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Abstract

The epidemic spread of infectious diseases is ubiquitous and often has a considerable impact on public health and
economic wealth. The large variability in the spatio-temporal patterns of epidemics prohibits simple interventions and
requires a detailed analysis of each epidemic with respect to its infectious agent and the corresponding routes of
transmission. To facilitate this analysis, we introduce a mathematical framework which links epidemic patterns to the
topology and dynamics of the underlying transmission network. The evolution, both in disease prevalence and transmission
network topology, is derived from a closed set of partial differential equations for infections without allowing for recovery.
The predictions are in excellent agreement with complementarily conducted agent-based simulations. The capacity of this
new method is demonstrated in several case studies on HIV epidemics in synthetic populations: it allows us to monitor the
evolution of contact behavior among healthy and infected individuals and the contributions of different disease stages to
the spreading of the epidemic. This gives both direction to and a test bed for targeted intervention strategies for epidemic
control. In conclusion, this mathematical framework provides a capable toolbox for the analysis of epidemics from first
principles. This allows for fast, in silico modeling - and manipulation - of epidemics and is especially powerful if
complemented with adequate empirical data for parameterization.
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Introduction

Despite huge efforts to improve public health, the spread of

infectious diseases is still ubiquitous at the beginning of the 21st

century, and there is considerable variability in epidemic patterns

between locations. Although the recent influenza pandemic has

been a global challenge, there have nonetheless been differences in

its timing in the northern and southern hemisphere due to seasonal

effects [1,2]. Another prominent example for epidemic variability

is the prevalence of sexually transmitted diseases (STDs),

specifically HIV infections. Although HIV is endemic in many

populations at low levels or restricted to high-risk groups, it has

become highly endemic in other parts of the world [3,4]. As a

consequence, the spread of infectious diseases cannot be

understood globally but understood only as the result of several

local factors, such as climate and hygiene conditions, population

density and structure, and cultural habits and mobility. Epidemic

models aim to capture the mechanisms that link these factors to

the emergent epidemics and to promote an understanding of the

underlying dynamic processes as a prerequisite for intervention

strategies [5,6]. A useful abstraction in this context is to regard

individuals that may be infected as nodes of a network in which the

links are the potentially infectious contacts among individuals (or

nodes in network notation). A major remaining challenge in

modern epidemiology is to link the variability of transmission

networks to the corresponding emergent epidemics.

Models that are flexible and can be adapted to specific epidemic

situations best meet these challenges. Because we focus on the

interplay between transmission network topology and epidemics, we

will restrict ourselves to diseases caused by agents that lead to either

immunity or death in their host, i.e., in which infection can occur only

once. These epidemics can be described by Susceptible-Infected-

Recovered or SIR models [5,6]. We refer to the mathematically

closely related case, where infection eventually leads to the death of

the host, as a SID model (Susceptible-Infected-Death). The original,

or classical, SIR model [7] assumes a mass-action type dynamic and

as a consequence describes epidemics in homogeneous, well-mixed

populations. Because this is generally not a good approximation of

real world situations, current epidemic models strive for an integrated

approach that considers both information about the course of disease

(i.e., susceptible, infected and recovered stages) and the relevant

transmission network [8,9]. The models vary in their assumptions,

attention to detail, computational costs, and as a consequence, their

fields of application. Compartmental SIR models consider different

contact patterns in sub-populations and link them via a contact

matrix [10], providing a coarse-grained, but often adequate,

representation. Network-based SIR models consider the distribution

in each individual’s number of infectious contacts k in the

transmission network (i.e. each node’s degree k in network notation)

[11–13]. These models allow for the study of transmission networks

with strong heterogeneity in the number of contacts among

individuals, which in some cases also means that they consider

correlations in the way contacts are made [14,15], or clustering [16–

18]. Although these approaches focus on static networks, a recent

approach considers networks with arbitrary degree distributions and

transient contacts and allows for the derivation of the temporal
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evolution in the number of susceptible and infected nodes from a

closed set of equations [19–21]. Finally, pair models are a very

general approach [22] for studying SIR epidemics on heterogeneous

networks. They provide a large amount of flexibility in considering

the way contacts are made (correlations or clustering) and maintained

[23–25], but, as a trade-off, they quickly become very computation-

ally demanding [26].

An assumption often implicitly made in epidemic models is

that the epidemic sweeps through the population at much

shorter time scales than the time scale of background

demographic processes, i.e., natural birth and death processes

are neglected. This is a good approximation in cases such as the

yearly influenza epidemics, but it is hardly adequate for HIV

epidemics, which span decades. To compensate for this

limitation, we integrated demographic background processes

into recent network epidemic models [19,20]. With HIV in

mind as a case study, we focus on disease epidemics that lead to

death after infection of susceptible individuals, possibly after

undergoing several stages of the disease. In addition to earlier

work, our approach also allows for an in depth study of the

interplay between epidemic spreading and the structure and

dynamics of the underlying transmission network. Strictly

speaking, all approaches discussed only predict the mean

behavior of epidemics within the limit of an infinite host

population. However, our comparisons with finite size, agent-

based simulations show that this is a good and computationally

efficient approximation already for moderate population sizes.

Methods

To predict epidemic outcomes on the basis of the relevant

transmission network, we study its components in more detail. The

network’s nodes represent a pathogen’s hosts and the network’s

links are potentially infectious contacts among hosts. The

mathematical framework is not restricted to any specific pathogen

(and therefore route of transmission), so links or infectious contacts

may represent quite different settings, for example sexual contacts

in case of STDs or close spatial proximity in case of airborne

infections. We will first focus on a simple SID model with one

infectious stage, I, before death, D, and study its basic properties.

This can naturally be extended to models with several stages of

disease before death, for which we will show an example of the

simplest case, a SI1I2D model with two stages of disease, I1 and I2,

before death (See Text S1).

The SID model
Assuming knowledge about infectious contacts, hosts (or nodes)

can be assembled into subgroups according to their number of

infectious contacts (or degree k in network notation). Following the

ansatz of [19,20], evolution equations for each of these subgroups

are then derived which allows us to model arbitrary heterogeneity in

the number of infectious contacts between hosts. Susceptible hosts

get infected at a rate that is proportional to their number of contacts,

k, the transmission rate per contact, r, as well as the probability that

a contact made by a susceptible individual links to an infected

individual, pSI . The number of hosts with a given number of

contacts changes either by birth and death or by birth and death of

the hosts’ contacts, where death may occur both due to disease (at a

rate m) or due to other causes (at a rate g2). Individuals entering the

population at a rate g1 establish k contacts with probability �ppk

(corresponding to the probability generating function �gg(x,t)).

Table 1 summarizes the parameters and notation of the model

which allows us to compile the equations for the numbers of

susceptible and infected individuals with k contacts Sk and Ik as:

_SSk~ {rpSI kSk new infections

zg1N�ppk{g2Sk natural birth and death

zg1�gg0(1,t)(Sk{1{Sk) contacts made with new nodes

{g2(kSk{(kz1)Skz1) contacts lost from dying nodes

{mpSI (kSk{(kz1)Skz1) contacts lost from nodes dying from infection

_IIk~ zrpSI kSk new infections

{(g2zm)Ik death

zg1�gg0(1,t)(Ik{1{Ik) contacts made with new nodes

{g2(kIk{(kz1)Ikz1) contacts lost from dying nodes

{mpII (kIk{(kz1)Ikz1) contacts lost from nodes dying from infection

Note that it is implicitly assumed that new individuals enter the

population at a rate g1 have k contacts with probability �ppk by

which they link randomly to those individuals already present. All

presented data are based on this dynamic for the establishment of

new nodes’ contacts, as this can be considered as the most basic

dynamic model. However, the approach is not restricted to this

case and can naturally be extended to other dynamics, for

example preferential attachment of links with respect to the target

nodes’ degree (See Text S1). It is further assumed that each

individual in the population of size N can give birth to a

susceptible individual at the same rate g1 which may be

conditioned on the individuals’ health status in future models.

Individuals dying from natural causes at a rate g2 are assumed to

have the same average number of contacts as found in the whole

population without preferences for susceptible or infected

individuals. In terms of the total number N of susceptible S

and infected individuals I the equations read

_SS~g1N{rpSI MS{g2S ð1Þ

_II~rpSI MS{(g2zm)I : ð2Þ

Author Summary

The way potentially infectious contacts are made strongly
influences how fast and how widely epidemics spread in
their host population. Therefore, it is important to assess
changes in contact behavior throughout an epidemic;
these may occur due to external factors, such as
demographic change, or as a side effect of the epidemic
itself, leading to an accumulation of individuals with risky
behavior in the infected population. We have developed a
mathematical framework that allows for the study of the
mutual interdependencies between epidemic spread and
changes in contact behavior. The method is used to study
HIV epidemics in model populations. We address the
question of whether HIV is primarily spread by highly
contagious initially infected hosts or by less contagious
latently infected hosts who will, however, encounter more
situations for potential transmission. The answer to this
question strongly depends on the concurrency of contacts
and the maturation stage of the epidemic. Initially infected
hosts are major epidemic spreaders in populations with
strongly concurrent contacts and during epidemic expan-
sion whereas otherwise latently infected hosts play a more
important role. The availability of better data for param-
eterization will make this approach relevant for public
health considerations.

Epidemic Spread and Transmission Network Dynamics
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To close this set of equations and to take into account local

clustering of infectious cases, additional equations have to be

derived for pSI and pII , the probabilities that a contact made by a

susceptible or infected individual points to an infected individual.

We apply the techniques developed in [19] (See Text S1 for

detailed calculations and discussion of the underlying approxi-

mations) and conclude

_ppSI~r
g’’S (1,t)

g’S(1,t)
pSI (1{pSI ){(rzm)pSI (1{pSI )

zg1

�gg0(1,t)

MS

(I{(NzS)pSI )

ð3Þ

_ppII~r
MS

MI

g’’S (1,t)

g’S(1,t)
pSI (2pSI{pII ){r

MS

MI

pSI pII

z2r
MS

MI

pSI{m(1{pII )pIIzg1

�gg0(1,t)

MI

IpII :

ð4Þ

The occurrence of the probability generating functions (PGFs)

in equations (3) and (4) which represent the degree distributions of

susceptible and infected individuals makes it clear that the way

links are maintained between susceptible and infected nodes

depends on the contact behavior within these subgroups, as well as

the changes therein in response to the epidemic. In other words,

the set of equations can only be closed if the time evolution of

the PGFs gS(x,t) and gI (x,t) is considered. With _ggA(x,t)~P
k

_AAk

A
{

_AA

A
pAk

 !
xk, this results in

_ggS(x,t)~{rpSI (xg’S(x,t){g’S(1,t)gS(x,t))

zg1

N

S
(�gg(x,t){gS(x,t))

{g1(1{x)�gg0(1,t)gS(x,t)

z(g2zmpSI )(1{x)g’S(x,t)

ð5Þ

Table 1. Notation and parameters of the model.

_ff (x,t)~
L
Lt

f (x,t)
partial derivative of function f with respect to t

f ’(x,t)~
L
Lx

f (x,t)
partial derivative of function f with respect to x

Ak number of individuals in group A with k contacts

A~
P

k Ak total number of individuals in A

Nk~
P

A Ak number of individuals with k contacts

N~
P

k Nk total number of individuals

pAk~
Ak

A
~

g
(k)
A (0,t)

k!

probability for an individual in group A to have k contacts

gA(x,t)~
P

k pAk(t)xk probability generating function (PGF) of pAk(t)

SkTA~g’A(1,t) average number of contacts of A individuals

pk~
Nk

N

probability for an individual to have k contacts

g(x,t)~
P

k pk(t)xk~
P

A

A

N
gA(x,t)

probability generating function (PGF) of pk(t)

SkT~g’(1,t) average number of contacts

�ppk probability of a person entering the population to have k contacts

�gg(x,t)~
P

k �ppk(t)xk probability generating function (PGF) of �ppk(t)

MA~
P

k kAk~Ag’A(1,t) number of links emanating from A individuals

MAB number of links emanating from A individuals and pointing to B individuals

pAB~
MAB

MA

probability for a link starting from an A individual to point to a B individual

r (ri ) transmission rate per contact (at stage i of infection)

m (mi ) progression/death rate (at stage i of infection)

g1 , g2 birth and death rate

Parameters for the HIV epidemic models [33]

r1 = 2.76 p.a. transmission rate during primary infection (per year)

r2 = 0.1 p.a. transmission rate during latent infection (per year)

m1 = 4.1 p.a. progression rate of primary infection (per year)

m2 = 0.12 p.a. progression rate of latent infection (per year)

Note, that A, B correspond to the stages that are passed during an infection, e.g. S for susceptible, I for infected etc. Throughout the manuscript derivatives with
respect to time/spatial variables are denoted by a dot/prime.
doi:10.1371/journal.pcbi.1000984.t001

Epidemic Spread and Transmission Network Dynamics
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_ggI (x,t)~rpSI

S

I
(xg’S(x,t){g’S(1,t)gI (x,t))

{g1(1{x)�gg0(1,t)gI (x,t)

z(g2zmpII )(1{x)g’I (x,t):

ð6Þ

Given that equations (3–4) show gS(x,t) and its derivatives only for

x~1 might suggest that the set of partial differential equations can

be reduced to a set of ordinary differential equations including

equations for the time evolution of the moments expressed by

g’S(1,t) and g’’S(1,t). In fact, this leads to a hierarchy of equations

for the time evolution of all higher order moments of pSk.

With the equations given in Table 1 we are able to investigate

the interplay between epidemic processes and transmission

network topology. In particular, it is possible to follow the degree

distribution within the subgroups of susceptible and infected

individuals in terms of the probability generating functions gS(x,t)
and gI (x,t). However, transmission networks do not only change

their structure as a result of birth and death processes but also

because of changes in contact partners. Analogous to [20], we

consider swapping of contact partners at a rate r which affects the

quantities pSI and pII via additional terms r
MI

M
{pSI

� �
and

r
MI

M
{pII

� �
, respectively.

Implementation
Agent-based simulations were performed using NetLogo V4.0.4

[27], in which some code fragments from the model ‘‘Virus on

Network’’ included in the software’s model library were used [28].

Poisson networks were generated by assigning SkTN=2 links

between randomly chosen nodes; other random networks were

generated based on their degree sequence [13,29] (See Text S1 for

details). The numerical solution to the partial differential equations

was obtained using Mathematica V6.0.2 [30] with the function

NDSolve and the numerical method of lines [31].

Results

Validation of the SID model
The SID model allows for the study and analysis of epidemics

using transmission networks with a broad range of topological

features. In particular, any distribution of the number of infectious

contacts per host can be implemented within the framework by

providing the corresponding probability generating function as an

input parameter. Fig. 1 compares the predictions derived from the

set of partial differential equations (1–6) with the observations from

agent based simulations for several exemplary topologies (See the

section on Methods and Text S1 for details). Although equations

(1–6) hold for the mean behavior in the limit of infinite network

size, they are already a good approximation for the agent-based

simulations with moderate population sizes and in particular

Figure 1. Evolution of the numbers of susceptible (green) and infected (red) individuals (top panel) as well as their average number
of contacts per person (bottom panel). The dotted, light colored curves correspond to the result of 100 agent-based simulations; the solid lines
are the results of the numerical solution of the set of partial differential equations (1–6), parameters are chosen analogous to [19], average number of
contacts SkT = 3, transmission rate of r = 0.2, recovery rate of m = 0.1. Epidemics in networks with differences in the heterogeneity and transience of

contacts are shown. The first column shows a static Poisson network with a degree distribution of pk~
SkTke{SkT

k!
, as opposed to a network with a

scale free degree distribution, pk~
k{ce{k

k

Lic e{1
k

� �, in column 2 (same average degree). Column 3 corresponds to the network in column 1 with an

additional demographic process (birth and death at a rate of g1~g2~g~0:01). Column 4 corresponds to column 1 with the additional feature that

contact partners change at a rate r = 0.2. Epidemics are initiated with 10 infected individuals in an otherwise susceptible population (i.e. I(0) = 10,
S(0) = 9990). Links between susceptible and infected hosts, as well as their contact behavior, are initially uncorrelated, i.e.,

pSI (0)~pII (0)~
MI (0)

M(0)
~

I(0)

N(0)
.

doi:10.1371/journal.pcbi.1000984.g001
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reproduce well-characterized behaviors. Epidemics in heteroge-

neous networks spread faster but are more restricted (Fig. 1,

column 1 vs. 2) [32]. Contrarily, transient contacts lead to a larger

epidemic size when contacts are maintained sufficiently long to

ensure transmission (Fig. 1, column 1 vs. 4). The re-growth in the

average number of contacts per person (node) in the scenario with

birth and death processes (Fig. 1, column 3) is reminiscent of re-

emergent, or persistent, infections that can be observed in this

context. Finally, the method can be naturally extended to

epidemics of diseases with several infected stages before death

(See Text S1).

The SI1I2D model for HIV epidemics
To model HIV epidemics, we have to extend the SID model to

take into account the heterogeneous infectious profile of an HIV

infection. The course of the disease is characterized by a short, but

highly infectious, period of primary infection. This is followed by

a prolonged period of latent infection with a much lower

infectiousness (sometimes referred to as an asymptomatic or

chronic phase) [33] before the onset of AIDS as the final stage of

the disease. Our focus will be on the primary infection, I1, which

ceases at a rate m1 of 4.1 per year and is associated with a

transmission rate r1 of 2.76 per year as opposed to the latent

infection, I2, with a progression rate m2 of 0.12 per year and a

transmission rate r2 of 0.1 per year. We neglect the role of the final

stage of disease in transmission with the assumption that health

conditions prevent a further transmission of HIV. The evolution

equations for Sk, I1k and I2k are determined analogously to the

SID case to describe the numbers of individuals with k contacts as

being susceptible, primarily infected and latently infected. In

addition, equations describing the contacts among individuals of

different epidemic groups are derived (i.e., pSI1
, pSI2

, pI1I1
, pI1I2

and pI2I2
). Finally, the set of equations is closed by a derivation of

the probability generating functions gS(x,t), gI1
(x,t) and gI2

(x,t)
which describe the contact patterns and their temporal changes

within each group (See Text S1 for details). The resulting

equations allow for a much faster (and flexible) assessment of

epidemic scenarios than agent-based simulations. Again, the

structure of the equations emphasizes the mutual influence

between the epidemic process and the underlying transmission

network.

This is exemplarily illustrated in Fig. 2, which shows the

spreading of HIV in a ‘‘synthetic’’ population with a scale free

distribution in the number of potentially infectious contacts.

Agent-based simulations and the numerical solution of the set of

partial differential equations agree well and show how the

epidemic saturates within a few decades with a few percent of

latently infected individuals (as opposed to a few per mill of

primarily infected individuals). During the epidemic expansion

phase, the average number of contacts among infected

individuals grows sharply while the average number of contacts

among susceptible individuals decreases slightly. Individuals

with more potentially infectious contacts are at a higher risk of

infection and accumulate among primarily infected individuals.

Their average number of contacts decreases during the

following latent stage due to the increased mortality in their

infected neighbors. This hierarchy in the average number of

contacts from primarily infected through latently infected to

susceptible individuals can still be observed during the

saturation phase of the epidemic. The temporal evolution in

the network topology can be studied in more detail from the

probability generating functions gA(x,t) and the degree

distributions pAk(t)~
g

(k)
A (0,t)

k!
(A[fS,I1,I2g) describing the

contact behavior within the epidemic subgroups in Fig. 2

(panels C and D). Although the contact behavior of individuals

newly entering the population is not time dependent and

corresponds to the original distribution found before the onset

of the epidemic (�gg(x,t)~g(x,0)~const:), contact patterns

change specifically in the epidemic subgroups. One can observe

that the fraction of single individuals grows among susceptible

individuals as it does among latently infected individuals in the

saturation phase of the disease due to the increased mortality

rate among their infected contacts. This loss in contacts is not

observed in the short period of primary infection, which can be

seen in the maintenance of the high average number of contacts

in this subgroup (originally acquired due to the hazard of

infection growing with the number of contacts). These features

have been observed in actual HIV epidemics, for example in the

Eighties’ San Francisco MSM cohort [34]. Note that a persistent

epidemic cannot be generally expected if new individuals enter

the population with the current contact behavior instead of the

initial contact behavior, i.e. with �gg(x,t)~g(x,t) instead of

�gg(x,t)~g(x,0)~const. Because high-risk individuals have a

higher risk of death due to the epidemic, this will successively

lead to an introduction of individuals with lower risk behavior

(lower average number of contacts) until eventually the network

becomes sub-critical and the epidemic ceases [35].

Transmission by stage of disease
The analysis has already taken into account that the course of an

HIV infection is intimately related to the dynamics of its epidemic

spreading. While the brief period of primary infection is associated

with a largely increased infectiousness, a much lower infectiousness

is observed during the prolonged period of latent infection (also

referred to as asymptomatic or chronic infection), which grows

again in the late stages of disease [33,36–38]. Therefore, it cannot

easily be determined, which phase of the disease results in most new

infections, making this a topic of ongoing debate [39,40]. Various

studies on the contribution of the initial and latent stage to HIV

incidence in different populations [41,42] reveal that the contribu-

tion of either stage of the disease to HIV incidence is very context

dependent. There is, however, agreement that primary infection

becomes a more important epidemic driver when risk behavior

increases (number of casual/concurrent contacts or partners),

whereas the incidence obtained from latent infections becomes

more important during the saturation phase of an epidemic (as

opposed to its expansion phase), which is supported by modeling

approaches [43,44].

This question can certainly not be conclusively answered by

our study due to a lack of adequate empirical data, but we can

provide a tool that helps researchers to better understand under

which circumstances infections dominantly originate from either

primarily or latently infected individuals. Therefore, we do not

aim to parameterize the model in the most realistic way but

rather to investigate two possible scenarios that contain some

general features found in epidemic networks of sexually

transmitted HIV. There is generally a large heterogeneity in

the numbers of sex partners [45–47], the frequency of partner

change and the level of concurrency in partnerships [48].

Acknowledging that not only the number of infectious contacts

but also their timing [49–51] is important for epidemic spreading,

we investigate two scenarios that we depict as having weak and

strong concurrency with parameters given in Fig. 3. Both

scenarios assume an average number of 10 lifetime partners

during a lifetime of 50 years (g1~g2~0:02 p.a., neglecting delays

due to childhood/adolescence before sexual debut). However, in

the scenario of weak concurrency, a lower average number of

Epidemic Spread and Transmission Network Dynamics
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concurrent partners, SkT, is exchanged for a higher partner

change rate, r, in comparison to the scenario of strong

concurrency.

The numerical solution of the set of PDEs shown in Fig. 3

makes it immediately apparent that not only the number of

partners but also the level of their concurrency have a profound

impact on both the time scale and width of an epidemic’s

expansion. A much more severe epidemic is seen in the case of

strong concurrency, which agrees with the earlier findings

discussed above. This effect is still present if constant transmission

rates are assumed throughout the course of disease (See Fig. 2 in

Text S1). A common feature of both epidemics is the hierarchy in

the average number of contacts for primarily, latently infected and

susceptible individuals; this gives direction for targeted interven-

tion strategies. To understand which stage of disease drives the

epidemics, it is of particular interest to study the relative risk of

Figure 2. Evolution in the numbers of susceptible (green), primarily (red) and latently (orange) infected individuals as well as in
their contact behavior. Evolution in the numbers of susceptible, primarily and latently infected individuals is shown in panel A, their average
number of contacts per person during the epidemic is presented in panel B. The dotted, light colored curves correspond to the results of 20 agent-
based simulations. The solid lines are the result of the numerical solution of the set of partial differential equations. A logarithmic scale was chosen to
present the different orders of magnitude in the size of the epidemic subgroups. The epidemics take place on a scale free network with an average
degree SkT = 1.6 into which individuals are born at a rate of g1 = 0.02 p.a. and die at a rate of g2 = 0.015 p.a.. The epidemic parameters are chosen in
accordance with the infectious profile of HIV [33], i.e., transmission rates in the stages of primary and latent infection are r1 = 2.76 p.a. and r2 = 0.1 p.a.,
respectively, with rates of progression of m1 = 4.1 p.a. and m2 = 0.12 p.a.. Epidemics are initiated with 10 infected individuals in an otherwise
susceptible population (i.e., I1(0) = 9, I2(0) = 1, S(0) = 9990). Links between susceptible and infected hosts, as well as their contact behavior, are

initially uncorrelated, i.e. pSI1
(0)~pI1I1

(0)~
MI1

(0)

M(0)
~

I1(0)

N(0)
, pSI2

(0)~pI1I2
(0)~pI2I2

(0)~
MI2

(0)

M(0)
~

I2(0)

N(0)
. Panels C and D show the evolution of the

probability generating functions and distributions in the number of contacts over 20 years of the epidemic for individuals newly entering the

population (�ppk~const, �gg(x,t)~const:) as well as in susceptible, primarily and latently infected individuals (pAk(t)~
g

(k)
A (0,t)

k!
, gA(x,t), A[fS,I1,I2g). The

contour plots of the PGFs interpolate from 0 (dark colors) to 1 (light colors) in steps of 0.1.
doi:10.1371/journal.pcbi.1000984.g002
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infections derived from primary versus latent infections

Q~
r1pSI1

r2pSI2

ð7Þ

which is shown in the bottom right panel of Fig. 3. While

infections from the primary stage of disease dominate in the

expansion phase of the epidemic in a scenario with strong

concurrency in contacts, infections from the latent stage of disease

dominate as soon as the epidemic matures. In the case of weak

concurrency (being a closer approximation to serial monogamy)

infections from the latent stage of disease dominate throughout the

whole epidemic. This case study confirms that the question which

stage of the disease drives HIV epidemics cannot be answered

without in depth knowledge of the topology and dynamics of the

underlying transmission network, as well as knowledge about the

saturation stage of the epidemic.

Discussion

A highly flexible mathematical framework has been introduced

that allows for the investigation of the interplay between the

topology and dynamics of transmission networks and emergent

epidemics within a closed set of equations. The approach is

focused on pathogens that lead to death of their hosts after some

time of infection (potentially in several stages). HIV epidemics

have been considered as an area of application in which the newly

developed method helps to understand the complex interdepen-

dencies between the HIV epidemic profile, its transmission

network, and the epidemic process. Several scenarios in synthetic

populations have been investigated, showing that the transmission

network is not a static support that shapes the epidemic but, on the

contrary, is itself shaped by the epidemic. This becomes clear in

the changing contact behavior of infected and susceptible

individuals quantified either by degree distributions or probability

generating functions. The mathematical framework further

provides a capable tool to address the question of whether the

group of primarily or of latently infected individuals is the main

driver of HIV epidemics. The case studies emphasize that the

answer depends both on the maturation stage of the epidemics and

the structure of the relevant transmission network. These findings

are relevant for the implementation of targeted intervention

strategies (e.g., promotion of behavioral changes or vaccination

programs if available), and are particularly relevant to the ongoing

debate on public health policies [41,42].

The capacity of the modeling approach has been illustrated by

example applications. However, its real strength is the develop-

ment of a framework that allows for a quantitative and systematic

assessment of the interdependencies and feedback mechanisms

between transmission network dynamics and the spread of an

epidemic. In particular, the detailed tracing of contact behavior in

all epidemic groups, which may also undergo a flexible

demographic process, goes beyond earlier approaches. The

method can naturally be extended to other settings with a more

complex infectious profile or to epidemics with a classical SIR

dynamic. This makes it useful for a very broad spectrum of

epidemic scenarios, which may include improved modeling of

SIR-like infections such as measles, rubella, pertussis or influenza.

The broad applicability of the approach makes it worthwhile to

consider further improvements to stretch its limits towards an

increasingly realistic description of the epidemics we face day-to-

day. The finite size agent-based simulations shown in Fig. 1 and

Fig. 2 for validation already indicate that the current approach is

designed for the limit of infinite population sizes. Although the

mean behavior is well represented already for moderate

population sizes the approach does not account for obvious

fluctuations. Recent research has shown that stochastic fluctua-

tions may have a strong influence on real world epidemic

phenomena such as re-emergent epidemics [52,53] which in

combination with other recently developed techniques makes this

an exciting direction of future research [54]. It is further assumed

that contacts are made randomly [13] without taking into account

any preferences or correlations influencing their establishment.

Social networks usually show clustered communities [55] and

Figure 3. HIV epidemics in synthetic populations with weak and strong concurrency. Evolution in the numbers of susceptible (green),
primarily (red) and latently (orange) infected individuals as well as their average number of contacts per person in the scenario of strong and weak
concurrency are shown in the left and middle column. The logarithmic scale was chosen to present the different orders of magnitude in the size of
the epidemic subgroups. The epidemics take place on random networks with the sketched distributions in the number of contacts (p0 to p6 are
shown, pk = 0 for kw6) into which individuals are born and die at a rate of g1~g2~0:02 p.a.. The epidemic parameters were chosen in accordance
with the infectious profile of HIV [33], i.e., transmission rates in the stages of primary and latent infection are r1~2:76 p.a. and r2~0:1 p.a.,
respectively, with rates of progression of m1 = 4.1 p.a. and m2 = 0.12 p.a.. The right column (comparison, top) shows the fraction of individuals in the
primary (red) and latent (orange) stage of disease in the scenarios of strong concurrency (solid lines) and weak concurrency (dashed lines), for
comparison. The final diagram shows the ratio, Q, for both scenarios, i.e. the relative risk of infection acquired from primary over that from latent
infections (strong concurrency - solid line, weak concurrency - dashed line). Epidemics are initiated as in Fig. 2, for better comparability the time axis
was shifted to start both epidemics with the same number of latent cases after initial equilibration.
doi:10.1371/journal.pcbi.1000984.g003
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some degree of assortativity, i.e., individuals tend to mix with their

likes [10,14,56]. This often results in the generation of core groups

that sustain and drive an epidemic. Ongoing research efforts

[17,18,25,57,58] in this field give directions for an extended

model, ideally in combination with a more realistic description of

transient contacts. Moreover, demographic change with random

assignment of new contacts results in increasingly homogeneous

contact behavior of older individuals in the network (See Fig. 3–5

in Text S1). A straight-forward extension of the approach would

be to study other modes of contact establishment, such as

preferential attachment with respect to degree. This will allow

for a study of more complex topological evolution and its

consequences. Finally, it should be considered that the transmis-

sion network is not only shaped by the epidemic process but also

by active behavioral changes, such as social distancing or

vaccination [59–64].

In conclusion, we have presented a new mathematical

framework that allows researchers to closely monitor both the

epidemic process and its transmission network for general SIR-like

infections in an computationally efficient manner. The current

method allows for great flexibility accounting for variability in

transmission network topology and dynamics, as well as pathogen

specific features. Nonetheless, it will be important to assess the

method’s limitations in the field after parameterization with

appropriate empirical data. An exciting challenge for future

research is to further expand its limits.

Supporting Information

Text S1 The supporting Text S1 contains an in-detail derivation

of the set of partial differential equations for the SID and SI1I2D

models. It further includes a discussion of local clustering of

infected cases, of the impact of concurrent and transient contacts,

some results on networks with node age, and detailed information

about the agent-based simulations.

Found at: doi:10.1371/journal.pcbi.1000984.s001 (0.70 MB PDF)
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54. Noël PA, Davoudi B, Brunham RC, Dube LJ, Pourbohloul B (2009) Time

evolution of epidemic disease on finite and infinite networks. Phys Rev E 79:
026101.

55. Girvan M, Newman ME (2002) Community structure in social and biological
networks. Proc Natl Acad Sci USA 99: 7821–7826.

56. Newman M, Girvan M (2003) Mixing patterns and community structure. In:

Statistical Mechanics of Complex Networks. Berlin: Springer. pp 66–87.
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