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Abstract

The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use
conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network
to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner
take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern
generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes
the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of
the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of
neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into
specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by
the intrinsic dynamics of a multifunctional sensory organ.
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Introduction

One of the most fundamental questions in neuroscience is how

sensory information is transformed into effective motor action.

This question is difficult to assess experimentally as it implies

monitoring neural activity at different stages of the sensory-motor

transformation, a task that can be more easily addressed in simple

animals [1–4]. Experimental evidence points to the important role

that intrinsic sensory dynamics, i.e., neural dynamics that does not

directly correlate to the dynamics of a physical external stimulus,

can serve in this transformation. In particular, there are several

examples from neurophysiological studies that show complex

intrinsic dynamics in sensory networks [5,6]. In most cases, the

dynamics observed is directly related to the information encoding

mechanisms in these systems.

Complex intrinsic dynamics can also be related to multi-

functionality, which has only been partially addressed in neuro-

science research, mainly in motor networks [7–13], with a few

examples in sensory systems [14]. One remarkable example of

relationship between intrinsic sensory dynamics and multifunc-

tionality has been discussed for the gravimetric organ of the

mollusk Clione limacina [15,16].

The marine mollusk Clione limacina (see insets in Figure 1) is a

predator whose only prey is another mollusk, Limacina helicina.

Because of the simplicity of its nervous system, this animal is a well

known model to study both sensory and motor processing, and

thus the transformation that occurs between them. During routine

swimming, when water disturbance changes its head-up body

orientation (see the left inset of Figure 1), Clione tries to correct for

the change by actively moving the wings and the tail [17]. Several

neural structures are involved in the control of the orientation of

Clione’s body during this routine swimming [17–19]. As the main

sensory input, Clione uses its gravimetric organs, the statocysts.

These are a pair of spherical structures located in the pedal ganglia

which contain a stone-like structure –the statolith– that moves

under the effect of gravity. The statolith exerts pressure on the

internal wall of the sphere which is lined with statocyst mechano-

receptor cells. The statocyst receptor cells (SRCs) react to the

pressure of the statolith allowing the animal to determine changes

in the orientation of its body. Sensory information about the

orientation of the body is sent from the mechano-receptors to

several groups of cerebro-pedal interneurons. These interneurons

in turn control the central pattern generators that drive Clione’s

wing and tail motoneurons, which add steering (i.e., to induce

transient corrective motions in the wings and tail to achieve the

preferred head-up position during routine swimming) [18,20–23].

In addition to gravimetric signals, chemical sensory information

about the presence of prey is conveyed to the SRCs through

excitatory input from a pair of cerebral hunting interneurons

(CHI) [24,25]. Clione does not have a visual system and although its

chemosensors can detect the presence of Limacina, they are

presumably nondirection-sensitive. When hunting behavior is

triggered, the resulting hunting search consists of loops and turns

in a complex trajectory to locate the prey. A quantitative analysis

of the hunting search trajectories has been described in [15].

Hunting behavior typically occurs in different search episodes with

resting times in between. The Videos S1 and S2 in the

supplementary material illustrate Clione’s typical routine swimming
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and hunting search behaviors. The two behavioral contexts

described above make Clione a good animal model to study the

mechanisms involved in sensory-driven motor activity.

There is a long tradition in building models of sensory-motor

transformation based on electrophysiological recordings (e.g. see

[26,27]). In most cases, the sensory network is not included in the

model as the intrinsic sensory dynamics are not taken into account.

However, more complete computational models of the sensory-

motor transformation can largely contribute to the understanding

of how a given neural motor pattern is generated from sensory

activity. In particular, theoretical efforts help to characterize the

dynamics of sensory networks and to identify relevant features that

are used in the organization of motor activity. We have previously

developed a rate model to describe how a winnerless competition

dynamics can arise within an inhibitory network [28] and pointed

out its possible role in the organization of the complex hunting

behavior of Clione [16,29,30]. Several predictions of the model

regarding this type of intrinsic sensory dynamics have been tested

in neurophysiological experiments: (i) the statocyst network

produces a complex sustained spatiotemporal dynamics during

hunting search behavior even when there is no motion in the in

vitro experimental conditions, in contrast to the situation during

routine swimming in which only a few neurons are active; (ii)

during hunting behavior, the activity of the sensory neurons is

correlated to the wing and tail motoneurons [15,16].

In this paper we build a conductance based-model of the

statocyst sensory network and the wing CPG. Our model

illustrates how the multifunctional nature of the sensory network

can drive the CPG activity in two different behavioral contexts.

On one hand, the winner take-all dynamics in the gravimetric

sensory network model is read by the wing CPG network and

produces the steady rhythm during routine swimming. On the

other hand, the same sensory network under a different

stimulation produces a winnerless competition dynamics which is

read by the motor network and results in the irregular patterns

characteristic of wing motoneurons during hunting behavior. The

model demonstrates that the spatiotemporal pattern of the sensory

dynamics may be in the form of specific activation phase locks that

emerge during hunting. These phase locks are transformed into

specific motor events in the wing CPG model.

Figure 1. The statocyst model. A network of six statocyst receptors (SRC1-6) used in our experiments to model a single statocyst. Each SRC is
connected to the next two adjacent cells. The sensory network controlling routine swimming (left panel) and hunting (right panel) is the same.
During routine swimming, the only source of excitation for the SRCs is the statolith, whereas during hunting the interneuron H adds significant
excitation to all sensory neurons. Dark blue indicates the SRCs receiving excitatory inputs in each case.
doi:10.1371/journal.pcbi.1002908.g001

Author Summary

How sensory information is transformed into effective
motor action is one of the most fundamental questions in
neuroscience. As this question is difficult to assess
experimentally, biophysical models of sensory, central
and motor systems contribute to understand the informa-
tion processing mechanisms involved in this transforma-
tion. Biophysical models can be informed by electrophys-
iological data in those situations where it is possible to
record neural activity at all stages of sensory-motor
processing. In this paper we use this approach to describe
the dual dynamics of a multifunctional sensory organ in
the mollusk Clione limacina and its transformation into two
different motor programs. Our experimental and modeling
results indicate that the sensory signals are modified to fit
the changing behavioral context, and they are readily
interpreted by the rest of the nervous system to produce
the correct motor output.

Context-dependent Sensory-Motor Transformation
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Results

Dual Sensory Dynamics
Experimental recordings have shown that during routine

swimming, Clione uses information from the statocysts regarding

body orientation to keep its preferred head-up posture (see inset in

Figure 1, left panel) [21]. During this behavioral state a winner

take-all (WTA) competition occurs between the SRCs and only the

cell or group of cells pressed by the statolith persistently fire (see

Figures 4 and 5 in [19]). This is in part due to the inhibitory nature

of this network. The activated SRCs inform the rest of the nervous

system about Clione’s body orientation and, if a postural change

occurs, wing and tail activity generates transient corrective

motions to recover the preferred head-up position. On the other

hand, during the hunting search behavior a sustained winnerless

competition emerges in the statocyst network (see Figure 2) which

consists of an irregular alternation of firing among the SRCs. The

presence of Clione’s prey evokes excitation of the CHI neurons, the

hunting neurons, which send an excitatory input to the SRCs. When

CHI neurons are activated, hunting behavior starts [24,31,32].

Hunting behavior can be evoked in vitro by applying the

acetylcholinesterase inhibitor physostigmine to the animal (see

‘‘Methods and Models’’ section). In these experiments there is no

motion and the main input to the SRCs comes from the external

excitation of the hunting neuron and not exclusively from the

statolith.

To model the gravimetric sensory network dynamics in these

two different behavioral contexts (routine swimming and hunting

behavior), we have used an inhibitory neural network with six

SRCs under the action of the statolith and a CHI neuron (see

Figure 1). Each cell of the network is implemented with a

Komendantov-Kononenko conductance based model [33], a well

characterized model for molluscan neurons that can qualitatively

reproduce the spiking and spiking bursting behavior observed in

Clione’s neurons. The sensory network is built with an asymmetric

inhibitory connection topology inspired by the current knowledge

of the statocyst network [15,28]. A detailed description of this

topology and the parameters used in our simulations, for both the

individual behavior of each cell and the connectivity, can be found

in the ‘‘Methods and Models’’ section. During the simulation of

routine swimming with our statocyst model, the CHI is silent and

does not excite the SRCs. Thus, the only input that the statocyst

neurons receive in this case is the excitation from the pressure of

the statolith (simulated as a current injected in a specific SRC).

The left panel in Figure 3A shows that in this situation, a winner

take-all dynamics appears in the statocyst conductance-based

network model, and only the SRC pressed by the statolith fires. A

simulation of body orientation change as illustrated here by

exciting another SRC (see arrow on the left panel of Figure 3A)

causes a change of the active neuron in the statocyst network: the

new pressed SRC starts firing immediately while the other neurons

are silent.

In our model network we simulate the presence of a prey by

activating the CHI neuron, which excites all SRCs. This activates

the hunting behavioral state within the same sensory network

model (Figure 1, right panel). Under the CHI neuron excitation,

the dynamics of the model sensory network changes to a

winnerless competition (WLC) among the SRCs and the action

of the statolith hardly affects the network dynamics (see Figure 3A,

right panel). This competition arises from the hunting neuron

excitatory input to all SRCs and the inhibitory connections

within the network. In this WLC dynamics the SRCs display

switching activations of varying durations including some over-

lappings, as the inhibition among the SRCs is moderate. The

activity of the network in this case is highly irregular. These

irregular sequential activations in the model are qualitatively

similar to those observed in the biological network during fictive

hunting behavior evoked in vitro (c.f. right panel of Figure 3A and

Figure 2, where four SRCs from the same statocyst are recorded

simultaneously in an in vitro preparation). The level of irregularity

of the sensory network model can be characterized by calculating

the Lyapunov exponents. Figure 4 shows the evolution of the

calculation of the positive Lyapunov exponents from the vector

field (see ‘‘Methods and Models’’ section for details) describing

the sensory network during hunting behavior. The presence of

two positive Lyapunov exponents (l1~0:194 and l2~0:003) in

this mode of operation indicates that this network activity is

chaotic, which reflects the richness of its dynamics. No positive

Lyapunov exponents exist in the analysis of the statocyst activity

during routine swimming.

Motor Activity
Clione’s sensory network has been studied in detail from a

theoretical point of view using rate models, in particular the

conditions to generate WLC dynamics [28,30,34]. Less attention

has been paid to modeling the CPG responsible of the animal’s

movements and the transformation of the sensory dynamics into

a motor activity. This can be addressed with more detailed

biophysical models of neurons and synapses to better reproduce

the connectivity and rhythms observed in the in vitro experiments.

Experimental evidence shows a significant correlation between

the activity of the SRCs and the wing CPG cells (e.g. see Figure 5

in [15]). The dynamics of these sensory and motor networks have

very similar time scales. Thus, we have developed a simple

cerebral interface (CG1, CG2 and CG3) between the statocyst and

a model wing CPG (see Figure 5 and ‘‘Methods and Models’’

Figure 2. A representative recording of SRC firing activity in the biological system. Spikes times of four SRC units during fictive hunting
search behavior evoked by physostigmine in vitro. The activity was recorded extracellularly and the spikes were sorted as explained in [16]. Note the
irregular sequential alternation in firing between different SRCs during hunting. During these experiments there is no motion and thus the WLC
activity arises from the excitation of the hunting neuron to the SRCs. Grayed areas illustrate specific sequential activations among active SRCs.
doi:10.1371/journal.pcbi.1002908.g002

Context-dependent Sensory-Motor Transformation
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section for details). The model cerebro-pedal interneurons

integrate the activity of the sensory network and relays it to the

wing CPG. In this interface CG1 and CG2 inhibit each other to

avoid contradictory simultaneous left and right signals from the

SRCs. Figure 3B shows the behavior of the model cerebral

interface in response to a winner take-all mode (left panel) and a

winnerless competition behavior (right panel) in the statocyst

conductance based model. During simulation of routine swim-

ming, only the SRC pressed by the statolith is active. This results

in the activation of CG1 or CG2. During the simulation of a

deviation from the preferred head up position, illustrated in the left

panel of Figure 3A, CG1 stops firing while CG2 becomes active

Figure 3. The behavior of the model network. Left panels: Routine swimming activity pattern, in the absence of the hunting neuron excitation
(c.f. Figure 1, left panel). Right panels: Search hunting behavior activity pattern when the hunting neuron is activated (c.f. Figure 1, right panel). (A)
Behavior of the SRC model network. During routine swimming the model statocyst network shows a winner take-all dynamics. Only the SRC pressed
by the statolith fires (and thus inhibits other SRCs connected to it). In the first part of the time series, the active neuron in the statocyst network is
SRC01. A simulation of body orientation change by exciting SRC06 (denoted by the arrow) makes the new pressed SRC fire immediately while SRC01
becomes silent like the rest of the SRCs. The winnerless competition dynamics (WLC) appears in the statocyst model when the hunting neuron is
activated. The irregular sequential activations of the WLC activity displayed by the model are very similar to the one observed in the biological circuit
(see Figure 2). (B) Behavior of the CG network located between the statocyst and the wing CPG. During routine swimming either CG1 or CG2 is active,
depending on which of the SRCs receives the excitation from the statolith. The CG3 cell integrates and sends this information to the CPG. When a
deviation from the preferred position occurs, the identity of the active SRC pressed by the statolith changes and the cerebral interneurons interpret
this change (see panel C). During hunting, both CG1 and CG2 cells are active. (C) Behavior of the wing CPG model responsible for generating the
periodic wing beating rhythm. As in the biological circuit (Figure 6) the activity of the wing CPG model is affected by the statocyst dynamics which is
evoked by the behavioral context. During routine swimming, the model CPG generates a regular rhythm. During the hunting behavior the pattern is
faster and highly irregular. Note that during routine swimming, when a change of posture is simulated, the sensory information received in the wing
CPG immediately generates a corrective activity. Here, for example, the change from SCR01 to SCR06 produces a short change in the frequency and
shape of the rhythm. Afterward, the typical repetitive rhythm is restored.
doi:10.1371/journal.pcbi.1002908.g003

Context-dependent Sensory-Motor Transformation
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(left panel of Figure 3B). The activity of CG3 is modulated by this

change, which leads to a short temporal variation in the regular

beating pattern generated by the CPG (see below). During hunting

behavior, the statocyst generates a stronger activity in all SRCs

and, consequently, increases the cerebral interneuron activity,

which maintains the competition of the CG1 and CG2 cells with

an irregular bursting pattern.

Clione’s wing CPG rhythm consists of the fire alternation of two

half centers: the dorsal and ventral neural groups [18,20]. In our

CPG model (Figure 5) these groups are composed of three

neurons. Each of these neurons represents an electrically coupled

group of cells that fire synchronously. We use the same

nomenclature as in [18]. The rhythm generators are neurons 7

and 8, while neurons 1A, 3, 2A and 4 are the motoneurons that

innervate the wing muscles (see the network details in the

‘‘Methods and Models’’ section). All the neurons in the same

group (7, 1A and 3 in the dorsal; and 8, 2A and 4 in the ventral)

fire synchronously, so here we will analyze the rhythm generated

Figure 4. Lyapunov exponents calculated from WLC behavior.
Evolution in the calculation of the two positive Lyapunov exponents in
the statocyst model under the action of the hunting neuron. The
existence of two positive Lyapunov exponents means that the activity
in the network is chaotic during hunting behavior.
doi:10.1371/journal.pcbi.1002908.g004

Figure 5. Statocyst model connected to a wing CPG model. Statocyst dynamics drive the motoneurons that control the movement of the
wings. Here we have modeled the wing CPG circuit by building a network with six neurons: 7, 8, 1A, 2A, 3 and 4. This network replicates the known
wing CPG connectivity [20,42]. Each single neuron represents the equivalent electrically coupled groups of cells in the biological circuit. We have
chosen neurons 1A (for the dorsal group) and 2A (for the ventral) as representative cells of the CPG behavior. The statocyst is connected to this CPG
through a simple model of cerebral cells that consists of three cerebro-pedal interneurons (CG1-3). Note that we omitted the hunting neuron in the
statocyst circuit diagram to simplify the graphical representation.
doi:10.1371/journal.pcbi.1002908.g005

Context-dependent Sensory-Motor Transformation
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by 1A and 2A cells. In the winner take-all mode of the model

statocyst, the response pattern generated by the wing CPG model

consists of the alternation of firing in interneurons 7 and 8 that,

respectively, drive motoneurons 1A and 3 in the dorsal group;

and 2A and 4 in the ventral group. This pattern in the models is

similar to the one observed in in vitro electrophysiological

recordings of Clione’s motoneurons during routine swimming

(c.f. left panel in Figure 3C and top panel in Figure 6). Only small

changes in the mean rhythm frequency can be observed

depending on the SRC pressed by the statolith (Table 1). In

this behavioral mode, motoneuron 1A is active in the dorsal

phase, and 2A motoneuron is active in the ventral phase, thus

driving the wing flapping [18,20]. The left panel in Figure 3C

illustrates the response of the CPG model to the simulation of a

transient change in the Clione’s preferred orientation. In this

situation, a fast change in the beating rhythm occurs. This fast

motor response is always coherent with the change in the sensory

network, i.e., the same sensory input (a specific change in the

SRC pressed by the statolith) produces the same output in the

CPG. These changes can presumably be translated into the wing

movements required to generate the compensatory gravitational

reflexes needed to correct small deviations in the animal’s

orientation [19,21]. Note that, as can be observed in Video S1,

the corrective beatings consist of successive dorsal or ventral

movements. Immediately after that, the regular beating is

restored.

On the other hand, although the sequential activations in the

statocyst model network are highly irregular during hunting, the

wing CPG produces a coordinated rhythmic pattern that could

Figure 6. The behavior of the biological wing CPG. The wing CPG generates the rhythm that controls the wing movements. Each panel of the
figure displays intracellular recordings of the 1A neuron (blue traces) and the extracellular activity of the wing nerve (black traces) during the two
behavioral contexts: routing swimming (top panel) and search hunting (bottom panel). The arrows in the extracellular traces point out the activity
associated with the firing of the 1A and the 2A cells. 1A and 2A neurons have been reported to fire doublets as well as single spikes depending on the
strength of the swimming.
doi:10.1371/journal.pcbi.1002908.g006

Table 1. Mean frequency of the CPG rhythm during routine
swimming.

SRC
pressed Dorsal frequency (Hz) Ventral frequency (Hz)

SRC01 1:96+0:23 2:02+0:19

SRC02 1:89+0:11 1:87+0:12

SRC03 1:81+0:24 1:86+0:13

SRC04 2:01+0:25 2:11+0:29

SRC05 2:07+0:24 2:08+0:27

SRC06 1:78+0:20 1:83+0:13

Frequency of the model wing CPG rhythm during routine swimming depending
on the SRC pressed by the statolith. The rhythm generated is always the same
and consists of the alternation of the dorsal and the ventral phases.
doi:10.1371/journal.pcbi.1002908.t001

Context-dependent Sensory-Motor Transformation
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generate the complex motion observed during hunting in the

behavioral experiments. As in the biological network (c.f. right

panel in Figure 3C and bottom panel in Figure 6), this rhythm is

non-regular and at higher frequency than during the routine

swimming [18,20]. The calculation of the Lyapunov exponents

from the vector field of the wing CPG model in this situation yields

two positive Lyapunov exponents: l1~0:231 and l2~0:191.

There are no positive Lyapunov exponents during the simulation

of routine swimming. This means that the activity in the CPG

model changes from regular to chaotic depending on the sensory

context.

As Video S2 shows, hunting behavior in the living animals

consists of different hunting episodes with resting times in

between. Even though Clione generates a highly irregular sensory

activity during these episodes, this activity has to be coordinated

to be effective in driving the hunting search. During in vitro

fictive hunting, specific activation sequences appear among the

recorded SRCs (highlighted as grayed regions in Figure 2). The

activity recorded during different hunting episodes in the

physiological experiments can be classified into different types

using a principal component analysis (PCA). In this represen-

tation, previous experimental results have shown that similar

patterns in the sensory network induce similar patterns in the

motor system [15], pointing to the significant correlation

between the activity of the SRCs and the activity of the motor

cells [15,16]. To validate that our model reproduces these

experimental results and assess how the different sensory

activations are translated into motor commands, we used for

the simulated data a PCA analysis similar to the one employed

before for experimental recordings. With this kind of analysis we

could display a high-dimensional dynamics in a three dimen-

sional representation.

For our model analysis, we defined hunting episodes as time

windows where similar sequences, in terms of the duration of

specific patterns of sequential activations of the six SRCs, appear

consecutively in the sensory dynamics at least three times. As an

example, the top panels in each row of Figure 7 show three

different representative types of hunting episodes in the statocyst

model network. Type A corresponds to sequences of long

activations of SRCs 1 and 4, and short activations of SRCs 2, 3,

5 and 6. Type B corresponds to sequential activations of similar

length in all the SRCs. And type C corresponds to long

activations of SRCs 2, 3 and 5, and short activations of SRCs 1,

4 and 6. In general, the specific activation pattern in the statocyst

model during hunting arises from different departing activations

of the SRCs and/or different CHI neuron inputs. However, if

the simulation of hunting is long enough, the WLC dynamics in

the statocyst network evolves to different activation patterns at

different intervals. Therefore, in this situation, a given time series

can contain hunting episodes of different types. For convenience,

in our analysis of hunting behavior we used this approach while

studying long time series of hunting. In these time series, first we

identified and classified the different hunting episodes into

different types according to the duration of specific patterns of

sequential activations among the SRCs. Once different hunting

episodes were identified, we analyzed the activity pattern of the

model during these time windows with the PCA.

The first three principal components of the sensory and motor

signals analyzed here explain more than 90% of the total

variability of the signals, thus the PCA of these time series can

be used to characterize the dynamics of the sensory and the motor

network. The percentage of the variability explained by each of

the three principal components is the following: first PC 65+6%,

second PC 19+2%; third PC, 11+1% for the statocyst; and first

PC 78+9%, second PC 16+3%; third PC, 3+1% for the wing

CPG. Bottom panels in each row of Figure 7 show the PCA

representation of the activity for three examples of hunting

episodes in the statocyst model network, as well as, the

corresponding representation for the motor activity. Note that

similar patterns in the statocyst model network evoke similar

patterns in the motor network as observed in the experimental

results [15].

In our simulations of hunting behavior, we observe that the

irregularity of each hunting episode of the sensory network is

built out of sequential switchings among the SRCs, with

activation phase locks of different durations involving a set of

neurons activated in a given time window. By identifying

specific activation phase locks in the sensory network (Figure 8,

dashed rectangles), we saw that they are transformed into a

specific fast irregular beating command of the wing CPG. To

assess the response of the wing CPG to each of the activation

phase locks, we first detected them (with the method described

in the ‘‘Methods and Models’’ section) and then we analyzed

the corresponding motor output. The motor response was

characterized by the peristimulus time histograms (PSTH) of

1A and 2A neurons. In this analysis we searched for activation

sequences of at least four SRCs which appeared a minimum of

30 times in different time series of 120 seconds, and we aligned

the motoneuron spikes to the beginning of the activation

sequence to calculate the PSTHs (Figure 8). Although in this

search for activation phase-locks we allowed the duration of

the activity to be different, the sequence of the switching

among the SRCs activated in a given time window was

preserved. During hunting, the activity is chaotic both in the

sensory and the motor model networks (characterized by two

positive Lyapunov exponents). Nevertheless, in 88% to 100%

of the cases depending on the specific activation phase lock, a

given sequence in the SRC network produces the same

stereotyped motor activity in the motoneurons of the wing

CPG. Note that the sequential activations are not exactly the

same in terms of duration and preceding activity, which may

be the source of the small number of missing events. In panels

A and B of Figure 8 we illustrate two representative examples

of sensory activation phase locks and the corresponding motor

response in different hunting episodes. In the first example

(panel A), we show (dashed rectangles) the activation phase

locks among SRCs 1, 2, 4 and 5 during a hunting episode

where the activations for neurons 1 and 4 are long. The

corresponding PSTHs in panel C of Figure 8 show that these

specific sequential activations induce a strong activity in

motoneuron 1A at the end of the activation sequence. This

response is produced in 71 out of 74 sequences during a 120 s

simulation (6 out of 7 in the time series shown in the figure).

The second example of activation phase lock shows another

episode in which the activations have a similar duration in all

neurons. The sequences shown in this case involve SRCs 2, 3,

5 and 6. As the corresponding PSTHs in panel D of Figure 8

indicate, these sequential activations induce the firing of 1A

followed shortly after by 2A (32 out 32 sequences during a

120 s simulation). The fact that specific sequential activations

in the sensory network may be interpreted by the CPG and

lead to specific events in the motor activity is something that

can be used by the system for the coordination of the wing

beating.

The dual dynamics of the statocysts in two different behavioral

contexts (routine swimming and hunting behavior) are directly

translated into the corresponding characteristic motor behavior.

The same CPG that controls the periodic wing beating during

Context-dependent Sensory-Motor Transformation
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Figure 7. Principal component analysis of the sensory-motor transformation. We have selected three different types (A–C) of hunting
episodes according to the duration of specific patterns of sequential activations among the SRCs. A total of six hunting episodes are shown in this
figure, two examples for each kind. The top panels display the time intervals in which each neuron exceeds a threshold of 0 mV . Different colors are
used to indicate each neuron. The episodes labeled as type A correspond to long activations of neurons 1 and 4 (red and magenta, respectively). The
episodes labeled as type B correspond to sequential activations of similar length in all neurons, while type C episodes correspond to long activations
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routine swimming reacts to the irregular commands from the

sensory network to generate the hunting motor program. During

the winner take-all phases, the sensory gravitational input from the

statolith is used by the motor system to react to small deviations

from the preferred head up orientation by generating compensa-

tory gravitational reflexes [19,21]. This behavior is reproduced by

our model. During routine swimming the wing CPG model

generates a regular pattern of activity able to control the wing

beating until a deviation is simulated. This generates a fast

transient response that could produce the required correction

movements. After that, the regular pattern starts again. On the

other hand, the activity generated during the winnerless compe-

tition phases acts on the same network to shape the irregular but

coordinated search motor behavior [15]. In this case, the CPG

model produces a motor output activity that is able to drive this

complex motion.

Discussion

It is difficult to experimentally assess the study of all the stages

present in a sensory-motor transformation. Because of the lack of

experimental results, there are also very few models that address

the transformation of sensory dynamics into a motor program.

Clione limacina is an experimental model in which this study is

possible. In this paper we have discussed the dual role of a sensory

organ in relationship to two types of motor behaviors during

routine swimming and hunting behavior. To address this issue, we

have built neural network models ranging from a single statocyst

network to a system where the activity of the statocyst is

transferred to a motor wing CPG through a simple model of

cerebral ganglia. The statocyst network was used to reproduce the

two types of dynamics observed during routine swimming and

during hunting behavior, namely, winner take-all dynamics and

of SRCs 2, 3 and 5 (green, blue and cyan). The bottom panels display the first three principal components for the activity of the six receptor cells (left
plot) and the four motoneurons in the wing CPG (right plot). The PCA shows that a similar sequential activity in the sensory network during hunting
(different hunting episodes of the same type) evokes similar rhythmic activity in the motor system.
doi:10.1371/journal.pcbi.1002908.g007

Figure 8. Specific sensory network activation phase locks correspond to a unique motor activity during hunting behavior. The figure
illustrates two representative examples of activation phase-locks among activated SRCs in a given time window (dashed rectangles) and its
corresponding motor output (arrows) during different hunting episodes. (A–B) Top panels: Statocyst sequential activation patterns. The color codes
for the neurons are the same as in Figure 7. Bottom panels: Motor response to the sensory activity. Blue and red traces correspond, respectively, to
the firing of 1A and 2A motoneuron. The analysis reported in the text refers to 120 s simulations but here, for representation purposes, we show a
fragment of 12 s. The dashed rectangles point out the specific activation phase locks as statistically selected (see Methods) for time windows in which
four specific neurons are active. Panel A displays activation phase locks for SRCs 1, 2, 4 and 5 during a hunting episode characterized by long
activations for neurons 1 and 3. These specific activation phase locks result in similar responses in the motor network –see also panel C– in most cases
(6 out of 7 in the example shown here). In the hunting episode of panel B the activations have a similar duration in all neurons. The sequences
pointed out here involve SRCs 2, 3, 5 and 6. In this case, the sensory activation phase lock always induces the same response in the wing CPG –see
also panel D–. (C) PSTHs of the 1A and 2A cells characterizing the motor response during the activation phase lock illustrated in panel A. (D) PSTHs of
the same cells during the phase lock illustrated in panel B. PSTHs are calculated for the entire simulations (120 s). Spikes are aligned to the beginning
of the activation sequence. The activation phase lock of panel A induces in most cases the firing of motoneuron 1A, which is not accompanied by
activity in 2A. On the other hand, phase locks in panel B induce the firing of 1A followed by the activation of 2A in a similar interval.
doi:10.1371/journal.pcbi.1002908.g008
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winnerless competition. Our simulations show that a model built

with conductance-based neurons and realistic inhibitory connec-

tions can display both types of dynamics depending on the

stimulation from the statolith or from the hunting neuron,

respectively. We have also shown that these two dynamics can

be used by the wing CPG to generate the characteristic rhythmic

motion during routine swimming, and a fast irregular motion that

is observed during hunting behavior. The nature of the

sensorimotor transformation cannot be described as a simple

mapping but as a dynamical process that involves reading one

spatio-temporal code (sensory) and translating it into a different

spatio-temporal code in the CPG (motor).

Clione’s hunting behavior is directed toward locating and

capturing prey. The motor strategy during hunting is determined

by the difficulty in detecting an odor source in the water. As it has

been shown in the behavioral experiments reported in [15], after

triggering the hunting, Clione’s search movements are not directed

by the prey since they continue even when the prey is taken out of

the water (see Video S2). In an animal with an undeveloped visual

system, such a motor strategy increases the chance of locating and

capturing the prey.

Our modeling results suggest that, in spite of the intrinsic

irregularity of the switching sensory dynamics (a network

phenomena) during hunting, specific activation phase locks in

the sensory WLC dynamics are transformed into specific motor

events in the wing CPG activity. In this sense, we can consider

these sequential activations as coordination patterns inside the

irregular statocyst dynamics. This is particularly relevant in the

context of a complex intrinsic sensory dynamics that has to be

transformed into an effective motor program. Hunting search is

highly irregular, but nevertheless organized and coherent. From

this perspective, it makes sense that a complex sequential

activation of sensory neurons contains coordination cues in the

form of activation phase locks that can be interpreted and

executed by the motor CPG to generate the motor program.

Although we have not addressed it here because of lack of

information regarding connectivity, the tail motoneurons could

also use cues from the statocyst dynamics to contribute to an

effective hunting search in coordination with wing motor activity.

Tail movements do not have the repetitive pattern of a CPG

output and thus these movements are less restricted and more

prompt to be modulated by sensory input.

Beyond the specific role played by the statocysts in Clione’s

hunting behavior, the results discussed in this work, as well as the

experimental results reported in [15,16] and those obtained by

[35] on the pulmonate snail Lymnaea, show that the statocysts can

perform dual functions depending on the behavioral context.

During routine swimming of Clione, the statocysts perform a

purely sensory function and gravimetric reflexes are used for

maintaining a vertical spatial orientation. In contrast, during

hunting the statocysts participate in generating a hunting motor

program. In both cases, the statocyst output is used to drive a

CPG, hence, organizing motor behavior. Under our description,

the sensory signals are modified to fit the changing behavioral

context. In a sense, the statocyst network is fooled by the hunting

neuron. However, this sensory dynamics is interpreted by the rest

of the nervous system as during routine swimming, which results

in a complex hunting search motor pattern. In spite of its

irregularity, the statocyst activity can contain coordination cues to

organize a complex motion, i.e., a hunting search program.

There are some advantages in generating the motor program

right at the sensory network, as the rest of the neurons in the

sensory-motor transformation can just react normally to this

signaling. Another alternative would be to generate the program

at the cerebral ganglia. However a strong experimental fact goes

against this hypothesis as fictive hunting search cannot occur

without the statocysts [15]. The experimental and modeling

results reported in this paper support the view that the dual

dynamics of the statocyst network by itself can explain the two

motor programs observed during routine swimming and during

hunting behavior.

Methods and Models

Experimental Methods
Preparations for electrophysiological experiments were made in

ice-cold seawater to prevent excitation of nociceptive afferent

fibers. The preparation, including cerebral, pedal, and abdominal

ganglia with the wing nerves, was pinned to a Sylgard-lined Petri

dish as described previously [15]. Extracellular recordings from

nerves were made by using glass suction electrodes or stainless-

steel electrodes. Intracellular recordings were made using glass

electrodes (10 MV) filled with 3 M KCl. The signals were acquired

with a Digidata board (Molecular Devices, Union City, CA) and

stored for later analysis with Dataview (http://www.st-andrews.ac.

uk/wjh/dataview/). The spikes were sorted from the extracellular

recordings in Dataview, using threshold and the spike template.

Because there was little superposition in spike firing, we could

typically sort four or five units in the statocyst nerves.

Fictive hunting behavior was induced by application of

physostigmine as in [24] and [15]. To achieve fictive hunting,

the seawater covering the isolated nervous system was replaced by

seawater containing 10{6 M physostigmine.

Models
All the equations of our models were numerically solved with a

Runge-Kutta6(5) variable step method with a maximum error of

10{18.

Neuron models. To model the individual behavior of all the cells

of our neural networks we have used a well known Hodgkin-Huxley

type model [36], proposed by Komendantov and Kononenko (KK) for

molluscan neurons [33]. The model consists of eight membrane

currents (INa(TTX ), IK(TEA), IK , INa, INa(V ), IB, ICa and ICa{Ca) and

an intracellular calcium buffer. The details and the equations that

describe the dynamics of the KK model can be found in [33].

This is a very rich dynamical model that shows several patterns

of activity as a function of the parameters used in the simulations.

Here we used the original parameters of the model

(VNa = 40 mV , VK = 270 mV , VB = 258 mV , VCa = 150 mV ,

Cm = 0.02 mF , R = 0.1 mm, ks = 50 s{1, r = 0.002,

kb = 15000 mM{1 and b = 0.00004 mM ), except for the maxi-

mal conductances of the channels. All the neurons in a given

network (statocyst, cerebral ganglia and wing CPG) have the

same parameters. We have adapted these parameters to better

match the activity of the Clione’s neurons. Following experimental

recordings, in isolation, the hunting neuron, the cerebral

interneurons and the CPG cells are set in irregular spiking

behavior, while the SRCs are set into an irregular spiking-

bursting behavior (for details see [18]). The specific parameters

used in the simulations reported in this paper are shown in

Table 2. However, the results presented in this paper can be

easily reproduced with other values.

Connection models. In the model there exist three

different kinds of connections: inhibitory chemical synapses

(represented by filled circles in all the graphical representations

of the circuits), excitatory chemical synapses (open circles) and

electrical (resistors). Equations used to model each kind of

connection are:
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N To model inhibitory and excitatory chemical synapses we have

used the following equation [37]:

Isyn~r gPre{Post(VPost{Vsyn) ð1Þ

where gPre{Post is the maximal conductance of the connection

(Table 3 shows the values used in the simulations presented here

for each chemical connection); Vpost is the postsynaptic potential;

Vsyn is the synaptic reversal potential (in our simulations

Vsyn~{78 mV for all the inhibitory and Vsyn~0 mV for all

the excitatory synapses); and the value of r gives the fraction of the

open channels in the postsynaptic neuron and it is given by:

dr

dt
~asyn ½T �(1{r){bsyn r ð2Þ

being [T] the concentration of transmitter. To calculate the value

of r we follow the approach of Destexhe et al. and we assume that

½T � occurs as a pulse (for details see [37]). During these pulses

½T �~Tmax. After that ½T �~0 mM. In all our simulations we

assume that pulse duration for transmission is equal to 1 ms and

Tmax is equal to 1 mM [37–39].

N Parameters used to calculate the value of r are:

– In the connections between the hunting neuron and the

SRCs (see Figure 1) : asyn = 2.0 ms{1 mM{1 and

bsyn = 0.75 ms{1

– In connections between two SRC (see Figure 1):

asyn = 1.0 ms{1 mM{1 and bsyn = 0.1 ms{1

– In connections between a SRC and a cerebral ganglia cell

(see Figure 5): asyn = 1.0 ms{1 mM{1 and bsyn = 0.1 ms{1

– In the connections between two cerebral ganglia cells (see

Figure 5): asyn = 2.0 ms{1 mM{1 and bsyn = 0.2 ms{1

– In connections between a cerebral ganglia and a wing CPG

c e l l ( s e e F i g u r e 5 ) asyn = 1 . 5 ms{1 mM{1 a n d

bsyn = 0.5 ms{1

– And, finally, in the connections between the neurons of the

wing CPG model (see Figure 5): asyn = 2.5 ms{1 mM{1 and

bsyn = 1.0 ms{1 for fast synapses; and asyn = 2.5 ms{1

mM{1 and bsyn = 0.25 ms{1 for slow synapses

N Gap junctions:

Isyn~gelecPre{Post(VPost{VPre) ð3Þ

where Vpost and Vpre are the post and presynaptic potential.

Modeling the statocysts. To model a statocyst we have

developed a neural network with six SRCs under the action of a

single CHI (Figure 1). As in the biological network [19], in our

model all the synapses between SRCs represent inhibitory non-

symmetrical connections with different weights. This is an

essential feature to achieve winnerless competition dynamics

[40,41]. In a similar manner to the model presented in [28] or

[15], all SRCs in the network send and receive two signals to the

rest of the network. Connections are established with the next two

adjacent cells. Thus, the network can be described as two

inhibitory triangles of different synaptic strengths weakly coupled

through an inhibitory loop between adjacent neurons. On the

other hand, connectivity between the CHI and the SRCs is

excitatory [24,25].

Finally, we model the action of the statolith in a SRC by

injecting a constant current (Istatolith~0:35 mV ) in the receptor

that is pressed at a given time. We assume that only one receptor is

pressed by the action of the statolith. For the rest of SRCs

Istatolith~0:0 mV .

Modeling the cerebral ganglia neurons. Each SRC in the

living network is connected through excitatory synapses to a

group of cerebro-pedal interneurons in different areas of the

cerebral ganglia [25], although the details of these connections

are still unknown. Experimental results show a significant

correlation between the activity of the SRCs and the wing

CPG cells in the biological network (see Figure 5 in [15] and

Figure 5 in [16]), suggesting a limited processing role for the

cerebral neurons in between. Taking into account this assump-

tion, we have built a simple cerebral interface (CG1, CG2 and

CG3) between the sensory network and the motor CPG (see

Figure 5). We have divided the SRCs into two groups: the first

group (SRC1–3, left side of the statocyst) is connected to the CG1

cell, while the second one (SRC4–6, right side) is connected to the

CG2 cell. Note the mutual inhibition between CG1 and CG2.

The information received in these neurons is integrated in the

CG3 cell. This neuron transduces the dynamics of the statocyst to

the wing CPG.

Modeling the wing CPG. Clione’s movement is driven by a

pair of wings and a tail (see pictures in Figure 1 and Videos S1

and S2). Each wing is controlled by a neural network located in

the pedal ganglion. This network acts as a CPG generating the

beating rhythm of the wing. The morphology and functionality

of the CPG network have been described in detail [18,20]. The

wing CPG consists of about 20 cells grouped into two half

centers (with about 10 cells in each group): the dorsal and the

ventral groups. The first is driven by interneurons of group 7.

The latter, by interneurons of group 8. The motoneurons in

each group transform the rhythm generated into a motor

output. Due to the mutual inhibition in the network, the

pacemaker groups 7 and 8 tend to fire in antiphase. This

Table 2. Maximal conductances of the ionic channels.

gK gNa gNa(V) gB gNa(TTX) gK(TEA) gCa gCa{Ca

Hunting neuron (H) 0.25 0.0231 0.11 0.1372 400.0 10.0 1.5 0.02

Statocysts cells (SRC1-6) 0.25 0.02 0.11 0.128 400.0 10.0 1.0 0.01

Cerebral ganglia cells (CG1-3) 0.25 0.0231 0.0795 0.1372 400.0 10.0 1.5 0.02

Wing CPG neurons 0.25 0.0231 0.0807 0.1372 400.0 10.0 2.0 0.02

Values of the maximal conductances for each ionic channel in the different neurons of our models. All neurons in the same network have the same parameters. Units are
mS.
doi:10.1371/journal.pcbi.1002908.t002
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property defines the alternation of the dorsal and ventral phases

of a routine swim cycle (Figure 6).

In our models, the wing CPG is a simplified circuit built with

six neurons (for details on the living CPG connectivity see

[17,18,20]): two interneurons (7 and 8) and four motoneurons

(1A, 2A, 3 and 4). Each single neuron represents the equivalent

electrically coupled groups of cells in the biological circuit. In this

way, the rhythm generators are neurons 7 and 8, while neurons

1A, 3, 2A and 4 are the motoneurons that innervate the wing

muscles. In all our simulations the cells in a same group fire

synchronously. Therefore, we have chosen neurons 1A and 2A as

representative cells of the output rhythm.

Analysis Methods
Lyapunov exponents. To characterize the level of irregular-

ity of the activity of our models we calculate the Lyapunov

exponents from the model equations [28] describing the system

under study. The value of these exponents provides a measure of

the irregularity of the system dynamics as they quantify the rate of

divergence of nearby trajectories. The existence of a positive

Lyapunov exponent means that the system under study is chaotic.

One of the requirements for the model was to generate irregular

activity during hunting both in the sensory network and the motor

network. This kind of neural activity may be responsible of the

generation of Clione’s complex search trajectories to locate the prey

when hunting behavior is triggered.
Phase-locks detection. During hunting behavior, the timing

of the SRCs activity is irregular, in fact chaotic as reflected in our

model analysis. Nevertheless, there exist time windows of different

sizes where the activation sequence among the SRCs is preserved.

We call these sequences in the sensory signals ‘‘activation phase

locks’’. To detect the phase locks in the statocyst network activity,

we have defined the method that consists of the following steps:

N Transform the voltage time series into discrete temporal

sequences feSRCx
t ,t~1 . . . Ng where eSRCx

t can be 0 or 1. 0
means that at time t the membrane potential of the SRCx is

under a given threshold, in our case 0 mv. 1 means that is over

the threshold (in our case that the membrane potential is

positive).

N Ma p t h e s t a t o cy s t a c t i v i t y t o a c t i v i t y w o r d s

wt~feSRC1
t ,eSRC2

t ,eSRC3
t ,eSRC4

t ,eSRC5
t ,eSRC6

t g. In this manner,

we translate the activity of our statocyst model to words of six

bits, one bit for the activity of each SRC. For example, the

word 001001 denotes that SRC3 and SRC6 are active at a

given time.

N Compress the sequence of activity words by removing identical

consecutive words. This compression allows to eliminate the

effect of duration differences in the activation periods.

N Search in these compressed series for identical sequences of

consecutive words. We only consider sequences with a

minimum of four active SRCs (thus, we omit trivial sequences)

which occur frequently in the time series.

With this method we transform the phase lock detection into a

search for specific words in the discretized time series.

Supporting Information

Video S1 This video shows a group of Cliones in the two
behavioral states described in the paper: routine
swimming and hunting search behavior. Cliones at the top

and bottom of the tank display the typical routine swimming. Note

the regular beating rhythm of both wings. The Clione in the middle

displays hunting search behavior and is turning and looping in a

faster time scale. The right part of the image corresponds to a

mirror reflection that helps to visualize the 3D motion.

(OGG)

Video S2 This video shows a closed-up of Clione’s
hunting behavior. The hunting trajectory consists of an

irregular sequence of loops and turns. Note the difference between

the slow and very regular beating rhythm during routine

swimming (Clione at the bottom of the tank in Video S1) and the

fast and non regular beating movements during hunting search

behavior.

(OGG)
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Table 3. Maximal conductances of chemical synapses.

g�CHI{SRC1 0:82 gSRC1{SRC2 0:17 g�SRC1{CG1 0:21 gCG1{CG2 0:10 g�CPG7{1A 0:19

g�CHI{SRC2 0:76 gSRC1{SRC3 0:36 g�SRC2{CG1 0:21 g�CG1{CG3 0:29 gCPG7{2A 0:17

g�CHI{SRC3 0:68 gSRC2{SRC3 0:21 g�SRC3{CG1 0:21 gCG2{CG1 0:10 g�CPG7{CPG3 0:18

g�CHI{SRC4 0:86 gSRC2{SRC4 0:46 g�SRC4{CG2 0:21 g�CG2{CG3 0:29 gCPG7{CPG4 0:13

g�CHI{SRC5 0:66 gSRC3{SRC4 0:20 g�SRC5{CG2 0:21 g�CG3{CPG7 0:14 g�CPG7{CPG8 0:16

g�CHI{SRC6 0:72 gSRC3{SRC5 0:35 g�SRC6{CG2 0:21 g�CG3{CPG8 0:39 gCPG7{CPG8 0:51

gSRC4{SRC5 0:21 gCPG8{1A 0:27

gSRC4{SRC6 0:39 g�CPG8{2A 0:11

gSRC5{SRC6 0:18 gCPG8{CPG3 0:16

gSRC5{SRC1 0:36 g�CPG8{CPG4 0:19

gSRC6{SRC1 0:19 g�CPG8{CPG7 0:11

gSRC6{SRC2 0:36 gCPG8{CPG7 0:59

Values of maximal conductances of chemical inhibitory (g) and excitatory (g�) synapses. Units are mS.
doi:10.1371/journal.pcbi.1002908.t003
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