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Abstract

Recent studies suggest that motor adaptation is the result of multiple, perhaps linear processes each with distinct time
scales. While these models are consistent with some motor phenomena, they can neither explain the relatively fast re-
adaptation after a long washout period, nor savings on a subsequent day. Here we examined if these effects can be
explained if we assume that the CNS stores and retrieves movement parameters based on their possible relevance. We
formalize this idea with a model that infers not only the sources of potential motor errors, but also their relevance to the
current motor circumstances. In our model adaptation is the process of re-estimating parameters that represent the body
and the world. The likelihood of a world parameter being relevant is then based on the mismatch between an observed
movement and that predicted when not compensating for the estimated world disturbance. As such, adapting to large
motor errors in a laboratory setting should alert subjects that disturbances are being imposed on them, even after motor
performance has returned to baseline. Estimates of this external disturbance should be relevant both now and in future
laboratory settings. Estimated properties of our bodies on the other hand should always be relevant. Our model
demonstrates savings, interference, spontaneous rebound and differences between adaptation to sudden and gradual
disturbances. We suggest that many issues concerning savings and interference can be understood when adaptation is
conditioned on the relevance of parameters.
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Introduction

There is a large body of evidence to suggest that the nervous

system maintains internal representations of variables that are

relevant to the production of movement [1,2,3]. Internal models

allow us to make repeatable and reliable movements despite a

highly variable world and body, and our noisy perceptions of

them. Ideally, these internal models ought to distinguish between

the properties of the body and world, a crucial ability when

generalizing movements [4]. Such a representation requires many

parameters to represent how to control the body when interacting

with external objects in the world. This in turn implies that many

parameters of both the body and the world need to be estimated.

When estimating changes in the many parameters necessary to

describe the interaction of the body and the world, it seems

sensible that some of these parameters will change rapidly, while

others change more slowly. Consequently a number of recent

studies have constructed linear time invariant models that model

adaptation unfolding over multiple time scales [e.g. 5,6,7]. These

models have explained a wide range of temporal adaptation and

savings phenomena.

While many linear models can explain motor phenomena

associated with rapid re-adaptation, they are limited in their ability

to explain phenomena of even short-term adaptation, as in savings

after ‘‘washout’’ trials [e.g. 8], let alone the long-term effects of

adaptation. For instance, linear models predict that aftereffects

should decay with the same rate behaviors are adapted to, in

contrast with experimental evidence [9,10]. Linear models also

predict that once a disturbance has been removed, its influence on

movement is de-adapted and completely forgotten. This is clearly

not the case, and subjects retain the ability to compensate for

previously adapted behaviors over long periods of time [11,12,13].

In summary, while there are clearly multiple time scales at work, a

linear time invariant process is not capable of explaining motor

adaptation.

Since neither washout nor intervening days delete motor

adaptations, there must be some mechanism that guards newly

adapted parameter values against de-adaptation when they are no

longer relevant. Motor architectures that can guard entire forward

and inverse models of limb dynamics by switching them on and off

have been proposed [14,15,16]. However, it is unclear how these

models can account for the patterns of apparently incomplete

generalization observed experimentally [4]. What’s more, these

models do not make a distinction between the parameters of the

body and the world, but rather estimate when an appropriate

model of the coupled body and world dynamics is applicable. In

contrast, we propose the nervous system should separately estimate

the properties of the body and the world and when those

individual parameters are relevant for control. For example, our

estimate of a coffee cup’s weight is only relevant while we are

PLoS Computational Biology | www.ploscompbiol.org 1 October 2011 | Volume 7 | Issue 10 | e1002210



holding it and not after we have set it down on the table. Estimates

of our arm’s weight, on the other hand, are always relevant for

limb movements. Conditioning on such obvious relevance the

nervous system can know not to adapt estimates of the cup’s

weight unless we are holding it. Parameter relevance, however, is

not always this obvious. If this relevance could be estimated, then

the nervous system could guard newly adapted behaviors and later

retrieve them when they are relevant again.

To examine this idea, we designed an idealized model for

computing the probability of relevance, and then using this estimated

relevance to adapt. In a previous study we proposed a statistical

inference model for motor adaptation that estimated a large number

of parameters for the body and the world [4]. In a different study we

proposed that the nervous system constantly estimates the relevance

of errors for motor adaptation [17]. Here we combine these two

approaches. We assume that parameters associated with the body are

always relevant, whereas world parameters are only relevant under

specific conditions. If the probability of a parameter’s relevance is

high, then it is subject to adaptation. If not, the motor errors may be

due to sensorimotor noise or changes in body parameters.

In contrast with the coffee cup example, the kind of experimental

disturbances subjects are exposed to are not as evident. Therefore,

we estimate relevance using a model that can predict the

consequences of a class of world disturbances. As such, relevance

defined here does not depend on a particular parameter value, but

rather the particulars of that type of parameter’s influence on motor

behaviors. When movement patterns are consistent with a large

world disturbance, regardless of the observed movement error (see

Fig 1), then the likelihood of that parameter being relevant is high.

For example, if the presence of a coffee cup in our hand, any coffee

cup, can account for unexpected limb motions and forces on our

hand, then parameters representing the cup’s inertial properties

should be subject to adaptation. If not, then those parameters should

not be updated. In effect this allows for a rudimentary long-term

memory, allowing for the retention and later retrieval of newly

acquired world parameter values.

We simulated a series of experiments to investigate how our

model behaves when adapting to multiple motor behaviors in

succession. The model was restricted to four free parameters,

which were held constant for all simulations. The models’

predictions are consistent with the findings of savings, interference,

spontaneous rebound and the differences between adaptation to

gradual and abrupt disturbances. Our model offers a formalization

of how the nervous system may estimate and store motor

parameters when adapting to disturbances.

Methods

Generative model
The model used here is based on that used in a previous study [see

4 for details and code]. Briefly, the human upper limb is modeled as a

nonlinear 2-link, 2 degree of freedom mechanism driven by

feedforward torque components to compensate for estimated world

and body dynamics, plus a feedback component to stabilize

movements about a nominal, minimum jerk trajectory. For the

results shown here only two parameters were inferred, a body-centric

visuomotor rotation hb (due to some possible combination of

proprioceptive errors and relative head or torso rotations) and a

world-imposed visuomotor rotation, hw, the experimental disturbance

of the cursor. The system observation, y(t), is the visually observed

(displayed cursor) position vector, x and velocity vector, dx/dt of the

limb’s endpoint (or hand) in a Cartesian reference frame, y = [x(t),

dx(t)/dt]T. We assume this observation is corrupted by measurement

noise, n(t), with zero mean and covariance R.

We collate the parameters to be estimated in the vector, p =

[hb, hw]T. To infer these parameters, we assume that they vary

according a random walk, with a small forgetting factor,

pi(tzD)~aipi(t)zwi(t)

where wi is a zero mean random variable drawn from a normal

distribution with variance, si
2. These parameters influence the

Figure 1. The likelihood of relevance. A) Before adapting,
estimates for body and world disturbances are zero. The hand’s path,
along with the estimated hand and cursor location, fall along a straight
path to the target. The large observed errors (red and blue arrows) of
the perturbed visual display indicate the likelihood of a world
disturbance being relevant is high. B) During adaptation, the hand’s
path is adjusted to compensate for the estimated body and world
disturbances. Even though errors between the estimated cursor
location and the observed cursor location have been reduced (blue
arrow), the large error between the estimated hand location and the
observed feedback (red arrow) continues to indicate the likelihood for
the world parameter relevance is still high.
doi:10.1371/journal.pcbi.1002210.g001

Author Summary

Trying to explain how humans adapt to new motor
behaviors and retain them over time is a central focus in
motor control. Many aspects of adaptation, including
savings and interference, have proven difficult to explain in
a coherent manner. Linear dynamical models have been
successful at describing the observed increase in perfor-
mance while subjects familiarize themselves with an
experimental perturbation. Many aspects of these exper-
iments however, remain unexplained. In particular, while
subjects display the ability to remember new motor
behaviors for long periods of time, these linear models
cannot. In this work we extend our previous body-world
model of motor adaptation by estimating the relevance of
inferred world disturbances. When these parameters are
estimated to be relevant, they are used (and motor
behaviors are adapted), and when they are estimated to
not be relevant they are stored (and motor behaviors are
remembered without being lost). Our model offers
explanations for many observations on motor adaptation,
savings and interference.

Estimating the Relevance of World Disturbances
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nonlinear dynamics of the limb, and the subsequent effects on

movement are then observed in the output, y. However, we

assume that influences of the world parameter, hw, are only

observed when the limb is perturbed. To denote this state of being

perturbed by a visuomotor rotation, we define the relevance

variable, lrot. The variable can take on one of two values, one or

zero. If a world rotation parameter is relevant then the relevance

variable is one, if not, zero. The system’s output then depends on

the relevance in the following way,

y(t)~
y(hbzhw,t); lrot~1

y(hb,t); lrot~0

� �

where y(h, t) is shorthand for the observed output when visually

rotated by h. Though binary, we assume that the relevance

parameter is also Markovian, and has a small non-zero probability

of transitioning from one value to the other. We define a transition

model (or mixing matrix), M = [0.999 0.001; 0.001 0.999],

ensuring our prior probability of relevance never becomes fixed at

0 or 1. In total the model has 4 free parameters, ab and aw, sb and

sw. However, to assure that estimates of the world would be

retained over long periods of time, we held aw fixed at 0.99999.

Estimating relevance
The model uses its observations of the limb’s endpoint (y) to

infer the probability that an external parameter is relevant and

update its belief in the parameters in p. In this study we were

focused on the interference and savings of visuomotor adaptations,

therefore we limited our computations of relevance to the

visuomotor variable, lrot. Key in this computation is how the

likelihood of relevance is computed. Before examining this, we first

briefly describe how the posterior probability of relevance is

computed using a Bayesian update. For ease of notation, we shall

refer to the visuomotor relevance variable, lrot, as l for the

remainder of this section. As defined above, l = 1 if it’s variable is

relevant, and l = 0 if not. The posterior probability that the

world’s rotation parameter is relevant, P(l(t) = 1|y(t)) is found

through Bayes’ rule,

P(l(t)~1jy(t))~
P(y(t)jl(t)~1)P(l(t)~1)

P(y(t))

where P(y(t)|l(t) = 1) is the likelihood (P(y|l = 1) for brevity),

and P(l(t) = 1) is the prior (P(l = 1) for brevity). Note that the prior

is the posterior found in the previous time step, modulo the

transition model, m11 P(l = 1) + m12 P(l = 0), since it summarizes

the probability of being relevant based on all the observations

made up to that time (we assume l is Markovian).

Our definition of relevance is based on a type of parameter’s

ability to explain disturbances. To illustrate, consider reaches early

during adaptation. The body and world parameter estimates of a

visuomotor rotation are zero and there are large movement errors.

These errors are consistent with a large world disturbance and the

probability of the visuomotor parameter being relevant is

computed as high (Fig 1A). After adapting for some time, an

updated estimate of the body parameter partially compensates for

the disturbance. The newly estimated world disturbance further

compensates for the disturbance. Any remaining errors are used to

update these parameter values with a Bayesian update (see below).

However, even if the errors are driven to zero, there remains a

large apparent error between the observed movement, and how

much the body parameter can account for (Fig 1B). If this

mismatch can be explained as the result of a relatively large world

rotation, then the likelihood of a world disturbance is high.

Therefore the corresponding likelihood of relevance is based on

the probability of observing the cursor (y), given our current

estimate of the body parameter, and a world rotation of any value

perturbing our observations. To compute this we must integrate

the probability of a perturbed observation over all possible world

rotations,

P(yjl~1)~

ðp

{p

P(yjh,l~1)P(hjl~1)dh

P(y|h,l = 1) is the likelihood of observing the limb’s endpoint with

a given rotation, h. Since body parameters are always relevant, this

likelihood is a normal distribution centered on the internal model’s

prediction, N(y(h+hb), R). Rather than integrate this distribution

over the forward model’s prediction over each movement and all

possible world rotations we made the following simplifying

assumption. Since the visuomotor disturbance influences move-

ment observations in a relatively simple and unique manner (a

constant rotation), we redefined this likelihood using only

visuomotor angles. We used the hand trajectory, to identify the

unique rotation, hy, that minimized the root mean squared error

between the observed limb path, y and the estimated path when

only compensating with the, always relevant, body estimate. We

then use a Normal distribution over h centered on hy, with the

variance associated with an observation of the rotated limb, sh
2

(see below). Although the normal distribution is defined over all

real numbers, the variance of this distribution is much smaller than

our limits of integration, and can very accurately be described as

restricted between 2 p to p.

To define the prior over visuomotor angles, P(h/l = 1), we note

the following considerations: relevance is based on the ability of

any visuomotor disturbance to explain the data, and we want to

avoid biasing the inference. The prior should be flat over all non-

zero rotations, but avoid assigning high probabilities to the

degenerate case of small (relative to our observation noise) or zero

rotations. Based on these considerations we defined the prior as

(1-exp(2h2/2sh
2))/Z where Z is an appropriate normalizing

constant. Just as above, given that the variance for the Gaussian

term is much smaller than the domain, 2p, Z is very accurately

approximated as 2p
ffiffiffiffiffiffi
2p
p

sh. This form of a prior assigns high

probability to all large valued rotations, and low probability to

rotations that are near zero, or small relative to the size of the

observation noise, sh
2.

After integrating the above equations we find an expression

solely in terms of the rotation that corresponds to our observation,

hy,

P(yjl~1)~
1

Z
1{

1ffiffiffi
2
p exp ({h2

y=4s2
h)

� �

To summarize, this likelihood assigns high probability when the

observed rotation, hy is large relative to the observation noise. We

also note that in this idealized model, hy is the angular

Estimating the Relevance of World Disturbances
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displacement relative to a movement predicted using the current

estimate of a body disturbance, hb. Thus estimated body

disturbances influence the forward model’s belief of where in

space the limb is. Finally, we also need to compute the likelihood

of the unperturbed condition, l = 0,

P(yjl~0)~

ðp

{p

P(yjh,l~0)P(hjl~0)dh

We can define P(y|h,l = 0) with a Normal distribution just as

before. However, since this is for the case when the rotation is not

relevant, this distribution should be centered on h = 0. The prior,

however, will be different. The prior should only assign large

probability to rotations that are small, or small relative to the size

of the observation noise. Therefore we define the prior as a

Normal distribution with zero mean and variance, sh
2. Again,

since the variance for these distributions is very small relative to

the limits of integration, both the likelihood and prior can be

accurately approximated as restricted between 2p to p. After

integrating, we arrive at

P(yjl~0)~
1ffiffiffiffiffiffi

2p
p

sh

exp ({h2
y=2s2

h)

With this final term found, we can express, P(y) = P(y|l = 1)

P(l = 1) + P(y|l = 0)P(l = 0), and compute both the posteriors,

P(l = 1|y), and P(l = 0|y).

The variance, sh
2, was found by noting that the angle

subtended by the arm’s length, L, and one standard deviation of

the observation noise in either direction, is approximately 2s/L,

where s is 0.01 meters. Using either the upper or lower arm

length for L, the angle is approximately 1.7u. Using the whole arm

length for L, the angle is 3.4u. Therefore, we defined sh
2 = (2.5

degrees)2. During the error clamp simulations the model’s

observation was artificially constrained to have zero error,

regardless of the parameter estimates used to generate motor

commands, or their relevance. The model’s observations of

movements that attempted to compensate for disturbances were

no different from estimated movements without disturbances. To

model this uncertainty, we held the likelihood fixed at 0.5 during

these circumstances. We note that denying the model the evidence

necessary to compute a likelihood (as may occur in error clamps)

also has the same effect, as the transition matrix relaxes the

probability of relevance to 0.5 as time passes.

Optimal inferences
With the relevance probabilities in hand, we can then infer

estimates of the parameters. The estimate of the world’s rotation

used by the model to make predictions and compute commands is

conditioned on the prior probability of being relevant,

ĥhw~P(l~1)ĥhwzP(l~0):ĥhw~P(l~1)ĥhw

since:ĥh (the rotation when not operating in a visuomotor rotation)

is assumed to be zero. This expected world estimate along with the

body estimate is collated in the vector p̂~½ ĥb,ĥw � T .

If the probability of relevance is one, then the update for the

rotations is the extended Kalman filter update,

p̂pnz1~Ap̂pnzK(y{ŷy)

where A is a matrix with ab and aw on the diagonal. However, if the

probability of relevance is zero, then the world rotation is guarded

against adaptation, and the update is

p̂pnz1~Ap̂pnz
1 0

0 0

� �
K(y{ŷy)

Therefore, we approximate the update with the maximum

likelihood update,

p̂pnz1~Ap̂pnz
1 0

0 P(l~1jy)

� �
K(y{ŷy)

The parameters’ covariance, P, was updated in a similar fashion.

Defining Pn+1 = APnA
T + Q, and the updated covariance

Pz~ Pnz1zCT R{1C
� �{1

, then the posterior covariance was

approximated as

Pz
nz1~

1 0

0 P(l~0jy)

� �
Pnz1z

1 0

0 P(l~1jy)

� �
Pz

We note that multiple approximations to the updates for the

parameters and their covariance were attempted and the

qualitative results did not change. Furthermore, the transitions

from low to high relevance are relatively quick (2–3 trials). As such,

the approximations for inference during the intermediate state of

relevance/non-relevance (0,P(l = 1),1) have only a limited

influence on the estimated parameter values.

Simulations
The limb parameter values were based on [18]. For all simulated

experiments, the targets and reaching distances were equivalent to

that used in the studies. For all simulated movements we assumed

the nominal limb trajectory was that of a minimum jerk profile

specified by the target locations, via points (8 equally spaced

locations) and movement times reported. Parameter estimates were

updated 6 times per movement, and movement targets were

randomly selected. The probability of relevance was computed once

per movement. The three free parameters, ab, sb and sw, were

tuned by hand to create qualitative fits to the data from [19]. These

values were then used for the remaining simulations.

Our simulated visuomotor experiments display trial-by-trial

adaptations, whereas experimental plots of the same data are of

cycles (data averaged over 8 consecutive trials). We have not made

a distinction between trials and cycles because of the rescaling

properties of the inference process. A single trial in our

formulation need not represent a single trial or a cycle. The

model is time invariant in this regard and we can scale all the

parameters (jointly) to scale time by any specific value.

Estimating the Relevance of World Disturbances
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Results

The sources of motor errors and their relevance
In our previous model [4] parameters were always relevant and

subject to adaptation. For variables that describe the body this

makes intuitive sense. Variables that describe the environment,

however, may only be relevant in a particular circumstance [17].

We thus amended the source estimation model, partnering world

parameters with relevance variables. The probability of being

relevant is found by comparing the observed movement with the

movement predicted if the estimated world disturbance were

neglected. The estimate of a world parameter is then adapted

using a Kalman update weighted by the probability of being

relevant (see Methods). This contextualization allows for the

storage and later retrieval of newly acquired parameter values.

In this study we focus on the paradigm of visuomotor

adaptation, restricting the model to estimate two variables, a

body-centric visual rotation (e.g. a rotation of the head relative to

the torso and/or arm) and world-imposed rotation (the experi-

mental manipulation). As a result, the model can only entertain

one visual disturbance due to the body and one due to the world.

We restrict the model to four free parameters: two parameters to

describe the magnitude of noise associated with them, and two

decay rates or time scales. However, we further assume the decay

rate for world parameters is essentially zero, allowing for the long-

term retention of that estimate. The existence of a fast and slow

time scale are consistent with previous findings [5], and our

previous work [4] which suggests the uncertainty associated with

body parameters is large, and estimates should vary quickly. The

resulting model offers predictions for how adaptation should

proceed when it is statistically optimal.

Though the relevance model we present here is nonlinear in

both the limb dynamics and the adaptation scheme, the results we

present share many similarities with those of previously published

linear models of adaptation. Specifically, when adapting to a

visuomotor rotation of the model’s hand location the motor errors

appear linear in the estimated disturbances. Furthermore,

although these disturbances are not adapted with a fixed rate

(but instead estimated with an extended Kalman filter), trial-by-

trial changes in the estimates are small and the resulting motor

errors follow typical exponential trajectories. Due to these

similarities the relevance model has the appearance of a linear

estimation process with a nonlinearity that switches the estimated

world disturbance in and out of the adaptation process.

Short-term adaptation and savings
To examine short-term motor adaptation, many experiments

expose subjects to a disturbance twice in quick succession, with

either a counter disturbance or a washout period in between.

Savings are observed on the second presentation of the

disturbance in both cases. Linear models can explain savings after

adaptation in the form of an increased learning rate when

adapting to the counter disturbance paradigm [5,6]. However,

linear (time invariant) models are not capable of explaining this

same type of savings after a sustained washout period [8]. Once

the perturbation has been removed, the model necessarily de-

adapts its parameters. Therefore, a washout period lasting as long

as the adaptation period would reverse any savings; a second

exposure to the disturbance would proceed just as the initial one.

Without a mechanism for guarding parameters against de-

adaptation, linear models are incapable of displaying even this

form of short-term motor adaptation.

Consider how the model presented here adapts while making

reaches with a visuomotor perturbation. Initially the model cannot

predict the consequences of, nor compensate for, a visual

disturbance, and there are large motor errors (see Fig 1A, 2A).

These errors drive adaptation of the estimated body rotation. At

the same time, the model estimates that a large angular rotation of

the hand’s path is consistent with the observed reach (Fig 1A). This

Figure 2. Short-term savings after washout. A) Angular reach errors during the first presentation of a visuomotor disturbance, washout (while
grasping robot) and subsequent presentation of the same disturbance B) Inferred body and world rotation parameters during adaptation and the
corresponding probability of relevance. C) Angular reach errors from first and second presentation of visuomotor disturbance overlaid.
doi:10.1371/journal.pcbi.1002210.g002

Estimating the Relevance of World Disturbances
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large potential angular perturbation indicates that the probability

of the world’s visuomotor rotation relevance is high (approxi-

mately 1, Fig 2B). As a result the world’s rotation estimate is

adapted and rises to help compensate for the experimental

perturbation (Fig 2B). Although the motor errors progressively

decrease, the model is still aware that a large visuomotor rotation

is consistent with the ongoing observations; there remains a large

discrepancy between the observed reaches and the model’s

estimate of an uncompensated reach. An estimate of the

uncompensated reach is found by predicting a reach made

without compensating for the estimated world rotation. The

estimated body rotation however, is still used, and biases this

estimate (see Fig 1). A large angular perturbation continues to be

estimated and the probability of relevance remains high

throughout the adaptation process. After an adequate number of

trials, the contribution from the body and world rotations largely

cancels the visual disturbance and the errors are small (Fig 2A).

The overall motor behavior is qualitatively consistent with

adaptation to a novel visuomotor disturbance. Both linear models

and our nonlinear model can correctly describe the resulting

patterns of adaptation.

Continuing with the short-term adaptation paradigm, when

washout trials are subsequently presented, consistent with

experimental findings, the relevance model produces large motor

errors in the opposite direction (Fig 2A). The model, now biased

by its previously adapted body rotation, mistakenly estimates an

angular perturbation now in the opposite direction. The

probability that the world’s visuomotor rotation estimate is

relevant remains high and both the body and world estimates

de-adapt (this produces a short lasting overshoot in the error, Fig 2

green panel). As the body estimate quickly de-adapts the

probability of relevance decreases back to zero. This change in

the world’s estimated relevance halts adaptation of the world

rotation parameter. In contrast with similar linear multi-rate

models, the motor errors are now only used to estimate the body’s

rotation parameter (which is always relevant). The body’s estimate

continues to de-adapt and the motor errors vanish. This

combination of the fast change in the world parameter’s relevance,

along with the fast adaptation rate for the body parameter, results

in the relatively quick de-adaptation back to nominal reaches.

When the disturbance is turned on again, large errors result. Just

as before, the probability that the world’s visuomotor rotation

parameter is relevant increases. This quick change in the estimated

relevance results in a relatively fast decrease in errors, as the

world’s rotation estimate begins to compensate for the rotated

reaches (Fig 2C). Thus the estimation of relevance allows the

model to explain fast re-adaptation.

Long-term savings and interference
The adaptation and short-term savings we have reviewed above

have similar analogues over longer time frames. To examine

savings over multiple days, subjects adapt to a disturbance, and

then are presented with the same motor disturbance on a

subsequent day. In another paradigm, subjects adapt to two

disturbances in quick succession, the later often a counter

disturbance, and then evidence for savings or interference is

examined on a subsequent day [e.g. 13,19]. Both experimental

paradigms demonstrate that many of the features of short-term

motor adaptation also exist over longer time frames. Unfortunately

linear models are not capable of describing some of these

phenomena over these longer time frames.

Using the relevance model to examine its predictions for saving

over days, we simulated these experimental paradigms [e.g. 19].

No changes were made to the model for these long-term

adaptation results. The first day’s adaptation to a visuomotor

disturbance proceeds just as described above (Fig 3A). There is a

subsequent washout period just as before, where the probability

that a world rotation estimate is relevant quickly decreases towards

zero. The world’s parameter estimate, no longer relevant, is left for

later use should it become relevant again. The body estimate then

rapidly de-adapts (Fig 3A).

In this particular experiment, subjects do not undergo a period of

washout with the robot, but instead leave the experimental setting.

Therefore this washout is different from those of the previously

described short-term experiments on two counts. First, the washout

trials predicted by the model correspond to natural movements

made by the subjects after the experiment has ended. Our model

thus predicts that there should be aftereffects that persist after the

subject has let go of the robot handle. This is consistent with recent

evidence [e.g. 20]. Second, since this washout period does not take

place while grasping the robot handle, the last interactions subjects

have with the robot are associated with a disturbance; the robot is an

unambiguous proxy for the relevance of a visuomotor rotation.

Therefore we assume that the model’s initial probability of the

visuomotor parameter’s relevance should be similar when the model

next returns to the experiment.

When adaptation on a subsequent day is simulated, the

probability of the visuomotor parameter being relevant is

initialized to a high value (0.75), as discussed above, and the

world’s rotation estimate is believed to be relevant. The model is

again presented with the same visuomotor rotation and the initial

motor errors are lower than those of the previous day (Fig 3B). At

the end of this second day of adapting to the visuomotor

disturbance the movement errors are lower than on the previous

day. This is due to the relatively large contribution from the world

estimate. The model’s predictions for long-term savings are

consistent with the observed experimental findings (Fig 3C).

We simulated the second experimental paradigm, now

presenting two visuomotor rotations of opposite orientations in

succession [19]. Adaptation to the first motor behavior proceeds

just as above. When the model is presented with a second,

oppositely directed rotation, the model again estimates a large

angular discrepancy between the observed hand path and an

estimated path that neglects the current world rotation estimate.

However, this estimated rotation of the hand’s path is now in the

opposite direction. Regardless, the probability that the visuomotor

rotation parameter is relevant remains high. Both the world and

body parameters begin adapting to a rotation with the opposite

sign (Fig 3D). When the washout trials begin, the probability of

relevance quickly decreases, the world’s rotation estimate is no

longer used, and adaptation is halted. However, by this point all

adaptation to the first visuomotor rotation has largely been lost.

Just as above, on a subsequent day the model begins with a belief

in a visuomotor rotation’s relevance, and uses its estimated world

rotation. Yet, the small estimate has little influence on the

movements. Consistent with experimental findings of interference,

the model performs as if naı̈ve on the second day’s presentation of

the disturbance (Fig 3E, F).

Our new model explains long-term savings in the form of

retention of a previously adapted motor behavior and decreased

initial errors. Further, the model demonstrates how adaptation to

two similar disturbances can cancel each other’s influences and

result in interference. Both findings are widely observed in motor

adaptation studies.

Adaptation to sudden and gradual perturbations
Most studies examine adaptation after the sudden introduction

of a perturbation. However, recent evidence has found marked
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Figure 3. Long-term savings and interference. A) Inferred body and world rotations and the corresponding probability of relevance during the
first presentation of a visuomotor disturbance, washout (after experiment has ended) and subsequent presentation of the same disturbance on a
second day. B) Angular reach errors from the first and second presentation of the visuomotor disturbance overlaid. C) Experimental findings after the
same adaptation (reproduced from [19]). D) Inferred body and world rotations and probability of relevance during a visuomotor disturbance, an
oppositely oriented disturbance, washout (after experiment has ended) and subsequent presentation of the original disturbance on a second day. E)
Angular reach errors from the first and second presentation of disturbance overlaid. F) Experimental findings after same adaptation (reproduced from
[19]).
doi:10.1371/journal.pcbi.1002210.g003
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differences when subjects adapt to a perturbation that is gradually

introduced. These gradually introduced perturbations have been

used to examine both interlimb generalization, and savings of

motor behaviors across multiple days. In one study, subjects

adapted to a force field that was either suddenly or gradually

introduced [21]. After adapting, savings were examined when

making test reaches with the non-dominant limb in the same force

field (at full strength). The test reaches made after adaptation to

the gradually introduced perturbation exhibited relatively larger

deviations from a straight path. The initial errors were roughly

twice as large as those found after adapting to the suddenly

introduced perturbation, suggesting generalization of the adapted

force field to the other limb was relatively poor when the

perturbation is gradually introduced. In another study examining

the differences between gradually and abruptly introduced force

fields, post-adaptation reaches made without grasping the robot

handle were examined [22]. The aftereffects on these free reaches

were larger when subjects adapted to a gradually introduced

perturbation. This suggested adaptation to a gradually introduced

force field, may have altered the way subjects controlled their limb.

Another study examined savings across days with a visuomotor

rotation that was either gradually or suddenly introduced [23].

After adapting on one day, subjects made reaches in the same

visuomotor perturbation (full strength) on a subsequent day.

Subjects that had adapted to the gradually introduced perturba-

tion made slightly larger errors initially, even though they adapted

over more trials than the other group. These three results, and

other studies like them, with their distinctions in savings, may offer

testable predictions for how the nervous system adapts.

To examine our model’s predictions we simulated the same

gradual perturbation as the one used in [23]. During the early

trials the motor errors are small and the body estimate quickly

adapts to them. Because these errors are small the body estimate

does an adequate job of compensating for the perturbation. The

model does not detect a large angular perturbation and does

therefore not believe the world’s rotation estimate (initially zero) to

be relevant. Only during later trials as the perturbation strength

increases does the model believe the world’s parameter is relevant.

Thus, much of the adaptation is accounted for by the body

estimate (Fig 4A). After the simulated experiment has ended, the

model has a world estimate that is little more than half as strong as

would be otherwise (compare with Fig 3). Our model predicts

three findings of interest. First, we can conclude that during a

generalization trial with the other limb, the model’s errors would

be approximately twice as large as if the perturbation was suddenly

introduced, consistent with experimental evidence [21]. Second,

because the perturbation is largely attributed to the body, the

model predicts relatively large aftereffects during reaches made

without the force field, when the robot handle is not grasped and

the probability of a disturbance parameter’s relevance is zero [22].

Third, since the world estimate of a rotation is smaller than would

be otherwise, movement errors on a subsequent day are larger

initially, just as was found experimentally (compare Fig 4A, B).

Our model thus provides an interpretation of the effects that are

associated with fast versus slow introductions of perturbations.

Error clamp adaptations
One additional set of phenomena may be important to

characterize the properties of motor adaptation. In several recent

studies subject’s motor behaviors are examined when they make

reaches in an ‘‘error clamp’’, or ‘‘force channel’’, wherein force

disturbances are removed and movements are constrained to be

straight. This is done to examine how and if subjects alter their

motor strategies in the absence of kinematic errors. In an early

study, after subjects adapted to a velocity-dependent force field, an

error clamp was unexpectedly turned on [24]. Even though there

was no longer any need to compensate for the force field, subjects

continued to produce considerable forces as if it were still present.

Figure 4. Savings after a gradually introduced disturbance. A) Inferred body and world rotations and probability of relevance while a
disturbance is gradually introduced, washout (after experiment has ended) and presentation of full disturbance on a second day. B) Angular reach
errors on first and second day after adapting to a gradually (grey lines), or suddenly (black lines) introduced disturbance. C) Experimental findings of
same adaptations (reproduced from [23]).
doi:10.1371/journal.pcbi.1002210.g004
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These forces slowly decayed, over a longer period of time than the

subjects required to adapt or de-adapt in the absence of an error

clamp. This suggested that these erroneous forces and their slow

decay were the result of some altogether different process.

We can examine what the model would predict by simulating

similar circumstances. The model is first presented with a

visuomotor rotation, and then the reaches are ‘‘clamped’’ to

constrain movement errors to be zero. Adaptation proceeds just as

we have seen before (Fig 5A). Under the simulated error clamp

condition, regardless of what the model (or subjects) does to

compensate for a perceived disturbance, they observe the same

error-less outcome. The model cannot observe the consequences

of using its estimated perturbations; this results in uncertainty in

the relevance of the visuomotor parameter (see Methods). As a

result the model partially uses the world’s estimate to compensate

and both the body and world rotation estimates slowly decay

towards zero. The results are qualitatively similar to experimental

findings (Fig 5B).

In a somewhat different paradigm, after subjects adapt to one

disturbance they are briefly presented with a counter disturbance

and subsequently make reaches while errors were clamped [5].

Under these circumstances subjects temporarily make reaches as if

they are compensating for the counter disturbance, even though it

is not present. This phenomenon, termed spontaneous rebound,

has been observed under a variety of conditions [25,26,27]. Ideally

models of motor adaptation should be able to describe such a

behavior.

How would the source relevance model explain such findings of

spontaneous rebound? We can simulate the model’s predictions to

the same paradigm with a visuomotor rotation first, then a counter

rotation, and then a ‘‘clamp’’ where we artificially constrain the

movement errors to be zero. The model can predict spontaneous

rebound through the interaction of two mechanisms. As with other

linear multi-rate models there is the interaction of two or more

processes with different adaptation rates [e.g. 5]. But more

importantly for our model, under the simulated error clamp

condition, the model (and subjects) observes an error-less outcome,

regardless. This results in uncertainty in the relevance of the

visuomotor parameter and the model partially uses the world

estimate. The model appears to overcompensate for a nonexistent

Figure 5. Error clamps and spontaneous rebound. A) Inferred body and world rotation parameters and probability of relevance during
adaptation to a visuomotor disturbance and subsequent error clamp. In the error clamp, feedback indicates a lack of errors regardless of movements.
B) Experimental data of normalized reaching forces during adaptation to a force disturbance and subsequent error clamp (reproduced from [24]). C)
Inferred body and world rotations and the probability of relevance during presentation of a visuomotor disturbance, visuomotor disturbance of
opposite orientation and subsequent error clamp. D) Experimental data of normalized reaching forces during a force disturbance, opposite
disturbance and subsequent error clamp (reproduced from [5]).
doi:10.1371/journal.pcbi.1002210.g005
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rotation and the results are similar to experimental observations

(Fig 5C, D). Though other multi-rate models can explain

spontaneous rebound, our model offers a different explanation

in terms subject’s difficulty in gauging the circumstances under

which they are adapting.

Discussion

Here we have extended a body-world, multi-rate model to infer

not only the parameter values but also their relevance to the

current motor conditions. The discrepancy between observed

movements and those predicted when neglecting world estimates is

used for the computation of relevance. World parameters that are

estimated as having little relevance are not used to generate motor

commands and are not adapted. Body parameters, however, are

assumed to always be relevant and subject to adaptation. In effect,

this allows for a rudimentary long-term memory of world

parameters, allowing for the retention and later retrieval of newly

acquired parameter values. The entire process is dynamic and

requires no intervention for describing behavior across short or

long time frames. We have demonstrated that such a model can

explain a wide range of findings on human motor control. Our

results are consistent with the basic findings of savings and

interference, error clamp results, and the differences between

adapting to gradual and abruptly introduced disturbances.

Though there are some clear similarities between the model we

present here and other computational descriptions of motor

control and adaptation, there are important distinctions. Our

model makes a categorical distinction between parameters that

represent the body and those that represent the world; thus it

shares similarities with two-rate models [5,6]. Indeed, our model

makes nearly identical predictions for short-term savings, inter-

ference and reduced learning rates with increased adaptation

duration [28]. Since these models are linear, however, they cannot

explain adaptation on longer time scales, as all their adapted

parameters relax back to zero. Perhaps a more fundamental

distinction, it is not clear what the ‘‘fast’’ and ‘‘slow’’ variables in

multi-rate models represent computationally, although they may

be related to distinct neural structures at the implementation level.

The model we present offers explanations for a range of findings

on both short and long-term motor adaptations as well as

generalization [4]. Further, we model the estimation of body

and world variables that can be tested through future experimen-

tation.

Since our model switches the world parameter values in and out

based on their probability of relevance, it bears some resemblance

to the other models that switch modules on and off, such as the

mixture of experts and MOSAIC [14,15,16]. However, our

representation of world and body parameters within a dynamical

model is distinct from the MOSAIC controller’s modules of paired

forward and inverse models of whole body-world dynamics. The

MOSAIC controller does not independently represent the body

and the world (which is a cornerstone of our model). In fact, even if

the MOSAIC were altered to represent the body and the world in

two different modules, they could not be ‘‘summed’’ to represent

whole body-world dynamics, as these descriptions are coupled and

highly nonlinear. Our proposed model represents distinct

parameters within a model of the limb and body dynamics.

Therefore it can uniquely adapt these parameters, and use them

for generalization in a manner MOSAIC cannot.

Furthermore, our use of a relevance parameter is distinct from

the notion of context used in these switching controllers. In the

MOSAIC model, modules are switched on and off based on the

similarity between their predictions and the observed motor

behavior. Each module’s predictions are uniquely described by the

current parameter values that make up that module (e.g. its

current estimate for a visuomotor rotation or force field). As a

result, a module for a particular force field will not be switched on

unless the limb makes reaches in a very similar force field. Our

computation of relevance is based not on a parameter’s value, but

on the manner it influences motor behaviors. For example, the

parameter for an inertial perturbation is likely whenever limb

movements are consistent with an inertial perturbation of any

sufficiently large value.

In large part due to these differences in relevance and context, it

is not clear if the MOSAIC model could also explain some of the

findings we have presented here. For instance, consider adapting

to a 30u visuomotor rotation. A module representing the perturbed

limb dynamics would modify its parameters to compensate for the

disturbance. When a 230u rotation is then presented, this

module’s prediction errors (now ,60u) would in fact be larger

than a baseline, null condition module (only ,30u). As a result the

context variable for the module associated with the visuomotor

rotation would be switched off, and this module would not

continue adapting to the counter rotation; the model would not

predict interference. Through a similar line of reasoning it is not

clear how the MOSAIC model could explain the phenomena of

spontaneous rebound.

Other studies have used the idea of context in different ways. In

one study context was defined as the implicit memory of the limb

segments used during a motor behavior [29]. In a sense, this

assigned relevance to different body effectors. In a more recent

study context indicated visuomotor rotations of different magni-

tudes [6]. In those studies context was known unambiguously, not

estimated based on errors or changes in the environment, as we

have done here. Further, here we define relevance (similar to

context) in terms of the existence of external disturbances,

regardless of what limb segment is used or the strength of the

particular magnitude of the disturbance. Our study can thus be

seen as a generalization of these studies to unobserved contexts

and changes in the environment, which makes new experimentally

testable predictions about the role of relevance.

In this work we have examined the effects of adapting to a

visuomotor rotation, however, this model could be extended to

adapt to other types of disturbances as well. In particular, several

experimental studies have investigated how adapting to visuomo-

tor rotations and altogether different motor disturbances in quick

succession, effect interference and savings [19,30,31]. Interesting-

ly, the results of these studies, having contrasting findings on

savings, have motivated distinct interpretations concerning the

nervous system’s ability to represent kinematics and dynamics

uniquely. Within that context, these results were argued to be

incompatible. Our model makes no distinction between kinematics

and dynamics but instead a distinction between parameters that

represent how to control the body and how to interact with the

world. Furthermore, our model predicts that if the effects of two

different perturbations were similar (in terms of their resulting

motor errors and sensory consequences) then their accompanying

world estimates (e.g. estimated world rotation, or estimate world

force field) would both be assumed relevant for adaptation.

Therefore, adapting to a visuomotor rotation, and then a force

field that perturbed the limb in a similar manner, might produce

interference [19], whereas the subsequent adaptation to a force

field dissimilar to a visuomotor rotation wouldn’t [30]. As such

future work using this model may offer a unique perspective to

examine the findings of these and similar experimental studies.

For the sake of focus and instruction, we have modeled one

estimate per disturbance, i.e. one estimated world rotation. This
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assumption played a crucial role in some of our findings on

interference. If instead we had allowed for multiple estimates of a

world rotation, it is not clear how the model would predict

interference when modeling adaptation to counter disturbances

across multiple days. Indeed, other studies have found that under

appropriate conditions, a newly acquired motor behavior can be

consolidated and resist retrograde interference [32,33]. Our model

does not predict these findings but extensions that could also

explain these effects would be interesting. Such extensions might

be possible by introducing parameters to describe multiple

visuomotor disturbances, each with their own uncertainty. Such

a model could implement a form of supervised adaptation; after

adapting to, or operating within, a specific visuomotor disturbance

for a long time the model could grow certain of this parameter

value. Then, adapting to a similar but oppositely directed

disturbance would require adapting another, less certain, visuo-

motor parameter. Such a scheme might implement adaptation to

multiple disturbances, consistent with the idea of consolidating a

motor behavior and learning a second, distinct behavior without

interference.

We feel that much if not all of the model’s value lays in the

intuition it yields in trying to explain motor behavior phenomena.

The studies and accompanying simulated results we present are

those that we feel the model may help to explain. However, as with

all models, this model is necessarily false [34], and there are

experimental findings the model either cannot explain or that are

flatly at odds with its predictions. For example, though our model

is consistent with the findings on adapting to gradually versus

abruptly presented perturbations in the Klassen et al. study, a

more recent examination found distinct results. In this new study

rates of motor decay were probed during short-term adaptation to

a force field, either abruptly or gradually introduced [35]. Though

the aim and experimental protocol of this study was very different

from the Klassen study, some apparent contradictions were found

in that there were no effects on the re-adaptation to the force field

between the abrupt and gradual groups. To be clear, this finding

was made under conditions of short-term savings of a force field

(not long-term retention of a viruomotor disturbance), and

obtained with the use of error clamps. However, despite their

differences, it is not obvious to us how our model could account for

these two distinct findings.

In contrast with the gradual vs. abrupt findings presented above

however, our model makes an interesting prediction that could

readily be tested. According to our model the amount of

adaptation for world parameters is due to both the size of

disturbance and the amount of training; the larger the disturbance

and the more training time, the more a world parameter is

adapted. Similarly, the more world parameters are adapted, the

more savings should be observed on a second day’s presentation of

the disturbance. Surprisingly though, our model predicts that even

with a gradually introduced perturbation, and one that never

reaches the strength of the abruptly presented one, more savings

can be observed on a second day. If the model is presented with a

visuomotor rotation that is ramped up slowly over many trials, the

world estimate will have relatively more time to adapt, and the

body estimate more time to de-adapt. As a result, even if

adaptation ends before the visuomotor disturbance has reached,

say 30u, the world estimate will surpass that seen in the abruptly

presented paradigm. Thus more savings, not less, will be observed

on the second day. The results of such an investigation would be

very informative for the study of adaptation.

Another study of force field adaptation offers both supporting

and contradicting evidence for our model. In this study the rates at

which subjects adapted (as quantified through movement errors)

were compared when adapting either to the null field or a scaled

down version of the force field [9]. Consistent with our model, de-

adapting to the null field is much faster than adapting to the force

field. It was also found that subjects adapted to the scaled down

force field even faster than they did the null field. In contrast with

this finding, our model would predict that both the body and the

world would adapt to the scaled down force field, resulting in a

relatively slow process. This is in sharp contrast with their findings

and will provide an interesting target for future modeling efforts.

In our model we have assumed that movement predictions

always utilize body estimates. Since the body is always relevant,

this seems sensible. One consequence of this is that the model is in

effect ‘‘blind’’ to changes it has inferred are due to the body; the

model cannot make predictions for movements that do not

compensate for these adapted body estimates. Even if the inferred

body estimates are due to an experimental perturbation, the model

will have an altered prediction of where the limb will be in space.

In effect, the act of adapting alters the model’s perception of the

limb. Interestingly, there is a growing body of experimental

evidence for this same effect. In particular, the act of adapting to a

visuomotor disturbance biases the perception of subjects’ move-

ment and hand position in a manner consistent with our model

[36,37]. This perceptual bias was found to be nearly half of the

adapted rotation, also consistent with our model. Importantly, this

bias was found to be associated with the limb alone, and not the

result of a global recalibration of visual space [36]. A similar

finding demonstrates that adapting to a force field alters the

perception of the limb in space as well [38]. On the whole, these

results suggest a further link between our model’s use of body and

world parameters and how the nervous system adapts to new

motor behaviors.

Some of our results on interference rely on the relative duration

of the counter disturbance, behavior B, in the A-B-A paradigm.

Since both disturbances are presented for the same length of time,

the counter disturbance almost completely degrades any estimate

of the world parameter estimate. This results in motor patterns

consistent with interference. If the counter disturbance was

presented for approximately twice as long, our model predicts

that the typical pattern of interference would not be observed.

Rather than producing errors similar to naı̈ve subjects, our model

predicts subjects should produce larger errors, consistent with the

expectation of the counter disturbance. As far as the authors are

aware, this particular experimental result has not yet been

performed and would be particularly informative.

In this study we have implicitly assumed that savings is a form

recall; previously adapted information is called upon resulting in

reduced motor errors relative to naı̈ve conditions. However, other

researchers have asserted that savings could be a form of meta-

adaptation instead, wherein adaptation rates are facilitated and

motor errors decrease faster than during naı̈ve conditions [e.g.

8,39]. By the same token, interference could either be a form of re-

adaptation and hijacking of previously adapted behaviors (as we

have assumed), or an inability to recall previously adapted

information. To the best of the authors’ knowledge, both of these

options for savings and interference are consistent with the known

empirical evidence. However, our model does make some

predictions that might speak to these possibilities. For example,

our model predicts that on repeated days of training, the estimate

of a world-imposed disturbance progressively increases. Assuming

cues such as the experimental apparatus are salient for estimating

relevance, each day’s initial errors should be smaller than the

previous. This implies that subjects should eventually display ‘‘one-

shot’’ learning of a disturbance. This would be strong evidence

that subjects were in fact recalling knowledge, rather than nearly
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instantaneously adapting. Future studies could examine a similar

line of predictions to distinguish between savings as recall, and

savings as meta-adaptation.

Relevance as we have defined it here is a relatively simplistic

indication of the motor system’s current operating condition, or

context. Clearly there is more to context than motor errors. For

instance, whether or not one is holding the handle of a robot is a

clear indicator of the kind of disturbances one might expect [20].

Similarly, while they may not be as salient, cues such as tones and

colors may also serve for disambiguating context [40]. Finally, in

this study we have completely neglected forces, both the contact

forces between the limb and the robot handle, and the forces

required to produce movements. This is clearly an oversimplifi-

cation and it is known that these forces are relevant when adapting

[e.g. 41,42,43]. Why some cues are easy to indicate context and

others are difficult remains and open question. Which variables

the nervous system uses to distinguish context are similarly

unknown. We expect that future studies will shed more light on

these issues.
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