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1 Research Group in Biomedical Informatics, Institut Municipal d’Investigació Mèdica/Universitat Pompeu Fabra, Barcelona, Catalonia, Spain, 2 Grup d’Algorı́smica i Genètica,
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We address the problem of comparing and characterizing the promoter regions of genes with similar expression
patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-
expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared
the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites,
annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences
of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of
two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized
the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs.
Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-
map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence
alignments.
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Introduction

Sequence comparisons are among the most useful compu-
tational techniques in molecular biology. Sequences of
characters in the four-letter nucleotide alphabet and in the
20-letter amino acid alphabet are extremely good symbolic
representations of the underlying DNA and protein mole-
cules, and encode substantial information on their structure,
function, and history.

Primary sequence comparisons, however, have limitations.
Although similar sequences do tend to play similar functions,
the opposite is not necessarily true. Often similar functions
are encoded in higher order sequence elements—such as, for
instance, structural motifs in amino acid sequences—and the
relation between these and the underlying primary sequence
may not be univocal. As a result, similar functions are
frequently encoded by diverse sequences.

Promoter regions controlling eukaryotic gene expression
are a case in point. The information for the control of the
initiation of the RNA synthesis by the RNA polymerase II is
mostly contained in the gene promoter, a region usually 200
to 2,000 nucleotides long upstream of the transcription start
site (TSS) of the gene. Transcription factors (TFs) interact in
these regions with sequence-specific elements or motifs (the
TF binding sites (TFBSs)). TFBSs are typically 5–8 nucleotides
long, and one promoter region usually contains many of them
to harbor different TFs [1]. The interplay between these
factors is not well understood, but the motifs appear to be
arranged in specific configurations that confer on each gene
an individualized spatial and temporal transcription program
[1]. It is assumed, in consequence, that genes exhibiting
similar expression patterns would also share similar config-
urations of TFs in their promoter.

However, TFBSs associated to the same TF are known to
tolerate sequence substitutions without losing functionality,

and are often not conserved. Consequently, promoter regions
of genes with similar expression patterns may not show
sequence similarity, even though they may be regulated by
similar configurations of TFs. For instance, only about 30% to
40% of the promoter regions are conserved between human
and chicken orthologous genes [2], and the conservation of
human–mouse orthologous promoter regions is only slightly
higher than that observed in intergenic regions [3]. Indeed,
despite the recent progress due to the development of
techniques based on so-called phylogenetic footprinting [4],
lack of nucleotide sequence conservation between function-
ally related promoter regions may partially explain the still
limited success of current available computational methods
for promoter characterization (see [5] and [6] for further
information).
In the approach described here, we attempt to overcome

this limitation by abstracting the nucleotide sequence, and
representing a promoter region by a sequence in a new
alphabet in which the different symbols denote different TFs.
Using an external mapping function, for instance, a look-up
table or a collection of position weight matrices (PWMs) that
associates each TF to the nucleotide sequence motifs the
factor is known to bind, we can translate the nucleotide
sequence of the promoter into a sequence in this new
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alphabet. These sequences can be aligned. If the scoring of
the alignment takes into account not only the presence/
absence of a given symbol, but its relative position on the
primary nucleotide sequence, the optimal alignment between
the promoter regions of two genes with similar expression
patterns may reflect the underlying common configuration of
TFBSs. We refer to these alignments either as meta-align-
ments, as they are performed between sequences in a meta-
alphabet, or map alignments, since they are obtained after
mapping the nucleotide sequence in a higher order alphabet.

In this paper, first we state formally the problem of
mapping a nucleotide sequence into a sequence in an
alphabet of TFs denoting symbols (a transcription factor
map, or TF-map), and introduce the notion of pairwise
alignment between two such sequences or maps. Then, based
on an early algorithm to align restriction enzyme maps [7], we
develop an efficient algorithm to obtain the optimal global
alignment between two TF-maps. We estimate the optimal
parameters of the alignment in a set of well-characterized
human–rodent orthologous gene promoters, using a number
of different mapping functions (collections of PWMs repre-
senting TFBSs). Finally, we evaluate the ability to distinguish
co-regulated from non co-regulated genes based on the
comparison of promoter sequences. Our results, obtained in
CISRED [8], a large database of human co-regulated genes,
and relying on the JASPAR collection [9] to derive the TF-
maps, indicate that comparisons of TF-maps are able to
reveal relationships between co-regulated genes that are not
detected by nucleotide sequence comparisons.

Results

The Algorithm
Translation of the promoter sequence into a TF-map. In

our approach, we translate the nucleotide sequence of a
promoter region S¼ s1s2 . . . sk into a sequence of 4-tuples A¼

a1 . . . an where each ai ¼ , a f
i ; a

p1
i ; a

p2
i ; a

s
i. denotes the match

with score asi of a binding site for the TF a f
i occurring between

the position ap1
i and the position ap2

i over the sequence S. In
the work described in this paper, we obtain the translation
from S to A by running on S a collection of PWMs
representing binding motifs for TFs (such as, for instance,
the collection in TRANSFAC [10]). For each match over a
given threshold, we register in A the positions ðap1

i ; a
p2
i Þ, the

score ðasi Þ, and the label ða f
i Þ of the TF associated to the PWM.

The translation preserves the order of S in A, that is if i , j in
A then ap1

i � ap1
j (the � is because matches to different TFs

may occur at the same position). We will refer to the resulting
sequence A as a TF-map or simply a map (see Figure 1). Note
that other mapping functions, instead of collections of PWMs,
can also be used to translate S into A.
In the implementation here, matches to PWMs are con-

sidered strandless, that is, they are annotated at a given
location, irrespective of the orientation in which they occur.
While biological evidence suggests that some TFBSs are
functional only when present in a given strand, in other cases
TF activity appears to be independent of the orientation of
the binding site [11]. Since in general we do not have
information about the strand in which a binding site may be
functional, we have not considered strand in our analysis.
Alignment of TF-maps. The alignment of the maps A¼a1 . . .

am and B ¼ b1 . . . bn is a correspondence T, maybe empty,
between A and B such that: 1) ðai; bjÞ 2 T if and only if
a f
i ¼ b f

j (that is, two elements are aligned if and only if they
correspond to the same TF); 2) if ðai; bjÞ 2 T, then there are no
other elements bl (l 6¼ j) in B such that ðai; blÞ 2 T, nor
elements ak (k 6¼ i) in A such that ðak; bjÞ 2 T (that is, each
element in A is aligned at most to one element in B, and vice
versa); 3) if ðai; bjÞ 2 T and ðak; blÞ 2 Tand i , k, then j , l (that
is, the alignment maintains the colinearity between the
sequences A and B); 4) if ðai; bjÞ 2 T and ðak; blÞ 2 Twith i , k
and j , l, then ap2

i , ap1
k and bp2j , bp1l (that is, no overlap in

the primary sequences is permitted between the sites
corresponding to the aligned elements). Usually there are
many possible alignments between two given A and B maps
(see Figure 1 for an example). Given an alignment T

T ¼ aI1 ; bJ1
� �

; aI2 ; bJ2
� �

. . . aIt ; bJt
� �� �

ð1Þ

where Tk ¼ ðaIk ; bJkÞ is the match between the 4-tuple in
position Ik from A and the 4-tuple in position Jk from B, we
compute the score of the alignment s(T) in the following way:

s Tð Þ ¼ a
Xt
k¼1

asIk þ bsJk � k mþ n� 2tð Þ

� l
Xt
k¼2

ap1
Ik � ap1

Ik�1

� �
� bp1Jk � bp1Jk�1

� ���� ��� ð2Þ

where a, k, l . 0. That is, the score of the alignment increases
with the score of the aligned elements (a), and decreases with
the number of unaligned elements (k), and with the differ-
ence in the distance between adjacent aligned elements (l).
Finding the optimal alignment. The optimal alignment

between two given maps A and B is the one scoring the
maximum among all possible alignments. To obtain such an
alignment efficiently, we have implemented an algorithm
reminiscent of that proposed by Waterman et al. [7] to align
and compare restriction enzyme maps. This algorithm was
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by higher order elements which do not hold a univocal relationship
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with similar expression patterns do not show conservation. This is
because, even though their expression may be regulated by a
similar arrangement of transcription factors, the binding sites for
these factors may exhibit great sequence variability. To overcome
this limitation, the authors obtain predictions of transcription factor
binding sites on promoter sequences, and annotate the predicted
sites with the labels of the corresponding transcription factors. They
develop an algorithm—inspired in an early algorithm to align
restriction enzyme maps—to align the resulting sequence of
labels—the so-called TF-maps (transcription factor maps). They
show that TF-map alignments are able to uncover conserved
regulatory elements common to the promoter regions of co-
regulated genes, but those regulatory elements cannot be detected
by typical sequence alignments.
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developed to find the distance between two homologous
restrictionmaps in terms ofminimumweighted sumof genetic
events necessary to convert one restriction map into another,
where the genetic events are the appearance/disappearance
of restriction sites and changes in the number of bases
between restriction sites. A restriction map was defined as a
sequence of pairs A¼ a1 . . . an where each pair ai ¼ , ari ; a

p
i .

denotes the restriction endonuclease ari occurring at position
ap
i over a nucleotide sequence S. Then, the minimum distance
Dij required to convert the map A ¼ a1 . . . ai into the
homologous map B¼ b1 . . . bj, where the site ari is equal to the
site brj , was obtained by applying the following recursion:

Dij [Dðai; bjÞ ¼ min i 0 ; j 0

0,i0,i
0,j 0,j

fDi 0 j 0 þ kði� i0 � 1þ j � j 0 � 1Þ

þ lðjðap
i � ap

i0 Þ � ðb
p
j � bpj 0 ÞjÞg ð3Þ

where k is the penalty associated with the appearance/
disappearance of sites, and l is the penalty associated with

the difference in distance between consecutive aligned sites.
Here, to align TF-maps A and B, we adapted the recursion in
[7] to optimize similarity instead. In addition, we included a
term (a) into the scoring function to weight the scores of the
TFBSs. We also explicitly prohibited overlap between the
sites. Thus, the maximum similarity between TF-maps A¼ a1
. . . ai and B¼ b1 . . . bj , where the site a f

i is equal to the site b f
j ,

can be computed as:

Sij [ Sðai; bjÞ
¼ aðas

i ; b
s
j Þ

þ max i 0 ; j 0

0,i0,i
0,j 0,j

a
p2

i9 ,ap1
i

b
p2

j9 ,bp1j

fSi 0 j 0 þ kði� i0 � 1þ j � j 0 � 1Þ

�lðjðap1
i � ap1

i0 Þ � ðb
p1
j � bp1j 0 ÞjÞg ð4Þ

Naive implementation. A naive implementation of the
recursion above (Equation 4) involves the recursive filling of

Figure 1. TF-Map Alignment of the Promoters of Two Hypothetical Co-Regulated Genes

(A) The sequence of a promoter is searched for occurrences of known binding motifs for TFs. Matches are annotated with the position of the match in
the primary sequence, and the label of the TF. Because TFs can bind to motifs showing no sequence conservation, labels of the same TF at different
positions may correspond to different underlying nucleotide sequences. We refer here to these sequences of pairs (‘‘label,’’ ‘‘position’’) as TF-maps. TF-
maps are actually more complicated. First, we do not only register the position of each match, but also its length. Second, while in the example here,
sequence motifs are associated to TFs by means of a (binary) look-up table, in our work we have instead used collections of PWMs. Matches to TFBSs are
thus scored, and this score is also registered.
(B) TF-map of the promoter region of two hypothetically co-regulated genes X and Y. Each letter corresponds to a different TF. We assume that 200
nucleotides upstream of the annotated TSS have been considered, with position 1 corresponding to position�200 from the TSS.
(C) Global pairwise alignment of the two co-regulated genes X and Y. Only positions with identical labels can be aligned. Essentially, the alignment finds
the longest common substring constrained to maximizing the sum of the scores (unpublished data) of the aligned positions, and minimizing the
differences in the distances on the primary sequence between adjacent aligned positions.
DOI: 10.1371/journal.pcbi.0020049.g001
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the cells Sij in the matrix S [7]. In the pseudocode below
(Algorithm 1), the elements of the maps A and B are
represented as structures ai and bj, with the functions factor,
score, pos1, and pos2 returning the values of the corresponding
fields. The variable currentSim stores the optimal score so far
computed. The resulting meta-alignment can be easily
retrieved using a supplementary structure path(i,j) which
points to the previous cell in the optimal path leading to cell
Sij. In addition, for each cell Sij, the function ComputeInitialSi-
milarity calculates the initial score of a hypothetical alignment
that includes only ai and bj. Note that to compute the optimal
score at Sij with this algorithm, all the cells Skl (k , i,l , j) need
to be explored. Therefore, if the lengths of the TF-maps A
and B are m and n, respectively, the cost of computing S(A,B)¼
S(am,bn) is O(mn � mn)¼ O(m2n2). Under the assumption that m
and n are similar lengths, the final cost function is O(n4).

Algorithm 1:
Require :A;B : list of , factor;pos1;pos2; score.

fCalculating the element i; j in Sg
for i ¼ 0 to jAj � 1do
for j ¼ 0 to jBj � 1 do
if factorðaiÞ ¼ factorðbjÞthen

5: Sði; jÞ  ComputeInitialSimilarityðÞ;
x aðscoreðaiÞ þ scoreðbjÞÞ;
fSearching the best previous match in Sg
for i9 ¼ 0 to i� 1 do
for j9 ¼ 0 to j � 1 do

10: if pos2ðai9Þ,pos1ðaiÞ and pos2ðbj9Þ,pos1ðbjÞ then
y kðði� i9� 1Þ þ ðj � j9� 1ÞÞ;
z lðjðpos1ðaiÞ � pos1ðai9ÞÞ � ðpos1ðbjÞ � pos1ðbj9ÞÞjÞ;
currentSim Sði9; j9Þ þ x� y� z;
if currentSim.Sði; jÞthen

15: Sði; jÞ  currentSim;

Enhanced implementation. Myers and Huang [12] de-
scribed an improved algorithm for computing in O(mn(log
m þ log n)) time the minimum distance between two
restriction maps of length m and n, respectively, under the
original framework proposed by Waterman et al. [7]. The
algorithm is basically a sparse dynamic programming
computation in which candidate lists are used to model the
future contribution of all previously computed cells in
distance matrix D to those yet to be computed. The cells in
the list that cannot affect the values of any cell to be
computed are eliminated from the list. The key concept of
this algorithm is the mapping of the original matrix D to
another matrix in which each cell is indexed by the positions
of the sites in the original sequences, and not by their
positions in the maps. During the computation, this matrix is
partitioned into intervals for which only a representative cell
is used to compute the best alignment ending at each match
in a given interval. Here, we cannot directly export this
strategy, because in contrast to the restriction enzyme maps
which are points in the sequence, TFBSs are sequence
intervals (having, thus, two dimensions). In addition, different
TFBSs can start at the same point, but end at different
positions. Because we explicitly prohibit overlapping between
TFBSs in the alignments, the assignation of a cell representa-
tive within a given interval must not be irreversible. However,
we have still taken advantage of the extreme sparsity of the
matrix S when aligning TF-maps.

Note that, in general, the probability of matching two
elements from two sequences of characters that follow a
uniform random distribution is inversely proportional to the
size of the character alphabet. For instance, the probability of
matching two nucleotides when comparing two random DNA
sequences in the four-letter alphabet is about 0.25. In an
alphabet of about 100 characters—the order of magnitude of
the alphabets of symbols denoting TFs that we are consider-
ing here—such a probability would be about 0.01. When
aligning sequences in alphabets of such sizes, the matrix S
above, which only takes values for match positions between A
and B, becomes therefore extremely sparse. Indeed, Figure 2
displays the occupancy of the matrix S corresponding to the
alignments of the TF-maps obtained on the human and
mouse promoters of the skeletal muscle a-actin gene.
We have used three different collections of PWMs for

TFBSs (see Materials and Methods) to obtain the TF-maps of
both promoter sequences. In all cases, despite the differences
in the lengths of the obtained maps, the occupancy of the
matrix S is well under 5%. In the algorithm below (Algorithm
2), we substitute the two internal nested loops by a list L to
register the coordinates of the match cells in the sparse
matrix S. Each node of L is represented as structures p and n
with the functions abscissa and ordinate returning the
corresponding coordinates. Thus, to compute the optimal
score at the cell Sij, only the non-empty cells in S need to be
accessed. In addition, we maintain the list sorted by optimal
score, so that the cell scoring the maximum value is at the
beginning of the list. Scanning the list from the beginning to
the end implies that, in most cases, only a few nodes will need
to be accessed before a critical node is reached beyond which
the optimal score cannot be improved.
While investigating the exact complexity of this algorithm

is difficult—depending mostly on the size of the input maps
and the sparsity of the resulting matrix S—the expected time
cost analysis can be performed. The O(n4) cost of the naive
algorithm can be explained in terms of (a) a first quadratic
term derived from the obligatory comparison between all of
the TFBSs of both maps to detect the match cells and (b) a
second quadratic term necessary to search for each match the
best adjacent previous pair in the optimal TF-map alignment.
In this enhanced algorithm, the contribution (a) is inevitable
so that the lower bound of the cost function is the number of
matches between both TF-maps, that is O(n2). However, the
substitution of the two inner loops for a list of cell matches
sorted by optimal score does affect the contribution (b). Thus,
such a term is now equivalent to the expected number of
consulted elements of the ordered list L to compute each Sij
value. This expectation can be approximated to

O
X
a2A

PðaÞ2n2
� � !

; ð5Þ

where A is the set of symbols (in our case the alphabet of TFs)
and P(a) is the probability to match the symbol a in a random
trial (it is a particular case of the sequence comparison by
hashing, see Theorem 8.1 in [13]). Therefore, under the
previous hypothesis of a comparison between two TF-maps in
an alphabet of 100 characters that follows a uniform random
distribution (P(a)¼ 0.01, only 1% of the matrix is occupied),
the expected value of the contribution (b) is O(0.01n2).
The empirical results obtained during the program train-
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ing confirmed such analysis. On average, on the order of 200
million elements were consulted by the naive algorithm
during the optimization. In contrast, the enhanced algorithm
only needed to access nearly two million elements to compute
the same set of alignments (see Figure S1).

Algorithm 2:
Require : A;B : list of , factor; pos 1; pos 2; score.;
L : list of , abscissa; ordinate.;L ¼ Ø

fCalculating the element i; j in Sg
for i ¼ 0 to jAj � 1 do
for j ¼ 0 to jBj � 1do

if factorðaiÞ ¼ factorðbjÞ then
5: Sði; jÞ  ComputeInitialSimilarityðÞ;

x aðscoreðaiÞ þ scoreðbjÞÞ;
fSearching the best previous match inLg
p firstðLÞ;
i9 abscissaðpÞ;

10: j9 ordinateðpÞ;
while endðLÞ ¼ FALSE and Sði9; j9Þ þ x.Sði; jÞdo
if pos2ðai9Þ,pos1ðaiÞand pos2ðbj9Þ,pos1ðbjÞ then

y kðði� i9� 1Þ þ ðj � j9� 1ÞÞ;
z lðjðpos1ðaiÞ � pos1ðai9ÞÞ � ðpos1ðbjÞ

� pos1ðbj9ÞÞjÞ;
15: currentSim Sði9; j9Þ þ x� y� z;

if currentSim.Sði; jÞ then
Sði; jÞ  currentSim;

p nextðLÞ;
i9 abscissaðpÞ;

20: j9 ordinateðpÞ;
n CreateNewNodeði; jÞ;
InsertNodeðn;LÞ;

Using TF-Map Alignments to Characterize Promoter
Regions of Co-Regulated Genes in the Absence of
Sequence Similarity
Training results (see Materials and Methods) indicate that

alignments of TF-maps can contribute—together with other
tools, such as primary sequence alignments—to the charac-
terization of the promoter region of co-regulated genes. This
contribution is mostly obtained through the substantial
reduction of the overwhelming number of candidate TFBSs
that PWMs and other pattern-based searches typically
produce. The co-regulated genes in the test case of the
training (see Materials and Methods), however, were orthol-
ogous human–mouse pairs. The promoter regions of such
pairs show substantial sequence conservation [3]. It can be
argued that under such circumstances map alignments may
not be much more informative than primary sequence
alignments. Note that, in general, good alignments at the
primary sequence level will inevitably result—given the low
specificity of the PWM search—in good map alignments,
although such map alignments may bear little relationship to
the underlying conserved configurations of TFBSs.
To assess to what extent good TF-map alignments are

simply a reflection of underlying sequence conservation, we
have compared the meta-alignments obtained using the
JASPARTOP50 collection of matrices (see Materials and

Figure 2. Graphical Representation of the Sparse Dynamic Programming

Matrix S When Obtaining the TF-Map Alignment between the Human

and Mouse Promoters of the skeletal alpha-actin Gene, Using Different

Collections of PWMs for TFBSs

The axes of the matrix list the TF labels of the predicted TFBSs in the
human and mouse promoters. Despite the differences in the total
number of predicted TFBSs depending on the collection, the occupancy
of the matrix remains consistently low.
DOI: 10.1371/journal.pcbi.0020049.g002
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Methods) in the 200 nucleotides of the promoter region of
the 36 gene pairs from the HR set that we used in the training
(see Materials and Methods), with the meta-alignments
obtained in fragments of 200 nucleotides from intergenic
(2,000 nucleotides upstream of the TSS), 59UTR (downstream
of the TSS), coding (downstream of the translation start site
and considering only coding DNA), intronic (downstream of
the first intron junction), and downstream (downstream of
the transcription termination site) sequences. We have
computed the average score of the map alignments in each
of the genomic regions and have identified, for each
homologous pair, the genome regions in which the alignment
produces the highest score. We have performed the same
exercise using global pairwise sequence alignments (obtained
with CLUSTALW, [14]). Results appear in Table 1 (top). As
expected, nucleotide sequence alignments score the highest
in the coding regions (in 26 out of 36 cases), followed by the
alignments in the promoter (five out of 36) and 59UTR
regions (four out of 36). The scores of the sequence
alignments show that promoter regions are less conserved
than coding regions, and have a level of conservation similar
to that observed in 59UTRs. Despite this, TF-map alignments
score the highest in the promoter regions (in 25 out of 36),
where the average score of map alignments is almost twice as
high as that of the coding regions. Only in six out of 36 cases
does the TF-map alignment score the highest in coding
regions. Interestingly, while intron sequences in the orthol-
ogous human–mouse pairs are much less conserved than
59UTRs, TF-map alignments have a similar score in both
regions. In fact, in three cases, TF-map alignments have the
highest score in first introns, while only in one case in
59UTRs. This is consistent with the fact that first introns are
known to often contain regulatory motifs.

To measure the ability of TF-map alignments to detect
conserved regulatory elements at larger evolutionary dis-
tances—at which the degree of sequence conservation may be
negligible—we have carried out the same analysis on a set of
human–chicken orthologous pairs derived from the HR set.
Using the RefSeq gene set as mapped into the UCSC genome
browser, we have identified the chicken ortholog for 25 genes

in the HR set. We refer to the resulting set of human–chicken
gene pairs as the HC set. As before, we have compared
promoter, intergenic, 59UTR, coding, intronic, and down-
stream sequences between the orthologous human–chicken
genes using both TF-map alignments based on JASPARTOP50

and sequence alignments using CLUSTALW. Results appear
in Table 1 (bottom). While, as expected, the scores of the
alignments are, in both cases, clearly lower for human–
chicken than for human–mouse comparisons, the same
relative trends can be observed, with sequence alignments
being most significant between coding regions, and TF-map
alignments between promoter regions. However, while cod-
ing sequences are still distinctively conserved between human
and chicken, similarity in promoter sequences degrades
substantially. Indeed, in contrast to human–rodent compar-
isons, 59UTRs are, for instance, clearly more conserved than
the promoters between human and chicken orthologous
genes. Despite this lack of sequence similarity in the human–
chicken promoter pairs and the fact that we trained our
algorithm specifically on human and rodent genes, the TF-
maps remarkably still score the highest in these regions (in
nine out of 25). Interestingly, TF-map alignments are able to
score comparatively high in downstream regions even though
they do not appear to exhibit sequence conservation;
regulatory motifs have been occasionally reported on these
regions. Overall, these results indicate that alignments of TF-
maps are able to detect conservation of regulatory signals,
which cannot be detected by sequence similarity alone.
Detection of co-expression by promoter comparisons in the

CISRED database. We expect, therefore, the map alignments
to be particularly useful to characterize promoter regions of
co-regulated genes in the absence of sequence conservation.
In such cases, the map alignments can help to recover
conserved configurations of TFBSs that primary sequence
comparisons would not. It is important to stress in this regard
that the match state in the alignment of TF-maps is defined
based on the TF label, and not based on the label of the
specific binding site. Because a given TF can be associated to
different binding sites (for instance, the approximately 90
TFBSs in the HR set correspond only to about 30 TFs), an

Table 1. Sequence and TF-Map Alignments of Different Genomic Regions between the Human and Mouse Orthologous Pairs in the HR
Set and between the Human and Chicken Orthologous Pairs in the HC Set

Set Genomic Region TF-Map Alignment CLUSTALW

TOP1 Avg.Score TOP1 Avg. Score

HR set Coding 6 10.86 26 1211.72

Promoter 25 20.45 5 979.27

59UTR 1 4.56 4 958.50

Downstream 1 2.31 1 395.38

Intronic 3 4.43 0 525.66

Intergenic 0 2.51 0 421.13

HC set Coding 2 1.66 21 820.92

Promoter 9 2.14 1 454.52

59UTR 5 1.88 3 698.12

Downstream 6 1.63 0 358.66

Intronic 3 1.49 0 384.52

Intergenic 0 1.55 0 368.04

TOP1 is the number of pairs in which the highest scoring alignment is found in a given genomic region.
DOI: 10.1371/journal.pcbi.0020049.t001
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alignment of TF-maps can include the alignment of TFBSs
that show no sequence conservation.

Many examples could be found in which map alignments
produce a better characterization of the promoter region of
co-regulated genes than that obtained through primary
sequence alignments. We would like, however, to move
beyond such anecdotal evidence, and have a more exhaustive
evaluation of the power of TF-map alignments to character-
ize promoter regions of co-regulated genes in the absence of
sequence similarity. Toward such a goal, we have used the set
of co-regulated genes in the CISRED database [15]. The
CISRED database is primarily a collection of conserved
regulatory sequence elements identified by a genome-scale
computational system that uses pattern discovery, similarity,
clustering, co-occurrence and co-expression calculations.
CISRED includes, as well, a database of high-confidence co-
expressed gene pairs [8], obtained from cDNA microarray
hybridization, SAGE, and other experiments, as well as from
Gene Ontology (GO, [16]) analysis. Version 1 of CISRED high
confidence co-expression human set contains 60,912 co-
expression gene pairs for 5,562 genes. Because of the criteria
to establish co-regulation within CISRED, we do not expect
strong bias toward co-expression pairs sharing strong
sequence similarity in their promoter regions.

We thus performed the following experiment: we com-
pared the promoter region of each gene x in the CISRED set
with the promoter regions of the genes co-regulated with x,
coreg(x), and with the promoter region of the genes not co-
regulated with x, coregðxÞ. Even though the promoter of the
gene x may not show stronger sequence similarity with the
promoters of the genes in coreg(x) than with the promoters of
the genes in coregðxÞ, our assumption is that it will still share
some common regulatory signal (maybe very weak) with the
promoters of (at least a fraction of) the genes in coreg(x),
whereas no common signal will be shared between the
promoter of x and the promoters of the genes in coregðxÞ.
Our hypothesis is therefore that alignments of TF-maps will
be superior in detecting such signals to alignments of the
primary nucleotide sequence. We proceeded in the following
way: we used ENSMART [17] to extract 500 nucleotides
upstream of each gene in CISRED according to genome
coordinates in ENSEMBL. We used 500 nucleotides upstream
here, instead of 200 nucleotides as before, because of the
intrinsic imprecision of ENSEMBL when annotating the
coordinates of the TSS. We obtained such a sequence for
5,333 out of 5,562 CISRED genes and considered it the
promoter region of the gene. For this set of 5,333 genes,
56,632 co-expression gene pairs are described in CISRED. We
next used the collection of matrices in JASPARTOP50 (see
Materials and Methods) to obtain the TF-maps of each
promoter region. Then for each gene x we obtained the
optimal map alignment with each gene in coreg(x) and in
coregðxÞ. We used the enhanced algorithm described earlier,
with the optimal parameters estimated in the Material and
Methods section. Finally, we determined whether the scores
of the map alignments between the promoter of gene x and
the promoters of the genes in coreg(x) were significantly higher
than the scores of the map alignments between the promoter
of gene x and the promoters of the genes in coregðxÞ. Because
the scores of the optimal TF-maps alignments follow, as
optimal sequence alignments, a Gumbel or extreme-value
distribution (see Figure S2 and Figure S3), we calculated the

Wilcoxon test to assess this hypothesis. We obtained 42,756
non-void coreg(x) alignments and 20,600,640 non-void coregðxÞ
alignments. 4,784 genes in CISRED had non-void alignments
for both the coreg(x) and the coregðxÞ sets. The average score of
the coreg(x) alignments was 6.02, and the average length was
2.13 sites. For the coregðxÞ alignments, the values were 5.57
and 2.06, respectively. For 97 genes, the score of the coreg(x)
alignments was significantly higher than that of the coregðxÞ
alignments at a significance level of p ¼ 0.01. At a p-value of
0.001, the number was 23. Because CISRED is partially based
on microarray experiments, one could argue that cross-
hybridization with recently duplicated genes may artefac-
tually bias these results. However, no duplicated copies of
genes exist in the sets of co-regulated genes with the 97
positive cases above (see Dataset S1).
We performed the same experiment, using BLASTN [18]

instead to compare the promoter region of each gene x in the
CISRED set with the promoters of the genes in coreg(x) and
coregðxÞ. BLASTN was used with the parameters word size 7
and expectation value 10 so that short stretches of con-
servation could also be retrieved. In each comparison, we
identified the score of the best HSP. We obtained 981 coreg(x)
alignments and 445,371 non-void coregðxÞ alignments. 653
genes in CISRED had BLASTN alignments in both the coreg(x)
and the coregðxÞ sets. The average score of the coreg(x)
alignments was 29.9, and the average length was 51
nucleotides. For the coregðxÞ alignments, the values were
24.3 and 40.5, respectively. For 11 genes, the score of the
coreg(x) alignments was significantly higher than that of the
coregðxÞ alignments at a significance level of p¼0.01; there was
only one gene for which the score of the coreg(x) alignments
was significantly higher than that of the coregðxÞ alignments, at
a significance level of p ¼ 0.001.
We have investigated whether differences in conservation

of regulatory elements could be found between promoters
associated to CpG islands (CpGþ) and promoters not
associated to them (CpG�). CpG� promoters have been
linked to tissue-specific expression patterns [19,20], and
therefore they could be overrepresented in the set of co-
expressed genes for which we have been able to identify
conserved regulatory motifs. We computed for each gene the
GC content and the CpG score as defined by [19]. The
presence of a CpG island on a window (�100:þ100) centered
around the TSS of a gene is accepted when its GC content is
greater than 0.5 and when its CpG score is greater than 0.6
(CpGþ); otherwise it is classified as a CpG negative gene
(CpG�). Genes lacking CpG islands around their TSS have
been shown to have a more tissue-specific expression pattern
[19]. Based on these considerations, 3,844 out of the 5,333
promoters (72%) were identified as CpGþ genes, while only
1,489 (28%) were classified as CpG�. Among the 97 genes for
which the score of the coreg(x) TF-map alignments was
significantly higher than that of the coregðxÞ alignments at a
significance level of p ¼ 0.01, 63 were CpGþ (65%). At a p-
value of 0.001, the number of CpGþ genes was 13, out of a
total of 23 (56%). It, thus, indeed appears that genes with
CpG�promoters are slightly overrepresented in the set of co-
regulated genes with conserved (specific) regulatory signals.
As it is possible to see, despite the general poor ability of

both the sequence alignments and the TF-maps to uncover
relationships between the promoters of the co-regulated
genes in CISRED, it is clear that TF-map alignments are able
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to detect more relationships than BLASTN alignments (97
versus 11 at a p-value , 0.01, 23 versus one at a p-value ,

0.001). It can be argued that this is partially an artefact,
resulting from BLASTN reporting only sequence alignments
over a given threshold, while non-void TF-map alignments
are always produced, provided that the maps to align share at
least one common element. In fact, given the number of genes
for which valid alignments are obtained, at a p-value , 0.01
there are twice as many cases in which coreg(x) scores are
significantly higher than coregðxÞ as expected if there was
actually no difference in the distributions of scores, both
using TF-map and sequence alignments. At a p-value , 0.001,
however, the number of cases in which coreg(x) scores are
significantly higher than coregðxÞ coincides with the expected
value using BLASTN, but it is five times the expected value
using TF-maps. We believe that this indicates that, even after
taking into account the effect of the different number of total
alignments reported, the TF-map alignment algorithm is
superior to BLASTN in detecting relationships between the
promoter regions of co-regulated genes. Indeed, among the
445,371 total BLASTN alignments obtained, there are 981
alignments between co-regulated genes, while the 445,371 top
scoring TF-map alignments obtained include 1,240 align-
ments between co-regulated genes. Interestingly, there are
only 148 alignments in common between both approaches,
indicating that they could be used to complement each other.

It could be argued that the superiority of the TF-map over
sequence alignments has little to do with the alignments and
more to do with the maps. In other words, we would have
obtained similar results if we were to simply score the
proportion of TF labels common to the compared promoter
regions—without the need for an alignment. Therefore, we
have computed such a score for each pair of genes in CISRED:
if p and q are the sets of elements in the TF-maps of the
promoters to be compared, we have computed j p\ q j2 / j p j �
j q j, where jpj is the size (cardinality) of the set p. Among the
445,371 top-scoring comparisons, 1,072 corresponded to co-
regulated genes (with only 394 gene comparisons in common
with the TF-map alignment approach), a value intermediate
between that obtained with sequence and with TF-map
alignments. This reflects that conservation of the relative
position of the TFs along the primary sequence, and not only
common presence, is indicative of gene co-regulation.
Conservation of relative position can only be captured by
TF-map alignments.

As an example, Table 2 summarizes the TF-map alignments
obtained when aligning the promoter region of the trans-
thyretin gene (TTR), with each one of its co-regulated genes in
CISRED. TTR is a serum carrier protein expressed in liver
and brain. The regulatory regions that control the TTR
expression in liver have been experimentally determined [21]
and consist of a 100-nucleotide enhancer located at �2,000
nucleotides upstream of the TSS and a proximal promoter
region between �200 and �90 nucleotides upstream of the
TSS (relative to the coordinates in the ENSEMBL entry). This
proximal region comprises six binding sites (coordinates
relative to TSS of the transthyretin gene as in the ENSEMBL
database): HNF-1 (�137,�109), HNF-3 (�140,�128 and
�106,�91), HNF-4 (�151,�140), C/EBP binding (�195,�177
and�135,�112). The TATA box is located at�30. CISRED lists
105 genes co-regulated with TTR. Interestingly, while
BLASTN is unable to detect any sequence similarity between

the promoter of TTR and that of its co-regulated genes, TF-
map alignments are obtained in 83 cases, and scored
significantly (p-value , 0.001). We have reconstructed the
structure of the TTR promoter from the elements that
appear in the TF-map alignments. A total of 35 TFBSs were
initially mapped with JASPARTOP50 in the TTR promoter. For
each predicted TF, Table 2 lists the number of TF-map
alignments between TTR, and its co-regulated genes in which
the TF appears. Only elements appearing in at least five
alignments are reported. No matrices for the detection of C/
EBP and HNF-4 were included in the JASPARTOP50 collection
that was used to perform the test. However, the meta-
alignments were overrepresented in the other experimentally
annotated sites, HNF-1, HNF-3, and TATA, exactly in the
region where promoter activity has been reported. The
binding of HNF-3 to the site �140,�128 is not directly
reported. The TF-map alignments, however, are highly
enriched in the HFH-3 factor (HNF3/fork head homolog,
[22]) at this region. In fact, both share a similar consensus-
binding sequence in TRANSFAC [10]: TRTTTRTTT for HFH-
3 and TRTTTRYTT for HNF-3.

Discussion

Much of the biology of the past decades has been based on
the technological advances that have accelerated our ability
to sequence DNA and proteins. It is certainly in the sequence
of the genome that the biological traits of organisms are
encoded. While we have a relatively good understanding of
some of the basic mechanisms involved in the processing of
the information encoded in the DNA sequence, it is in
general very difficult to predict the biological traits—even at
the molecular level—from the nucleotide sequence alone.
Gene promoters are a case in point: while the sequence of the

Table 2. Summary of the TF-Map Alignments Obtained between
the Promoter of the transthyretin Gene and the Promoters of the
Genes Co-Regulated with It according to the CISRED Database

Begin End TF Frequency

�492 �477 HMG-IY 11

�486 �475 HNF-3beta 10

�406 �393 Broad-complex_1 9

�380 �367 Broad-complex_1 21

�364 �350 TBP 5

�362 �349 SQUA 9

�362 �347 HMG-IY 10

�312 �301 TEF-1 12

�307 �296 HFH-2 9

�273 �262 HNF-3beta 21

�271 �256 HMG-IY 6

�253 �238 HMG-IY 6

�251 �238 Broad-complex_1 9

�236 �225 HFH-3 9

�203 �194 RORalfa-1 18

�141 �130 HFH-3 17

�128 �115 HNF-1 6

�102 �91 HNF-3beta 22

�30 �16 TBP 21

Predicted TFs on the promoter of transthyretin, which appear at least in five TF-map
alignments with co-regulated genes.
Bold text indicates the experimentally verified sites.
DOI: 10.1371/journal.pcbi.0020049.t002

PLoS Computational Biology | www.ploscompbiol.org May 2006 | Volume 2 | Issue 5 | e490410

TF-Map Alignment of Promoter Regions



promoter is likely to contain most of the information to
control the expression of a gene, it is currently impossible to
predict the expression pattern of a gene from the analysis of
its promoter sequence alone.

While inferring function directly from sequence is thus far
from trivial, it is still true that because sequence encodes
function, similar sequences often encode similar functions.
Sequence comparisons, therefore, are an extraordinary tool to
infer functional relationships: through sequence comparisons
the function of known sequences can be extrapolated to newly
obtained ones, and the specific sequence motifs responsible
for the common functionality of a set of sequences can be
identified. But sequence comparisons have limitations: often
similar functions are encoded by diverse sequences. Again,
gene promoters are a case in point: many TFs bind to sequence
motifs which do not show sequence conservation. Thus, while
through phylogenetic footprinting, conserved regulatory
motifs have been on occasion uncovered in the promoters of
orthologous genes [23,24], searching for common patterns
through the comparison of promoter sequences in sets of co-
regulated genes—as, for instance, those resulting from micro-
array experiments—is usually a frustrating exercise.

Here, we have attempted to address this limitation implicit
in sequence comparisons, by annotating the primary
sequence with predicted functional domains, and comparing
the resulting annotations instead of the underlying primary
sequence. If functional domains are encoded by diverse
sequences, the comparison and alignment of the annotation
may be more revealing of the functional relationships
between sequences and of the specific domains involved in
the common functionality than the comparison and align-
ment of the primary sequence. In particular, we have
attempted this strategy for the comparison and character-
ization of promoter regions from genes with similar
expression patterns. We have annotated the sequence with
predictions of TFBSs—using a variety of popular tools and
databases—and identified the predicted sites with the labels
of the corresponding TFs. We have then compared and
aligned the resulting sequence of labels. Because TFs can bind
to sites that show no sequence conservation, their labels can
be aligned which correspond to domains that, while exhibit-
ing similar functions, may not show sequence conservation.

Precedents of this approach can be found in the literature.
Quandt et al. [25], for instance, distinguish explicitly between
first-level analysis of promoters, in which the nucleotide
sequence is directly interrogated for the presence of
regulatory motifs, and second-level methods, in which basic
higher order patterns can be defined from a number of
correlated first-level units. This approach is further devel-
oped in [26] and [27], where more complex composite
patterns are derived capturing the functional organization
of individual regulatory elements, and are then used to
identify and characterize related promoter regions in absence
of sequence conservation. In a related approach, Solovyev
and Shamuradov [28], for instance, also use higher order
information to characterize orthologous promoters. Specif-
ically, they use linear discriminant analysis to combine a
number of conservation features and nucleotides sequences
of promoter regions in pairs of orthologous genes.

Here, we go one step further, and infer automatically the
composite patterns by explicitly aligning the sequences of

labels corresponding to TFs for which binding sites have been
predicted in the compared promoters (the second-level
annotation). To align these sequences of labels—to which
we refer as TF-maps—we have stated the problem as a
restriction enzyme map alignment, and adapted a dynamic
programming algorithm developed by Waterman et al. [7].
This algorithm, as well as ours, belong to a larger class of map
alignments algorithms (see also [12,29–31]). In typical align-
ments, the sequences are of labels denoting either nucleotides
or amino acids. In map alignments, the sequences are of pairs
(label,integer), where the label denotes a predicted domain or
site (possibly exhibiting some behavior or functionality), and
the integer the position on the primary sequence where the
domain or the site has been predicted. In global pairwise
sequence alignments, the goal is to obtain the alignment that
maximizes the sum of the scores of the aligned positions—
given the score of the individual alignments of all possible
pairs of labels. In contrast, in map alignments, only positions
with identical labels can be aligned and the goal is to obtain
the largest common subsequence constrained to minimize the
differences in distances on the primary sequence between
consecutive aligned positions. Sequence and map alignments
can be generalized to a broader class of alignments that
includes both.
Map alignments have been mostly used to align restriction

enzyme maps. In this case, the label denotes a restriction
enzyme, and the integer the position on the primary
sequence of the site recognized by the enzyme. Waterman
et al. [7] first established the concept of map alignment and
provided an algorithm for computing the optimal alignment
of two maps. Later Myers and Huang [12] described an
improved algorithm to efficiently find map alignments that
relies on the extreme sparsity of the dynamic programming
matrix in [7]—the result of the match state being defined only
between identical labels. Miller et al. [29,30] introduced new
algorithms that permitted the efficient search of a long map
for the best matches to a shorter probe map. Huang and
Waterman [31] generalized these algorithms to deal with
different map errors.
In our case, the label denotes a TF, and the integer the

initial position on the primary sequence where a binding
motif for the TF has been predicted. There are, however, two
important differences between restriction enzyme maps and
TF-maps. First, while prediction of restriction sites is
deterministic, producing a binary output (‘‘site,’’ ‘‘no site’’),
prediction of TFBSs is often probabilistic and predicted sites
may have an associated score. The score can usually be related
to the strength of the binding of the TF to the site [32].
Because it makes sense, therefore, to prefer in TF-map
alignments higher scoring sites, the score of the TFBSs needs
to be taken into account when building optimal TF-map
alignments. Second, enzyme restriction sites are single-
nucleotide positions on the primary sequence. TFBSs, in
contrast, are sequence intervals, and thus have in addition to
position an associated length. Because we explicitly prohibit
overlap between aligned elements, we cannot directly
extrapolate the algorithm of [12]. However, as in their
approach, we have also taken advantage of the extreme
sparsity of the dynamic programming matrix to implement
an efficient algorithm that, in our experience, is comparable
in efficiency. There is another important feature character-
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istic of our approach that, while it does not influence the
algorithmic strategy, it is essential to its success. As we have
already stressed, we do not label the site, but rather the
function of the site. That is, we do not label the TFBSs, but we
label the TFs that bind to the sites. This allows for significant
functional alignments even in the absence of sequence
conservation.

We have estimated the optimal parameters of the algo-
rithm in a small, but well-annotated, set of orthologous
human–mouse genes (see Materials and Methods). We used
three popular collections of PWMs for TFBSs (JASPAR 1.0
[9]), PROMO 2.0 [33], and TRANSFAC 6.3 [10]) to obtain the
TF-maps of the promoter sequences. Results on this dataset
indicate that, by dramatically reducing the overwhelming
number of spurious predictions of TFBSs produced using
these collections, TF-map alignments are able to successfully
uncover the few conserved functionally active regulatory
domains (see Table 3). Differences can be observed between
the performance of the different collections of TFBSs;
alignments obtained using JASPAR—and, in particular, using
a subset consisting of the 50 top most informative matrices—

appear to show the optimal balance between sensitivity and
specificity. The dataset that we have used, however, is too
small to infer general trends on the comparative behavior of
these collections.
Interestingly, despite the stronger sequence conservation

between protein-coding regions, TF-map alignments score
the highest between promoter regions in the training set of
orthologous human–mouse genes (see Table 1). This indicates
that TF-map alignments are able to pick up regulatory signals
that sequence alignments cannot. Results in an independent
larger dataset of co-regulated genes from the CISRED
database are also in support of this conclusion: we have been
able to obtain more significant alignments between the TF-
maps than between the nucleotide sequences of the pro-
moters of co-regulated genes. Results in CISRED are certainly
not extraordinary. Both sequence and TF-map alignments
perform very poorly when detecting relationships between
co-regulated genes in CISRED. Only in 97 out of 5,333 gene
representatives in CISRED (1.8%) did TF-map alignments
score significantly higher for co-regulated than for non co-
regulated genes. Using BLASTN, this number was only 11

Table 3. Results of the Estimation of the Optimal Parameters of the TF-map Alignment Algorithm in the HR Set of Orthologous
Human–Mouse Promoter Sequences

Analysis

Tool

Accuracy

Level

Values JASPAR PROMO TRANSFAC JASPARTOP50 BLASTN BLASTNWSIZE¼7

PWMs Number of matrices 111 316 442 50

Number of TFs 101 181 296 47

TF-maps Number of gene pairs 29 29 29 17

Number of real TFBSs 93 (3 2) 94 (3 2) 94 (3 2) 50 (3 2)

Number of real TFBSs

per gene pair

3.2 (3 2) 3.2 (3 2) 3.2 (3 2) 2.9 (3 2)

Number of predicted

TFBSs

2683 3 2605 8322 3 8027 6644 3 6628 207 3 216

Number of predicted

TFBSs per gene pair

93 3 90 287 3 277 229 3 229 12 3 13

Nucleotide Sensitivity, specificity 0.97, 0.16 0.99, 0.14 0.99, 0.14 0.67, 0.25

Correlation coefficient 0.10 0.04 0.03 0.24

Coverage 88% 97% 98% 33%

Site Sensitivity, specificity 1.00, 0.02 1.00, 0.00 1.00, 0.00 0.76, 0.12

Average 0.51 0.50 0.50 0.44

TF-map alignments a, k, l 0.5, 0.1, 0.1 0.25, 0.1, 0.2 0.25, 0.1, 0.1 0.5, 0.1, 0.1

Length 12.7 (32) 23.5 (32) 15.2 (32) 3.4 (32)

Nucleotide Sensitivity, specificity 0.76, 0.23 0.72, 0.19 0.85, 0.21 0.70, 0.40

Correlation coefficient 0.19 0.10 0.18 0.42

Coverage 51% 62% 65% 23%

Site Sensitivity, specificity 1.00, 0.25 0.94, 0.13 0.98, 0.21 0.86, 0.73

Average 0.63 0.53 0.59 0.79

Site þ label Sensitivity, specificity 0.57, 0.07 0.30, 0.03 0.29, 0.04 0.64, 0.28

Average 0.32 0.16 0.16 0.46

Sequence Alignments Sensitivity, specificity 0.70, 0.19 0.85, 0.18

Correlation coefficient 0.16 0.15

Coverage 54% 63%

Parameters were estimated independently using three different collections of PWMs for TFBSs to obtain the TF-maps of the promoter sequences. The table has three parts: (Top), (Middle),
(Bottom).
(Top) Number of matrices in each of these collections, and the number of TFs these matrices correspond to.
(Middle) Statistics of the resulting TF-maps: number of promoter pairs (out of 36) for which matches to at least one common TFBS was found in both the human and mouse orthologs (and
for which, therefore, there exist a non-void TF-map alignment), total and average number of real TFBSs per promoter sequence, total and average number of predicted TFBSs per
promoter sequence, and sensitivity and specificity at the nucleotide and site levels (see main text for definitions). The average sensitivity and specificity at the site level is the optimization
measure when estimating the parameters of the algorithm. Coverage is the fraction of the sequence of the promoters covered by matches to TFBSs.
(Bottom) Results of the optimal TF-alignments: optimal parameters and average length (number of aligned elements in the optimal TF-map alignments), measures of sensitivity and
specificity at the levels of nucleotide, site overlap, and site plus label match (see main text for definitions). Coverage is the fraction of the sequence of the promoters covered by matches
to TFBSs. Results when using BLASTN to detect conservation between orthologous pairs are also shown for comparison.
DOI: 10.1371/journal.pcbi.0020049.t003
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(0.2%). Finding relationships between the promoters of the
genes co-regulated in CISRED is a challenging task, as one can
imagine. The CISRED collection of high-confidence co-
expressed genes is not derived from overall conservation, or
from co-occurrence of motifs, in the sequence of the gene
promoters. CISRED co-expression is derived instead from
cDNA microarray, SAGE, and other high-throughput gene
expression monitoring techniques. CISRED co-expression
clusters are thus a mixture of directly and indirectly co-
regulated genes, and one would then expect only a few genes
within each cluster—maybe in a few subsets—to share
functionally equivalent motifs in their promoter sequences.
The poor performance of TF-map alignments, however,
could also be reflecting the incompleteness of the current
collections of TFBSs, and how little we know of the molecular
rules governing the expression of human genes.

On the other hand, while building global pairwise align-
ments may be appropriate to compare promoter sequences
of orthologous human–mouse genes, to compare sequences
from multiple genes weakly co-regulated—such as those in
CISRED—multiple and/or local alignments may be more
effective in capturing the functional motifs underlying co-
expression. Indeed, from a multiple TF-map alignment of
promoters of a set of co-regulated genes, a ‘‘transcriptional
regulatory superpattern’’ could be derived capturing those
elements conferring expression specificity. Using a local
alignment search algorithm, the superpattern could then be
used to identify additional genes or transcripts belonging to
the same expression class.

Even more appropriate to the analysis of sets of weakly co-
expressed genes (that is, including genes both directly and
indirectly co-regulated), such as those in the CISRED clusters,
would be the extension of the unsupervised pattern recog-
nition techniques usually applied to motif discovery in DNA
sequences (in programs such as MEME [34], AlignAce [35],
and others, see [6] for a recent comparative evaluation) to
motif discovery in TF-maps. This would allow for the
identification within a co-expression cluster of different
‘‘transcriptional regulatory superpatterns.’’ These superpat-
terns, in turn, and the subclusters they induce, could
contribute to sort out direct versus indirect co-regulation
effects within the cluster. These and other extensions to the
TF-map alignments (for instance, those that allow non-
colinear arrangements of TFBSs, which have been indeed
observed in orthologous genes [36]) are all feasible, and will
certainly contribute to the discriminatory power of TF-map
comparisons and alignments.

In summary, our results suggest that comparisons of
annotations of higher order domains can, on occasion, be
more meaningful to characterize the underlying functionality
of sequences than direct comparisons at the very primary
sequence level. Here we have explored these strategies for the
characterization of the promoter regions of co-regulated
genes, and we have annotated the primary sequence of them
with predictions of TFs. However, we can imagine similar
strategies to address many other problems in sequence
analysis. One can imagine, for instance, annotating protein
sequences with PFAM domains [37], and comparing the
resulting annotations to detect distant functional relation-
ships between proteins and protein families. Or annotating
genome sequences with the Gene Ontology (GO, [16]) labels
of the genes encoded in these sequences, and aligning the GO

labels to detect clusters of conserved functions across
genomes. In fact, the annotation of the primary sequence
with higher order domains to improve alignments has often
been explored. For instance, to compare protein secondary
structures, see [38], as an example, or to anchor whole
genome alignments, see [39,40], or even alignments of
promoter regions, see [41]. In all these cases, however, the
ultimate goal is to obtain an optimal sequence alignment
either between the original primary sequences, or between
the 1–1 mappings of the primary sequence into a reduced
alphabet (for instance, denoting secondary structure ele-
ments). We believe that, as the molecular functionality of the
primary sequence becomes better understood, comparisons
between higher order annotations, such as those performed
here, in which the primary sequence is completely abstracted,
may become increasingly relevant.

Materials and Methods

Datasets and software availability. All of the datasets, the promoter
sequences, the computational predictions, the TF-map alignments,
and the results are freely distributed as flat files at http://genome.
imim.es/datasets/meta2005/index.html. An implementation of the
enhanced algorithm has been written in C and is publicly available
at http://genome.imim.es/software/meta/index.html. A web server that
performs the mapping and the meta-alignment of two promoter
regions with such an algorithm is accessible at http://genome.imim.es/
software/meta/meta.html. The input of the program consists of the
two TF-maps to be aligned, each one in a separate file. The files must
be in General Feature Format (GFF, http://www.sanger.ac.uk/Software/
formats/GFF/GFF_Spec.shtml). Options allow to control the values of
a, k, and l, as well as to display the results in plain format or GFF
format. The output includes the score and the length of the optimal
alignment, and the matches in the two input maps.

Parameter estimation. The optimal alignment between two TF-
maps is obviously dependant on the a, k, and l parameters. In
principle, we want the optimal alignment between the maps derived
from promoter sequences of two co-expressed genes to include most
of the mapped TFBSs known to be involved in the regulation of the
genes (high sensitivity), and few of the mapped TFBSs not known to
be involved in such regulation (high specificity). The implicit
assumption here is that the TFBSs in the alignment are considered
predictions of TFBSs on the underlying promoter sequences. It is also
important to stress that two different TFBSs can be aligned if they
correspond to the same TF.

The optimal parameter configuration, however, is likely to depend
on the particular problem to be addressed: the genes to be compared
(orthologous genes from different species or genes co-regulated after
an expression microarray experiment, for instance), and the
particular protocol to map the TFBSs into the original promoter
sequences. Often the optimal configuration of parameters will be
specific to the pair of gene promoters to be compared.

With these caveats in mind, because our focus here is on
mammalian comparisons, we have estimated the parameters that
are globally optimal when aligning a set of well-annotated human–
mouse orthologous promoter pairs. The underlying assumption is
that these orthologous pairs are regulated in a similar way. We have
estimated the optimal parameters separately in three different
collections of PWMs for locating TFBSs, and in each case we have
chosen the parameters such that the resulting global alignment
achieved the maximum average sensitivity and specificity as defined
below.

Datasets. From several landmark papers in the field [23,24,42–44],
we have gathered and manually curated a collection of 278 TFBSs
(139þ 139 orthologous sites) that had been experimentally tested in
40 orthologous human and rodent genes. The TSS of each entry in
the literature was compared to the RefSeq [45] annotation of the
corresponding genome to ensure that we were dealing with the actual
proximal promoter. Because most (214 out of 278) of the annotated
TFBSs are located in the 200 nucleotides immediately upstream of
the TSS, we restricted to this region in our training and evaluation
analysis, and considered only those cases for which the same pair of
TFBSs had been annotated in this region for both species. This
resulted in a collection of 202 sites (101 þ 101) from 36 genes, to
which we refer here as the HR set. We have estimated the optimal
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parameters in the HR set for the JASPAR 1.0 [9], PROMO 2.0 [33], and
TRANSFAC 6.3 [10] collections. In the three cases, the original
frequency coefficients of the matrices have been converted into log-
likelihood ratios using the random equiprobability distribution as a
background model. The resulting matrices were used to obtain the
list of TFBSs matches along the 200 bases upstream of the TSS in each
of the 36 pairs of promoter sequences from the HR set. A prediction
obtained with a given PWM was accepted if it had a score above 50%
(JASPAR), 70% (PROMO), and 55% (TRANSFAC) of the maximum
possible score for such PWM. These values correspond in the three
cases to the conventional 80% threshold when considering the
original frequency matrices.

Those annotated TFBSs not included in the predictions for both
orthologous pairs (either because no matrix exists in the collection
for such TFBSs or because the match is below the threshold) were
discarded. This reduced the effective number of training gene pairs
(those with at least one real predicted TFBS for both orthologous
pairs) from 36 to 29 for the three collections considered here.

Table 3 shows for each collection the total number of matrices, TFs
to which they correspond, the number of genes for which at least one
annotated TFBS is predicted on each ortholog after the search, and
the number of real and predicted TFBSs (the total and the average
per gene pair). As it is possible to see, slightly more than three
conserved TFBSs were annotated per orthologous gene pair.

Accuracy measures. After the maps were obtained, we aligned
them within each orthologous pair using the algorithm described in
the previous section with different combinations of parameters. Each
parameter was allowed to independently take values between 0.0 and
1.0, in incremental steps of 0.01. In total, thus, one million parameter

configurations were evaluated for each collection of PWMs. For each
configuration, the resulting optimal alignments on the pairs of
orthologous promoters (that is, the predicted TFBSs) were compared
with the annotated TFBSs in the promoters.

Two values were computed to measure the agreement between
predicted and annotated TFBSs: sensitivity and specificity. Sensitivity
is the number of correctly predicted TFBSs over the number of
annotated TFBSs, and specificity is the number of correctly predicted
TFBSs over the number of predicted TFBSs. We used here the term
specificity as in the gene finding literature. However, the value that
we compute here is more generally known as Positive Predictive
Value. We considered an annotated TFBS to be correctly predicted
when there was a predicted TFBS that overlapped it by at least one
nucleotide in both human and mouse sequences, irrespective of
whether the TF label associated to the aligned TFBS matched that of
the annotated TFBS. This is because TFBSs for different TFs often
cluster at the same position when using PWMs (see Figure 3). If a
similar cluster occurs in the two sequences to be aligned, our
algorithm will inevitably choose to align the pair of TFBSs with the
highest sum of match scores (unless the parameter a is set to zero, in
which case the pair to be aligned will be chosen arbitrarily).

As an optimization measure, we computed the average value of
sensitivity and specificity. Table 3 lists the optimal combination of
parameters with regard to this measure for each of the three
collections of PMWs used here. Table 3 also lists sensitivity,
specificity, their average, the average length of the optimal align-
ments (that is, the number of predicted TFBSs after the alignment),
and the fraction of the promoter region covered by the predicted
(aligned) TFBSs. In addition, for each optimal configuration we have

Figure 3. Results of the TF-Alignment of the Human and Mouse Promoters of the phospholipase A1 member A Gene

Here, the 2,000 nucleotides upstream of the annotated TSS have been considered (with position 1 corresponding to �2,000). The TF-maps on these
sequences were obtained using TRANSFAC 6.3 [10]. These maps contained 676 predicted binding sites in human and 595 in mouse (threshold 85%),
and they are represented graphically on the top right. Each box represents a different binding site and the color corresponds to the associated TF. The
resulting TF-map alignment is also represented graphically at the bottom right. The explicit alignment (the TFs and the coordinates in the human and
mouse promoter of the underlying TFBSs) is given on the left. As it is possible to see, while the region proximal to the TSS is not more dense in
predicted TFBSs than other regions, most of the aligned elements cluster near the TSS. Indeed, more than half of the elements in the TF-map
alignments are within 500 nucleotides of the TSS. The program GFF2PS [48] has been used to obtain the graphical representation of input predictions
and final alignment.
DOI: 10.1371/journal.pcbi.0020049.g003
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also computed the same set of accuracy measures under the strict
criterion of considering an annotated TFBS to be correctly predicted
only when the TF label of the prediction matched that of the
overlapped annotation. We also computed sensitivity and specificity
at the nucleotide level. At this level, we compute the number of
nucleotides in predicted TFBSs that are also in annotated TFBSs.
This number over the total number of nucleotides in annotated
TFBSs is the sensitivity, and over the total number of nucleotides in
predicted TFBSs is the specificity. Finally, as a summary of these two
numbers, we compute the correlation coefficient (see [46] for a
discussion on these measures). All the accuracy measures were also
computed on the initial PWM predictions, prior to the alignments.

Accuracy results. As it is possible to see, the main effect of the
meta-alignment is the dramatic reduction in the number of predicted
TFBSs that typically result after a PWM-based search (see also Figure
3). Taking, for instance, the popular TRANSFAC collection, the
average number of TFBSs predicted per promoter in our dataset
using this database is about 230. The TF-map alignment reduces this
number approximately 15-fold, while the predicted TFBSs still cover
essentially all annotated TFBSs. This gain in specificity is not simply
due to the selection of an arbitrary set of non-overlapping TFBSs,
since as a result of the map alignments the proportion of the
promoter region covered by predicted TFBSs drops from 98% to
65%—a number that is more consistent with the estimated
occupancy by TFs of the core promoter regions [1].

In this regard, we have compared the map alignments here with
direct sequence alignments in their ability to identify TFBSs in the
promoter regions of co-regulated genes. We have used NCBI-
BLASTN [18] to identify conserved blocks in the promoter region
of the orthologous pairs in the HR set. We have searched for local,
instead of global alignments because we expect the TFBSs to
distribute discretely along the promoter region—resulting in a patch
of conserved and non-conserved fragments. In addition, local
alignments are insensible to the relative rearrangements in the order
of the TFBSs between the promoter sequences compared. This is an
advantage over the map alignments, which require colinearity of the
TFBSs in the sequences to be compared. Despite this, and the fact
that promoter elements are usually embedded within well-conserved
sequences in human and mouse orthologous promoters, map align-
ments are comparable or outperform the BLASTN comparison when
identifying TFBSs in them. The correlation coefficient between the
sequences covered by the BLASTN alignments and the annotated
TFBSs is 0.15, while the same measure when considering the
sequences covered by the map alignments is 0.19 for JASPAR, 0.10
for PROMO, and 0.18 for TRANSFAC. Table 3 lists these values, as
well as the values of sensitivity and specificity. To obtain these values,
BLASTN was run with default parameters, but decreasing the word
size to 7 (the minimum accepted value in NCBI-BLASTN). This allows
for the detection of shorter and weaker alignments. The performance
of BLASTN degrades if we increase the word size. We obtained
similar results using the WU-BLASTN version, which allows for
shorter word sizes (unpublished data).

The values in Table 3 reflect differences among the three
collections of matrices when used in the context of the map
alignments. In this context, JASPAR appears to show the better
balance between sensitivity and specificity. This can be partially
explained because there is less matrix redundancy—which in turn
implies less overprediction—in JASPAR than in the other collections.
To further minimize overprediction, we have computed the
information content of all JASPAR matrices and selected the most
informative ones. Let P be a PWM where P(x,i) denotes the probability
of observing the nucleotide x in the position i of a motif of length n.
The amount of information R of the matrix P is defined as [47]:

RðPÞ ¼
X
i¼1...n

2þ
X

x2A;C;G;T
P x; ið ÞlogP x; ið Þ

 !
: ð6Þ

When using the collection of the 50 JASPAR matrices with the highest
R value (which we refer to as JASPARTOP50) to obtain the TF-maps,
detection of TFBSs through map alignments improves over the entire
set of JASPAR matrices: while there is some loss of sensitivity, there is
a larger gain in specificity (see Table 3). We have used JASPARTOP50 in
the experiments presented in the Results section.

Finally, we have also performed a complementary test to measure
the specificity of the TF-map alignments. As a negative control, we
have shuffled the orthologous pairing in the HR set to construct a
pool of unrelated human–mouse gene pairs. Then, the corresponding
TF-map alignments between these non-orthologous paired pro-
moters were obtained using the parameters previously optimized.
For the three collections of matrices, the TF-map alignments between

pairs of unrelated promoters were significantly shorter with an
average score about 50% smaller than TF-map alignments between
‘‘bona fide’’ orthologous promoters. For instance, the average length
of the TF-map alignments between orthologous promoters when
using the JASPAR collection was 12.7 TFBSs, with an average score of
55.2. In contrast, the length of the TF-map alignments between non-
related promoters was 8.36 TFBSs, with an average score of 20.67. The
sites in the alignments involving non-orthologous gene promoters
may hypothetically correspond to general regulatory elements
present in most core promoters. An alternative, more probable,
hypothesis is that they reflect the poor specificity of most PWMs
representing TFBSs. Indeed, when we perform the same test using the
more informative JASPARTOP50 collection, no TF-map alignments
can be obtained between any pair of the non-related promoters.

Supporting Information

Dataset S1. The 97 Gene Groups in CISRED with More Significant TF-
Map Alignments
This file lists the 97 genes for which the score of the coreg(x)
alignments was significantly higher than that of coregðxÞ alignments at
a significance level of p¼ 0.01. Each line contains the following fields:
(1) the ENSEMBL gene identifier; (2) the number of CISRED genes co-
regulated with this gene; (3) the average score of the coreg(x) TF-map
alignments; (4) the number of CISRED genes that are not co-
regulated with this gene; (5) the average score of the coregðxÞ TF-map
alignments; (6) the ratio between the average score of the coreg(x)
alignments and the average score of the coregðxÞ alignments; (7) the
significance level p according to the Wilcoxon test.
Found at DOI: 10.1371/journal.pcbi.0020049.sd001 (6 KB TXT).

Figure S1. Number of Accessions to the Matrix S during the TF-Map
Alignment Training
Red, the number of accessions to the matrix S by the naive algorithm
for each one of the 40 promoter pairs in the HR set.
Orange, the number of accessions of the enhanced algorithm, without
sorting the list L.
Green, the number of accessions of the enhanced algorithm, sorting
the list L.
Found at DOI: 10.1371/journal.pcbi.0020049.sg001 (8 KB EPS).

Figure S2. Distribution of the coreg(x) TF-Map Alignment Scores
The scores of the optimal coreg(x) TF-maps alignments follow, as
optimal sequence alignments, a Gumbel or extreme-value distribu-
tion.
Found at DOI: 10.1371/journal.pcbi.0020049.sg002 (12 KB EPS).

Figure S3. Distribution of the coregðxÞTF-Map Alignment Scores
The scores of the optimal coregðxÞ TF-maps alignments follow, as
optimal sequence alignments, a Gumbel or extreme-value distribu-
tion.
Found at DOI: 10.1371/journal.pcbi.0020049.sg003 (12 KB EPS).

Accession Numbers

GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession numbers
are: for ACTA1 (human—AF182035), (mouse—M12347); for PLA1A
(human—NM_015900) (RefSeq), (mouse— NM_134102) (RefSeq).

The Ensembl (http://ensembl.org) accession number for TTR is
(human—ENSG00000118271).
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