, the mean value of Tcwd in Table 1, and only

positive values were sampled. The mosquitoes were placed in the

domain after 150 seconds when the odor plume was approxi-

mately 35 meters long. Fig. 8 shows the state of the odor plume

after 250 s and 500 s, along with the positions of all nearby

mosquitoes. The simulation was run for 1500 s, at which point the

odor plume was about 180 m in length and 4.2%, 6.4%, and

26.6% of the upwind, downwind, and crosswind mosquitoes had

located a host respectively. The success rate was lower compared

to the smaller domain, particularly for the upwind and downwind

mosquitoes that rapidly left the plume behind (see Fig. 8, right).

The crosswind mosquitoes moved downwind at the same rate the

plume did, and therefore had many more opportunities to

intercept it. There were still a substantial number of crosswind

mosquitoes interacting with the plume when the simulation

ceased.

We hope to expand our careful analysis of the smaller domain to

a larger domain in the future. In larger domains, it would be

interesting to include the effect of mosquito breeding sites and how

their locations affect the biting rate of hosts near them in

comparison to hosts living farther away. Significant differences in

the biting rates in spatial relation to breeding sites have been

reported for malaria in [40].

Future directions
There are other potential model extensions that are equally

interesting. Disease transmission via mosquito bite, host movement,

infection, and demographic processes in both vertebrate hosts and

mosquitoes and the dependence of these processes on biotic and

abiotic factors could be integrated with the existing model for

explicit small-scale modeling of disease spread. This modeling

framework is capable of accommodating many further levels of

complexity, such as gusting wind, moving hosts, multiple host types,

odor-baited traps, variable breathing rate, compound odors,

repellents, etc. The challenge will be to identify the components

that most strongly affect the behavior of the model system and the

underlying reality on which it is based. For example, in the

simulations presented here the spread of the host odor is dominated

by turbulent convection and diffusion plays a very minor role. It is

therefore reasonable to hypothesize that the particular odor cue

used by the mosquitoes will have little effect, and that substituting

lactic acid for CO2 (for example) will not impact the resultant

contact rates. See [13] for a discussion of turbulent mixing versus

molecular diffusion in the context of chemotaxis.

Additional factors could be included in the model in order to

capture subtle differences between mosquito species, lighting

effects, and other elements not included in the current work. Hosts

tend to attract mosquitoes in unequal ways [41]. Differential

attractiveness, the emission of different levels of CO2 by different

hosts as well as multiple odor cues can also be introduced into the

model to study situations like those presented in [42], where

mosquitoes of many species finding humans distributed in huts, or

in [43], where mosquitoes were collected inside village houses in

Tanzania. These studies report an approximate direct relationship

between the number of inhabitants per house and the number of

mosquitoes collected. Our model could be used to study which

factors influence more strongly this relationship.

From the point of view of controlling the vector population, the

model presented here may offer some insights into how the spatial
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distribution of mosquito traps may affect the overall control. This

can be accomplished by replacing the hosts in the model with

odor-baited mosquito traps and adjusting appropriate parameters.

This was addressed in a non-spatial model by Okumu et al. [10],

where homogeneous mixing of hosts was assumed. They discuss

the importance of space in the vector-host contact process and

indicate that the rate at which an individual host is discovered by

an individual vector depends on the distance between hosts and

vectors as well as on the size of the odor plumes generated by the

hosts. Further, spatial characteristics such as the topography and

wind direction are known to be influential in the rates at which

individual hosts are found. Our model can explicitly include

spatial features to compare strategies of where to place mosquito

traps relative to blood-source hosts. According to the studies in

[44] the distances at which various species of mosquitoes

responded to CO2 baits by initiating orientation toward the them

was 30 meters or less. Therefore, the small model length scales

presented here are appropriate for such simulations.
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28. Cooperband MF, Cardé RT (2006) Orientation of Culex mosquitoes to carbon

dioxide-baited traps: flight manoeuvres and trapping efficiency. Med Vet
Entomol 20: 11–26.

29. Davis EE (1996) Olfactory control of mosquito behavior. In: Ciba Foundation

Symposium No. 200. Olfaction in mosquito-host interactions John Wiley and
Sons Ltd. pp 48–53.

30. LeVeque RJ (1996) High-resolution conservative algorithms for advection in
incompressible flow. SIAM J Numer Anal 33: 627–665.

31. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30: 225–234.
32. Horstmann D (2003) From 1970 until present: The Keller-Segel model in

chemotaxis and its consequences I. Jahresbericht der DMV 105: 103–165.

33. Pierce-Shimomura JT, Morse TM, Lockery SR (1999) The fundamental role of
pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci 19: 9557–69.

34. Gillies MT (1961) Studies on the dispersion and survival of Anopheles gambiae Giles
in East Africa, by means of marking and release experiments. Bull Entomol Res

52: 99–127.

35. Turner GF, Pitcher TJ (1986) Attack abatement: A model for group protection
by combined avoidance and dilution I. Am Nat 128: 228–240.

36. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW (2005) Urbanization,
malaria transmission and disease burden in Africa. Nat Rev Microbiol 3: 81–90.

37. Wonham MJ, Lewis MA, Renclawowicz J, van den Driessche P (2006)
Transmission assumptions generate conicting predictions in host-vector disease

models: A case study in West Nile virus. Ecol Lett 9: 706–25.

38. Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a
mathematical model for malaria transmission. SIAM J Appl Math 67: 24.

39. Reynolds AM, Frye MA (2007) Free-ight odor tracking in Drosophila is consistent
with an optimal intermittent scale-free search. PLoS ONE 2: e354.

40. Thompson R, Begtrup K, Cuamba N, Dgedge M, Mendis C, et al. (1997) The

Matola malaria project: A temporal and spatial study of malaria transmission
and disease in a suburban area of Maputo, Mozambique. Am J Trop Med Hyg

57: 550–559.
41. Knols BG, de Jong R, Takken W (1995) Differential attractiveness of isolated

humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg 89: 604–606.
42. Haddow AJ (1942) The mosquito fauna and climate of native huts at Kisumu,

Kenya. Bull Entomol Res 33: 91–142.

43. Killeen G, Tami A, Kihonda J, Okumu F, Kotas M, et al. (2007) Cost-sharing
strategies combining targeted public subsidies with private-sector delivery

achieve high bednet coverage and reduced malaria transmission in Kilombero
Valley, southern Tanzania. BMC Infect Dis 7: 121.

44. Gillies MT, Wilkes TJ (1972) The range of attraction of animal baits and carbon

dioxide for mosquitoes. Studies in a freshwater area of West Africa. Bull
Entomol Res 61: 389–404.

A Spatial Model of Mosquito Host-Seeking Behavior

PLoS Computational Biology | www.ploscompbiol.org 13 May 2012 | Volume 8 | Issue 5 | e1002500


