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Abstract

Tumor cells do not develop in isolation, but co-evolve with stromal cells and tumor-associated immune cells in a tumor
microenvironment mediated by an array of soluble factors, forming a complex intercellular signaling network. Herein, we
report an unbiased, generic model to integrate prior biochemical data and the constructed brain tumor microenvironment
in silico as characterized by an intercellular signaling network comprising 5 types of cells, 15 cytokines, and 69 signaling
pathways. The results show that glioma develops through three distinct phases: pre-tumor, rapid expansion, and saturation.
We designed a microglia depletion therapy and observed significant benefit for virtual patients treated at the early stages
but strikingly no therapeutic efficacy at all when therapy was given at a slightly later stage. Cytokine combination therapy
exhibits more focused and enhanced therapeutic response even when microglia depletion therapy already fails. It was
further revealed that the optimal combination depends on the molecular profile of individual patients, suggesting the need
for patient stratification and personalized treatment. These results, obtained solely by observing the in silico dynamics of the
glioma microenvironment with no fitting to experimental/clinical data, reflect many characteristics of human glioma
development and imply new venues for treating tumors via selective targeting of microenvironmental components.
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Introduction

Tumor cells and stromal cells actively ‘‘talk’’ to each other via

an array of soluble signaling molecules, leading to co-evolution of

the tumor and its microenvironment [1,2,3,4,5]. This also implies

that the tumor microenvironment itself is a critical aspect of

disease mechanism and that the microenvironmental components,

including cells and soluble mediators, may represent a new set of

targets for anti-tumor therapy [3,6,7,8,9]. However, due to the

inherent heterogeneity of the tumor microenvironment and the

complexity of the cell-cell communication network, it remains

poorly understood at the systems level how these cells and their

communication network collectively shape a heterogeneous tumor

microenvironment and modulate tumorigenesis and metastasis.

Conventional approaches that examine one or two selected

pathways are incapable of fully assessing complex signaling

networks and recapitulate the dynamics of the tumor microenvi-

ronment, and often result in contradictory conclusions. Thus, a

systems approach that examines various cell types and the

associated intercellular signaling networks in the tumor microen-

vironment is highly desired.

In this work we choose to study the dynamics of glioblastoma

multiforme (GBM) development. GBM is one of the most

malignant brain tumors, with conventional therapies against

‘‘common’’ oncogenic targets usually ineffective due in part to

the high degree of tumor heterogeneity. Astrocytes, microglia, and

infiltrating immune cells actively interact with glioma and glioma

stem cells via complex intercellular signaling networks mediated by

an array of soluble signaling molecules, e.g., cytokines, growth

factors, and neuropoientins [10]. All these collectively shape a

tumor microenvironment that could be distinct from one patient

to another. Despite substantial research efforts and significant

advances in cancer therapeutics, human GBM remains the most

aggressive and lethal brain tumor in humans. In addition to inter-

tumoral and inter-patient heterogeneity, GBM also exhibits

significant intra-tumoral heterogeneity down to the single-cell

level [11,12]. First, glioma cells originate from a variety of

dynamically evolving progenitor cells [13]. It has been demon-

strated that GBM cells demarcated by the neural stem cell marker

CD133 exhibit much enhanced competencies for self-renewal and

tumor initiation [14,15]. Recent studies have also shown instances

in which CD133-negative cells were able to generate the same

outcomes [16,17,18,19]. Second, glioma cells constantly interact

with a variety of stromal cells. There is evidence that glioma cells

acquire the ability to recruit and subvert their untransformed

neighbor microglia into active collaborators to facilitate tumori-

genesis. Direct correlation has been reported between the grade of

glioma and the level of resident tumor microglia [20], suggesting

the mutual paracrine stimulation between microglial cells and

glioma cells [21,22,23,24]. Microglial cells recruited by glioma can
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promote tumor growth [25,26,27], dictated by paracrine loops

responsible for glioma initiation and progression (e.g., IL-6, IL-10,

TGF-b, prostaglandins, G-CSF, and GM-CSF, and growth factors

such as EGF, VEGF, HGF, and SCF). The crosstalk between

activated astroglial and glioma cells has also been documented,

although the mechanism of their interactions has not been full

revealed. For example, astroglial cells produce IL-1b [28,29] that

promotes cell proliferation [30,31,32] and tumor angiogenesis

[33,34,35]. Upon stimulation by the autocrine IL-1b these cells

further secrete TNF-a and IL-6 [36,37,38]. The former was found

to increase VEGF [39], EGF receptor [40], and MMP-9 [41]

expression in glioma cells, suggesting that astroglia-produced

cytokines may influence all the three most critical aspects of glioma

cell survival: angiogenesis (VEGF), proliferation (EGFR), and

migration (MMP-9).

In silico models of tumor microenvironment integrate informa-

tion about the biological context in which cancers develop, and

thus represent a multi-scale consideration of oncogenesis as it

occurs within somatic tissues [42,43]. Multiple factors involved in

the development of an intrinsically complex tumor microenviron-

ment have been studied including extracellular biomolecules, a

spatially intricate and dynamic vasculature, and the immune

system. Thus far, these models can be broadly divided into

‘continuum’ models, and discrete or ‘agent-based’ models as

summarized in a review by Price and coauthors [43]. The latter

describe the dynamics of individual interacting units, such as

cancer cells, in small confined space; the former can be applied to

a large tissue scale where agent-based modeling is computationally

prohibitive. However, none of these methods have been integrated

with a large cell-cell communication network in a complex tumor

microenvironment. Herein we integrate all the intercellular

signaling pathways known to date for human glioblastoma and

generate a dynamic cell-cell communication network associated

with the glioma microenvironment. Then we apply evolutionary

population dynamics and the Hill functions to interrogate this

intercellular signaling network and execute an in silico tumor

microenvironment development. The observed results reveal a

profound influence of the microenvironmental cues on tumor

initiation and growth, and suggest new venues for glioblastoma

treatment by targeting cells or soluble mediators in the tumor

microenvironment.

Results

Constructing the intercellular signaling network of the
glioblastoma microenvironment

Although much is known about the identities and biochemical

activities of signaling molecules in the glioma microenvironment

[1,2,3,4,5,44,45], how these mediators coordinate and function

collectively at the systems level to regulate tumor development is

insufficiently understood. Here we first constructed an intercellular

signaling network by incorporating all the autocrine/paracrine

pathways known for human glioblastoma, as shown in the diagram

of Fig. 1a. Five types of cells – quiescent and activated glioma

initiating/progenitor cells, glioma cells, and astroglial and

microglial cells – and a panel of 15 growth factors/cytokines/

chemokines were included in the signaling network. Then we

derived a quantitative model using stochastic population dynamics

and the Hill functions. First, a basic population dynamic equation

was employed to compute the growth rate of five cell types as a

function of their proliferation rate, decay(apoptosis) rate, the rate

of formation via direct mutation, the rate of formation via

differentiation of their stem/progenitor cells, and the rate of de-

differentiation. Second, the temporal growth rate of each cell type

is also modulated by soluble signaling mediators present in the

tumor microenvironment; this process is quantitatively described

by the Hill functions. All differential equations are described in

Supporting Text S1 and the initial settings of all parameters are

detailed in Supporting Table S1. As an example, we present here

the procedure on how to construct the model for glioma cell

population. It has been suggested that glioma can originate from

cells at multiple differentiation stages during glial cell develop-

ment, whereas the progenitor cells appear to be more susceptible

to neoplastic transformation compared with mature glial cells

[46,47]. Cytokine signalings, including IL-1, IL-6, IL-10, TGF-b,

EGF, VEGF, HGF, G-CSF, SCF, and MIF, participate in the

mechanism of promoting GBM growth. PGE2 can transiently

prevent glioma cell proliferation in vitro. EGF, FGF, and MIF are

predominantly survival factors for GBM cells. To re-illustrate the

underlying physics of this model, we show the population

dynamics for glioma cells as in equation 1, which integrate all

the above signalings:

dcglioma

dt
~fdifferentiation.H2(cFGF,cIL6){fdedifferentiation.H4(cFGF )zfmutation

zfproliferation.L(cQSC ,cASC ,cglioma ,castrocyte,cmicroglia ,Aangiogenesis)

.H3(cIL1,cIL6,cIL10,cTGFb,cEGF,cTNFa,cVEGF,cHGF,cGCSF,cSCF,cMIF,cPGE2)

{fdecay.H5(cEGF,cFGF,cMIF)

ð1Þ

where ccell/cytoine is the concentration of cell/cytokine, f is the

basal rate function, H1, H2, H3, H4, and H5 are Hill functions, L is

a logistic function, and Aangiogenesis is defined as the angiogenesis

factor. Similarly, the same algorithm was applied to derive

population dynamics equations for other cells. More details may

be found in Method and the sections 1&2 in Supporting Text S1.

The change of cytokines associated with tumor microenviron-

ment development is described as the production and consump-

tion by all the cells and modulation by other cytokines as revealed

by prior experiments. For example, glioma stem cells, glioma cells,

and microglial cells secrete substantial amounts of VEGF. MIF

and TNF-a have been observed to induce a significant dose-

dependent increase of VEGF. The dynamics of VEGF is thus

governed by a differential equation (Eq. 10) related to these cells

and soluble mediators:

Author Summary

Tumor cells do not develop in isolation, but co-evolve with
stromal cells via an array of soluble mediators. Here we
report a model to integrate prior biochemical data and
construct a glioma microenvironment in silico, which
comprises 5 types of cells, 15 cytokines, and 69 signaling
pathways. We observed a transition of the cytokine
network from the microenvironmentally controlled, para-
crine-based regulatory mechanism to the self-sustained,
autocrine-dominant malignant state. A microglia-depletion
therapy and a cytokine combination therapy were then
designed and show significant efficacy on virtual patients.
However, the optimal response depends on both the time
the therapy is given and the molecular profiles of
individual patients, suggesting the need for informative
diagnosis and personalized treatment. These results,
obtained solely by observing in silico tumor dynamics
with no fitting to experimental/clinical data, reflect many
characteristics of human glioma development and suggest
new venues for anti-tumor treatment by selectively
targeting microenvironmental components.

ð1Þ

Glioma Microenvironment and Tumor Therapy
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dcVEGF

dt
~fASCzfglioma.H(cTNFa,cMIF)zfmicroglia{fdecay ð2Þ

where f is the basal secretion/decay rate function and H is the Hill

function. In the end, the temporal rate of growth and death of each

cell population or the rate of production and decay of each cytokine

is expressed as an ODE; a set of 20 inter-coupled ODEs were

constructed to interrogate the dynamics of intercellular signaling

network in a glioma microenvironment. To capture the stochastic

nature of cell dynamics and cytokine signaling, we applied truncated

Gaussian white noise, Poisson white noise, and bounded noise to

describe the stochastic perturbation to production/regulation rate

constants, recruitment rate, and proliferation/mutation/differenti-

ation rates, respectively. Supporting Tables S1 and S2 and Methods

give a complete description of all the signaling processes and

summarize the input values for all differential equations.

Dynamics of glioma cells, glioma stem cells, astrocytes,
and microglial cells

We performed an in silico stochastic study of glioma microen-

vironment development in a 1-ml control volume over a period of

12 months and observed a non-linear, synergistic co-evolution of

all five cell types (Fig. 1b–f). The dynamics of glioma cells (GC)

exhibit three distinct phases (Fig. 1b): the pre-tumor phase (1–5

months), the rapid expansion phase (6–10 months), and the

malignant phase that corresponds to semi-steady high-grade

glioblastoma (11–12 months). The starting cell populations are

astrocyte (2.86107/ml), microglia (26106/ml), and quiescent stem

cells (QSC) (16104/ml). The initial conditions only change the

quantitative timeline of the dynamics but would not affect the

general trends observed in our model that properly reflect the

dynamics of human glioma (see Supporting Fig. S2). The number

of glioma cells at t = 0 is zero, and glioma cells develop via either

neoplastic transformation of normal astrocyte or differentiation of

glioma stem cells. The initial rate constants (time = 0) are derived

from literature reports [48,49], and become gradually subjected to

the modulation by soluble factors (cytokines and growth factors).

We observed that glioma stem cells are the major cell sources for

glioma formation. At the early stage, QSCs upon stimulation are

rapidly activated into activated stem cells (ASC) via a reversible

process conferring self-renewal capability (Fig. 1c). This step

proceeds to completion within the first month. Then both QSCs

and ASCs stay at a relatively steady state over the next four

Figure 1. Stochastic population dynamics of glioma cells, glioma stem cells, astrocytes, and microglial cells. (a) Schematic
representation of the intercellular signaling network in GBM. The network comprises 5 types of cells and a panel of 15 cytokines. The processes
involving cytokine or chemokine mediation are described by solid lines, while the other processes representing changes of cell states are depicted by
dashed lines. A detailed description of the ODEs and parameter settings are in Supporting Text S1. (b) One-year evolution of five types of cells
showing three distinct phases: pre-tumor phase (I), rapid expansion phase (II), and malignant phase (III). (c) Dynamics of stem cell activation. (d)
Dynamics of microglia cells. (e) Temporal change of total cell concentration. (f) Snapshots of temporal progression of tumor from a 3D Monte Carlo
simulation. Supporting Video S1 is the complete video showing the one-year evolution. QSC, quiescent stem-like cell. ASC, activated stem-like cell.
doi:10.1371/journal.pcbi.1002355.g001

Glioma Microenvironment and Tumor Therapy
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months before ASCs further differentiate into glioma cells in a

stochastic manner. Despite the rapid lineage conversion of stem

cells occurring as early as in the first month, glioma cells remain at

a silent state with cell density way below the clinically detectable

threshold. (For all the experiments shown here, the threshold for

detecting glioma in the clinic is assumed to be 16106/ml, which is

in agreement with the data from clinical studies [50].) During the

growth of glioma cells within the space that astrocytes occupy,

astrocytes strive to maintain their abundance as well as their

functions until they are displaced by the glioma cells in the late

stage. The number of microglial cells follows a steady increase all

the way from the pre-tumor to the malignant stage, with a small

kink occurring at the onset of rapid tumor expansion (Fig. 1d).

Although no ‘‘clinical’’ signs are observed at the first phase, the

imperceptible changes occurring in the tumor microenvironment

silently accumulate tumorigenic signals and eventually result in a

switch of fitness dominance between astrocyte and glioma. The

glioma cells acquire competitive advantages and are primed to

rapid growth within a month to reach the diagnostic threshold

(,16106/ml). This unique behavior is consistent with glioblasto-

ma development observed in animal models [17]. It was assumed

that after rapid expansion glioma cells follow a typical exponential

growth mode in the next month until reaching a tumor cell

concentration (,1.56107/ml), and then gradually turn into a slow

growth phase dictated by the logistic growth model [51,52]. The

astrocyte population shrinks due to competitive selection pressure

exerted by a microenvironment unfavorable to astrocyte prolifer-

ation or favorable to astrocyte apoptosis that decreases the fitness

advantages over time and eventually causes the loss of dominance.

We examined the contribution of direct mutation of astrocyte and

the differentiation of glioma stem cells to glioma growth. We

observed that neoplastic transformation of astrocytes directly to

glioma cells does result in the formation of small numbers of

glioma cells in the pre-cancer phase, but contributes little to tumor

development in rapid growth and expansion phases (see

Supporting Fig. S1). The total cell concentration experienced a

significant expansion during the seventh month, suggesting a

density-gradient-driven potential for the glioma cells to invade

neighboring tissues (Fig. 1e). The total cell density we observed in

the tumor microenvironment is higher than that in normal tissue,

which is quantitatively consistent with the results obtained using

tissue histology examinations [53,54,55]. A three-dimensional (3D)

stochastic simulation (Fig. 1f) shows that the evolution of all the cell

types and the time course are consistent with clinical glioblastoma

development.

Cytokine dynamics and interaction
Cytokine dynamics also exhibit multi-stage non-linear charac-

teristics (Fig. 2a). Activated microglial cells were found to be an

important source of cytokines in the early stage, yielding a steady

increase of cytokine concentrations prior to the emergence of

tumor. These cytokines participate in the modulation of rapid

glioma cell expansion in the later stage, suggesting that microglial

cells may play an important role in tumor initiation by priming

glioma cells at very low concentrations. Glioma cells also secrete

paracrine signaling factors that promote the proliferation and

migration of microglia, and thus in turn benefit from the increase

of microglia cells that reside in the vicinity of the glioma growth

front. The normalized dynamics curves (Fig. 2b) show that 15

cytokines fall into three categories according to their time traces.

TNF-a peaks at the end of the first phase, then gradually decreases

presumably due to the consumption by glioma cells (e.g., rebind to

TNF receptors and trigger the secondary signaling cascades). IL10

and PGE2 show a monotonic increase across all the three phases.

All the other cytokines exhibit a rapid concentration increase in

the second phase and reach a quasi-steady state correlated with the

glioma population dynamics.

Therapy targeting the cells in the tumor microenvironment:
microglia depletion

We first designed a novel therapy by targeting the cellular

components of the tumor microenvironment. According to cell

population dynamics (Fig. 1), microglial cells produce an array of

cytokines that often prime glioma cells to predispose them to rapid

population expansion in the sixth month, and thus function as a

tumor-promoting factor in the tumor microenvironment. There-

fore, we designed a cell-targeting therapy that eliminates

microglial cells in the tumor microenvironment.

This therapy is realized by arbitrarily increasing the apoptotic

rate of microglia by 10 times at the early, middle, and middle to

late stages with the corresponding glioma cell density at 56104/

ml, 26105/ml, or 16106/ml, respectively. To examine the

applicability of this therapy to patients with different biomolecular

background and assess the effect of inter-patient heterogeneity on

therapeutic response, three virtual patients with different profiles

of initial parameters (cytokine production rate, receptor expression

level, etc.) within the ranges reported in the literature [56]

(Supporting Table S5) were treated using the same microglia

depletion therapy at three different stages. The results are

compared as shown in Fig. 3a–c. Two interesting features were

observed in the microglia depletion therapy experiments. First, all

patients responded in a similar manner although the length of

therapeutic benefit and the recurrence time varied from one

patient to the other. Second, the efficacy strongly depends on how

early the treatment was given to the patients (Fig. 3d). All the

patients treated at the early stage when glioma cell density

(,56104/ml) is far below the threshold for clinical tumor

detection (16106/ml) showed no recurrence within the time of

simulation. Treatment given at the early to middle stage (glioma

cell density ,26105/ml) postpones the rapid tumor growth phase

by two to four months and does give the patient therapeutic

benefit. Patients treated right as the clinical sign emerges (glioma

cell density,16106/ml) did not respond at all in terms of glioma

growth rate, suggesting that tumor cells have been fully primed

and become self-sustained with no need of paracrine signaling to

drive glioma cell proliferation.

These results, obtained by unbiased integration of basic

biochemical parameters and cell signaling processes, were found

to appropriately reflect clinical and experimental observations.

Figure 2. Cytokine dynamics. (a) Change of concentrations for all 15
cytokines in the microenvironment over a period of one year. (b)
Normalized cytokine concentration change over a period of one year. It
shows three types of cytokine dynamics based upon the temporal
traces. TNF-a peaks at the end of phase I. IL10 and PGE2 show constant
increase regardless the growth phases of glioma cells. Other cytokines
are apparently correlated to the three-phase growth dynamics.
doi:10.1371/journal.pcbi.1002355.g002

Glioma Microenvironment and Tumor Therapy
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There is a consensus that activated microglia promote glioma

growth and promotion, which is consistent with our in silico glioma

development experiments [20,39,40,41]. Recently, an animal

model study indicated that clonal cooperation between different

mutant cells can lead to tumor formation, whereas any single-cell

type alone cannot develop into tumor [57]. What is more

interesting is that the second clone, once activated by the first

clone presumably through cytokine signaling, becomes fully self-

sustained and develops into tumor without the presence of the

first clone, which is strikingly similar to the glioma-microglia

interaction observed in our model, and thus may share

commonalities in molecular and cellular mechanisms. Our study

suggests that cells in the tumor microenvironment can be good

targets for therapeutic intervention or control of tumor progres-

sion, pointing to new venues for anti-tumor drug design and

development.

Combination therapy targeting multiple cytokines
The results of microglia-depletion therapy indicate that patients

do not show significant responses unless they are diagnosed at the

very early stage – the time when no clinically detectable tumors

have been formed. Thus, we turn to assess the possibility of

combination therapy that directly targets a number of key cytokine

signaling pathways, which is anticipated to give more focused and

potent therapeutic effects.

Due to inter-tumoral heterogeneity, the best therapeutic

regimen must be an individually tailored combination of inhibitors

that act on selected cytokines or their receptors optimized for

the patient. We performed a sensitivity analysis to assess the

tumorigenic potential of each cytokine and find the primary

targets that, once subjected to blockade or promotion, exhibit the

most effective responses in therapeutic intervention. The Methods

and section 3 in Supporting Text S1 describe the details of this

analysis. Basically, it measures the length of time taken by glioma

cells to grow from the threshold concentration (e.g., 16106/ml) to

an objective concentration (e.g., 1.56107/ml) reflecting the

survival time of a patient after the therapy is given. Twenty-nine

tests, each perturbing a cytokine production rate or a cytokine

receptor expression level, were performed to give the sensitivity

factor of each cytokine or its receptor with respect to patient

survival probability. According to the results, forced activation of a

signaling pathway with a positive sensitivity factor is expected to

promote patient survival, and vice versa. Individualized combina-

tion therapy is designed by enhancing the signaling processes of

cytokines with the largest ‘‘positive’’ sensitivity factors and

inhibiting those with the largest ‘‘negative’’ sensitivity factors. To

test this therapy, the same virtual patients (patients 1, 2, and 3) that

were randomly designed for microglia depletion experiments are

examined here to generate sensitivity factor profiles for every

patient (Fig. 4a). Next we designed a four-cytokine combination

Figure 3. Microglia depletion therapy. This therapy was given to three randomly designed virtual patients (Supporting Table S5) and
administered at different stages corresponding to glioma cell (GC) concentration ,56104/ml, 26105/ml, and 16106/ml, respectively. (a) Response of
patient 1 to therapies given at different stages. (b) Response of patient 2 to therapies given at different stages. (c) Response of patient 3 to therapies
given at different stages. (d) Snapshots of a 3D simulation showing the evolution of tumor microenvironment in patient 1 in response to microglia
depletion therapy. Supporting Video S2 shows the full video.
doi:10.1371/journal.pcbi.1002355.g003

Glioma Microenvironment and Tumor Therapy

PLoS Computational Biology | www.ploscompbiol.org 5 February 2012 | Volume 8 | Issue 2 | e1002355



therapy (VEGF, MIF, IL6, and HGF) optimized for patient 1, and

all the patients were given the same treatment for comparison.

First, we compared single-target therapy and combination

therapy that are administered at the time of glioma cell

density,16106/ml (Fig. 4b and Supporting Fig. S3). Although

each of the four cytokines has a large negative sensitivity factor for

promoting tumorigenesis, therapies that inhibit only one of these

cytokines can hardly alter the time course of tumor progress, due

to the homeostatic robustness of the cytokine network and the

resulting intrinsic resistance to perturbation. To overcome this

issue, we further applied to virtual patient 1 a combination

treatment that simultaneously inhibits all four cytokines, and we

Figure 4. Cytokine combination therapy. This was given to the same three virtual patients (Supporting Table S5) and administered at different
stages, corresponding to glioma cell (GC) concentration ,16106/ml, 56106/ml, 16107/ml, and 26107/ml, respectively. (a) Sensitivity analyses reveal
the pro-tumorigenic potential of each cytokine in the examined tumor microenvironment. Supporting Table S7 summarizes all the parameters (u1–
u29), surface receptor expression level. (b) Comparison of therapeutic efficacy between single-target and combination therapies. The combination
therapy results in a striking synergistic effect to suppress tumor progression whereas any single target treatment does not show appreciable benefit.
(c) Reponses of three patients to the same combination therapy, which is tailored to give optimum response for patient 1 based upon sensitivity
analysis. (d) Snapshots showing tumor development in patient 1 with or without combination therapy. The therapy is give at a single dose when the
glioma cell density reaches 16106/ml or 56106/ml. Supporting Video S3 is the complete video showing the one-year evolution.
doi:10.1371/journal.pcbi.1002355.g004

Glioma Microenvironment and Tumor Therapy
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observed substantial therapeutic responses that cannot be simply

explained by the additive effect (Supporting Fig. S4). Second, the

same therapy was given to patients 2 and 3, but did not yield

positive therapeutic responses (Fig. 4c and Supporting Fig. S5);

patient 2 exhibited a modest benefit by one month and patient 3

almost did not respond at all. Figure 4d shows the results of a 3D

stochastic simulation of cell population dynamics in response to

combination therapy administered at different times. Considering

that these treatments were administered at a middle to late stage

when clinically detectable tumors had already developed, we

conclude that the combination therapy tailored to match

individual patients is more focused and can give better therapeutic

benefit even when microglia depletion therapy fails in the middle

to late stages, highlighting the critical need for molecular diagnosis

and patient stratification prior to the design of a combination

therapy that targets the tumor microenvironment.

Discussion

To the best of our knowledge, this is the first study that

attempts to integrate a variety of cells and their intercellular

signaling pathways into a cell-cell communication network and

assess how this network controls tumor initiation and progression

at the systems level. Through in silico experimentation of tumor

microenvironment development, the dynamics of cells and

cytokines correctly reflects general trends of tumorigenesis

observed experimentally or clinically [17,51,58]. We also

discovered interesting phenomena that can be seen only at the

systems level and are often masked in conventional tumor biology

studies.

First, the cell population dynamics obtained using a set of coupled

differential equations based upon population dynamics and the

Monte Carlo method yield the full time courses of all five cell types.

Although significant inter-patient heterogeneity has been observed,

the time courses of glioma microenvironment development for all

virtual patients we encountered do share common characteristics

and all exhibit three-phase non-linear evolution dynamics. For

example, all patients experience the pre-tumor phase; the mutual

paracrine stimulation between microglial cell and glioma cell results

in the continued growth of microglia. These results, obtained via in

silico experimentation without fitting or optimization to any specific

clinical or experimental data, were found to well reflect the general

mechanisms of glioma development [17,20].

Second, soluble signaling proteins, e.g. cytokines, are the key

components mediating the cell-cell communication network in a

tumor microenvironment. We successfully integrated 15 cytokines

in 69 paracrine/autocrine pathways in the cell population

dynamics model. We further examined relative weight factors

for all the paracrine/autocrine loops associated with tumor

development. This study provides new insights into tumor

microenvironment development and suggests that therapies

targeting the cytokine-mediated intercellular signaling network in

a tumor microenvironment need to be personalized.

Third, we designed a microglia depletion therapy by adding a

virtual drug in the tumor to increase the microglia apoptosis rate.

The observation from in silico experimentation indicates that this

therapy shows some efficacy only when patients are treated at

very early stages, which is consistent with the general outcomes

of anti-cancer treatment, but provides a new mechanism to

explain the therapeutic resistance observed in the clinic. The

ineffectiveness of microglia-targeted therapy in the middle to late

phases indicates the emergence of an autocrine-dominant, self-

propelled glioma proliferation. Then, we moved to look for

another therapy that directly targets multiple key cytokines to

assess the possibility of treating glioma in the middle to late

stages. It turns out a more focused combination therapy can

suppress tumor growth at the middle stage when the tumor

becomes clinically detectable and microglia-depletion therapy is

ineffective. Further study on virtual patients reveals inter-patient

heterogeneity in response to the same combination therapy, and

highlights the importance of designing therapy individually

tailored to the patient’s tumor microenvironment. While current

anti-cancer drugs mostly target tumor cells, this study indicates

the possibility and quantitatively assessed the effectiveness of new

therapies that target cellular or molecular components of the

tumor microenvironment, pointing to completely new venues for

tumor control and treatment.

In the end, a model as reported herein may serve as a tool to

integrate clinical data obtained from informative molecular

diagnosis of patients, predict the dynamics of tumor progression,

and aid the design of personalized therapy. The technologies for

such informative diagnosis are anticipated (1) to measure both

tumor cells and a variety of cells in a tumor microenvironment,

and (2) to analyze cytokine secretion profiles at the single-cell level

such that a cytokine-mediated cell-cell communication network

can be re-constructed for any individual patient. Currently, such

technologies are not yet available in the clinic, but there have been

significant research efforts in the past years that aim to develop

single-cell proteomics technologies and clinical microchips for

informative diagnosis of complex diseases including cancer

[59,60,61,62],[63]. In the future, integration of such technologies

and the model described here can turn into a powerful clinical tool

to diagnose the tumor microenvironment and the associated

intercellular signaling network in individual patients and truly

enable personalized therapy by selective targeting of the tumor

microenvironment.

Methods

Algorithm
While the microenvironment exerts a significant selective pressure

on the tumor, the tumor cells persistently reshape their microenvi-

ronment to synergistically support the growth and spread of the

tumor. The dynamically changing levels of signaling molecules that

rewire tumor-stromal interactions along with tumor progression will

provide insights into the mechanisms of disease development.

Assumptions and model construction
Since this work is focused on predicting tumor time course

evolution, the model is based, for simplicity, on a well-mixed

species system. Five types of cells (quiescent and activated glioma

stem/progenitor cells, glioma cells, astrocytes, and microglial

cells) and 15 growth factors/cytokines/chemokines are integrated

in this model. We assume that the species included in the model

evolve independently of species excluded from the model

(oligodendrocyte, etc.). In the end, we present the intercellular

signaling network as a set of coupled ordinary differential

equations in terms of population dynamics. The rates of change

of cells are expressed by the conversion rate, proliferation rate,

and decay rate (see Supporting Text S1).

A set of coupled stochastic ordinary differential equations

describing the co-evolution of tumor microenvironment is construct-

ed using population dynamics and stochastic dynamics. The basic

mathematical model is based on continuous logistic proliferation and

discrete event type fluctuation, and can be described as
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where the first term of the right-hand side of Eq. (3) is the stochastic

representation of discrete event–type fluctuation, including immi-

gration, emigration, and production from progenitor. Yk is the

magnitude of the kth discrete event, i.e., the number of cells

increasing (decreasing) at time point t~tk. Ni(t) denotes a non-

homogeneous Poisson counting process with arrival rate function

li(t)w0 (i.e., the number of events per unit time) and gives the

number of events that arrive in the time interval ½0,t�. The second

term indicates the logistic proliferation of cell xi with a basic rate

function ri(t), which can be up-regulated by cytokine yl and

inhibited by ym. Parameter xi max is the saturating concentration

factor, whereas aangiogenesis is the angiogenesis factor. The initial

exponential growth will slow down and the cell concentration level

xi maxaangiogenesis is approached slowly in the late time. The third

term is the decay due to natural lifespan that can be regulated by

cytokine yn. The last term describes the mutation/differentiation/

dedifferentiation from cell xk under stimulation of cytokine yp. The

first term on the right hand side of Eq. (4) quantifies the production

of cytokine yj from cell xk with basic secretion rate function kjk(t),

and the secretion is stimulated by cytokine ym and inhibited by yn.

The last term is the decay term with half-life ln 2=mj , and can be

regulated in the presence of cytokine yp.

To further assess how fluctuations in biological processes reflect the

random nature and affect the performance of the system, we introduce

the following stochastic process interpretation of the rate parameters:

ri(t)~r0
i 1ze sin

2pr0
i

ln 2
tzbW (t)zD

� �� �
, ev1 ð5Þ

mik(t)~m0
ik 1ze sin
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k
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� �� �
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ikƒ1, 0ƒeƒ min 1,

1
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ik

{1
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kjk(t)~k0
jk max 0,1zsj(t)ð Þ ð7Þ

uil(t)~u0
il max 0,1zsj(t)ð Þ ð8Þ

ujl(t)~u0
jl max 0,1zsj(t)ð Þ ð9Þ

ujp(t)~u0
jp max 0,1zsj(t)ð Þ ð10Þ

where W(t) is a standard Wiener process, and j(t) is a zero-mean

Gaussian white noise with unit intensity. The sections 1&2 in

Supporting Text S1 give a full set of deterministic ordinary differential

equations (ODE) and detailed explanations of stochastic description.

The stochastic dynamics are studied using Monte Carlo

simulations. The corresponding time series of the species

concentration are obtained by integrating these differential

equations numerically using the fourth-order Runge-Kutta scheme

or the fifth-order Dormand-Prince method.

Model calibration
The parameters are assigned in the range over which the model

output most closely matches experimental observation (Supporting

Table S1). Although we calibrate the model with data from the

literature, the model parameters can easily be changed to patient-

specific clinical parameters as needed.

Sensitivity analysis
To systematically evaluate the influence of each cytokine on

tumorigenesis rate, we conduct a sensitivity test, in which the

sensitivity factor of cytokine xi can be calculated as

Si:
LF (x)

Lxi

����
X~X0

ð11Þ

where F(x) is the objective function (e.g., tumorigenesis time, cell

density, cytokine concentration), and x0 is the local parameter

profile.

The results show marked effects of these cytokines on the

development of glioma and suggest the possibility of designing

therapeutic intervention by targeting cytokine signaling loops

(both cytokine production and receptor expression level) (Sup-

porting Fig. S6 and Table S6). The quantitative results are also

found to be context specific; the exact time for observing tumor

formation (16106 cells/ml) depends on the profile of all initial

parameters for each virtual patient (Supporting Tables S3 and S4).

The greater the difference between cytokine sensitivity factor

landscapes, the greater is the inter-patient heterogeneity. In

addition to the quantitative manifestation of inter-patient

heterogeneity, sensitivity analysis also points to a venue to identify

a cytokine profile that potentially can serve as a molecular

signature for tumor sub-classification, and thus provides a means

to stratify patients via their cytokine profiles and to design

individualized treatment.

Supporting Information

Figure S1 Contributions of ASC differentiation and asctrocyte

mutation to glioma development.

(TIF)

ð4Þ

ð3Þ
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Figure S2 Influence of initial conditions to tumorigenesis time.

(TIF)

Figure S3 Virtual therapy of patient #3 demonstrates the

difference of therapeutic efficacy between single-targeted and

combination-targeted.

(TIF)

Figure S4 Virtual therapies of two patients demonstrate the

therapeutic efficacy of combination-targeted therapy.

(TIF)

Figure S5 Three patients are treated with the same protocol,

which is personalized according to the cytokine secretion profile of

patient #3.

(TIF)

Figure S6 Inter-patient heterogeneity was demonstrated by

sensitivity analyses.

(TIF)

Table S1 Deterministic parameters.

(DOCX)

Table S2 Stochastic parameters.

(DOCX)

Table S3 Patients parameters for Figure S5(a).

(DOCX)

Table S4 Patients parameters for Figure S5(b).

(DOCX)

Table S5 Parameter profiles of three virtual patients for Figure 3

and 4.

(DOCX)

Table S6 The x-coordinate parameter panels for Figure S5(a).

(DOCX)

Table S7 The x-coordinate parameter panels for Figure 4(a) and

Figure S5(b).

(DOCX)

Text S1 Section 1: Deterministic description of the intercellular

signaling network. Section 2: Stochastic description of rate

parameters. Section 3: Sensitivity analysis.

(PDF)

Video S1 Evolution of tumor microenvironment without

therapy.

(MPG)

Video S2 Evolution of tumor microenvironment in patient #1

in response to microglia depletion therapy administered at glioma

cell concentration 26105/ml.

(MPG)

Video S3 Evolution of tumor microenvironment in patient #1

with personalized combination therapy when the glioma cell

density reaches 16106/ml.

(MPG)
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