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Abstract

When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the
hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular
hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes) that
are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells
discharge asynchronously at 1–3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of
spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a
physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from
the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it
can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a
neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is
an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely
connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of
oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while
endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.
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Introduction

The milk-ejection reflex is perhaps the best example of a

physiological role for peptide-mediated communication within the

brain. Here we use a large body of data, accumulated over the last

30 years, to develop a model of this reflex. In the model,

synchronized bursting is an emergent property of the network; we

use the model to explain diverse experimentally observed

phenomena, many of which seem paradoxical.

When young suckle, they are rewarded intermittently with a let-

down of milk that results from the reflex secretion of oxytocin [1].

Oxytocin is made in about 9,000 magnocellular neurons, each of

which sends a single axon to the posterior pituitary, where it gives

rise to about 2000 neurosecretory varicosities. From these

varicosities, large vesicles that contain oxytocin are secreted by

exocytosis [2] in response to action potentials (spikes), propagated

down the axons [3]. Normally, oxytocin cells discharge asynchro-

nously at 1–3 spikes/s, but during suckling, every 5 min or so, they

all discharge a brief burst of spikes (50–150 spikes in 1–3 s) that

releases a pulse of oxytocin [4]; this pulse, travelling in the systemic

circulation, causes cells of the mammary gland to release milk into

a collecting duct from which it is extracted by suckling.

In lactating rats, the background activity of oxytocin cells is like

that in non-lactating rats; the cells fire slowly, asynchronously and

nearly randomly. Suckling produces little change in this except

that slow firing cells tend to speed up slightly, while faster firing

neurons slow down. After a few minutes, the first bursts occur;

these are small and involve only some cells, but progressively more

cells are recruited until all show intense bursts [5]. Bursts are

elicited by suckling, but not by most other stimuli; for example,

systemic injections of cholecystokinin produce an increase in

electrical activity that is identical in lactating and non-lactating

rats, and which consists of a steady increase in firing rate that

persists for 10–15 min [6].

Milk-ejection bursts vary in size from cell to cell and according to

the strength of the suckling, but are consistent in their overall shape,

especially from one burst to the next in any given cell. These

features [7,8] led to the belief that bursting reflects mechanisms

intrinsic to oxytocin cells, but these mechanisms have proved

elusive. Whole-organ cultures of neonatal rat hypothalamus display

networks of oxytocin cells that burst periodically [9]; these bursts are

synchronized, but inter-burst activity also shows high levels of

synchrony, unlike in vivo observations, and the bursts are generally

longer and less intense than milk-ejection bursts. Oxytocin cells in

slice preparations also display bursts when maintained in low

extracellular [Ca2+] and exposed to phenylephrine, but these are

not synchronized, and are less intense than milk-ejection bursts in

vivo [10]. With these partial exceptions, in vitro preparations have not

reproduced the bursting seen in vivo, indicating that it depends on

unknown features of the suckling input.
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The two supraoptic nuclei contain about 2000 of these oxytocin

cells and (in virgin rats) about 3.2 ng of oxytocin, about 95% of

which is in the dendrites [11]. Oxytocin cells have 2–5 dendrites,

several hundred micrometres long, which are filled with

neurosecretory vesicles that can also be released by exocytosis

[12]. In a virgin rat, each cell has .10,000 vesicles in its dendrites

[12], each vesicle containing ,85,000 molecules of oxytocin [11],

and in lactating rats, oxytocin synthesis is further elevated [13].

The cells intercommunicate within ‘‘bundles’’ of 3–8 dendrites; in

lactating rats, these bundles are encapsulated by glial processes,

but within a bundle the dendrites are directly apposed to each

other [4,14,15].

Dendritic oxytocin release in basal conditions in vivo is not much

influenced by spike activity, but can be evoked by stimuli that

mobilize intracellular Ca2+ [16]. When oxytocin is released, it acts

at high-affinity receptors on the dendrites [17] to depolarize

oxytocin cells [18]; it also mobilizes Ca2+ from intracellular stores

[19], which promotes the further release of oxytocin [20]. The

mobilisation of Ca2+ has another important consequence: it can

‘‘prime’’ the dendritic stores of oxytocin, making them available

for subsequent activity-dependent release [21]. We have suggested

that the suckling input might prime the dendritic stores of

oxytocin, making them available for activity-dependent release

[21], and that this is essential for bursting. During suckling,

dendritic oxytocin release is detected before any increase in the

electrical activity of oxytocin cells, and before any increase in

pituitary secretion [22]. Central injections of oxytocin facilitate

bursting in the presence of suckling, but are ineffective in its

absence; conversely, local injections of oxytocin antagonists block

suckling-induced bursting [23]. Oxytocin cells also modulate

afferent inputs via the production of endocannabinoids (and other

substances), which inhibit excitatory inputs presynaptically [24],

and oxytocin suppresses inhibitory inputs by attenuating the effects

of GABA [25]. Oxytocin also acts on glial cells to promote

morphological reorganization that facilitates dendro-dendritic

interactions [14,15].

Here we show that bursting can arise as an emergent property

of a model network constructed to incorporate the observations

summarized above.

Model

Each model neuron is a modified leaky integrate-and-fire model

subject to stochastic excitatory and inhibitory postsynaptic

potentials. The modifications include a post spike relative

refractoriness that mimics the hyperpolarising afterpotential

(HAP) that follows single spikes in oxytocin cells [26]. This is

modelled as a transient rise in spike threshold, and reproduces the

distribution of interspike intervals in vivo, which is largely

determined by the HAP [27]. Another modification mimics the

effect of a slower activity-dependent afterhyperpolarisation (AHP);

this sustains a prolonged reduction in excitability after intense

activation, and is enhanced in oxytocin cells in lactation [28]. In

the model, dendritic release is coupled to spike activity non-

linearly; oxytocin secretion from the pituitary is non-linear in that

there is a marked facilitation of secretion at high spike frequencies

[29], and we assume that dendritic release is similarly facilitated

[30]. Dendro-dendritic interactions are modelled by elements that

mimic the excitatory actions of oxytocin (implemented as an

activity-dependent reduction in spike threshold) and the autocrine

effects of endocannabinoids which feed back to modulate synaptic

input rates.

Network Topology
A key element of our model is the topology of network

connections, which differs from all other topologies of biological

networks in the literature. The network has n neurons and nb

bundles, and each neuron has two dendrites in different bundles

[4,14,15]. The network can be described by a bipartite graph

G = {N<B, E}, where N is the set of neurons, B the set of bundles,

and E the set of connections from neurons to bundles such that, for

a neuron a M N and a bundle b M B, (a ,b) M E if a has a dendrite in b.

The network topology is thus specified by the adjacency matrix

O = {oij}, i = 1,…,n, j = 1,…,nb, where oij = 1 if neuron i has a

dendrite in bundle j, and oij = 0 otherwise. If dendro-dendritic

connections are formed at random, then O is a random binary

matrix whose rows satisfy
Pnb

j~1 oij~2. Figure 1 shows such a

matrix for a network of 48 neurons and 12 bundles. We considered

two procedures in order to assign dendrites to bundles. In both

cases, for a network of n neurons, and a given integer d.0, we start

with an empty adjacency matrix of n rows and q2n=dr columns.

Then, for each neuron we select two bundles as follows. The index

of the first bundle i1 is selected uniformly at random in the set

{1,2,…,nb}, the second index is selected uniformly at random in

the set {1,2,…,nb}/{i1}, ensuring that no neuron has two dendrites

in the same bundle. For the first procedure, this selection is

repeated for all neurons, leading to a completely random

allocation of dendrites into bundles. There is a finite probability

that some bundles are never selected, and these are removed from

the network. In the second procedure, we keep track of the

number of dendrites in each bundle and, once one bundle contains

d dendrites, this is excluded from further selection. This we refer to

as a ‘‘homogeneous arrangement of the connections’’ as each of

the nb bundles contains the same number of dendrites.

Model of single neuron. To model spike generation, we use

the leaky integrate-and-fire model, modified to incorporate

activity-dependent changes in excitability (Fig. 2). The

membrane potential ni of cell i obeys

dvi

dt
~

vrest{vi

t
z
X2

j~1

aE vE{við Þ
dN

j
E,i

dt
{aI vi{vIð Þ

dN
j
I ,i

dt

" #
ð1Þ

Where t is the membrane time constant, nrest is the resting

Author Summary

When young suckle, they are rewarded intermittently with
a let-down of milk that results from reflex secretion of the
hormone oxytocin. Oxytocin is a neuropeptide made by
specialised neurons in the hypothalamus, and is secreted
from nerve endings in the pituitary gland. During suckling,
every 5 min or so, each of these neurons discharges a
brief, intense burst of action potentials; these are
propagated down the axons, and release a pulse of
oxytocin into the circulation. Here, we have built a
computational model to understand how these bursts
arise and how they are synchronized. In our model,
bursting is an emergent behaviour of a complex system,
involving both positive and negative feedbacks, between
many, sparsely connected cells. The oxytocin cells are
regulated by independent afferent inputs, but they
interact by local release of oxytocin and endocannabi-
noids. Oxytocin released from the dendrites of these cells
has a positive-feedback effect, while endocannabinoids
have an inhibitory effect by suppressing the afferent input
to the cells. Many neurons make peptides that act as
messengers within the brain, and many of these are also
released from dendrites, so this model may reflect a
common pattern-generating mechanism in the brain.
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potential, N
j
E,i, N

j
I ,i are inhomogeneous Poisson processes of rate

lj
E,i tð Þ, lj

I ,i tð Þ, aE(nE2nrest), aI(nrest2nI), are the magnitude of single

EPSPs and IPSPs at nrest, and nE, nI are the excitatory and

inhibitory reversal potentials. A spike is produced in cell i at time

t~ts
i , s = 1,2,…, , if vi ts

i

� �
~Ti ts

i

� �
, where Ti(t) is the spike

threshold at time t. After a spike, ni is reset to nrest. Activity-

dependent changes in excitability and the effects of oxytocin are

modelled by effects on spike threshold:

Ti~T0zTHAP,izTAHP,i{TOT ,i ð2Þ

where T0 is a constant. THAP models the effect of a HAP by

THAP,i~kHAPH t{t̂i

� �
e{ t{ t̂ið Þ=tHAP ð3Þ

where kHAP, tHAP, are constants, t̂i~maxs ts
i : ts

i vt
� �

, and H(x) is

the Heaviside step function. This gives a transient increase in spike

threshold after each spike. TAHP models the effect of the AHP. The

AHP builds up slowly, leading to a significant reduction of

excitability only after relatively intense activity. The variables fi,

i = 1,…,n, represent the recent activity of each neuron, and

dfi

dt
~{

fi

tAHP

z
X
ts
i
vt

d t{ts
i

� �
ð4Þ

where tAHP is the decay constant of the AHP, and d(x) is the Dirac

delta function. We set

TAHP,i~kAHP
f 4
i

f 4
i zf 4

th

ð5Þ

where kAHP, fth are constants adjusted to match the known

characteristics of spontaneous firing in oxytocin cells. The increase

in excitability due to oxytocin is modelled by TOT,

dTOT ,i

dt
~{

TOT ,i

tOT

zkOT

Xnb

k~1

Xn

j~1

X2

l,m~1

ck
ilc

k
jmrm

j tð Þ ð6Þ

where tOT, kOT are constants, rm
j tð Þ is the instantaneous release

rate from dendrite m of cell j, and the sums pick up all the cells

whose dendrites share the same bundle as cell i. The network

topology is represented by matrices Ck~ ck
ij

n o
, k = 1,…,nb; ck

ij~1

if dendrite j of cell i is in bundle k, and zero otherwise. To model

saturation of the oxytocin receptors, the oxytocin-dependent

reduction of the spike threshold is limited to a maximum

(TOT,max) of 25 mV.
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Figure 1. Structure of the Model Network. (A)Schematic diagram
of the organization of the oxytocin network; the yellow boxes represent
dendritic bundles. (B) The (bipartite) adjacency matrix for a randomly
generated network with 48 neurons and 12 bundles; the squares mark
non-zero matrix elements. (C) Visualization of the network with blue
circles for neurons and yellow squares for bundles. (D) The heteroge-
neity of connectivity in a randomly wired model of 12 bundles. The
width of an edge between any two bundles represents the number of
neurons having dendrites in both bundles. In this example, most
bundles are ‘bridged’ by at most one neuron; a few others share two or
three neurons. By means of such neurons, any increase of the spike
activity of the neurons projecting to one bundle can affect the neurons
in all the connected bundles, hence rapidly propagates through the
network.
doi:10.1371/journal.pcbi.1000123.g001
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Figure 2. The Structure of a Single Model Neuron. (A) Schematic
illustrating the organization of a single model neuron: it receives
random excitatory and inhibitory synaptic inputs, and its excitability is
modelled as a dynamically changing spike threshold that is influenced
by a post-spike HAP (parameter THAP), and a slower AHP (TAHP). Each
neuron interacts with neighbouring oxytocin neurons by two dendrites
that project to bundles (yellow), and its excitability is increased when
oxytocin is released in the vicinity of these dendrites (TOT). Activity-
dependent production of endocannabinoids (EC) feeds back to reduce
synaptic input rates. (B) This analyses the behavior of one model cell
during a burst in detail. The upper two raster traces show the times of
occurrence of all oxytocin release events in the two dendritic bundles to
which the cell is connected. Below this is the soma activity: the black
line (V) shows the impact of excitatory and inhibitory inputs, and the
blue line shows the dynamic spike threshold, showing the effects of
post-spike activity changes and the effects of oxytocin. The bottom
three traces show THAP , TAHP, and TOT.
doi:10.1371/journal.pcbi.1000123.g002
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The readily-releasable store of oxytocin (the store accessible by

activity-dependent release) in dendrite j of cell i is represented by

r
j
i , where

dr
j
i

dt
~{

r
j
i

tr

zkp tð Þ{rj
i tð Þ, ð7Þ

where tr is a time constant, kp(t) is the rate of priming due to the

suckling input (kp(t) is a positive constant during suckling and zero

otherwise), and rj
i is the instantaneous release rate from dendrite j.

Release is proportional to the readily-releasable stores, so

r
j
i tð Þ~krr

j
i tð Þ
X

d t{ts
i {D

� �
ð8Þ

where kr is the maximum fraction of the stores that can be released

by a spike, D is a fixed delay before release, and the summation

extends over the set ts
i vt,ts

i {ts{1
i vtrel

� �
, with trel a constant.

This ensures that only spikes occurring at intervals of less than trel,

(i.e. instantaneous firing rates exceeding 1/trel) induce any release

from dendrites. In the model, we set trel = 50 ms, corresponding to

an instantaneous firing rate threshold for release of 20 Hz, but the

exact value is not critical.

The variables ek (t), k = 1,…,nb represent the concentration of

endocannabinoids in each bundle, and evolve according to

dek

dt
~{

ek

tEC

zkEC

Xn

i~1

X2

j~1

ck
ijr

j
i ð9Þ

where tEC is the decay time constant, and kEC scales the amount of

oxytocin released within the bundles into an increase of

endocannabinoid concentration. Implicitly, we assume that

endocannabinoids are produced in oxytocin cells as a consequence

of the mobilisation of intracellular Ca2+ that occurs in response to

oxytocin. For simplicity, we assume that the rates of both

excitatory and inhibitory synaptic inputs are equally affected by

endocannabinoids [24], and neglect the direct effect of oxytocin on

the actions of GABA [25] as duplicated by this. Thus

lj
x,i tð Þ~ 1{a

X
k

ck
ijFatt ekð Þ

" #
�llj

x,i tð Þ ð10Þ

where l
j

x,i tð Þ, x = E, I are the unmodified synaptic input rates for

dendrite j of neuron i, a is the maximal fractional attenuation of

the input, and

Fatt eð Þ~ e4

e4ze4
th

ð11Þ

with eth constant. The parameter values for simulations are as in

Table 1 unless otherwise stated. The equations were integrated

numerically with the Euler-Maruyama method using a time step of

0.1 ms. A MATLAB code for simulating the system is available at

http://www.informatics.sussex.ac.uk/users/er28/otnet/, see also

Video S1).

Results

We show simulations from a network of 48 neurons and 12

bundles (mean number of dendrites per bundle d̄ = 2n/nb = 8) with

the topology as in Fig. 1B. We have also simulated larger networks

(n = 3000, d̄ = 8), and all the results reported below remain

qualitatively similar. The network displays synchronized high-

frequency bursts (Fig. 3A), but only when the suckling stimulus kp is

present; i.e., the modelled priming of dendritic release is essential.

The model parameters were fine-tuned to match the interspike

interval distributions of oxytocin cells (constructed both between

bursts and within bursts) and the temporal characteristics of bursts

(Fig. 3 and see [31]); these parameters were then fixed (Table 1).

With these parameters, bursts comprise 50–70 spikes in 1–3 s (0.9–

4.6 s in vivo [7]), and recur at intervals of ,4 min (248 (48) s, mean

(SD), range 149–388 s, based on 120 bursts), in close agreement

with in vivo observations [5,7,8,31–34].

The interspike interval histograms constructed between bursts

match in vivo data indistinguishably [31] (Fig. 3B), confirming that

the model accounts well for the background stochastic activity of

the oxytocin cells, as well as bursting activity. Normally, all cells

participate in the reflex in the model, with bursts approximately

synchronized through the population. The mean variation in burst

onset is 204614 ms (mean6S.E. of 17 bursts), close to

measurements in vivo (e.g. [5] reports delays of 0–386 ms between

bursts in pairs of simultaneously recorded cells). Model neurons

Table 1. The Model Parameters Used for Simulations (a.u.,
arbitrary units).

Name Description Value Units

N Number of cells 48

nb Number of bundles 12

t Membrane time constant 10.8 ms

nrest Resting potential 262 mV

aE(nE2nrest) EPSP amplitude 4 mV

aI(nrest2nI) IPSP amplitude 4 mV

nE EPSP reversal potential 0 mV

nI IPSP reversal potential 280 mV

l̄E Excitatory input rate 80 Hz

l̄I Inhibitory input rate 80 Hz

kHAP HAP, maximum amplitude 40 mV

tHAP HAP, decay time constant 12.5 Ms

kAHP AHP, maximum amplitude 40 mV

tAHP AHP, time constant 2 s

fth AHP, half-activation constant 45 a.u.

tOT Time decay of oxytocin-induced depolarization 1 s

kOT Depolarization for unitary oxytocin release 0.5 mV

D Time delay for oxytocin release 5 ms

TOT, max Maximum oxytocin-induced depolarization 25 mV

kp Priming rate 0.5 s21

tr Time constant for priming 400 s

kr Fraction of dendritic stores released per spike
(max)

0.045

tEC Time constant for [EC] decay 6 s

kEC Endocannabinoid increase per unit oxytocin
release

0.0025 a.u.

eth [EC] threshold for synaptic attenuation 0.03 a.u.

trel Maximum interspike interval for release 50 ms

a Fractional attenuation of synaptic input rate
(max)

0.6

doi:10.1371/journal.pcbi.1000123.t001
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display a brief period of silence preceding many bursts; this feature

mainly reflects the inhibitory actions of endocannabinoids; in the

model, endocannabinoids released from the first cells that display a

burst can suppress synaptic input enough to cause a brief

inhibition in other oxytocin cells before they are activated by

oxytocin release (Fig. 3D). Similar pre-burst silences occur in vivo

(Fig. 3D red trace, and [10]).

In the model, the shape of the bursts is critically determined by

the AHP mechanism, which reduces the peak firing rate and

shortens the burst duration. Removing the AHP (by setting

kAHP = 0) does not abolish bursting, and has little effect on the

timing of bursts (data not shown), as it activated relatively little at

the background firing rates. The HAP mechanism does affect the

timing of bursts as it limits the occurrence of short interspike

intervals; as an increase in the frequency of short intervals

increases the rate of depletion of dendritic oxytocin but also

increases the frequency of events that can trigger a burst, the

effects of changing the HAP are complex. In the model the HAP

was fixed to provide a good match to the interburst interspike

interval distribution, and so the effects of varying this were not

studied systematically. As well as an HAP, some oxytocin cells

show a depolarising afterpotential, which may further facilitate

bursting; in the present model we have neglected this as it is

present in only a minority of oxytocin cells, and has no clear

contribution to background firing patterns in vivo [32].

Pacemaker versus Emergent Activity and Post Bursting
Activity

As observed in vivo [5] we found no fixed ‘leader’ or ‘follower’

cells, and the order in which neurons start to burst varies randomly

with each burst (Fig. 4A). Thus bursting in the model is an

emergent activity due to the interplay between the single neuron

dynamics and network dynamics. The lack of a marked leader/

follower character of the model neurons might have been

accentuated by the homogeneous arrangement of the connections

in the network used for simulations, as all bundles contained the

same number of dendrites (di = d̄, i = 1,…,nb). Therefore, we also

considered a network with the same number of cells and bundles

(and the same mean connectivity d̄) but where the number of

dendrites varied in each bundle. For each cell, the leader/follower

character was measured by its mean ‘advantage’

Ai~
1

p n{1ð Þ
X
j,k

sign Tk
j {Tk

i

� �
, ð12Þ

where Tk
i denotes the time of the onset of the kth burst in cell i,

and p is the total number of bursts. Ai is strongly correlated with

the number of dendritic connections (r = 0.8796, P = 10216;

Fig. 4B). Thus bursts are more likely to start in regions of the

network where dendritic bundling is more pronounced.
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Figure 3. Comparison of Bursting Activity in Real and Modelled Oxytocin Cells. (A) A typical burst in a model cell plotted as instantaneous
firing rate (each point is the reciprocal of the interval since the previous spike). This profile is essentially indistinguishable to burst profiles observed in
vivo. (B) Consensus interspike interval distribution (see [34]) of 23 oxytocin cells recorded from the supraoptic nucleus in vivo (circles) compared with
that generated by the model (squares). In both cases, histograms were constructed from spike activity between the bursts. The individual
distributions were normalized to the height of the mode and averaged; bars are S.E.M. (C) Mean profiles of milk-ejection bursts from a real oxytocin
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before a burst, and it shows that, in both real cells and model cells, most bursts begin with a slight decrease in instantaneous firing rate. In the model
this is because most cells are usually follower cells - a burst has begun elsewhere, and the first indication of this is a decrease in synaptic input as a
result of the inhibitory effects of cannabinoids. The bursts begin only when the excitatory effect of oxytocin exceeds this.
doi:10.1371/journal.pcbi.1000123.g003
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With no suckling input, the firing of oxytocin cells in the model

is uncorrelated (as in vivo), as each receives a wholly independent

synaptic input. Between bursts, spiking activity in the network is

characterised by small but increasing cross-correlation of firing

rates (Fig. 4C), a consequence of the strengthening of the

interactions between cells. The background spike activity becomes

progressively more irregular approaching a burst, as indicated by

an increasing index of dispersion of the firing rate (Fig. 4D). Both

results are in agreement with experimental findings in vivo [34–36].

In the model the increased variability arises because, towards a

burst, activity produces dendritic oxytocin release, with excitatory

consequences, but also endocannabinoid production, with inhib-

itory consequences but with different timescales; if endocannabi-

noid release is eliminated (by setting a = 0) then there is no

increase in variability.

We observed bursting in networks with varying number of

neurons and/or bundles. In a network of 1000 neurons with

limited bundling (d̄ = 2), bursts occur rarely, propagate slowly, and

involve only some cells (Fig. 5A). Increasing the degree of

bundling, i.e. decreasing nb, leads to faster propagation and better

synchronization (Fig. 5B). Figure 5C shows the propagation of a

burst by plotting the temporal course of the number of cells

recruited into a burst. The burst ‘wavefront’ grows exponentially

with time, implying that even large networks can be rapidly

synchronized. An example is given in Fig. 5D where we show a

synchronized burst occurring in a network of 3000 neurons (d̄ = 8).

The bursts are followed by long silent periods (up to 20 s). In vivo

[7] the post-burst inhibition is the most variable component of the

burst, both in duration (7–56 s) and intensity, indicating that it is

not simply the deterministic consequence of an activity-dependent

AHP. In the model, the post burst silence is mainly a consequence

of the prolonged suppression of afferent input, following the

increase in endocannabinoid concentration after a burst. In vivo,

some otherwise typical oxytocin cells have been observed

occasionally which show no bursts at milk ejection but instead

fall silent (Fig. 6A). A similar phenomenon can be replicated in the
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doi:10.1371/journal.pcbi.1000123.g004
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model by assuming that some neurons do not express oxytocin

receptors (i.e. by setting kOT = 0 for these neurons, Fig. 6B).

Dendritic Storage and ‘‘Priming’’
In the model, the dendritic stores of readily-releasable vesicles

are continuously incremented by the suckling-related ‘priming’

input. Their level, averaged over the entire network, increases

relatively steadily between bursts despite activity-dependent

depletion (Fig. 7A), and bursts tend to occur when the stores are

relatively large. The mean level at the time of bursts correlates

strongly with the logarithm of the inter-burst interval (r = 0.99;

P,1029; Fig. 7B). Fig. 7C plots the rate of change of the stores

against the store level (both averaged over the network). The

decrease in slope at high levels reflects a reduction of the average

release rate, and is a consequence of the suppression of afferent

input as a result of endocannabinoid release. This stops the release

from becoming regenerative, and allows the stores to increase

further. In this phase, the network activity becomes more irregular

because of the opposing feedback mechanisms: local activity-

dependent excitation through the effects of dendritic oxytocin

release, and inhibition due to suppression of afferent input. When

the stores are large, spatially coordinated fluctuations of release

can have a large impact on the dynamics. If just a few

neighbouring cells show coincidentally increased activity due to

stochastic variation in their input rates, and have large enough

stores, then enough oxytocin can be released to trigger positive

feedback and start a burst.

Stability
Increased spike activity between the bursts enhances depletion

of the stores and so can delay or even suppress bursting (Fig. 8A);

conversely, an increase in inhibitory input can promote the reflex

in a system which fails to express bursting because of an

insufficient priming (Fig. 8B). Such ‘‘paradoxical’’ behaviours

have been extensively described in vivo; for example, injections of

the inhibitory neurotransmitter GABA into the supraoptic nucleus

of a suckled, lactating rat can trigger milk-ejection bursts [37]

(Fig. 8B right); conversely, many stimuli that activate oxytocin

cells, including the systemic administration of cholecystokinin,

relaxin, or hypertonic saline, all suppress the reflex [e.g. 37]

(Fig. 8A right). Very occasionally a single burst can occur shortly

after removing the suckling stimulus (Fig. 8C). This feature is also

shared (very occasionally) by the reflex in vivo, and indicates that

suckling itself is not a strictly necessary trigger.

Effects of Endocannabinoids
Figure 9 shows the response of a model neuron in absence of

suckling input; in this case, cells increase their mean firing rate

more strongly in response to an increase of the excitatory input. In

the model, during suckling, neurons that are strongly excited
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Emergent Synchronous Bursting

PLoS Computational Biology | www.ploscompbiol.org 7 July 2008 | Volume 4 | Issue 7 | e1000123



produce endocannabinoids that reduce the overall input level.

This negative feedback defends the system from over-excitation,

and maintains the network activity in an optimal range for

bursting. This is an important feature, because bursting in the

model is possible only within a range of values of excitatory input

(Fig. 9C). The exact range depends on the strength of the coupling

between spike activity and dendritic secretion (as measured by the

frequency threshold for release frel = 1/trel). At a low level of

excitation, an increase in the excitatory rate favours bursting by

increasing the frequency of release episodes which can trigger a

burst. However, beyond a critical level, release events may be so

frequent that stores are not replenished fast enough to reach the

critical level required to trigger a burst. Under such conditions,

bursts become rarer and less predictable, until eventually over-

excitation disrupts the reflex.

As illustrated in Fig. 9E, the inhibitory effect of endocannabi-

noids reduces the likelihood of a burst being triggered at low

synaptic rates, but also reduces the rate of depletion of dendritic

oxytocin, thus increasing the probability of bursting at high

synaptic input rates. The overall effect is to increase the range of

synaptic input rates compatible with bursting, and to make the

mean rate at which bursts occur relatively independent of synaptic

input rate within this range.

Spatial inhomogeneity in the stochastic input can also degrade

the reflex (Fig. 9D). With increasing spatial inhomogeneity, for a

given average firing rate, there are more faster firing cells, and also

more slowly firing cells. The faster firing cells will generate more

short intervals – potential burst triggering events - but those events

will be less potent because of greater depletion of their stores. For

these events to trigger bursts, they must recruit responses from

other cells to which they are connected – but the slower firing cells

are less excitable (although they have higher store levels). The net

result is that bursts are triggered less often. Thus the system

performs optimally when the activity is relatively homogeneous

between oxytocin cells, a conclusion previously drawn from

experimental studies [33].

Discussion

During lactation, oxytocin is released in pulses following quasi-

synchronous bursts of electrical activity in oxytocin cells. Here, we

showed that such bursting can arise as an emergent property of a

spiking neuronal network. Our model does not incorporate all

elements of the physiology of oxytocin cells, but finds a minimalist

representation congruent with physiological evidence to help

identify the key processes. We suggest that, during lactation, the

oxytocin system is organized as a network where neurons interact

by dendritic release of oxytocin coupled non-linearly to electrical
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Figure 6. ‘‘Post-burst’’ Silences Observed in the Absence of
Bursts. (A) The top trace shows the typical intramammary pressure
response indicative of a reflex milk let-down in a lactating rat; the
middle trace is a raster plot indicating the corresponding spike
discharge of a supraoptic neuron, and the lower trace is the
corresponding firing rate record. This cell showed no burst activity
preceding milk ejection, but showed a typical ‘‘post-burst’’ silence.
(Note that the increase in intramammary pressure normally occurs
about 12 s after the milk-ejection burst; this delay reflects the delay in
oxytocin released from the pituitary gland reaching the mammary
gland, not a delay in oxytocin release). (B) Simultaneous activity of two
cells in the model, in one of which the sensitivity to oxytocin has been
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afferent excitation by oxytocin.
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activity. This requires a stimulus-dependent process of priming of

the dendritic stores, whereby these are made available for activity-

dependent release. Dendritic release of oxytocin occurs only when

the neuron’s firing rate is sufficiently large, so interactions between

neurons are rare and erratic between bursts and in the absence of

the suckling stimulus, leading to asynchronous spiking except

during the bursts themselves; the network is essentially thus a

pulse-coupled network.

The most distinctive features of our model are the increase of

excitability as a consequence of priming, and the inhibition

following the bursts; the inhibition is attributed here to

endocannabinoids, but is also due in part to other retrograde

messengers. Dendritic peptide release, which is likely to occur

widely throughout the brain, is a key feature in the control of

information transfer in neural networks, through cross-talk and

autocontrol by paracrine/autocrine mechanisms.

Peptides are a large and diverse class of signalling molecules,

and many different peptides are expressed in different neuronal

populations. It has been argued elsewhere that some peptide

signals are ‘broadcast’ throughout the brain by diffusional ‘‘volume

transmission’’, rather than by temporally and spatially precise

synaptic transmission [38]. Hypothalamic neurons which release

the same hormone are generally ‘tied together’ by means of

autoreceptors for the peptides they produce; thus small amounts of

peptides released locally ‘bind’ a population of neurons into co-

ordinated activity, allowing the population to develop a synchro-

nous burst that can initiate a wave of secretion that travels to more

distant sites in the brain.

In the present model, bursting arises as an emergent behaviour of

a very sparsely connected population of neurons. Bursting can begin

at any of many foci of neuronal interactions – within any of the

dendritic bundles that link just a few of the neurons, from where it
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will spread rapidly through the remaining bundles. Bursting arises

by a positive feedback mechanism through activity-dependent

release of oxytocin, the magnitude of which is down-regulated after

a burst (by depletion of a pool of releasable oxytocin); the core

mechanism is thus analogous to a mechanism used in some other

models of bursting – positive feedback followed by synaptic

depression. The topology of the networks is very different – the

present network is very sparsely connected compared to others (e.g.

[39,40]), and the biological substrate is different – here the

intercommunication is dendrodendritic rather than synaptic.

The model makes apparent sense of the role in the milk-ejection

reflex of several biological phenomena. First, the afterhyperpolar-

isation, a slow activity dependent conductance, has a role only in

shaping the burst profile; it contributes little to burst timing or to

post-burst silences. Second, although the core mechanism

inducing bursts is activity-dependent positive feedback, via release

of oxytocin, negative feedbacks are also important. In the real

system there are multiple negative feedback mechanisms involving

several signalling molecules, here these are represented by only

one – the production of endocannabinoids. In the model,

endocannabinoid production is proportional to oxytocin release

– a simplification, as the real determining factor is probably

intracellular [Ca2+]. Importantly, the dynamics of the effects of

endocannabinoids differ from those of oxytocin, and the dual

effects promote increased variability in firing rate as the system

swings from excitation to inhibition. The ‘‘upswings’’ mean that,

for a given mean firing rate, there are more clusters of short

intervals towards the end of an interburst interval, and they are

more likely to be correlated between neurons, making them more

potent as potential burst-triggering events. At the same time, the

depressive effects on firing rate means that at high synaptic input

rates there is less depletion of the releasable pool of oxytocin.

Accordingly, the rate at which bursts arise is relatively indepen-

dent of synaptic input rate over a reasonably wide range.

Bursting, Spiking, and Multiscale Dynamics
Whereas neurons exchange information mostly via spikes,

endocrine cells rely on hormonal pulses to signal to their target

tissues. For many neurons, clustered spike activity can be optimally

effective in inducing the required changes on the targets, but for

endocrine cells to generate a signal large enough to be read at a

distance, their secretory activity must not only be optimal for each

cell, their activity must also be co-ordinated; hence peptide

hormone signals are generally pulsatile [41]. Gonadotrophin-

releasing hormone (GnRH) neurons also display synchronised

bursts, possibly as a result of direct positive feedback from GnRH

release [42]. Neuroendocrine cells are perhaps a special case in

generating a classical hormone signal by co-ordinated electrical

activity. However, many populations of neurons in the brain

produce a peptide product as well as a conventional transmitter, and

many of these peptides have effects on organismal behaviour that

are hormone-like [17,43], in that they act at dispersed and often

distant targets to produce prolonged organisational changes. For a

hormone-like, pulsatile signal to be produced reliably, the activity of

a population of peptide-secreting neurons must be co-ordinated in a

physiologically plastic manner. Such co-ordinated signals, coming

from the individual nodes of an interactive network, must emerge

from the dynamics at the lower level of organization (for the neuron

case, from the dynamics of stochastic ionic channels coupled via the

membrane potential). In the present model, network interactions

are solely mediated by spikes with interspike intervals less than trel;

similar spike doublets are thought to play a critical role in the

synchronization of network activity in many neural systems [44–46].

Limitations of the Model
The present model clearly produces a close match to

electrophysiological data at the level of spike output, and its main

strength is the simplicity of the representation of a single neuron;

this makes it feasible to use the model to explore how properties of

the network (connectivity and dynamics of intercommunication)

affect the system behaviour. We believe that the simplifications are

unlikely to have had any major influence, with two possible

exceptions. First, we have not included intracellular [Ca2+] as a

variable, although mobilisation of intracellular Ca2+ can trigger

dendritic oxytocin release, and therefore probably contributes to

the central oxytocin release during milk-ejection. Implicitly we

have assumed that this overlaps with activity-induced oxytocin

release and can be neglected, but it is possible that in some

circumstances oxytocin release triggered by Ca2+ release from

intracellular stores might precipitate a burst. Second, we modelled

dendritic release as a relatively common deterministic event –

small packets released fairly frequently. Dendritic release probably

involves the relatively rare exocytosis of large vesicles that each

contains a very large amount of oxytocin – and release is likely to

be highly stochastic, with interval length governing the probability

of release rather than determining it. Whether this will affect the

model behaviour substantially remains to be tested.

Supporting Information

Video S1 Spikes (pink) and oxytocin release (red) in a neuronal

network model of the milk-ejection reflex.

Found at: doi:10.1371/journal.pcbi.1000123.s001 (4.23 MB AVI)
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