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Abstract

Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible
to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We
report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is
equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is
consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among
orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting
and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good
predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in
rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and
resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to
mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with
similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein folding.
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Introduction

One of the most intriguing questions in evolutionary biology is:

to what extent evolution is deterministic and to what extent it is

stochastic and hence unpredictable? In other words, what happens

if ‘‘the tape of evolution is replayed:’’ are we going to see

completely different outcomes or the constraints are so strong that

history will be repeated [1–4]? If evolution is envisaged as

movement of a population across a fitness landscape, the question

can be reworded more specifically: among the numerous

trajectories connecting any two points on the landscape, what

fraction is accessible to evolution? Until recently, these remained

purely theoretical questions as experimental study of fitness

landscapes in the actual sequence space was impractical, due

both to the technical difficulty of producing and assaying

numerous expressed sequence variants and to the more funda-

mental problem of defining an adequate quantitative measure of

fitness. However, recent experimental studies of fitness landscapes

could potentially shed light on the problem of evolutionary path

predictability.

The most thoroughly characterized feature of empirical fitness

landscapes is the structure near a peak. In experiments that

examine the peak structure, a high fitness sequence is typically

subjected to either random mutations or an exhaustive set of

mutations at a small number of important sites. The resulting

library of mutants is then assayed to measure a proxy of fitness

[5–9]. Significant sign epistasis (a situation in which the fitness

effect of a particular mutation can be either positive or negative

depending on the genetic context) has been observed. Deviations

from the additive fitness model have been found to be independent

of the genetic context and purely random [10–13]. Because these

studies characterize only a small region of the landscape, they

cannot be used to address the question of path predictability.

Another broad class of experiments probes the evolutionary

trajectories from low to high fitness. Usually, in such experiments,

a random peptide is subjected to repeated rounds of random

mutagenesis and purifying selection [8,14–17]. During this process

fitness grows with each generation and eventually stagnates at a

suboptimal plateau. The characteristics of the fitness growth as

well as the dependence of the plateau height on the library size can

be used to classify landscapes [18]. A quantitative comparison to

the NK model of random epistatic landscapes (N is the number of

sites in an evolving sequence and K is the number of sites that

affect the fitness contribution of a particular site through epistatic

interactions) can even yield quantitative estimates of N and K

[19,20]. The directed evolution studies explore the evolutionarily

accessible portion of the landscape and could in principle be used

to shed light on the question of path predictability. However, the

inaccessible regions of the landscape remain unexplored and the

volume of data at this point is insufficient to obtain quantitative

conclusions regarding path predictability.

A different type of landscapes has been explored in various

microarray experiments where protein-DNA(RNA) binding affin-

ity serves as the proxy for fitness [21,22]. These experiments
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produce vast, densely sampled landscapes. A comparison with a

sophisticated Landscape State Machine model of a correlated

fitness landscapes yields estimates of the model parameters

[23,24]. The DNA binding landscapes, in principle, contain the

information required for the analysis of path statistics, and could

be a valuable resource for advancing the understanding of

evolutionary path predictability.

Empirical studies that exhaustively sample a region of the fitness

landscape allow one to actually assess the accessibility of the entire

set of theoretically possible evolutionary trajectories in a particular

(small) area of the fitness landscape. For example, all mutational

paths between two states of an enzyme, e.g., the transition from an

antibiotic-sensitive to an antibiotic resistant form of b-lactamase

[25–27] or the transition between different specificities of

sesquiterpene synthase [28] have been explored. The results of

these experiments, which out of necessity explore only short

mutational paths of v10 amino acid replacements, suggest that

there is a substantial deterministic component to protein evolution:

only a small fraction of the possible paths are accessible for

evolution [25,29–31].

Recent analyses of fitness data have revealed dense networks of

genetic and molecular interactions responsible for the substantial

ruggedness and sign epistasis of empirical fitness landscapes

[13,32]. The emerging quantitative analysis of fitness landscapes

can shed light on some of the most fundamental aspects of

evolution but the interpretation of the currently available

experimental results requires utmost caution as only a minuscule

part of the sequence space can be explored, and that only for a few

more or less arbitrarily selected experimental systems.

Here we focus on the question of the predictability of

mutational paths which is intimately tied to the ruggedness/

smoothness of the fitness landscapes. The study of random

landscapes of low dimensionality revealed an intuitively plausible

negative correlation between the roughness of a landscape and the

availability of pathways of monotonic fitness [33]. In the same

study, Carneiro and Hartl showed that experimentally character-

ized landscapes are significantly smoother than their permuted

counterparts and exhibit greater peak accessibility [33].

To gain insights into the structure of the fitness landscapes of

protein evolution and in particular the accessibility of mutational

paths we used a previously developed simple model of protein

folding and evolution [34]. The key assumption of this model,

which is based on the concept of misfolding-driven evolution of

proteins [35–37], is that the fitness of model proteins is determined

solely by the number of misfolded copies that are produced before

the required abundance of the correctly folded protein is reached.

We have previously shown that this model accurately reproduces

the shape of the universal distribution of the evolutionary rates

among orthologous protein-coding genes along with the depen-

dencies of the evolutionary rate on protein abundance and

effective population size [34]. These results appear to suggest that

our folding model (described in detail the Methods section) is

sufficiently rich to reproduce some of the salient aspects of

evolution. The model is also simple enough to allow exhaustive

exploration of the fitness landscapes, which prompted us to

directly address the problem of evolutionary path predictability.

We build on the efforts of Carneiro and Hartl [33] who

examined the statistics of evolutionary trajectories. Although

counting monotonic fitness paths reveals important features of the

landscapes, we argue that reliable retrodiction of the evolutionary

past is possible (i.e., evolution is quasi-deterministic) only when the

available monotonic paths are similar to each other in a

quantifiable way. We therefore propose a measure of path

divergence to quantify the difference between the available

monotonic paths. Our aims are to investigate the structure of

the fitness landscapes of protein evolution and to elucidate the

connection between the roughness of landscapes and the

predictability of mutational trajectories. We analyze three classes

of fitness landscapes: landscapes in which fitness is derived from

the folding robustness of model polymers; additive random

landscapes perturbed by noise; and experimental landscapes

derived from the combinatorial mutation analysis of drug

resistance and enzymatic activity. We show that all three classes

of landscapes are markedly smoother than their randomly

permuted counterparts and all exhibit a similar qualitative

connection between roughness and path predictability. However,

at the same level of path predictability, the folding landscapes have

substantially fewer fitness peaks. Equivalently, mutation paths are

more predictable than one would expect based on the number of

peaks if the landscapes were uncorrelated. Given that the statistical

properties of the model landscapes can be directly traced to the

constraints imposed by the energetics and kinetics of a folding

heteropolymer, we hypothesize that the relative smoothness and

the suppression of suboptimal peaks in fitness landscapes of protein

evolution are fundamental consequences of protein folding

physics.

Results

Quantitative characterization of fitness landscapes
Carneiro and Hartl compared small random landscapes to

several empirical fitness landscapes using deviation from additivity

as a measure of roughness [33]. They found that empirical

landscapes were significantly smoother than their random

counterparts and that the degree of smoothness was correlated

with the number of monotonic paths to the main summit.

Deviation from additivity of a landscape is computed by fitting an

additive model in which the fitness of each sequence is different

from the peak fitness by the sum of contributions of the

Author Summary

Is evolution deterministic, hence predictable, or stochastic,
that is unpredictable? What would happen if one could
‘‘replay the tape of evolution’’: will the outcomes of
evolution be completely different or is evolution so
constrained that history will be repeated? Arguably, these
questions are among the most intriguing and most
difficult in evolutionary biology. In other words, the
predictability of evolution depends on the fraction of the
trajectories on fitness landscapes that are accessible for
evolutionary exploration. Because direct experimental
investigation of fitness landscapes is technically challeng-
ing, the available studies only explore a minuscule portion
of the landscape for individual enzymes. We therefore
sought to investigate the topography of fitness landscapes
within the framework of a previously developed model of
protein folding and evolution where fitness is equated
with robustness to misfolding. We show that model-
derived and experimental landscapes are significantly
smoother than random landscapes and resemble moder-
ately perturbed additive landscapes; thus, these land-
scapes are substantially robust to mutation. The model
landscapes show a deficit of suboptimal peaks even
compared with noisy additive landscapes with similar
overall roughness. Thus, the smoothness and substantial
deficit of peaks in fitness landscapes of protein evolution
could be fundamental consequences of the physics of
protein folding.

Evolutionary Path Predictability
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substitutions that differentiate it from the peak sequence. The

negative fitness contributions of the substitutions to the peak fitness

are adjusted to minimize the sum S of squares of the differences

between the actual fitnesses in the landscape and the fitnesses

predicted by the additive model. Deviation from additivity is

defined as
ffiffiffiffiffiffiffiffiffi
S=L

p
, where L is the number of points in the

landscape.

Because roughness of a multidimensional landscape with variable

degree connectivity is not an intuitive concept, we introduce three

additional quantitative measures to probe alternative facets of the

concept of roughness. First, local roughness is the root mean

squared difference between the fitness of a point and its neighbors,

averaged over the entire landscape. As defined, local roughness

conflates the measures of roughness and ‘‘steepness.’’ For example,

a globally smooth landscape, in which fitness depends only on the

distance from the peak, will have a non-zero local roughness.

However, because there is a large number of directions that change

the distance from the peak by one, the local roughness of a globally

smooth landscape will be vanishingly small. In addition, our

landscapes tend to be globally flat–so that the average decrease in

fitness due to a single mutation step away from the main peak is

much smaller than the local fitness variability–everywhere except a

small region around the main peak (see Fig. 1). Therefore, the

landscape-average local roughness in our case is a true measure of

the local fitness variability.

Second, the fraction of peaks is the number of points with no

fitter neighbors divided by the total number of points in the

landscape. A strictly additive landscape has a single peak [30]

whereas the peak fraction in landscapes derived from the folding

model as well as the corresponding randomized landscapes

depends on the method of landscape construction, alphabet size

and sequence length.

Third, the roughness of a landscape can be assessed by

identifying its tree component. The tree component is the set of

all nodes with no more than one neighbor of higher fitness. Thus,

the tree component includes peaks and plateaus. Monotonic fitness

paths along the tree component form a single or several disjoint

tree structures without loops. In the limit of high selection

pressure, a mutational trajectory that finds itself on the tree

component has a single path to the nearest peak or plateau, i.e.

evolution on the tree component is completely deterministic. We

use the mean distance to the tree component, i.e. the distance to

the tree component averaged over the landscape, as a measure of

roughness. In a fully additive landscape, only the peak sequence

and its immediate neighbors belong to the tree component and

therefore the mean distance to the tree component is a measure of

the diameter of an additive landscape (which, for example, could

be defined as the maximum pairwise distance between points on

the landscape). Kauffman and Levin have shown that in a large

class of correlated random landscapes, the mean distance to the

tree component grows only logarithmically with the number of

points in the landscape [19].

We utilize two quantitative measures of the predictability of

evolutionary trajectories. First is fraction of monotonic paths to the

main peak Fm which is computed by counting the number ni of

simple (without reverse substitutions or multiple substitutions at

the same site) monotonic paths to the main peak from each point i
on the landscape, dividing it by the total number of simple paths

hi! (where hi is the Hamming distance from point i to the peak),

and averaging over the landscape via

Fm~
1

L

X

i

ni

hi!
, ð1Þ

where L is the number of points in the landscape and the sum

excludes the main peak. The monotonic path fraction Fm

measures the scarcity of accessible evolutionary paths when

selection is strong. When the monotonic path fraction is small,

evolution is more constrained.

Second, the mean path divergence, is a fine-grained measure of

evolutionary (un)predictability. We first define the divergence

d(p1,p2) of a pair of paths p1 and p2, as the average of the shortest

Hamming distances from each point on one path to the other

path. Suppose that we have a way of generating stochastic

evolutionary paths. The outcome of a large number of

evolutionary dynamics simulations is a collection of paths with

their associated probabilities of occurrence. In general, the

probability of occurrence of an evolutionary path is proportional

to the product of fixation probabilities of its constituent mutation

steps. Given a bundle of paths with the same starting and ending

points, we define its mean path divergence to be

�dd~
X

p1=p2

d(p1,p2)O(p1)O(p2), ð2Þ

where O(p) is the probability of occurrence of path p in the

ensemble. In other words, if two paths were drawn from the

bundle at random with probabilities proportional to O(p), their

expected divergence would be �dd . Alternatively, if we were to fix

one path to be the most likely path in the bundle and to select the

second path at random with probability proportional to O(p), the

divergence would be proportional to �dd as well.

The six quantitative characteristics of fitness landscapes are

summarized in Table 1.

In an additive landscape, the mutational trajectory is maximally

ambiguous. As every substitution that brings the sequence closer to

the peak increases fitness, substitutions can occur in any order and all

shortest mutational trajectories to the peak–without reverse substitu-

Figure 1. Fitness averaged over all points at a particular
distance H from the peak for folding landscapes, additive
landscapes with the same three levels of multiplicative noise
used in Fig. 6 and the sesquiterpene synthase landscape.
doi:10.1371/journal.pcbi.1002302.g001

Evolutionary Path Predictability
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tions or multiple substitutions at the same site–are monotonic in

fitness. In the strong selection limit of our model defined below, all

monotonic trajectories have roughly the same probability of

occurrence, so the mutational path cannot be predicted.

The mean path divergence is a better measure of the

predictability of evolutionary trajectories than the number or

fraction of accessible paths. Even when only a small fraction of

paths are monotonic in fitness, these paths could potentially be

quite different, perhaps randomly scattered over the landscape. In

such a case, prediction of the evolutionary trajectory would be

inaccurate despite the scarcity of accessible paths which will be

reflected in a high value of path divergence.

Equation (2) introduces the mean path divergence of a bundle of

paths with the same starting and ending points. The landscape-

wide mean path divergence is measured by constructing

representative path bundles with all possible [start, peak] pairs

including suboptimal peaks as trajectory termination points. Path

divergence is averaged over all bundles with the starting and

ending points separated by the same Hamming distance. To

construct the path bundles, we employed a low mutation rate

model in which the attempted substitutions are either eliminated

or fixed in the population before the next mutation attempt occurs.

We invoke the misfolding-cost hypothesis to assign a fitness to a

sequence that folds with probability P to a particular structure. To

produce an abundance A of correctly folded copies, an average of

A(1{P)=P of misfolded copies are produced. The ‘‘fitness’’ of a

sequence should be a monotonically decreasing function of the

cost incurred by the misfolded proteins. Previously we showed that

qualitative conclusions drawn from the average population

dynamics on the fitness landscape did not depend on the precise

functional relationship between the number of misfolded copies

and fitness [34]. We use simply the negative of the number of

misfolded copies and assign a fitness w~{A=P, to a sequence

whose probability of folding to the reference structure is P.

Because the exact population dynamics model is not important, we

use diploid population dynamics in the low mutation rate limit.

Therefore, the probability of fixation of a mutant j in the

background of i is given by

p(i?j)~
1{e

{2(wj{wi )

1{e
{4Ne(wj{wi )

, ð3Þ

where Ne is the effective population size [38] which in all

simulations was fixed at Ne~10,000. The required abundance A

is a measure of the strength of selection. In the limit of large A, the

probability of fixation of a beneficial mutation is unity whereas

deleterious mutations are never fixed. Since the effective

population size is large in our simulations, neutral mutations are

almost never fixed either. Because uphill steps in the fitness

landscape are equally likely, all monotonic uphill trajectories have

equal evolutionary significance.

In the analysis that follows, we study the association between

landscape roughness and path predictability for the folding

landscapes and their randomized (also referred to as permuted

or scrambled) versions. In the scrambled landscapes, the topology

(i.e. connectivity) of the landscape is preserved but the fitness

values are randomly shuffled. We also compare the roughness and

path predictability characteristics of the model and the experi-

mental landscapes for b-lactamase [25] and sesquiterpene synthase

[28] to those for noisy additive landscapes with a continuously

tunable amount of roughness.

Evolutionary path predictability in fitness landscapes
Deviation from additivity, local roughness, peak fraction,

and monotonic paths. We first establish that the folding and

the experimental landscapes are significantly different from their

randomly permuted counterparts. The deviation from additivity of

the folding landscapes is typically several standard deviations

below the mean of their scrambled counterparts. Although the

additivity hypothesis accounts for less than 40% of the fitness

variability (computed by comparing the sum of the squares of the

fitnesses in the landscape to the sum of the squares of the residuals

of the additive fitness model fit) in all but one of the folding

landscapes, the deviation from additivity of the permuted

landscapes is substantially greater (Fig. 2A). The experimental

landscapes follow the same pattern, in agreement with the earlier

findings of Carneiro and Hartl [33]. Furthermore, both in the

folding and in the experimental landscapes, the fraction of

monotonic paths to the main peak is several standard deviations

greater than in the respective scrambled landscapes (Fig. 2B). An

even more striking disparity exists between the fraction of peaks in

the folding landscapes and their permuted versions: the folding

landscapes contain at least an order of magnitude fewer peaks than

their scrambled counterparts; the experimental landscapes

resemble the folding landscapes more closely than their own

randomized versions (Fig. 2C).

To further characterize the deviation of the folding and

experimental landscapes from their permuted counterparts, each

landscape metric was measured and the mean and standard

Table 1. Summary of the quantitative landscape characteristics.

Name of characteristic Characterized property Definition

Peak fraction Roughness Number of points with no fitter neighbors divided by the total number of points in
the landscape

Deviation from additivity Roughness Mean squared difference between the actual fitness and the fitness predicted by
the best fit additive model scaled by the mean squared fitness in the landscape

Local roughness Roughness Mean squared difference between the fitness of a point and its immediate
neighbors averaged over the landscape

Distance to tree component Roughness Shortest distance to the tree component (points with at most one uphill neighbor)
averaged over the landscape

Monotonic path fraction Path predictability Fraction of the shortest paths (without multiple or reverse substitutions) to the
main peak averaged over the landscape

Mean path divergence Path predictability Measure of dissimilarity (divergence) of the monotonic paths to the main peak
averaged over the landscape

doi:10.1371/journal.pcbi.1002302.t001

Evolutionary Path Predictability
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deviation were computed among 100 randomly permuted

landscapes. We then compute the Z-score (deviation from

the mean measured in the units of the standard deviation)

of the original non-permuted landscape compared to the

ensemble of the permuted landscapes. This Z-score shows

how much more correlated the original landscape is, as measured

by the chosen characteristic, compared to its scrambled

counterparts (Fig. 3). Notably, despite the considerable scatter

of the Z-score values for the folding landscapes, they all showed

extremely large difference (mean Z-score greater than 20

standard deviations) from the scrambled landscapes for all

measures, with the sole exception of the monotonic path fraction

(Fig. 3). The two experimental landscapes also significantly

differed from the scrambled landscapes albeit less so than the

folding landscapes, again with the exception of the monotonic

path fraction in which case the two classes of landscapes had

similar Z-scores (Fig. 3).

Aside from the significant correlation (Spearman r~{0:68)

between peak fraction and mean distance to the tree component,

there was little or no correlation between the four measures of

landscape roughness (Fig. 4). Roughness of landscapes of high and

variable dimensionality is impossible to capture by a single

quantity. Therefore, the different measures seam to reveal distinct

aspects of landscape architecture. The strong negative correlation

between the peak fraction and mean distance to the tree

component is due to the fact that each peak spawns a distinct

subset of the tree component. The higher the density of peaks on

the landscape, the larger fraction of the landscape that is covered

by the tree component. Therefore the average distance to the tree

component declines with the increasing density of peaks.

Path divergence. Starting from a random non-peak

sequence in the landscape, we introduced random mutations

and accepted or rejected them according to equation (3) until the

trajectory arrived at a fitness peak. This procedure was repeated a

large number of times, and path bundles were constructed for all

pairs of starting and ending sequences. Then the mean path

divergence was computed for each path bundle using equation (2)

and averaged over all bundles for which starting and ending points

were separated by the same Hamming distance. When selection is

weak, all mutations which do not result in a sequence with zero

folding probability are accepted. Thus, evolution is a random walk

on the landscape and the statistical properties of evolutionary

trajectories are fully determined by the topology of the landscape

(i.e. the connectivity of each node). Conversely, in the strong

selection limit, only mutations that increase fitness are fixed. The

mean path divergence varies smoothly between the two limits

(Fig. 5) and saturates at high selection pressure. In our analysis, we

focus on the strong selection limit plateau. In the weak selection

limit, the diversity of trajectories stems solely from the number of

neighbors of each point; by contrast, in the strong selection limit,

the statistics of the monotonic trajectories depend on the

Figure 2. Deviation from additivity, monotonic paths and suboptimal peak suppression in folding and experimental landscapes. (A)
Deviation from additivity for the folding landscapes (larger symbols), their scrambled versions (smaller symbols) and the two experimental
landscapes. Error bars show one standard deviation within the ensemble of permuted landscapes. (B) Fraction of monotonic paths to the main peak
in folding, scrambled and experimental landscapes. (C) The number of peaks is vastly greater in scrambled landscapes than in folding or experimental
landscapes (with the exception of the sesquiterpene synthase landscape).
doi:10.1371/journal.pcbi.1002302.g002

Figure 3. The Z-scores of different characteristics of the
original folding and experimental landscapes measured
with respect to the ensembles of their randomly permuted
counterparts.
doi:10.1371/journal.pcbi.1002302.g003

Evolutionary Path Predictability
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roughness of the landscape. Thus, the weak selection limit probes

only the topology of the landscape whereas the strong selection

limit also exposes its topography which appears to be critical for

assessing predictability of evolution under strong selection.

Predictors and correlates of path divergence and

monotonic path fraction. All four measures of landscape

roughness can serve as predictors of path divergence and

monotonic path fraction to some degree (Fig. 6), in agreement

with the notion that each of these measures reflects salient

properties of fitness landscapes. The properties of the folding and

empirical landscapes are consistent with those of additive

landscapes that were perturbed by a moderate amount of noise

(see Methods for details). A striking exception is the dearth of peaks

and monotonic paths in folding landscapes all other characteristics

being similar. Deviation from additivity and fraction of peaks are

negatively correlated with path divergence. This relationship

captures the intuitive notion that in rough landscapes there are

fewer accessible evolutionary paths than in smooth landscapes,

and furthermore, in rough landscapes, even those paths that are

accessible show the tendency to aggregate within small areas on

the landscape. Indeed, in both the folding model-derived

landscapes and the experimental landscapes, the mean path

divergence for all Hamming distances between the starting and

ending points was dramatically greater than in scrambled

landscapes (Fig. 7). Interpreting these findings in terms closer to

biology, the fitness landscapes derived from the model as well as

experimental landscapes show greater robustness to mutations

than random landscapes: a random mutation in a model-derived

Figure 4. Correlations between different quantitative characteristics of the folding landscapes. Each panel quotes the Spearman rank
correlation coefficient between the particular pair of characteristics.
doi:10.1371/journal.pcbi.1002302.g004

Evolutionary Path Predictability
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or experimental fitness landscape is more likely than expected for

random landscapes to have no adverse effect on the evolutionary

search for greater fitness, leading to another monotonic path to the

main peak. Consequently, evolution on the model-derived and

experimental landscapes is less predictable (deterministic) than it

would be on uncorrelated random landscapes.

In contrast to deviation from additivity, the mean distance to

the tree component is positively correlated with path divergence.

When the tree component comprises a large fraction of the

landscape, the mean distance to the nearest tree branch is small.

Consequently, the path divergence is reduced as the paths that

reach the tree component do not deviate from each other from

that point onward. By the same token, when the tree component is

large, there are fewer monotonic paths.

The origin of the positive correlation between the local

roughness and path divergence (Fig. 6) is less obvious. Paradox-

ically, greater noise results in lower mean local roughness of noisy

additive landscapes. The lowering of the overall mean fitness with

noise and, more importantly, the flattening of the mean fitness

dependence on the distance from the peak (Fig. 1) appear to

provide an explanation for this counter-intuitive result. Indeed we

found that in noisy additive landscapes there is a characteristic

fitness value of approximately 0.2 above which roughness increases

with increasing noise and below which roughness declines with

increasing noise. Given that roughly 75% of the points on the

landscape have fitnesses below 0.2, the landscape-averaged local

roughness declines with increasing noise amplitude.

Discussion

Here we examined the fraction of monotonic paths and

introduced mean path divergence as quantitative measures of

the degree to which the starting and ending points determine the

path of evolution on fitness landscapes. The lower the mean path

divergence value, the more deterministic (and predictable)

evolution is. Global measures of landscape roughness correlate

with path divergence in the three analyzed classes of fitness

landscapes: additive landscapes perturbed by noise, landscapes

derived from our protein folding model and two small empirical

landscapes. The folding landscapes are substantially smoother

than their permuted counterparts. As a result, although in all

analyzed landscapes only a small fraction of the theoretically

possible evolutionary trajectories is accessible, this fraction is much

greater in the folding and experimental landscapes than it is in

randomized landscapes. In addition, the mean path divergence in

the randomized landscapes is significantly smaller than in the

original landscapes. Thus, the model and empirical landscapes

possess similar global architectures with many more diverged

monotonic paths to the high peaks than uncorrelated landscapes

with the same distribution of fitness values. Consequently,

evolution in fitness landscapes is substantially more robust to

random mutations and less deterministic (less predictable) than

expected by chance. These findings are compatible with the

concept that might appear counter-intuitive but is buttressed by

results of population genetic modeling, namely, that robustness of

evolving biological systems promotes their evolvability [39–41].

Additionally, the folding landscapes exhibit a substantial deficit of

peaks compared to perturbed additive landscapes and experimen-

tal landscapes, a property that translates into a substantially

greater fraction of paths leading to the main peak.

When it comes to the interpretation of the properties of fitness

landscapes described here, an inevitable and important question is

whether the folding model employed here is sufficiently complex

and realistic to yield biologically relevant information. In selecting

the complexity of our folding model, we attempted to construct the

simplest model which exhibits 1) a rich spectrum of low energy

conformations across the sequence space, and 2) a non-trivial

distribution of substitutions effects on the low energy conforma-

tions. An important choice is whether the location of monomers is

confined to a lattice or can be varied continuously. When the

configuration space is continuous, the distribution of energy

barriers between energetically optimal conformations can extend

to zero. Therefore, the subtlety of distinctions between conforma-

tions can lead to a richer structure of the fitness landscape. We

chose not increase the complexity of the model further and treated

monomers as point-like particles in a chain where the distance

between nearest neighbors is fixed but the angle between

successive links in the chain in unrestricted. Our level of

abstraction is therefore somewhere between lattice models and

all-atom descriptions of proteins [42–51].

Another important choice is the number of the model monomer

types. Again, we opted for an intermediate level of abstraction and

chose four types of monomers: hydrophobic, hydrophilic, and

positively and negatively charged. This choice drastically reduces

the size of the sequence space while retaining some of the

substitution complexity whereby hydrophilic and charged mono-

mers can be swapped under some conditions without radically

altering the native state. The intermediate level of abstraction in

our approach has its pros and cons. Although the model

reproduces key features of protein folding such as the existence

of the hydrophobic folding nucleus and two-stage folding kinetics

[52,53], compact conformations certainly do not represent

proteins. Rather, we might think of our monomers as representing

structurally grouped regions several (perhaps up to a dozen)

amino-acids in length. Compact conformations in the model might

therefore be analogous to tertiary structures of proteins. Repre-

senting sequence space with only four monomer types and treating

mutations without reference to the underlying DNA or genetic

Figure 5. Mean path divergence as a function of selection
pressure, which is a product of A and Ne, for a folding
landscape with 5936 nodes and 65 peaks. Solid lines are labeled
by the Hamming distance between the pairs of starting and ending
points of the trajectory bundles over which the path divergence is
averaged.
doi:10.1371/journal.pcbi.1002302.g005
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code does not accurately reflect the natural mutation process.

However, our goal was to isolate the features of fitness landscapes

which could be traced directly to the constraints imposed by the

heteropolymer folding kinetics and energetics. We therefore used a

simple sequence space and a homogeneous mutation model to

avoid compounding the fitness landscape structure by the

complexity derived from the mutation process.

Most importantly, our folding model has been shown to

reproduce the observed universal distribution of the evolutionary

rates of protein-coding genes as well as the dependencies of the

evolutionary rate on protein abundance and effective population

sizes [34]. Therefore, despite its simplicity, the behavior of this

model might reflect important aspects of protein evolution. In

particular, the conclusions drawn from the analysis of the model

landscapes exhaustively explored here could also apply to the

fitness landscapes of protein evolution. In the previous work, we

concluded that the universal distribution of evolutionary rates and

other features of protein evolution follow from the fundamental

physics of protein folding [34]. The results presented here suggest

that the (relative) smoothness and a substantial deficit of peaks in

the fitness landscapes of protein evolution that lead to mutational

robustness and the ensuing evolvability could similarly follow from

the fact that proteins are heteropolymers that have to fold in three

dimensions to perform their functions.

The experimental landscapes considered here are decidedly

incomplete. Due to experimental limitations, only the analysis of

binary substitutions at a handful of sites is feasible at this time. The

incompleteness of the empirical landscapes analyzed in this work

could be the cause of the observed lack of peak suppression. This

proposition will be put to test by the study of larger parts of

experimental landscapes that are becoming increasingly available.

Methods

Folding model
The goal of this study is to explore the relationship between

roughness and path divergence in realistic fitness landscapes. Our

Figure 6. The dependence of the path divergence (top row) and the monotonic path fraction (bottom row) on the measures of
landscape roughness. The dots of different color correspond to noisy additive landscapes with differing amounts of multiplicative noise: low (red),
two intermediate levels (green smaller than blue), and high (magenta). Yellow circles represent the folding landscapes, the cyan squares–the b-
lactamase landscape, and the red triangles–the sesquiterpene synthase landscape.
doi:10.1371/journal.pcbi.1002302.g006

Figure 7. Mean path divergence in folding and experimental
landscapes (larger symbols) landscapes, as well as their
scrambled versions (smaller symbols) as a function of Ham-
ming distance from the main peak.
doi:10.1371/journal.pcbi.1002302.g007
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polymer folding model provides a simple way of constructing such

landscapes. The model has been described in detail previously [34].

In brief, the model polymer is a flexible chain of monomers in

which the nearest neighbors interact via a stiff harmonic spring

potential with rest length a~1. The angles between the successive

links in the chain are unrestricted. There are four types of

monomers: hydrophobic H, hydrophilic P, and charged + and 2.

Next nearest neighbors i and j in the chain and beyond interact via

a pairwise potential

Uij(rij)~
Aij

r12
ij

{
Cij

r6
ij

z
qiqje

{Drij

rij

, ð4Þ

where rij is the distance between monomers i and j, qi is the

monomer’s charge, D is the Debye-Hückel screening length, and

Aij and Cij depend on the pair in question. The interaction

parameters are chosen to mimic the essential features of the

amino-acid interactions. To emulate the effects of solvent, we

assign a stronger attraction to the HH pair than to the PP, ++, and

22 pairs. There is also a long range repulsion between H and P

and even stronger repulsion between H and the charged

monomers. The values of the parameters are q+~+2, Debye-

Hückel screening length D~3. The Lennard-Jones coefficients Aij

and Cij are

AHH~4, AHP~AHz~2, APP~APz~Azz~1,

CHH~8, CHP~{1, CHz~{3, CPP~CPz~Czz~2:
ð5Þ

Note that a z can be substituted by a { in the subscripts and the

coefficients are symmetric with respect to the interchange of the

indices.

The energy of the chain is

E~
X

ji{jjw1

Uijz
bT

2

XN{1

i~1

(ri,iz1{a)2, ð6Þ

where the first term is the sum of the pairwise energies given by

Eq. (4) over non-nearest neighbor pairs, and the second term

reflects the springs connecting nearest neighbors. The spring

constant is proportional to temperature T . The parameters are

fixed for all simulation runs at b~300, and the quench

temperature T~1. To mimic the observed tendency of the N
and C termini to be in close proximity, we fixed the endpoint

monomers of the model sequences to be of z and { types.

Dynamics of folding are simulated via over-damped Brownian

kinetics which are appropriate when inertial and hydrodynamic

effects are not important. Units are chosen so that each

component a of the i’th monomer’s coordinates xai is updated

according to

xai(tzDt)~xai(t){
Dt

T

LE

Lxai

(t)zWai(t), ð7Þ

where Dt is the time step and Wai(t) is a random variable with

zero mean, variance 2Dt, uncorrelated with W for other times,

monomers and spatial directions.

Native structure ensemble and correct folding
probability

The ‘‘native structure’’ of a particular sequence is represented

by an equilibrium ensemble of conformations. The ensemble is

constructed by identifying the typical folded conformation and

measuring the characteristic RMSD D due to thermal fluctuations

in the folded state. Three thousand quenches are then performed

and the resulting folded conformations are accumulated. The

equilibrium ensemble that represents the native structure is

defined as the largest cluster of quenched conformations within

RMSD distance D from each other. Thus, each conformation in

the ensemble differs from any other by an amount comparable to

the differences introduced by thermal fluctuations alone.

The concept of the native structure ensemble allows us to

compute the probability that a sequence folds to a particular

structure in a natural, physically plausible fashion. Given a native

structure ensemble we assess its conformation space density by

computing the distance di between each member i of the ensemble

and its closest neighbor. Given the set fdig of these shortest

distances we compute the median Q and the median absolute

deviation (MAD) V . A new conformation is deemed to belong to

the ensemble if the shortest distance from this conformation to the

members of the ensemble is smaller than R~Qz3V .

Given a native structure ensemble of some sequence s1 we

compute the probability P that sequence s2 (which could be s1

itself) folds to the this structure by accumulating M~100
equilibrated quenched conformations of s2 and using the above

criterion to determine the fraction P that belong to the native

structure ensemble of s1. Because M~100 sample conformations

are computed, the smallest measurable P is 1=M~0:01. The

sample size used to measure P, dictated by the computational

demands of the model, introduces a random component to the

model fitness landscapes. As we report below, model landscapes

turn out to be substantially smoother than random. Therefore the

underlying global structure of the model landscapes appears to

survive the modest amount of randomness introduced by the

relatively small sample size used for measuring P.

Search for compact robust folders
Robust folders (sequences with a high probability of correct

folding) tend to have large linear regions stretched by repulsive

Coulomb interactions. Because the linear regions have no contacts

with other monomers, we focused our attention on compact

conformations with a high monomer contact density. Substitutions

in these higher complexity conformations were more likely to

exhibit non-trivial effects. To find compact robust folders in the

vast available sequence space of 23-mers (the sequences are of

length N~25 but the endpoint monomer types are fixed) with 4
monomer types, we implemented a simulated annealing search

which optimized the correct folding probability P divided by the

cube of the native conformation’s radius of gyration. The search

produced over 800 sequences with Pw0:5 and at least two distinct

regions of the polymer in mutual contact.

Assembly of the folding fitness landscapes
We examined each single substitution mutant of a robustly

folding sequence and computed the folding probability P to the

structure of the original sequence. All mutants with Pw0 were

added to the landscape and if P§0:1 their mutants were also

examined. This process is repeated until all mutants of the last

sequence under consideration have Pv0:1.

From our study of complete landscapes we estimate that on

average for each sequence with Pw0 which is included into the

landscape, roughly 6 others with P~0 need to be examined. Since

each quench and equilibration takes about 2–4 seconds, landscape

construction takes roughly 30 minutes to an hour per included

sequence. Thus landscapes larger than 10,000 sequences take

months to compile.

Evolutionary Path Predictability
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At the time of submission, 39 complete landscapes have been

constructed, the largest comprising 12969 sequences.

Additive landscapes perturbed by noise
The organization of the folding fitness landscapes and

experimental landscapes were compared with perfectly additive

landscapes perturbed by noise constructed as follows. Each

substitution to the peak fitness sequence was assigned a negative

fitness differential drawn at random from an exponential

distribution with parameter l~3. The sum over the fitness

differentials of a particular set of substitution was modified by

either additive of multiplicative noise [54]. Additive noise is drawn

from a Gaussian distribution with zero mean and standard

deviation n which was varied between 0:05 and 0:5: The

multiplicative perturbation is achieved by multiplying the fitness

by a number drawn from a uniform distribution ½0,1) raised to a

positive power m varied between 0:1 and 10: When m is small,

multiplicative factors are close to unity and the perturbation is

small as well. If the perturbed fitness was positive, the mutant was

included into the landscape. The noise amplitude was varied to

obtain a family of landscapes of continuously varying roughness.

Only the data for the additive landscapes with multiplicative noise

were included in this manuscript. Landscapes perturbed by other

types of noise exhibited essentially the same qualitative behavior.

Experimental landscapes
The studies on experimental fitness landscapes typically involve

constructing a library of all possible combinations of binary

mutations at a small number of sites. The first study included in

the present analysis measured the minimum inhibitory concen-

trations (MIC) of an antibiotic for a complete spectrum of mutants

with modified TEM b-lactamases; the transition from the

antibiotic-sensitive to the antibiotic-resistant form requires five

mutation, so the landscape encompassed 120 mutational trajec-

tories between the most distant points on the landscape (or 32

sequences) [25]. The logarithm of MIC was used as the proxy for

fitness. In the second study, catalytic activity of 419 sesquiterpene

synthase mutants that differed by at most 9 substitutions was

measured [28]. We used the catalytic specificity (propensity for

producing a particular reaction product rather than a broad

spectrum of products) of the mutant enzymes as the proxy for

fitness. Before performing the analysis, the fitnesses in the

experimental landscapes are mapped onto the ½0:01,1) interval

to enable meaningful quantitative comparisons of the roughness

measures.
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