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Abstract

To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues
can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both.
The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and
control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve
this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We
analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body
movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find
that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior
both in our data and in previously published results.
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Introduction

Our visual system senses the movement of objects relative to

ourselves. Barring contextual information, a car approaching us

rapidly while we stand still may produce the same visual motion

cues as if we and the car were approaching each other. The nervous

system thus needs to deal with this problem of ambiguity which will

be reflected in the way we control our body posture [1–3].

Consequently, neuroscientists have extensively studied such situa-

tions. In such studies, a subject typically stands in front of a visual

display and postural reactions to varied movements of the displayed

visual scene are measured [4–11]. Even in the absence of direct

physical perturbations, subjects actively produce compensatory

body movements in response to the movement of the visual scene.

This indicates that subjects attribute part of the visual motion to

their own body while they resolve the ambiguity in visual stimuli.

Here we constructed a Bayesian attribution model (Fig. 1A) to

examine how the nervous system may solve this problem of

sensory ambiguity. This model shows that optimal solutions will

generally take on the form of power laws. We found that the results

from experiments with both healthy subjects and patients suffering

from vestibular deficits are well fit by power laws. The nervous

system thus appears to combine visual and physical motion cues to

estimate our body movement for the control of posture in a fashion

that is close to optimal.

Results

To test our Bayesian attribution model, we considered data

from two published experiments with healthy subjects [4,5] as well

as a new experiment we performed to cover the range of visual

scene velocities that are relevant to the model predictions. Any

purely linear model, for example a Kalman controller, predicts

that the gain of the postural response, which is the influence of

visual scene motion on the amplitude of postural reactions,

remains constant. For these datasets, however, the gain of the

postural response decreased with increasing velocities of visual

scene motion (Fig. 1C, 2A and 2C; slope = 20.7860.15 s.d. across

datasets, p,0.005). At low velocities, the gain was close to one

which would be expected if the nervous system viewed the body as

the sole source of the visually perceived motion. At higher

velocities though, the gain decreased which would be expected if

the nervous system no longer attributed all of the visually

perceived motion to the body. The nervous system thus does not

appear to simply assume that visually perceived motion can be

fully attributable to the body.

To explain this nonlinear influence of visual scene velocity on

the postural response, we constructed a model that describes how

the nervous system could solve the problem of sensory ambiguity

(Fig. 1A). The nervous system can combine visual cues with

physical motion cues, such as vestibular and kinesthetic inputs, to

estimate our body movement [12–16]. However, our sensory

information is not perfect and recent studies have emphasized the

importance of uncertainty in such cue combination problems

[17–19]. Visual information has little noise when compared with

physical motion cues [20]. However, it is ambiguous as it does not

directly reveal if the body, the environment or both are the source

of the visually perceived movement. In comparison to visual cues,

physical motion cues are typically more noisy but they are not

characterized by the same kind of ambiguity. For these reasons,
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the nervous system can never be certain about the velocity of the

body movement, but can at best estimate it using principles of

optimal Bayesian calculations [21–25]. To solve the ambiguity

problem, the model estimated the velocity of body’s movement for

which the perceived visual and physical motion cues were most

likely.

Such estimation is only possible if the nervous system has

additional information about two factors: typical movements in the

environment and typical uncertainty about body movements [26].

For example, if a car sometimes moves fast and our body typically

moves slowly, then the nervous system would naturally attribute

fast movement to the car and slow movement to our body. Indeed,

recent research has indicated that human subjects use the fact that

slow rather than fast movements are more frequent in the

environment when they estimate velocities of moving visual objects

[27–30]. This distribution, used by human subjects, is called a

prior. Following these studies our model used a sparse prior for

movements in the visual environment, that is a prior which assigns

Author Summary

Visual cues typically provide ambiguous information about
the orientation of our body in space. When we perceive
relative motion between ourselves and the environment, it
could have been caused by our movement within the
environment, or the movement of the environment
around us, or the simultaneous movements of both our
body and the environment. The nervous system must
resolve this ambiguity for efficient control of our body
posture during stance. Here, we show that the nervous
system could solve this problem by optimally combining
visual signals with physical motion cues. Sensory ambigu-
ity is a central problem during cue combination. Our
results thus have implications on how the nervous system
could resolve sensory ambiguity in other cue combination
tasks.

Figure 1. Sensory ambiguity influences postural behavior. (A) Graphical model, a compact way of describing the assumptions made by a
Bayesian model. vB is the velocity of body motion, while vE is the velocity of the environment motion. KO represents a noisy estimate of the body
velocity that is sensed by kinesthetic and vestibular signals. VO represents the visually perceived velocity of the relative motion between the body
and the environment. The attribution model estimates v̂vB from these perceived cues. (B) Distribution of body velocities during unperturbed stance
averaged across subjects tested in our experiment (C) Experimental data and model fits for healthy subjects tested in our experiment.
doi:10.1371/journal.pcbi.1000680.g001
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high probability to slower movements in the environment and low

probability to faster movements in the environment [29].

We wanted to estimate the form of the prior over body

movements from our experimental data. We found that when

subjects maintained an upright body posture while viewing a

stationary visual scene, the distribution of their body velocity was

best described by a Gaussian (Fig. 1B). Therefore, we used a

Gaussian to represent the prior over body velocity.

The attribution model derives from five assumptions. We

assume the above sparse prior over movements in the environment

[29]. We assume that for the movement of visual environment that

is vivid and has high contrast, visual cues provide an estimate of

relative movement that has vanishing uncertainty. We assume a

Gaussian for the prior over body movement (see Methods for

details). We also assume a Gaussian for the likelihood of the

physical motion cues which indicate that the body is not actually

moving and is close to the upright position. Lastly we assume that

visual scene velocities are large in comparison to the uncertainty in

our detection of our body movements [31]. Under these

assumptions, we can analytically derive that the best solution has

a gain that varies as a power law with the visual scene velocity (see

Methods for details). We thus obtain a compact, two parameter

model that predicts the influence of visual perturbations on the

estimates of body movement.

Our attribution model calculates how the nervous system

should combine information from visual and physical senses to

optimally estimate the velocity of body movement. However,

the nervous system does not need to solve its problems in an

optimal way, but may use simple heuristics [32]. We thus

proceeded to compare the attribution model with other models

in its ability to explain the decrease in the gain of postural

reactions. For this purpose, we compared models using the

Bayesian Information Criterion (BIC) which is a technique that

allows the comparison of models with different numbers of free

parameters [33]. For the gains observed in our experiment

(Fig. 1C), the Bayesian model had a BIC of 27.561.84 (mean

BIC6s.e.m. across subjects). We found that a linear model that

predicted constant gain of postural reactions could not explain

the observed results (BIC = 1.0860.59, p,0.001, paired t-test

between BIC values).

We then considered a model in which the amplitude of postural

response increased logarithmically up to a threshold stimulus velocity

and then saturated. This model predicted the response gains

observed at higher scene velocities more poorly than the attribution

model (BIC = 23.4560.99, p,0.05). We also tested another model

in which the gain was initially constant but decreased monotonically

with increasing visual scene velocities. This model did worse at

predicting the gain than the Bayesian model (BIC = 5.8260.04,

p,0.001). Thus, the Bayesian model that estimated the velocity of

the body movement best fit the available data.

Another way of applying the attribution model is to human

behavior in disease states. Patients with bilateral vestibular loss

have vestibular cues of inferior quality [34]. The attribution model

suggests that these patients’ postural behavior would be based

more strongly on visual feedback and that their gain should

decrease less steeply as a function of stimulus velocity. Indeed,

patients tested in previous studies [4,5] showed a greater influence

of vision on posture and gains that decreased less steeply (Fig. 2B,

2D slope = 20.2260.1 s.d. across datasets, p,0.005) when

compared with healthy subjects, a phenomenon that is well

mimicked by the attribution model.

The postural behavior of patients showed marked differences

from that of healthy subjects [4]. At low visual scene velocities,

patients and healthy subjects had similar gain values. However, at

higher scene velocities, patients exhibited larger gains when

compared with healthy subjects. If the postural responses in

patients were only influenced by elevated noise in the vestibular

channels, the gain should vary in a similar manner at all visual

scene velocities. That is, the gain of patients should be higher than

healthy subjects at all visual scene velocities. However, increased

gain of patients only at higher scene velocities alludes to a change

in how patients interact with large movements in the visual

environment. In our model, the best fit to the data of healthy

subjects corresponds to a prior of about p(vE) ! e{v1:25
E , while the

fit to the patients’ data corresponds to a prior of p(vE) ! e{v1:75
E

(see Methods for details). It would thus appear that rather than a

sparse prior, patients have a prior that is closer to a Gaussian. It is

not surprising that patients interact with the extrinsic environment

differently from healthy subjects. In fact, such patients can develop

space and motion phobia particularly in situations where there is a

conflict between visual and vestibular cues and may actively avoid

such conflicting environments [35–37]. Our model fits suggest that

patients may seek out environments that are devoid of fast

movement of large field stimuli. This is a prediction that can be

tested in future research, for example by equipping patients with

telemetric devices with cameras that record velocities in their

environment.

Discussion

When we visually perceive displacement between ourselves and

the environment, it may be caused by the movement of our body,

movement of the environment, or both. In this paper, we have

Figure 2. Gain of the postural response of healthy subjects and
patients with vestibular loss. (A) and (B) represent the experimental
data and model fits of healthy subjects and patients tested in ref. 5
(Mergner et al. 2005). (C) and (D) represent the experimental data and
model fits of healthy subjects and patients tested in ref. 4 (Peterka and
Benolken 1995).
doi:10.1371/journal.pcbi.1000680.g002
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presented a model that formalizes how the nervous system could

solve the problems of both ambiguity (self vs environment) and

noise in perceived sensory cues. We suggest that the nervous

system could solve these problems by estimating the movement of

the body as per the principles of Bayesian calculations. We found

that the model can account for the gain of postural responses when

both healthy subjects and patients with vestibular loss viewed

movement of a visual scene at various velocities. Importantly, our

model predicts a simple functional form, power laws, as the best

cue combination strategy. This makes it easy to test predictions

without having to implement complicated estimation procedures.

Postural stabilization during stance is a two-step process

comprised of estimation and control and in this paper we have

only focused on estimation. Computational models in the past

have examined how the nervous system implements this two-step

process and have explained a wide range of data [5,8,34,38–40].

In these models, cue combination was implemented as a change in

the sensory weights [8,14] and incorporation of nonlinear elements

[5,34,39]. The control aspect was typically implemented by

approximating the human body to a single- or double-link inverted

pendulum, linearized about the upright position. These models are

powerful tools for describing human behavior as they can describe

changes both in amplitude and in phase as stimulus parameters are

varied. As current models already largely separate postural control

into an estimation part and an estimation-dependent control part,

it would be straightforward to combine our estimation system with

a dynamical control system.

When the control strategy is linear then any nonlinearity has to

come from the estimation stage. If control is nonlinear, then there

will be interactions between nonlinearities in estimation and

control. Our attribution model exclusively focuses on the source of

the nonlinearity inherent in the estimation process. If control is

nonlinear then parts of the effects we describe here may be due to

nonlinearities in control and parts due to estimation. The influence

of the nonlinearity in each could be tested by experiments that

decouple estimation from control. Importantly, though past

models have assumed nonlinearities in the estimation part of the

model [5,8,14,34], we give a systematic reason for why this

nonlinearity should exist and why it should have approximately

the form that has been assumed in past studies.

To test our model, we used visual scene velocities that were in all

likelihood, larger than the uncertainty in our perception of our body

sway. Our model analytically demonstrates that for these velocities,

the gain is proportional to a power law over the visual scene velocity.

This leads us to question how the model would perform over a

different range of scene velocities. There could be two possible

solutions to this question. Firstly, the nervous system may use power

laws to estimate the gain of the postural responses at all visual scene

velocities. However, this solution does not make any sense as it

would predict infinite gain near zero velocity. Secondly, at very

small scene velocities, the nervous system may adopt a strategy

different from power laws. We argue in favor of the latter possibility.

We predict that at scene velocities that are close to our perceptual

threshold of body sway, our attribution model would fail to explain

the gain of postural responses. In this situation, the Taylor series

expansion that we use can no longer be truncated after the first term

and quadratic elements need to be considered (see Methods). The

attribution model will predict power laws if the prior over visual

movements is locally smooth within the range of uncertainty in our

perception of body movement.

Ambiguity is a central aspect of various cue combination

problems in perception and motor control and here we have

characterized its influence on postural control. The success of the

attribution model in predicting human behavior suggests that the

nervous system may employ simple schemes, such as power laws,

to implement the best solution to the problem of sensory

ambiguity. While recent research indicates how the nervous

system could integrate cues that have Gaussian likelihoods [41] or

priors [29], little is known about the way non-Gaussian probability

distributions may be represented at the neuronal level. The

nonlinearity in cue combination that we observed here raises

interesting questions about the underlying neural basis of these

computations in the nervous system.

Methods

Ethics statement
Ten healthy young adults (age: 20–34 years) participated in our

experiment. Subjects had no history of neurological or postural

disorders and had normal or corrected-to-normal vision. Subjects

were informed about the experimental procedures and informed

consent was obtained as per the guidelines of the Institutional

Review Board of Northwestern University.

Experimental setup
A computer-generated virtual reality system was used to simulate

the movement of the visual environment. Subjects viewed a virtual

scene projected via a stereo-capable projector (Electrohome

Marquis 8500) onto a 2.6 m63.2 m back-projection screen. The

virtual scene consisted of a 30.5 m wide by 6.1 m high by 30.5 m

deep room containing round columns with patterned rugs and

painted ceiling. Beyond the virtual scene was a landscape consisting

of mountains, meadows, sky and clouds. Subjects were asked to

wear liquid crystal stereo shutter glasses (Stereographics, Inc.) which

separated the field sequential stereo images into right and left eye

images. Reflective markers (Motion Analysis, Inc.) attached to the

shutter glasses provided real-time orientation of the head that was

used to compute correct perspective and stereo projections for the

scene. Consequently, virtual objects retained their true perspective

and position in space regardless of the subject’s movement.

Subjects stood in front of the visual scene with their feet

shoulder-width apart and their arms bent approximately 90u at

their elbows. The location of subjects’ feet on the support surface

was marked; subjects were instructed to stand at the same location

at the beginning of each trial. During each trial, subjects were

instructed to maintain an upright posture while looking straight

ahead at the visual scene. Subjects viewed anterior-posterior

sinusoidal oscillation of the scene at 0.2 Hz and 5 peak amplitudes:

1, 3, 25, 100 and 150 cm. The visual scene thus oscillated at peak

velocities of 1.2, 3.7, 31, 125 and 188 cm/s, respectively. Subjects

viewed each scene velocity once for a period of 60 s in random

order. In addition, subjects experienced a control condition in

which they viewed the stationary visual scene.

Reflective markers were placed on the shoulder joints and fifth

lumbar vertebra. A six infra-red camera (Motion Analysis, Inc.)

system was used to record the displacement of the reflective

markers at 120 Hz. Displacement data of the markers was low

pass filtered using a fourth order Butterworth digital filter with a

cutoff at 6 Hz. Trunk displacement, chosen as an indicator of

postural response, was calculated using the displacement of the

shoulder and spine markers [42]. Amplitude of the postural

response at the frequency of the visual scene motion, that is

0.2 Hz, was calculated in a manner adopted in neurophysiological

studies [43,44]. A sinusoid of frequency 0.2 Hz was chosen. The

amplitude and the phase of this sinusoid were estimated such that

the squared error between the trunk displacement and the fitted

sinusoid was minimized. The amplitude of the fitted sinusoid thus

indicated the amplitude of the postural response at the frequency

Bayesian Integration in Postural Control
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of the visual scene motion. The gain of the trunk displacement was

then computed as the ratio of the amplitude of the fitted sinusoid

to the amplitude of visual scene motion.

Bayesian model of ambiguity resolution
We formalize the ambiguity problem encountered by the

nervous system with the help of a graphical model (Fig. 1A). The

visual scene projected on the display sinusoidally oscillates with a

velocity vE , while the velocity of the body movement is vB. KO

represents a noisy estimate of body velocity that is sensed by

vestibular and kinesthetic signals. On the other hand, VO

represents the visually perceived velocity of the relative movement

between the body and the environment. Our Bayesian model

combines the sensory cues, KO and VO, to obtain the best estimate

of body velocity, v̂vB. As the amplitude of postural reactions are

influenced by subject’s perceived body movement [2,45], we

assume that the nervous system produces body movements

proportional to the estimated body velocity v̂vB.

Using Bayes’ rule we obtain:

p vBjKO,VOð Þ~ p KO,VOjvBð Þ p vBð Þ
p KO,VOð Þ ð1Þ

We assume that the visual and physical channels are affected by

independent noise. Therefore, we get:

p(vBjKO,VO) ! p(KOjvB) p(VOjvB) p(vB) ð2Þ

We estimated the form of the prior over body velocity, p(vB),
from our data. In our experiment, subjects experienced a control

condition where they maintained upright body posture when

viewing a stationary visual scene. We computed the average

velocity of the trunk displacement across all subjects [42]. We then

computed a histogram of the body velocity and observed that a

Gaussian best described the distribution of body velocity (Fig. 1B).

We, therefore, assumed that subjects prior over body movements

would be represented by a Gaussian. While the actual body

movements during unperturbed stance are large, the more

relevant information is the underlying uncertainty in our

perception of our body sway. The uncertainty in our perception

of our body sway is much narrower than the width of the

distribution of the actual body velocities seen in Fig. 1B [31]. This

is because for small body movements during normal stance, the

nervous system may not constrain the body even though it is aware

that the body has moved away from the upright position [46].

As the likelihood of the physical motion cues, p(KOjvB), can also

be represented by a Gaussian, we define:

�pp(vB) ~ p(KOjvB) p(vB) ð3Þ

Here �pp(vB) represents a Gaussian for the combined prior-and-

likelihood with variance s2
p.

The likelihood of visual motion cues, p(VOjvB), is given by:

p(VOjvB) ~

ð
p(VOjvB,vE) p(vE) dvE ð4Þ

Humans expect visual objects in their environment to move slowly

more often than rapidly. This bias has been interpreted as a prior

in a Bayesian system. We therefore use a sparse prior of the

functional form p(vE)~e{va
E [29]. As visual cues are precise when

compared with other sensory cues, we assume that the variance of

the noise in visual channels is negligible. Furthermore, in the

experimental situations we model here, movement of the visual

display is relatively fast in comparison to the typical uncertainty

subjects may have about their body velocity [31].

We therefore marginalize over all possible vE to obtain:

p(VOjvB) ~

ð
d(vE{(vB{VO)) e{va

E dvE ~e{jvB{VOja ð5Þ

Substituting Equations 3 and 5 in Equation 2, we get:

p(vBjKO,VO) ! e

{(KO{vB)2

2s2
p

{ jvB{VOja
( )

ð6Þ

In the situations we model here, subjects stood on a stationary

support surface. Thus, the physical motion cues indicated that the

body was close to the upright position; that is KO&0.

We therefore get:

p(vBjKO,VO) ! e

{v2
B

2s2
p

{ jvB{VOja
( )

ð7Þ

For body movements close to the upright position, we can use a

Taylor series expansion and drop elements of order 2 and higher

to solve the second exponent term in Equation 7. We thus get:

p(vBjKO,VO) ! e

{v2
B

2s2
p

z avBVa{1
O

( )
ð8Þ

Importantly, when visual scene velocities are large in compar-

ison to the typical uncertainty in our perception of our body

movements, then the maximum of the (visual) environmental prior

is far away. As that is far away and the uncertainty in the

perception of body movement is narrow, the approximation that

only zero- and first-order terms will be important is well justified.

The resulting estimate represents a Gaussian with a maximum

at:

v̂vB ! s2
paVa{1

O ð9Þ

Thus, the best estimate of the body velocity v̂vB, as long as the

environment velocity is large in comparison to the typical

uncertainty in our perception of body sway, can be represented

as a power law over the environment velocity vE .

We thus obtain: Gain(v̂vB) ~
v̂vB

vE

& s2
paVa{2

O ð10Þ

Our model thus has two free parameters: s2
p the variance of the

noise in prior-and-likelihood of the physical motion cues; a, the

parameter associated with the prior over environmental velocities.

We fitted the model (Equation 10) to the experimentally measured

gain of healthy subjects tested in our experiment. We then fitted the

model to the experimentally measured gains of healthy subjects and

vestibular-deficient patients tested in previous studies [4,5]. We

Bayesian Integration in Postural Control
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chose the model parameters such that the mean squared error

between the model fits and the experimental data was minimized.

For healthy subjects, the values of free parameters were as

follows: sp = 0.34 and a = 1.32 (for subjects tested in our

experiment); sp = 0.37 and a = 1.28 (for subjects tested by Peterka

et al.); sp = 0.33 and a = 1.03 (for subjects tested by Mergner et al.).

For vestibular-deficient patients, the values of free parameters were

as follows: sp = 0.46 and a = 1.7 (for patients tested by Peterka et

al.); sp = 0.524 and a = 1.85 (for patients tested by Mergner et al.).

Model comparisons
To test the performance of our attribution model, we compared

it with other simple models of postural control.

We first considered a linear model in which the gain of postural

response was constant (Fig. 3A). This model had a single free

parameter, the gain K , and had a functional form:

Gain(v̂vB) ~ K V vE

We then developed a nonlinear model that incorporated the

findings of published empirical and modeling studies. The

amplitude of postural reaction is known to increase logarithmically

with the visual scene velocity until it saturates [4]. We tested a

model of the functional form (Fig. 3B):

Gain(v̂vB) ~ C
log vE

vE

for 0 v vE v vS

Gain(v̂vB) ~ C
log vS

vE

for vE v vS

Here vS represents the visual scene velocity at which saturation

occurs. We chose vS = 2.8 cm/s based on the previous findings in

the literature [5]. This model had a single free parameter, the

slope, C.

We considered another model where the gain of postural

reactions is initially constant, but decreases monotonically with

increasing visual scene velocities (Fig. 3C). This model, with three

free parameters, has the functional form:

Gain(v̂vB) ~ Q for 0 v vE v vS

Gain(v̂vB) ~ Q z AvE for vE w vS

We fitted these models to the gain values of each subject tested

in our experiment. We computed the Bayesian Information

Criterion for each subject and for each model. We then performed

a paired t-test to determine if there was a significant difference in

the BIC values for different models.
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