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Funneled Landscape Leads to Robustness
of Cell Networks: Yeast Cell Cycle
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We uncovered the underlying energy landscape for a cellular network. We discovered that the energy landscape of the
yeast cell-cycle network is funneled towards the global minimum (G0/G1 phase) from the experimentally measured or
inferred inherent chemical reaction rates. The funneled landscape is quite robust against random perturbations. This
naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape
becomes a quantitative measure of robustness of the network. The funneled landscape can be seen as a possible
realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion
for network connections and design. Our approach is general and can be applied to other cellular networks.

Citation: Wang J, Huang B, Xia X, Sun Z (2006) Funneled landscape leads to robustness of cell networks: Yeast cell cycle. PLoS Comput Biol 2(11): e147. doi:10.1371/

journal.pcbi.0020147

Introduction

In the “post-genome” era, it is crucial to uncover the
underlying mechanism of cellular networks to understand
their biological function [1-3]. The underlying nature of
cellular networks has been explored by genetic techniques [4].
Cellular networks have been found to be generally quite
robust and to perform their biological functions against
environmental perturbations. There are increasing numbers
of studies on the global topological structures of networks
recently [5] in which the scale-free properties and hierarch-
ical architectures for networks have been found [6-8]. The
hubs, highly connected nodes in the network essential for
keeping the network together, might play an important role
for the robustness of the network. However, there are so far
very few studies of why the network should be robust and
perform the biological function from the physical point of
view [9-18].

Theoretical models of cellular networks have often been
formulated with a set of chemical rate equations. These
dynamical descriptions are inherently local. To probe the
global properties, one often has to change the parameters.
The parameter space is huge. The global robustness therefore
is hard to see from this approach.

Here we will explore the nature of networks from another
angle and formulate the problem in terms of a potential
function or potential energy landscape. If the potential
energy landscape of the cellular network is known, the global
properties can be explored [19,20]. This is in analogy with the
fact that the global thermodynamic properties can be
explored when knowing the inherent interaction potentials
in the system. For the set of the normal chemical rate
equations describing the cellular networks, x = F(x) with x
being the concentrations of proteins and F being the
chemical reaction rate flux (see details in the Methods
section), one cannot in general write the right-hand side of
these equations as the gradient of a potential energy function.
However, typical chemical reaction network equations are
only approximations on the average concentration level. In
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the cell, statistical fluctuations coming from the finite
number of molecules (typically on the order of 1-1,000)
provide the source of intrinsic internal noise, and the
fluctuations from highly dynamical and inhomogeneous
environments of the interior of the cell provide the source
of the external noise for the networks [21-26]. Both the
internal and external noise play important roles in determin-
ing the properties of the network.

In general, one should study the chemical reaction network
equations in noisy conditions to model cellular environments
more realistically. One can also study steady-state properties
of these chemical reaction equation networks under noisy
environments. The generalized potential for the steady state
of the network exists in general [13,15-18,27]. Once the
network problem is formulated in terms of the generalized
potential energy function or potential energy landscape, the
issue of the global stability or robustness is much easier to
address. In fact, it is the purpose of this paper to study the
global robustness problem directly from the properties of the
potential landscape of the network.

To explore the nature of the underlying potential land-
scape of the cellular networks, we will study the yeast cell-
cycle network. One of the most important functions of the
cell is the reproduction and growth. It is therefore crucial to
understand the cell cycle and its underlying process. The cell
cycles during development are usually divided into several

Editor: Karl Friston, University College London, United Kingdom

Received April 7, 2006; Accepted September 25, 2006; Published November 17,
2006

A previous version of this article appeared as an Early Online Release on September
25, 2006 (doi:10.1371/journal.pcbi.0020147.eor).

Copyright: © 2006 Wang et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: CDK, cyclin-dependent protein kinases; RR, robustness ratio

* To whom correspondence should be addressed. E-mail: jin.wang.1@stonybrook.
edu (JW); sunzhr@mail.tsinghua.edu.cn (ZS)

November 2006 | Volume 2 | Issue 11 | e147



phases: the GO/G1, S, G2, and M phases. In most eukaryotic
cells, the elaborate control mechanisms over DNA synthesis
and mitosis make sure that the crucial events in the cell cycle
are carried out properly and precisely. Physiologically, there
are usually three checkpoints (where cells are in the quiescent
phase waiting for the signal and suitable conditions for
further progress in the cell cycle) for controlling and
coordination: GO/G1 before the new round of division, G2
before the mitotic process begins, and M before segregation.

Recently, many of the underlying controlling mechanisms
are revealed by genetic techniques such as mutations and
gene knockouts. It has been found that control has been
centered around cyclin-dependent protein kinases (CDKs),
which trigger the major events of the eukaryotic cell cycle.
For example, the activation of the cyclin/CDK dimer drives
the cells at both the G1 and G2 checkpoints for further
progress. During other phases and checkpoints CDKl/cyclin
are activated. Although molecular interactions regulating the
CDK activities are known, the mechanisms of the checkpoint
controls are still uncertain [9-12].

In Figure 1, a coarse-grained relationship between cyclin
and cdc?2 in the cell cycle is illustrated. In step 1, cyclin is
synthesized de novo. Newly synthesized cyclin may be
unstable (step 2). Cyclin combines with cdc2-P (step 3) to
form “pre-MPF.” At some point after heterodimer formation,
the cyclin subunit is phosphorylated. The cdc2 subunit is then
dephosphorylated (step 4) to form “active MPF.” In principle,
the activation of MPF may be opposed by a protein kinase
(step 5). Nuclear division is triggered when a sufficient
quantity of MPF has been activated, but concurrently active
MPF is destroyed in step 6. Breakdown of the MPF complex
releases phosphorylated cyclin, which is subject to rapid
proteolysis (step 7). Finally, the cdc2 subunit is phosphory-
lated (step 8, possibly reversed by step 9), and the cycle
repeats itself.

Mathematical models of the cell cycle controls have been
formulated with a set of ordinary first-order (in time) differ-
ential equations (chemical rate equations) mimicking the
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Figure 1. Cell Cycle Network Scheme

aa, amino acids; ~P, ATP; Pi, inorganic phosphate
doi:10.1371/journal.pcbi.0020147.g001

underlying biochemical processes [9-12,14]. The models have
been applied to the budding yeast cycle and have explained
many qualitative physiological behaviors. The checkpoints can
be viewed as fixed points. Since the intracellular and
intercellular signal transduction induces the changes in the
regulatory networks, the cell cycle can be described by or
mimicked by the dynamics in and out of the fixed points.
Although detailed simulations give some insights towards the
issues, due to the limitation of the parameter space search it is
difficult to perceive the global or universal properties of the
cycle networks (for example, for different species). It is the
purpose of the current study to address this issue.

We will develop a global energy landscape theory for the
cell cycle network. This statistical-based approach is good for
two reasons. It is a coarse-grained approach that captures
only the most important factors, so that the analysis can be
carried out relatively easily, revealing some global properties.
On the other hand, the statistical approach can be very useful
and informative when the data are rapidly accumulating. In
this picture, there are many possible states of the network
corresponding to different patterns of activation and
inhibition of the protein states. Each checkpoint can be
viewed as a basin of attractions of globally low energy states.
The GO/G1 phase states should have the lowest global energy
since it is the end of the cycle. To initiate the new cycle, the
network has to receive the signal to activate or pump to the
next phase to proceed. The dynamics of the cell cycle are
described as the dynamical motions on the landscape state
space from one basin to another. This kinetic search is not
entirely random but directed, since the random search takes
cosmological time. The direction or gradient of the landscape
is provided from the tilting towards the GO/G1 phase. The
landscape therefore becomes funneled towards the G0/G1
state, with the bottom of the funnel what we call the native
state. At the end of GO/G1 phase, the network is pumped to
high energy excited states at the top of the funnel (cycling).
The cell cycle then follows as it cascades through the
configurational state space (or energy landscape) in a
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directed way, passing several checkpoints (basins of attrac-
tion), and finally reaching the bottom of the funnel-G0/G1
phase again before being pumped again for another cycle. We
will study the global stability by exploring the underlying
potential landscape for the yeast cell-cycle network.

The aim of this paper is to provide a framework and a tool
(potential energy function) to study at the cell network
globally. At the conclusion of this paper we show that the
potential landscape of the budding yeast cell cycle is funneled
and robust against the perturbation from the kinetic rates
and the environmental disturbances through noise.

Methods

Average Kinetics

Here, we start with a quantitative computational descrip-
tion of the relationship between cyclin and cdc2 and the
associated chemical reaction rate processes in the yeast cell
cycle. See Figure 1.

Based on the law of mass action, one can derive a set of
differential equations that describe the variation rate of each
component’s concentration for each component of the
relations above—the chemical reaction rate equations.
Together with the conservation equations, we have five
independent simplified equations (Equations FI-F5 are
components of chemical reaction rate flux). The rate
constants are experimentally measured or inferred [9-12]:

dxl
E = —k3X1X4 + 10k3 - ng] =Fl1

dx. xs \?
d—; = k3X1X4 — X9 (K4 + k4 (QT%O) > =F2

ng X3 2
= =xo| K4y + k4| — — kexs =F3
dt XZ( ot *(200) ) 0%3

dX4

— =k —k =F4
al 1 3X1X4

dX5

E = k@%; — k7x5 =FbH

ky =3, ks =1, ky = 200, K4 = 0.018, kg = 1, ky = 0.6,
ks = 100, ko = 10

x1 = [ede2 — p], x2 = [p — cyclin — ¢dc2 — p),
x3 = [p — cyclin — cde2)]

x4 = [eyclin], x5 = [cyclin — p]
X1 + x9 + x3 = 190, x4 + x5 = 100 (1)

x = {x1(8),x9(t), ... ,%,(£)}

are the concentrations of the different proteins in the network.
F(x) is the “force or chemical reaction rate flux term” involving
the chemical reactions which are often nonlinear in protein
concentrations x (for example, enzymatic reactions as shown
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above). The k’s are the kinetic rate coefficients. The x = F(x)
equation describes the averaged dynamical evolution of the
chemical reaction network in the bulk.

Potential Landscape from Noisy Environments

Due to the intrinsic statistical fluctuations of the protein
(kinase) numbers in the limited cell volume and external
fluctuations within cellular environments, the described
averaged chemical-rate equations above cannot faithfully
describe the inherent process and need to be modified. The
statistical fluctuations can be very significant from both
internal and external sources and in general cannot be
ignored [21-26]. A stochastic force { can then be added as the
noise mimicking these fluctuations. The distribution function
of the noise is assumed to be Gaussian, from the large number
theorem in statistics. It is equivalent that the mean of the
noise terms are zero: <&;(f) > = 0. Then the auto correlations
of the noise are given by:

<{(x, ) (x',t")> = 2D(x,8)8(¢ — t').

Here 6(¢) is the Dirac delta function, and the diffusion
matrix D is explicitly defined by < {; ()G; (t') > = 2D;8 (t-t').
The average <...> is carried out with the Gaussian
distribution for the noise.

We add noise sources to each rate equation and derive five
stochastic differential equations:

%:ﬁJrii(i:l,z,...,r)) (2)

The stochastic trajectories of each individual variable (in
this case each concentration of proteins) satisfying the
equation of motion with noise are not deterministic. There-
fore they are better characterized by the statistical distribu-
tions of the inherent variables (protein concentrations, in this
case) [13,15-18,28]. In fact, the multidimensional stochastic
equation of motion is equivalently described by the corre-
sponding time evolution of the statistical distribution
satisfying the multidimensional Fokker-Planck equation in
macroscopic conditions [27,13,28]. By taking the long time
limit, the steady-state distribution in concentration space can
be obtained.

We can naturally define a generalized potential function U
based on the steady-state distribution function in multi-
dimensional concentration space as Piready-siare ~ exp[-U] or U
~ =In(Pseady-stare)- In this definition of potential U, we can see
that when a multidimensional concentration configuration
has a higher probability of appearing, then the corresponding
generalized potential is lower. The maximum of the steady-
state probability Pg.ugy-sare cOTTEsponds to the minimum of
potential energy U. Knowing the steady-state distribution,
one can map out the corresponding potential energy land-
scape. There is a one-to-one correspondence between the
steady-state probability and the generalized potential [13,15-
18,28]. Thus, the issue of finding the generalized potential to
explore the global properties becomes an issue of finding the
steady-state probability distribution function itself. In prin-
ciple, we can solve the steady-state probability of the
corresponding multidimensional Fokker-Planck equation. In
practice, this is quite a challenging mathematical task.

Instead of directly solving the multidimensional Fokker-
Planck equation, we will follow a scheme of directly
constructing the potential U from the stochastic equation
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of motion through a transformation without the need to solve
the corresponding Fokker-Planck equation [15]. We will in
the rest of the text make the assumption of the trans-
formation first and then show that this particular mathemat-
ical construction of the potential U directly relates to the
steady-state probability from the Fokker- Planck equation
through Pyaay—siare ~ exp[-U]. Furthermore, we will use this
scheme of mathematical construction to directly obtain the
generalized potential U.

Let us assume a transformation [15], such that we can write
the network equations in the following form:

(S8(x) + A(x))x = —0U(x) +§, (3)

with the semipositive definite symmetric matrix function S(x),
the antisymmetric matrix A(x), the single-valued scalar
function U(x), and the stochastic force & Here 0 is the
gradient operator in the state variable space. It is important
to realize that the semipositive definite symmetric matrix
term is “dissipative”: x7 8(x) x > =0 (x’ is the transpose
vector of x). The antisymmetric part does no “work”: x7 A(x)
x =0, and therefore is nondissipative. Hence, it is natural to
identify that the dissipation is represented by the semi-
positive definite symmetric matrix S(x), the friction matrix,
and the transverse force by the antisymmetric matrix A(x),
the transverse matrix. In general, we cannot write F(x) as a
gradient of a potential energy function, and therefore no
potential energy can be defined in noise-free environments.
However, through the transformation, there exists a gradient
term involving U in the presence of noise. The scalar function
U(x) then acquires the meaning of potential energy.

There are four independent measures S,A,U, in the above
equation while there are only two F,{ in equation dx/dt=F +
€. Additional constraints need to be imposed to obtain a
unique solution for the above equation. To be consistent with
the Gaussian and white noise assumption for {, we may
naturally impose the constraint on the stochastic force and
semipositive definite symmetric matrix to be [15]:

<E(x, )& (x',t")> = 25(x,8)8(t — t').

The above relationship resembles the dissipative dynamics
of quantum mechanics when both the dissipative force and
Berry phase exist. It relates the stochasticity with the
dissipation or the fluctuation-dissipation theorem of the
second kind [29].

To illustrate this construction of the potential, we can use
the equation dx/dt = F + { to eliminate the % in equation

(SEHA(®X)) * = -0U(xH- &, yielding [15]:
(S(x) + A(x))(F(x) +§) = —0U(x) + &.

Notice that the dynamics of the noise should be independ-
ent of that of the deterministic dynamics. Thus we require
both the deterministic force and the noise to satisfy two
separate equations. For the deterministic force, this reads:

(S(x) + A(x))F(x) = —0U(x),
and for the noise term, we have:
(S(x) + A(x)){=¢&.

The above transformations effectively “rotate” the deter-
ministic force to the gradient of the potential U and
stochastic force from ( to & (with the same rotation) at every
point in state space.

@ PLoS Computational Biology | www.ploscompbiol.org

Funneled Landscape of Yeast Cell Cycle

Using equation < {(x,)('x’,t") > = 2Dx,)d(t - ¢') and
< E(x,t) E'(x,t") > =2S(x,1)d(t - t'), equation (S(x) + AX)){=§

becomes:

(8(x) + A(x))D(x)(S(x) — A(x)) = S(x).

This suggests a duality between the friction matrix S and
diffusion matrix D where a large diffusion matrix implies a
small friction matrix. It is a generalization of the Einstein
fluctuation-dissipation relationship to a nonzero transverse
matrix A.

We can introduce the auxiliary matrix function G [15]:

G(x) = (S(x) + A(x)) .

Here “~1” means the inverse of the corresponding matrix.
Thus the inverse function of G is given as G'(x)=Sx)+ Ax)
and the transpose of inverse function of G is given as (G (x)
= S(x) — A(x). Using the property of the potential U: 9 X U=
0, from equation (S(x) + A(x))F(x) = -0U(x), we obtain:

OX[G'F(x)] =0,

which gives the n(n - 1)/2 conditions to determine the n X n
auxiliary matrix function G. The generalized Einstein
relationship (S(x) + AX))Dx)(S(x) - A(x)) = S(x) combining
the relationships of Gil(x) = (S(x) + A(x)) and (Gil)t(x) = (S(x)
- A(x) leads to:

G+ G'=2D

The above equation determines the other n(n + 1)/2
conditions for G. Thus the above two equations completely
determine G.

It is straightforward to show from equation (S(x) + A(x))F(x)
=-0U(x), the definition of G, and the relationships of G lx)=
(S(x) + Ax)) and (G™")(x) = (S(x) - A(x)) that:

f/cdx'Gfl(x')F(x')
[G7'x + (G’)fix]/Q
[G7'x — (G") ™ "x]/2

Ulx) =
(4)

Thus the potential function U, the friction matrix S, and
transverse matrix A can be completely solved.

Potential and Steady-State Probability from the Fokker-
Planck Diffusion Equation

We can prove in this section that the potential constructed
in the last section is directly linked with the steady-state
probability distribution of the corresponding master equation
[15]. Since the trajectories are stochastic with the presence of
noise, it is more appropriate to describe the system in terms of
probability distribution function rather than the individual
trajectory or only the average of the trajectories. The
connections between the stochastic approach and the
probabilistic approach can be established through the
connections between stochastic differential equations and
diffusional Fokker-Planck equations [27]. The deterministic
force and stochastic force are on different time scales. The
deterministic time scale is typically larger than the stochastic
fluctuation time scale. The separation of time scales suggests
that network dynamics have an inertial. We can introduce the
inertial mass m and kinetic momentum p for the network [15]:

x=p/m.

The above equation defines the momentum, and
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P = —[S(x) + A(x)lp/m — OU(x) + &(x, 1)

is the extension of equation (S(x) + A(x)) x = - dU(x) +  when
including the inertial mass. Since there is no dependence of
the friction matrix and the stochastic force on the kinetic
momentum, there is no Ito-Stratonovich dilemma connecting
the stochastic differential equation and the evolution
equation of the probability distribution function [27]. The
Fokker-Planck equation in this enlarged state space can be
written as [15]:

[0+ p/mOx + £0p — FpS(p/m + B)IP(x,p, 1) = 0.

Here f = pA /m - 8,U and ¢, x and p are independent
variables of time, space, and momentum. The steady-state
distribution function can be found to be:

Py(x,p) = exp[fPQ/Qm + U(x)]/Z

with the partition function Z = d"xd"pexp[-p° | 2m + U(x)]. In
the above equation, the state variables and kinetic momen-
tum are explicitly separated. The zero mass limit (no inertial)
can be taken, which does not cause any effects on the state
variable distribution.

The steady-state distribution function Py(x) for the state
variable x can thus follow a Boltzman-Gibbs distribution,
which is exponential in potential energy function U(x) (after
integrating out the momentum variables) [15]:

Po(x) = 5 exp{~U(x)}

with the partition function Z = d% exp{-Ux)}. From the
steady-state distribution function, we can therefore identify
U as the generalized potential energy function of the network
system. In this way, we map out the potential energy
landscape. Once we have the potential energy landscape, we
can discuss the global stability of the protein cellular
networks. Following are the detailed descriptions of the
calculation procedures.

Detailed Calculations of the Potential

The detailed mathematical expression of friction force §,
transverse force A, and potential U were given as Equation 4
as mentioned in the above sections [15]:

Ulx) = —/(‘dx’Gfl(x')F(x’)
Sx) = [67'(x) + (G (x)]/2
Ax) = [67'(x) = (6T (v)]/2

with G matrix function and its transpose G satisfying
constraint equations (G is the inverse function of G) as
mentioned in the above sections:

G+G' =2D (5)
and 0 X [G'F(x)] = 0 leads to:
GV X[GTH x|y F(x)]G' + GS' — SG' = 0 (6)

One can approximate the above equation in gradient
expansions to zero, first, and higher orders to solve the G
matrix function and substitute the solution to obtain the
potential U. For simplicity we only solve matrix G and
corresponding U up to zero and first order. We found
convergent solutions.

The zeroth order approximation of G is given below:
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GS' — SG' = 0,8; = % (7)
O

We assume D is a diagonal matrix Dyl (I is identity matrix)
for simplicity; further, we take D, as constant 1.Then for the
first-order solution, from Equation 5 and Equation 6, we can
solve the linear set of equations for G. Taking G in Equation 4
and performing the calculation of the integral, we get the
potential U.

The diffusion coefficient D in general might be dependent
on the concentration. It is, however, quite difficult to estimate
the exact functional form of the diffusion on concentration.
If we assume that the diffusion is slowly varying on
concentrations, then we can expand the diffusion around a
fixed point and extend it to the other regions. As a first
approximation, we treated the diffusion here as a constant
for simplicity. This should be at the exact fixed point. Since
we don’t know the diffusion scale exactly, we can set the
constant diffusion coefficient D to be equal to 1 for
simplicity. The scale of protein concentration variation
ranges from 0-~100. D =1 is then significantly smaller than
100 and corresponds to weak noise. For stronger noise (D >>
1), the whole network will be destroyed and therefore will not
function properly.

Numerical Solution

Equation 5 is a set of linear equations that can determine
5%(5 + 1)/2 conditions. Equation 6 can determine 5%(5 - 1)/2
conditions.

For the higher-order approximation, we have an iteration
equation that takes the zero order result as the initial value;
the equation reads:

G-V X[GTY ()], F(x)]GL, + GiS' — SG! = 0.

This equation also determines 5*(5 - 1)/2 conditions. After
we have G and G, we can easily integrate Equation 4 to
obtain the potential U.

In the process of solving the linear set of equations for G,
we first normalized the concentrations and then divided them
into 20-1,000 bins. We solved the problem exactly with fewer
bins and datapoints, but used the Monte Carlo method to
sample the data with more bins and datapoints. We solved G
up to zero and first order and found convergent solutions.

The protein concentrations of the global minimum of the
potential energy landscape are found to be at the GO/G1
native state (x1 =1, x2 =1, x3 =190, x4 = 25, x5 = 80).

Results/Discussion

The potential energy function U(x) is directly linked with
the probability of the configuration state characterized by
protein concentration x. Low energy of a particular state
corresponds to a high probability of occurrence of the state.
Different configurational states of the cellular network
therefore have different probabilities of occurring, and
therefore different, energies. Since the potential energy is a
multidimensional function in concentration configuration
space x, it is difficult to visualize U(x). In Figure 2, we do a
zero- (Figure 2A) and 1-D (Figure 2D and 2E) projection and
look at the nature of the underlying potential energy
landscape U.
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Figure 2. The Global Structures and Properties of the Underlying Potential Landscape of the Yeast Cell-Cycle Network

A) The histogram or the distribution of the potential U.
B) The potential landscape spectrum.

D) The averaged potential as a function of similarity parameter Q with respect to the global minimum G1 state (or global steady state) of potential U.
E) The entropy as a function of similarity order parameter Q with respect to the global minimum G1 state (or global steady state) of the potential U.

(

(

(C) The funnelled landscape of the yeast cell-cycle network.
(

(

doi:10.1371/journal.pcbi.0020147.g002

We can see that the distribution is approximately Gaussian.
The lowest potential U is the global minimum of the potential
landscape. It is important to notice that this global minimum
of U is found to be at the same place (in x) as the G0/G1 fixed
point or GO/G1 phase for the yeast cell cycle. Figure 2B
illustrates the potential energy spectrum. It is clear that the
global minimum of the potential energy is significantly
separated from the rest of the potential spectrum or
distribution.

To quantify this, we define the robustness ratio (RR) for the
network as the ratio of the gap dU, the difference between
this global minimum of the GOIG1 state Ugippar—minimum» and the
average of U, <U>,versus the spread or the half-width of the
distribution of U, AU, RR = Z—ZL; O0U is a measure of the bias or
the slope towards the global minimum (GO/G1 state) of the
potential energy landscape. AU is a measure of the averaged
roughness or the local trapping of the potential landscape.
When RR is significantly larger than 1, the gap is significantly
larger than the roughness or local trapping of the underlying
landscape, and the global minimum (GO/G1 state) is well-
separated and distinct from the rest of the cell cycle network
potential spectrum. Since Py(x) = %exp{—U(x)}, the weight or
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the population of the global minimum (G1 state) will be
dominated by the one with large RR. The populations of the
rest of the possible configurational states of the cell cycle
network are much less significant. This leads to the global
stability or robustness discriminating against others. The RR
value for the yeast cell-cycle network is RR = 1.61, which is
significantly larger than 1. RR thereby gives a quantitative
measure of the property of the underlying landscape
spectrum. Only the cellular network landscape with a large
value of RR will be able to form a stable global minimum GO/
G1 state, be robust, perform biological functions, and survive
natural evolution.

Figure 2D shows the 1-D projection of the averaged U,
<U>, to the overlapping order parameter Q with respect to

N lobal
globa
’xl

the global minimum (Q = ‘ ). Q is defined this way so

x| [eglobel |
that we can keep track of the degree of “closeness” or overlap
between an arbitrary state x and the global minimum state
Xgiopar 1N the configurational state space of the protein
concentrations. = 1 represents the global minimum state
and Q=0 represents the states with no overlap (decorrelated)

with the global minimum. Here the global minimum is at the
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Figure 3. The Averaged Potential U as a Function of Similarity Parameter
Q with Respect to the Global Minimum G1 State (or Global Steady State)
of Potential U against Perturbations of Chemical Rate Coefficient
Parameters with 10% Increase (Decrease), 20% Increase (Decrease)
doi:10.1371/journal.pcbi.0020147.9g003

same place (in x) as the GO/G1 phase of the cell cycle. We see a
downhill slope of the potential < U> in Q towards the global
minimum Uy, This shows clearly a funnel of < U>along Q
towards the global minimum of the potential landscape. When
randomly changing the chemical rate coefficients (10%-20%),
the slopes of < U> along Q towards the global minimum of
the potential landscape do not change very much (as shown in
Figure 3). So the landscape is still funneled towards the global
minimum under different cellular conditions. Therefore the
network is relatively stable and robust. With more drastic
changes of the rate parameters (above 50%), the landscape
starts to become less stable and loses its robustness.

The system does not have multiple fixed points or multiple
energy valleys. In this model, it has only one, which
corresponds to the GO/G1 global minimum. In the moderate
parameter range we vary as described above, the number of
the fixed point or global energy valleys remains one. There-
fore, the system is quite robust against perturbations and the
underlying energy landscape is funneled towards the GO/G1
global minimum.

Figure 2E shows the configurational entropy S, (Q) =
InQ(Q); Q(Q) is the number of the configurational states at
particular overlap Q as a function of Q. The entropy is
calculated by dividing the concentration variables into a
multidimensional lattice, counting the number of states in
each multidimensional lattice cube, and then projecting them
onto Q. As we can see, the entropy is rather smooth at small Q
and decays as ) migrates towards the global steady state or
global minimum. Since the entropy represents the number of
states available, this implies that the configurational state
space for the network becomes smaller towards the global
steady state. Thus entropy can be used as a measure of the
radius of the funneled landscape perpendicular to the
direction of the funnel towards the global steady state (see
in Figure 2C that the funnel shrinks in radial size towards the
global steady state).

In Figure 4, we construct the free energy versus overlap
order parameter Q, I(Q) by making use of the microcanonical
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Figure 4. The Free Energy as a Function of Overlap Parameter Q Relative
to the Global Minimum G1 Steady-State Fixed Point at Low Temperature
(50,000), Intermediate Temperature (77,500), and High Temperature
(100,000)

doi:10.1371/journal.pcbi.0020147.9g004

ensemble. F(Q)=U - TS. U and § are the potential energy and
entropy of the system, respectively. They are given by U=< U
> Q) - ALT@ and S=3S, (Q) - AZ;EQ)A Here, <U>(Q) is the
average of the potential of U(Q) at each overlap Q; AU*Q) is
the variance of potential at each Q; S(Q) is the entropy of the
configuration at Q, and Sy(Q) is given by So(Q) =1nQ(Q); Q(Q)
is the number of the configurational states at particular
overlap Q. T is the effective temperature.

The effective temperature here is a qualitative measure of
the influence of the environments to the network, which
could be in the form of the stress, radiation, salt changes, pH
changes, protein components in the cell cycle interacting
with others not in the cell cycle but within the cell, etc. They
are qualitatively mimicked by noise here. This is different
from protein-folding studies [30]. In protein folding, the
temperature is the normal temperature. But here temper-
ature represents qualitatively the strength of the external
noise to the system.

The exact meaning and mapping of the noise to the
biological process still needs to be worked out. To describe
the nature of the statistical fluctuations and the correspond-
ing underlying energy landscape, we consider both strong and
weak noise limit, and provide a qualitative analysis here.
When the noise is strong or the external influence is strong to
the cell cycle system, the system will no longer be robust nor
perform biological functions anymore. The corresponding
energy landscape becomes less biased towards the biological
functioning states. For weak noise, the external influences on
the cell cycle network are small; therefore the network should
be more robust. This is often true except for the case where
the network itself is not very robust, even without external
influences. In this limit, the network can get trapped in the
local minimum or intermediate states without reaching the
destination. This happens if the underlying landscape is
rough. To guarantee the robustness of the network, certain
noise might be necessary to overcome the barrier to complete
the network processes.
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In other words, strong noise is bad for stability, which will
lead to a “phase transition” from an ordered functional state
to the unstructured dis-function state. As mentioned before,
here we can use the temperature T as a qualitative measure of
the strength of the noise. The “temperature” Tn is the noise
level below which the system is stable and functioning. For
stability we would like to have this Tn be high, so that in most
situations the system is below this threshold noise level and
thus is stable. On the other hand, small noise might not be
able to get out of the local traps in order to perform
biological functions. There could be a trapping phase
transition from an ordered functional state to a trapped
state without moving farther. The temperature Ttrapping is
the noise level below which the system will be trapped and
not functioning. For discrimination, we would like to have
this Ttrapping be low, so that in most situations the system is
above this threshold noise level and not trapped. To minimize
Ttrapping and maximize Tn at the same time, the ratio Tn/
Ttrapping should be maximized. We can prove that the
requirement that the system is both stable and not trapped
can be satisfied by the underlying funneled landscape with a
large ratio of the gap biasing towards Gl against the
roughness or local trapping depths. Below are the details.

Two characteristic thermodynamic transition tempera-
tures exist in Figure 4. At low temperatures (7" = 50,000),
the free energy is biased towards the global minimum (G1
state) of U and the Q = 1 state is thermodynamically more
stable; at high temperatures (7= 100,000), the free energy is
biased towards the states that are less correlated with the
global minimum of U(GI state), and the Q < 1 states are more
thermodynamically stable. At intermediate temperature
(77,500), most likely around the physiological temperature
regime, the expression for free energy can have a double
minimum structure on the order parameter Q. We can equate
the two minima of the free energies from less-overlapping
states to the global minimum G1 state of the yeast cell-cycle
network to obtain the native transition temperature

FRQ=Q)=FQ=1)

<U>(Q:Q*)—<U>(Q:1)
25(Q = Q%)

(1+\/ __ 2%(Q=0)A0%Q=0)
(<U>(Q=Q") - <U>@Q=1)

where < U>(Q = Q") - < U>(Q = 1) is the gap between the
global minimum and the less-overlapped states (the states
that have the same free energy as the global minimum Gl
state). This is a first-order “phase transition” point, repre-

T, =

senting the coexistence of the global minimum steady-state
phase and another phase with fewer overlaps with the global
minimum steady state.

Figure 4 also shows the free energy profile of the network
at the native transition temperature (7 = 775,000). Another
possible “phase transition” exists where the entropy of the
system goes to zero, which indicates that the system runs out
of the states and becomes trapped in the local minimum. This

transition gives So(Q = QA) = % so that the trapping
temperature is given by Tyapping = % .

Taking the ratio of native transition temperature to the
trapping temperature of the network, we obtain:
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721/’]}7upping((2 - (2*) = /\ + \V/;K§A::Ai,

where A — <U=(Q=Q)-<U>(Q=1)
AU(Q=Q")1/25(Q=Q")
gap between the global minimum state and the average of the
potential landscape spectrum versus the ruggedness or the
width (spread) of the distribution of the potential landscape

is the ratio of the potential

spectrum weighted by entropy or the measure of the number
of the states available 1/2S0(Q = Q*). We can see that the RR
is directly related to A: A =RR/\/25)(Q = Q*). In other
words, A is the RR weighted by entropy.

There are at least three possible thermodynamic phases:
the global minimum G1 state, the less-overlapping with the
global minimum G1 state, and the trapping phase (see Figure
5). The global minimum GI1 state in the yeast cell-cycle
example corresponds to the final destination at the end of
one complete cell cycle. Without further stimulation, the cell
will sit at the GI1 state and not go into the next stage of
development. Clearly, the native transition (to the global
minimum G1 state) temperature should be higher than the
trapping temperature to guarantee the global thermodynam-
ic stability and avoid nondiscrimination with traps. The
ratioT, / Tirapping should therefore be maximized. From the
above expression, this is the equivalent of saying that A, or
RR, should also be maximized. Therefore, maximizing the
ratio of the potential gap (or the slope) versus the roughness
of the underlying potential landscape weighted by the
entropy of the available states (a measure of the configura-
tional search space) becomes the criterion for the global
thermodynamic stability or robustness of the network. Only
the cellular network landscape satisfying this criterion will be
able to form a thermodynamically stable global steady state,
be robust, perform the biological functions, and furthermore
survive natural evolution. Similar to the problems of protein
folding and binding [30,31], this implies a funneled potential

original parameters

parameters 10% increased

_ T~ ~ — — — parameters 10% decreased

parameters 20%

— — — parameters 20%

increased

decreased

Figure 5. Thermodynamic Phase Diagram for the Yeast Cell-Cycle
Network

Native phase with global minimum GO/G1 state or steady state; non-
native phase with states less overlapping with global minimum G0/G1
state or steady state; trapping phase with states trapped into the local
minimum. The larger of 5U/T and smaller of AU/T, or the larger SU/AU,
the more likely the global minimum G1 state is thermodynamically stable
and robust.

doi:10.1371/journal.pcbi.0020147.g005
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landscape of the cellular network as shown in Figure 2C,
which has a directed downhill slope biased towards the global
minimum G1 state, dominating the fluctuations or wiggles
superimposed on the landscape and the configurational
search space. From this picture, at the initial stage of the
yeast cell-cycle network process, there are multiple parallel
paths leading towards the global minimum GI state. As the
kinetic process progresses, the discrete paths might emerge
and give dominant contributions when the roughness of the
underlying landscape becomes significant.

In cell-cycle biology, the G1 (or more accurately G0) phase
is the phase in Figure 1 before the first step of synthesis of
cyclins (bottom of Figure 1). It is known from the experiments
that, without the nutrition and rich supply of amino acids
needed, the cyclins do not accumulate and the cell cycle
cannot proceed. GO/G1 is the starting point and the end point
of the cell cycle. Only upon activation through rich nutrition
will the cell start to grow. Without the activation through
nutrition, the cell will always sit at the GO/G1 phase. In the
landscape picture, GO/G1 is at the bottom of the funnel.
Therefore the system at GO/G1 is very stable without the
perturbation or activation. On the other hand, with rich
nutrition, the cell is activated and proceeds to the other states
to complete the cell cycle. In energy landscape language,
upon activation, the system is “activated” or “pumped” from
the GO/G1 state to the other excited states of the cell so that
the consequent dynamics of the downhill motion through the
funnel leads to GO/G1 again. The cell cycle begins again only
when the system reaches GO/G1 and there is a rich supply of
nutrition leading to activation. Therefore the robustness of
GO/G1 is critical for the whole cell cycle process. If the GO/G1
phase is not significantly changed, the system is likely to be
normal. On the other hand, if GO/G1 is significantly changed
upon environmental or internal perturbations, the system is
likely to be disturbed and not function properly. The other
phases of the cell cycle are likely to be the intermediate
metastable states in the landscape picture.

When we explore further the influence of the environ-
mental changes on the other phases of the cell cycle, we reach
similar conclusions; for example, the M phase is quite robust
against perturbations. The ratio of the underlying energy gap
versus roughness is a global quantified measure of the
robustness. The perturbation that destroys the stability of
GO/G1 will significantly influence the other phases, and
therefore the whole system, too. A large RR will guarantee
not only the stability of G0/G1, but also other phases of the
cycle.

Conclusions

The cellular network with a rough underlying potential
landscape can neither guarantee the global robustness nor
perform a specific biological function. They are less likely to
be selected in the evolution process. The funneled landscape
therefore might provide a possible quantitative realization of
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the Darwinian principle of natural selection at the cellular
network level. As we see, the funneled landscape provides an
optimal criterion to select the suitable parameter subspace of
cellular networks, guarantees the robustness, and performs
specific biological functions. This might

lead to optimal network connections. The details of the
application of this novel algorithm to improve the design of
the synthetic network will be given in a future work. It is
worth pointing out that the approach described here is
general and can be applied to many cellular networks, such as
signaling transduction networks [2], metabolic networks [32],
and gene regulatory networks [13,16]. A highly simplified
model for lambda phage [15] was studied where only two
protein concentration variables were included. It is a much
simpler system to study mathematically, and it can be solved
exactly. The cell cycle is a much more complicated system
that involves many proteins. Even in the most simplified form
we consider here, it still has several protein concentration
variables to be considered. Therefore, we used a numerical
approximation scheme to solve the problem rather than an
exact method, which can then be used to treat networks with
more than two components.

We also worked on a different model for MAP Kinase signal
transduction network [28]. We found that the underlying
potential energy landscape is also a funnel, and is robust
against rate parameter and external noise perturbations. This
leads us to believe the funneled landscape and its robustness
might be general. We are now studying the metabolic
networks. The results will be published elsewhere.

There are other cell cycle network models (for different
species of yeast) that involve more protein concentration
variables than the simple one we have here. Since the degrees
of freedom grow exponentially with the size of the system, it
is difficult to explore larger systems. We are developing
approximation schemes now to overcome the computational
bottleneck for obtaining the landscape for larger cell network
systems.
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