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Abstract

Predicting protein structure from primary sequence is one of the ultimate challenges in computational biology. Given the
large amount of available sequence data, the analysis of co-evolution, i.e., statistical dependency, between columns in
multiple alignments of protein domain sequences remains one of the most promising avenues for predicting residues that
are contacting in the structure. A key impediment to this approach is that strong statistical dependencies are also observed
for many residue pairs that are distal in the structure. Using a comprehensive analysis of protein domains with available
three-dimensional structures we show that co-evolving contacts very commonly form chains that percolate through the
protein structure, inducing indirect statistical dependencies between many distal pairs of residues. We characterize the
distributions of length and spatial distance traveled by these co-evolving contact chains and show that they explain a large
fraction of observed statistical dependencies between structurally distal pairs. We adapt a recently developed Bayesian
network model into a rigorous procedure for disentangling direct from indirect statistical dependencies, and we
demonstrate that this method not only successfully accomplishes this task, but also allows contacts with weak statistical
dependency to be detected. To illustrate how additional information can be incorporated into our method, we incorporate
a phylogenetic correction, and we develop an informative prior that takes into account that the probability for a pair of
residues to contact depends strongly on their primary-sequence distance and the amount of conservation that the
corresponding columns in the multiple alignment exhibit. We show that our model including these extensions dramatically
improves the accuracy of contact prediction from multiple sequence alignments.
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Introduction

The identification of functionally and structurally important

elements in DNA, RNA and proteins from their sequences has

been a major focus of computational biology for several decades. A

common approach is to create a multiple alignment of

homologous sequences, which places ‘equivalent’ residues into

the same column and as such gives a hint of the evolutionary

constraints that are acting on related sequences. In particular, so-

called profile hidden Markov models [1] of protein families and

domains have been highly successful in identifying sequences that

have similar function and fold into a common structure, making

them among the most important tools in functional genomics, see

e.g. [2]. These hidden Markov models typically assume that the

residues occurring at a given position are probabilistically

independent of the residues occurring at other positions. At the

time at which these models were developed, it was entirely

reasonable to ignore dependencies between residues at different

positions, since the amount of available sequence data was

generally insufficient to estimate joint probabilities of multiple

residues. However, currently the multiple alignments of many

protein families and domains include hundreds and sometimes

even thousands of sequences, making it possible to systematically

investigate dependencies between the residues at different

positions.

As the functionality of biomolecules crucially depends on their

three-dimensional structures, whose stabilities depend on interac-

tions between residues that are near to each other in space, it is of

course to be expected that significant dependencies between

residues at different positions will exist. Indeed such dependencies

are evident for RNA (eg [3,4]) and protein sequences [5,6]. The

existence of dependencies between residues at different positions is

also supported by the observation of correlated mutations in which

mutations at one residue tend to be compensated by a correlated

mutation in a particular other residue [5–7].

Recently there has been a significant amount of work in which

multiple alignments of single protein families have been used in

order to predict pairs of residues that are functionally linked or

interact directly in the tertiary structure (see eg [8–14] and

references therein). This work has shown that pairs of residues

which show statistical dependencies are generally significantly

closer in the structure than randomly chosen pairs. However, it

has been repeatedly noted that there exist many highly statistically-

dependent residues that are distant in space (eg [14–16]). Figure 1

illustrates these points. One of the most commonly used measures

of dependency between two residues is the mutual information

[4,9,14,17,18] between the distributions of amino acids occurring

in the two corresponding alignment columns. We collected a

comprehensive set of 2009 multiple alignments of protein domains

from the Pfam database [19] for which a three dimensional
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structure was available (see Materials and Methods) and calculated,

for each pair (ij) of columns in each alignment, the statistical

dependency using a measure, log (Rij), which is a finite-size

corrected version of mutual information (see Materials and Methods).

Since the distribution of log (R) values for an alignment depends

strongly on the number of sequences in the alignment, their

phylogenetic relationship, and the length of the alignment, log (R)
values cannot be directly compared across different alignments.

Therefore, we calculated the mean and variance of log (R) values

for each alignment and transformed the log (R) values to Z-values

(number of standard deviations from the mean). Finally, for each

alignment, we divided all pairs of residues into those that are

contacting in the three-dimensional structure, and those that are

distant in the structure, and calculated the distribution of Z-values

for these two sets of residue pairs. As in previous work (e.g. [10,20])

and as defined for CASP [21], two residues were considered in

contact if their Cb distance (Ca for glycines) in the structure was

smaller than 8A
0

. Combining the data from all alignments, the left

panel of Figure 1 shows the fraction of all pairs of contacting

residues (red) and distal residues (blue) larger than a given Z-value

as a function of Z. The right panel shows, as a function of Z, what

fraction of all residue pairs with at least this Z-value are contacting

in the structure.

The left panel of Figure 1 illustrates that, indeed, a higher

fraction of contacting residues shows strong statistical dependen-

cies than distal residues. However, we also see that the difference

in the Z-distribution of close and distal pairs is only moderate.

Since there are generally many more distal pairs than close pairs,

this implies that, even at high Z-values, the majority of residue-

pairs are in fact distal in the structure (Figure 1, right panel). This

result shows that simple measures of statistical dependency, such as

mutual information, are poor at predicting which pairs of residues

are directly contacting in the structure.

The main question is why so many structurally distal pairs show

statistical dependencies in their amino-acid distributions that are

stronger than those between directly contacting residues. First,

whereas measures such as mutual information treat the sequences

in the multiple alignments as statistically independent, in reality

many of the sequences are phylogenetically closely related, which

can cause ‘spurious’ statistical dependencies to appear between

independent residue pairs which can be larger than the true

statistical dependencies between contacting pairs. Several groups

have investigated this confounding factor in contact prediction and

several methods have been proposed for correcting these spurious

phylogenetic correlations [8,9,13,14], which we will make use of

below.

Although important, many strong statistical dependencies

between distal residues remain even when spurious phylogenetic

dependencies are corrected for (see below). Some of these distant

dependencies have been suggested to be caused by homo-

oligomeric interactions [14,22]. Thus, in this interpretation, some

of the ‘distal’ pairs with strong statistical dependencies are in fact

contacting in the homo-oligomer. Although it is not clear how

many of the distal dependencies can be explained by this

mechanism, it seems likely that only a relatively small number of

residue pairs on the surface can be responsible for such homo-

oligomeric interactions.

A third explanation that has been offered for the large number

of distal pairs with strong statistical dependencies is that these

Author Summary

Whenever two residues are in close contact in the
structure of a protein, their interaction will often constrain
which amino acid substitutions can occur without
perturbing the functionality of the protein, leading to
‘‘co-evolution’’ of the residues. With the large amount of
data currently available, deep multiple alignments can be
constructed of protein sequences that likely fold into a
common structure, and several methods have been
proposed for predicting contacting residues from statisti-
cal dependencies exhibited by pairs of alignment columns.
Unfortunately, strong statistical dependencies are also
observed between many pairs of residues that are distal in
the structure. Through a comprehensive analysis of 2009
protein domains, we show that a large fraction of these
distal dependencies are indirect and result from chains of
contacting pairs that percolate through the protein. We
present a Bayesian network model that rigorously disen-
tangles direct from indirect dependencies and show that
this greatly improves contact prediction. Additionally, we
develop an informative prior that takes into account that
the probability for residues to be in contact depends on
their primary sequence separation, and that highly
conserved residues tend to participate in a larger number
of contacts. With this prior, the accuracy of the contact
predictions is dramatically improved.

Figure 1. Statistical dependencies of structurally close and distal residue pairs. Left panel: Reverse-cumulative distribution of log (R) Z-
values (horizontal axis) for structurally close (red) and distal (blue) residue pairs. Right panel: The fraction of all residue pairs that are distal in the
structure as a function of their statistical dependency (Z-value).
doi:10.1371/journal.pcbi.1000633.g001

Disentangling Direct from Indirect Co-Evolution
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dependencies are induced by indirect interactions that are mediated

either by intermediate molecules [15,23] or by chains of directly

interacting residue pairs that run through the protein and connect

distal pairs [23–25]. Indeed, for a small number of example

domains, the existence of such chains of thermodynamically

directly coupled residues has been demonstrated [23,24]. Howev-

er, the connection between thermodynamic coupling and

covariation is still under debate as there is little evidence that

thermodynamic coupling of residues is limited to covarying

positions [26].

In this paper, we comprehensively investigate to what extent

statistical dependencies between distal pairs can be explained by

indirect dependencies. The conceptual idea is illustrated in figure 2.

In this illustration, the letters reflect different residues, their

distances in the figure reflect their distances in the three

dimensional structure, i.e. only the pairs A–B, B–C, and D–E

interact directly, and the strength of the statistical dependencies

between the different pairs are represented by the thickness of the

lines connecting them. Because the pairs A–B and B–C have very

high statistical dependency, a strong dependency between A and C

is induced, which is larger even than the statistical dependency of

the directly interacting pair D–E. Any method that considers the

statistical dependencies of each pair independently would thus

erroneously assign higher confidence to the interaction of A–C

than that of D–E.

It should be noted that mutual information and variants thereof

have been used extensively for the inference of interacting nucleic

acid pairs (see [4] for a review) in the secondary structures of RNA

sequences. In these approaches too, the significance of the

statistical dependency between a pair of potentially interacting

positions is typically evaluated in isolation, i.e. independent of the

dependencies between all other pairs. However, in contrast to

protein structures, RNA secondary structures per definition consist

of disjoint pairs of directly interacting residues, i.e. those that form

Watson-Crick base pairs. Thus, for RNA secondary structures the

‘percolation’ of statistical dependencies to pairs that are distal in

the structure cannot occur (ignoring tertiary structure).

Below we show that chains of statistically dependent contacts

are very common in protein structures, explaining a significant

fraction of observed dependencies between structurally distal pairs,

and we characterize the distribution of lengths and distance

traveled by such chains. We show that a Bayesian network model

which we recently developed to predict protein-protein interac-

tions [27] can be adapted to rigorously disentangle direct from

indirect statistical dependencies between residues, and we

demonstrate that such an approach much improves the prediction

of pairs of residues that are in contact in the three-dimensional

structure. We then investigate to what extent our Bayesian

network algorithm can be further improved by incorporating a

correction for the phylogenetic dependencies between sequences

in the alignment [14], and by incorporating prior information

regarding possible interactions. In particular we develop an

informative prior that incorporates the observations that the

probability for two residues to interact depends strongly on their

distance in the primary sequence, and that highly conserved

positions in the multiple alignment tend to interact with a higher

number of other residues. We show that incorporating these

additional features into our Bayesian network model dramatically

improves the accuracy of the predictions.

Results

Distant co-evolving pairs can frequently be explained by
chains of co-evolving contacts

As mentioned above, it has been suggested that statistical

dependencies between structurally distant residue pairs can be

explained by chains of contacts that are all statistically dependent.

However, the existence of such ‘co-evolving chains’ of contacts has

only been demonstrated for a small number of examples [23,24].

To examine comprehensively and systematically to what extent

statistical dependencies between structurally distal residues can be

explained by co-evolving chains of contacts we extracted, for each

multiple alignment, all pairs of residues that showed high statistical

dependency (Zijw4). We then divided these ‘co-evolving pairs’

into co-evolving contacts and co-evolving distal pairs. As illustrated

in Figure 3, we then determined for each distal pair whether there

exists a chain of contacts that each show stronger co-evolution

than the distal pair, i.e. ZwZij for all contacts in the chain.

However, since our Z-values are in all likelihood only a very

noisy measure of the true co-evolution of pairs, we expect that

frequently one or more of the contacts in the chain may have a

lower Z-value, even if their true co-evolution is higher than the co-

evolution of pair (ij). We therefore also consider chains where

some contacts (kl) have ZklvZij and define the total score T(C)
of a chain C as the sum of the difference in Z-value for all edges

that have lower Z-value than the distal pair (ij), i.e

T(C)~
X

(kl)[C

(Zij{Zkl)H(Zij{Zkl), ð1Þ

Figure 2. Statistical dependencies between pairs of residues
reflect both direct and indirect interactions. The 5 letters (A
through E) represent 5 residues and their distances in the figure reflect
their distances in the three-dimensional structure. We assume that the
pairs A–B, B–C, and D–E are in contact and interact directly. The
thickness of the edges between pairs of nodes reflect the statistical
dependencies between the corresponding columns in the multiple
alignment.
doi:10.1371/journal.pcbi.1000633.g002

Figure 3. Illustration of a chain that explains the dependency
between two distant residues i and j. The distance between the
nodes illustrates the spatial separation and the thickness of the edges
represents the strength of the dependence. Nodes i and j can be
connected indirectly via a chain of contacts (dv8A

0
) through nodes k

and l (in blue) whose edges all have higher dependency (i.e. ZikwZij ,
ZklwZij and ZljwZij ).
doi:10.1371/journal.pcbi.1000633.g003

Disentangling Direct from Indirect Co-Evolution
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where H(x) is the Heaviside-function which is one when x§0 and

zero otherwise. For each distal co-evolving pair, we determined

the chain of contacts C that has minimal total score T(C). Since

pairs that are very distal per definition require longer chains, and

since T(C) generally grows with the length of the chain, we define

the final score S of the best path for a given pair as the average

score per contact, i.e. S~T=n, where n is the number of contacts

in the best path.

The left panel of Figure 4 shows the cumulative distribution of

the scores S of the best chains (blue curve). We see that for 6:5% of

the distal co-evolving pairs, there exists a chain with score S~0,

i.e. where all contacts in the chain have ZwZij . The median score

of the best contact path is a little larger than S~1, and the 25th

and 75 percentiles occur at S-values of about 0:5 and 2
respectively. Note that, as all distal co-evolving pairs have

Zijw4, even at a score of S~2 the contacts in the path have

Zw2 on average, meaning that they are still among the most

significantly co-evolving pairs.

To assess the significance of the cumulative distribution S we

performed a randomization test by randomly permuting the Z-

values of all contacts of each domain 100 times and determining

the S scores of the best paths that are obtained with these

permuted Z-values. The red curve in the left panel of Figure 4

shows the cumulative distribution of S-scores obtained in this

randomized set and it is immediately clear that the S-scores are

much higher for the randomized set. The right panel of Figure 4

shows, as a value of S, the ratio between the fraction of distal pairs

that can be explained by a chain with score less than S for the real

and the randomized data. Especially at low values of S the ratios

are enormous. For example, at S~0:5 the ratio is about 100,

meaning that whereas about 25% of the distal pairs can be

explained by chains in the real data, in the randomized data

virtually no distal pairs can be explained, i.e. only 0:25%. But

strong enrichment persists until much higher values of S. For

example, at S~1:5 about two-thirds of distal pairs can be

connected by a chain, whereas the percentage is less than 8% for

the randomized data.

Statistics of co-evolving contact chains
Our results show that, across essentially all protein domains for

which multiple alignments and structures are available, chains of

co-evolving contacts are common and explain a large fraction of

statistical dependencies observed between structurally distal pairs.

To gain insights in the nature of these co-evolving contact chains

in protein structures, we selected all distal pairs that are explained

by contact chains with scores Sv1:5 and obtained statistics on the

number of steps and the spatial distance covered by these chains

(Figure 5).

We see that the distance distribution of ‘explainable’ distal co-

evolving pairs is roughly exponential with a length scale of about

8 Å. Since ‘distal pairs’ are by definition at least 8Å apart, this

means that the typical length scale covered by co-evolving contact

chains is about 16Å. The right panel of Figure 5 shows the mean

number of steps in the shortest co-evolving contact chain as a

function of the structural distance of the co-evolving distal pair.

With increasing spatial separation, the number of edges in the

chain steadily increases from on average 2 steps at a separation of

8Å to 15 steps at 50Å. Interestingly, the increase in the average

number of steps as a function of distance is almost perfectly linear

and corresponds to 3:25+0:05Å per step. We thus see that

‘typical’ co-evolving contact paths contain about 16=3:25&5
steps, demonstrating that statistical dependencies typically perco-

late along paths with multiple steps. We also note that some chains

are very long, consisting of up to 20 steps, connecting residues that

are as far as 60Å apart in the structure.

Bayesian network model
The insight that many of the statistical dependencies between

structurally distal pairs result from chains of co-evolving contacts

has important consequences for contact prediction methods. That

is, any method that aims to predict contacting residues from

statistical dependencies should clearly take into account indirect

dependencies that are induced by such chains.

In [27] we developed a general Bayesian network model for

calculating the probability of a multiple alignment of protein

sequences taking into account dependencies between amino acids

at all possible pairs of positions. We refer the reader to [27] for a

comprehensive explanation of the method. Briefly, our model

assumes that the sequences in a multiple alignment D (the data)

are drawn from an (unknown) underlying joint probability

distribution P(x1,x2, . . . ,xl) with l the width of the alignment

and xi the amino acid at position i. Profile hidden Markov models

typically assume that the amino acids at different positions are

independent so that one can write P(x1,x2, . . . ,xl)~Pl
i~1 Pi(xi),

with Pi(x) the probability distribution of amino acids at position i.
Note that, since there are 20 amino acids (disregarding gaps), such

models will have 19|l parameters in total. Our model of

P(x1, . . . ,xl) allows general dependencies, such that the probabil-

ity for an amino acid at position i depends on the amino acids at

other positions. Note that, if the residue at i is dependent on a

residue at one single other position j, there are already

20 � 19~380 parameters in the distribution P(xijxj), and that

models with dependencies on two other positions, i.e. P(xijxj ,xk),
would have 7600 parameters for each residue. Given the current

amount of sequence data, it is certainly reasonable to consider

models with single dependencies, but there is hardly ever enough

data to meaningfully estimate 7600 parameters per position. Our

model therefore only considers pairwise conditional dependencies

of the form P(xijxj).

Any model that considers only pairwise conditional dependen-

cies factorizes the joint probability P(x1, . . . ,xl) as a product

P(x1, . . . ,xl)~Pl
i~1 P(xijxp(i)), where p(i) is the single other

Figure 4. Most distal co-evolving pairs can be explained by
chains of co-evolving contacts. Left panel: Cumulative distributions
for the number of distal pairs (ij) (dijw8A

0
) that co-evolve (Zijw4) that

can be explained by chains of co-evolving contacts as a function of the
score S of the best chain (see text). The blue line shows the distribution
for the true data and the red curve for the randomized data. Right
panel: Ratio (fold-enrichment) of the fraction of distal co-evolving pairs
that can be explained by chains versus the fraction that can be
explained by chains from the randomized data. The vertical axis is
shown on a logarithmic scale.
doi:10.1371/journal.pcbi.1000633.g004

Disentangling Direct from Indirect Co-Evolution
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position which the residue at position i depends on (note that

independence, i.e. P(xijxp(i))~P(xi) is contained in this general

model). Our Bayesian network model is the most general model of

this form. In particular, we do not attempt to estimate the

conditional probabilities P(xijxj) but rather treat these conditional

probabilities as nuisance parameters that we integrate out in

calculating the likelihood of the alignment. In addition, and

importantly, we do not consider only a single ‘best’ way of

choosing which other position p(i) each position i depends on, but

rather we sum over all ways in which the dependencies can be

chosen. Note that if we consider each column of the alignment as a

node in a graph and connect each node i to the node it depends

on, p(i), then any consistent set of dependencies p , i.e. any set of

dependencies p that does not introduce cycles in the graph,

corresponds to a spanning tree of this graph. Thus, the sum over all

consistent ways in which we can assign dependencies is in fact the

sum over the set of all possible spanning trees of our graph. As

explained in [27] and the Materials and Methods section, all integrals

over the unknown conditional probabilities P(xijxj) can be

performed analytically and, importantly, the sum over all spanning

trees can be calculated as a matrix determinant using a

generalization of Kirchhoff’s theorem [28]. It is thus feasible to

do inference with this general Bayesian network for a large

number of multiple alignments, including alignments that are

hundreds of columns wide.

Posterior probability of a pairwise interaction
In our model the joint probability of a multiple alignment is

given as the sum over all possible spanning trees of node-

dependencies, where each spanning tree is weighted according to

the product of statistical dependencies across all edges in the

tree (see Materials and Methods). Here the statistical dependence

between any pair of positions (ij) is given by the ratio

Rij~P(Dij)=½P(Di)P(Dj)� of the joint probability of the alignment

columns P(Dij) and the product P(Di)P(Dj) of their marginal

probabilities. Since the number of edges in any spanning tree is

limited, there is a natural ‘competition’ in this model between the

edges to be included in the spanning tree. Therefore, spanning

trees with the highest statistical weight will only use edges whose

statistical dependence can not be explained by chains of other

edges with higher dependency, and edges between pairs with

indirect statistical dependency will thus only appear in spanning

trees with relatively low statistical weight. The posterior probabil-

ity P((ij)jD), given the data D, for a pair (ij) to interact directly

can thus very naturally be quantified within our model by

calculating the sum of the statistical weights of all spanning trees in

which the edge between the pair (ij) exists. The calculation of this

posterior is illustrated in Figure 6.

Note that in this calculation P((ij)jD) depends on the statistical

dependencies between all pairs of positions and that all possible

spanning trees are included in the calculation. Roughly speaking, a

high posterior P((ij)jD) indicates that the edge (i,j) is included in

most spanning trees that have high probability. In this way indirect

dependencies are accounted for in a rigorous way, derived from

first principles, and without any free parameters.

Posterior probabilities significantly improve contact
predictions

To compare the performance of the traditional mutual

information-based measurement with the predictions of our

model, we calculated mutual information Iij , our analogous

measure log (Rij), as well as the posterior probabilities P((ij)jD)
for each pair of positions (ij) for each domain in our set of 2009
Pfam alignments with available three dimensional structure.

Different domains have widely varying widths and also widely

varying numbers of sequences in the alignments. With regard to the

former, it is well-known that the number of pairs that are in contact

in three-dimensional protein structures increases with the length of

the protein sequence. To compare prediction accuracies for proteins

with different lengths, the consensus, also used by the CASP

assessors [21], has been to compare the number of predictions per

residue. However, although there is a large variation across

domains, we find that the number of contacts scales slightly super-

linearly, with an exponent of roughly 1:1 for all pairs of residues,

and up to 1:6 if we consider only pairs of residues that are distal in

the primary sequence (see Figure S1). That is, the number of

contacts per residue grows with the length of the domain, making it

problematic to use predictions-per-residue as a common reference

for domains of different length. We therefore decided to compare

prediction accuracies as a function of the number of predictions

Figure 5. Statistics of co-evolving contact chains. Left panel: Reverse-cumulative distribution of the spatial distances between co-evolving pairs
that can be explained by chains of co-evolving contacts of score Sv1:5. The vertical axis is shown on a logarithmic scale. The dotted line shows a fit
to an exponential distribution P(dwx)!e{x=8 . Right panel: Number of steps in the shortest co-evolving contact chain as a function of the spatial
distance of the co-evolving pair. The blue line shows the mean distance and the red dotted lines show mean plus and minus one standard deviation.
The black dotted line shows a linear fit, the fitted slope of which corresponds to an increase in distance by 3:25+0:05Å per additional contact in the
chain.
doi:10.1371/journal.pcbi.1000633.g005

Disentangling Direct from Indirect Co-Evolution
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relative to the total number of contacts in the protein. In particular,

we compare predictions for different proteins at the same sensitivity,

i.e. the fraction of all true contacts that are predicted.

As mentioned previously, log (R) values typically increase with

the number of sequences in the alignment and also depend on the

phylogenetic distances of the sequences present in the alignment,

such that log (R) values cannot be directly compared across

different domains. Therefore, for each domain we produced three

lists of predicted edges, one sorted by mutual information, one by

log (R), and one by posterior probability P((ij)jD). For different

fractions x, we selected the top edges from each list such that the

fraction of all true edges among the predictions (sensitivity) equals

x, separately for each domain. For each value of x and all three

measures, we then calculated the average positive predictive value,

i.e. the fraction of all predicted edges that are truly in contact in

the three-dimensional structure of the domain, by averaging over

all domains. These results are shown in the left panel of Figure 7.

Not surprisingly, residues that are close in the primary sequence

are much more likely to contact each other in the structure than

distant pairs, see [20] and figure 11 below. In particular, residues

that are neighbors in the primary sequence are (by the definition

used) always contacts and residues at distance 2 are contacting

almost 90% of the time, whereas contacts between residues more

distal in the primary sequence are relatively rare. Therefore, if one

considers all contacts, the accuracy of the predictions is dominated

by the large number of contacts between residues at primary

sequence distances 1 and 2, which almost always exist, and are

therefore not informative regarding protein structure. Therefore,

the middle panel of Figure 7 shows the results when considering

only pairs that are at least 3 residues apart in primary sequence. In

addition, following the practice established in the contact

prediction literature, we also show results when considering only

pairs at least 12 residues apart in primary sequence (Figure 7, right

panel) and at least 24 residues apart (Figure S2).

As expected, the accuracy of predictions for mutual information

and log (R) are very similar and demonstrate that these two

measures can be considered equivalent in this context (we will only

refer to log (R) from hereon). Most importantly, Figure 7 shows

that the predictions based on posterior probabilities (red curves)

outperform the other methods by a large margin, i.e. with an

almost 50% larger PPV at some sensitivities. This confirms that

rigorous treatment of indirect dependencies strongly improves

contact predictions. It should be noted, however, that at cut-offs

where the positive predictive value is reasonably high, sensitivities

are only on the order of one percent. It is thus clear that at high

PPV, our method in its current form can only predict a minor

fraction of all true interacting pairs, which is in accordance with

results from previous studies [10,14].

Figure 6. Illustration of the calculation of the posterior probability. For the sake of simplicity, we here show an example for an alignment
with only 3 columns. The posterior probability for edge (1,2) is the statistical weight of all spanning trees that contain this edge relative to the weight
of all possible spanning trees.
doi:10.1371/journal.pcbi.1000633.g006

Figure 7. Accuracy of contact predictions for all 2009 alignments. Shown are the performances of mutual information (black), log (R) (blue),
and the posterior probabilities (red). The vertical axis shows mean positive predictive value (PPV, solid line) plus and minus one standard error
(dashed lines) as a function of sensitivity (horizontal axis, shown on a logarithmic scale). The left panel shows predictions for all residue pairs, the
middle using only predictions for residues separated by at least 3 positions in the primary sequence, and the right panel for pairs separated by at
least 12 positions.
doi:10.1371/journal.pcbi.1000633.g007
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For completeness, we also considered the accuracy of prediction

that would be obtained if, instead of summing over all possible

spanning trees, we determine the maximum-likelihood tree and

use only the links in this tree in our predictions, i.e. as done in [15].

As shown in Figure S3, although this leads to an improvement

over using log (R), the accuracy of the posterior probability

measure by far outperforms the predictions based on the

maximum-likelihood tree. This nicely demonstrates the value of

summing over all possible spanning trees which is employed in the

calculation of the posterior for a given edge.

The posterior removes indirect dependencies and
predicts contacts with weaker statistical dependency

To demonstrate that our model successfully prevents the

prediction of interactions between pairs with indirect dependency,

we collected all distal pairs that showed significant statistical

dependence (Zw4) and ordered them by the score of the best

co-evolving contact chain that can explain their statistical

dependency, i.e. as shown in Figure 4. Figure 8 shows the

reverse-cumulative distributions of the posteriors that these distal

pairs obtain in our model for different cut-offs on the best path

score S, as well as the distribution of posteriors of all contacting

pairs with Zw4.

First of all, we see that co-evolving contacts have dramatically

higher posteriors than distal pairs in general, which confirms the

improved accuracy of contact predictions that our method

accomplishes. Moreover, we see that distal pairs that can be

explained with the most strongly co-evolving contact chains, i.e.

with the lowest scores S, obtain the lowest posterior probabilities.

For example, less than 10% of the distal pairs with a chain at score

S~0 have a posterior larger than 0:2 and virtually no pair has a

posterior as large as 0:5. As the score S of the best chains increases,

so generally do the posteriors. This confirms that the posterior as

calculated by our model correctly captures the extent to which a

statistical dependency is direct.

Instead of selecting all distal co-evolving pairs with contact

chains below some score S, we also selected all co-evolving pairs

with S scores larger than various cut-offs and determined the

distributions of their posteriors. These distributions are shown in

Figure S4 and illustrate that distal co-evolving pairs with

sufficiently large score S obtain posteriors comparable with those

of co-evolving contacts. This suggests that the particular subset of

distal co-evolving pairs that cannot be explained by any chain of

contacts are likely true interacting residues, which may for

example form contacts in the interaction surface of oligomers of

the domain.

To further demonstrate that our Bayesian network model

correctly distinguishes direct from indirect interactions, we also

investigated the extent to which the posterior identifies structurally

close pairs independent of the direct statistical dependency of the

pair. We divided all pairs into bins according to their log (R) Z-

value and calculated, for each bin, the distribution of structural

distances of all pairs, and for the subset of pairs that have posterior

probability larger than 0:2. Figure 9 shows, as a function of the Z-

value of the pairs, the median, 25th, and 75th percentiles of the

structural distance distributions of all pairs (blue) and those with

posterior larger than 0:2 (red).

At large Z-values the red and blue curves are essentially

identical. In this regime, we are only looking at the most strongly

dependent residues in each alignment and any spanning tree of

high likelihood must contain edges between these pairs of residues,

i.e. almost all of these edges have high posterior probabilities.

However, already at Z-values as high as 8, the median distance of

all pairs starts to increase rapidly, from roughly 8Å to more than

20Å at Z-value 0. This illustrates again that even at very high

values of log (R) a substantial fraction of pairs are distal in the

structure. In contrast, the subset of residues with high posterior

probability remains close over the whole range of Z-values, down

to Z-values of almost 0. In fact, strikingly, there is very little change

in the distribution of structural distances for Z-values from 0 to 8.

This is very significant because it demonstrates that, independent

of the amount of direct statistical dependency between a pair of

positions, a high posterior is indicative of close structural distance.

Moreover, it demonstrates that our Bayesian network model can

detect truly interacting pairs of residues even if they show only a

small amount of statistical dependency.

Figure 8. Posteriors reflect the extent to which co-evolving
pairs can be explained by contact chains. Shown are the reverse
cumulative distributions of the posteriors of distal co-evolving pairs
(Zw4) that can be explained by contact chains of scores S~0 (red),
Sv0:5 (dark blue), Sv1:5 (light blue), and for all distal co-evolving
pairs (green). For comparison the reverse cumulative distribution of
posteriors for co-evolving contacts (Zw4) is also shown (black).
doi:10.1371/journal.pcbi.1000633.g008

Figure 9. The posterior predicts structurally close pairs
independent of their direct statistical dependence. The struc-
tural distance distribution (vertical axis) is shown for all pairs (blue) and
for pairs with posterior probability larger than 0:2 (red) as a function of
the Z-value of the log (R) statistic (horizontal axis). The solid lines show
the medians of the distributions and the dashed lines the 25th and 75th
percentiles.
doi:10.1371/journal.pcbi.1000633.g009
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The Bayesian network model with phylogenetic
correction significantly outperforms existing methods

One of the key problems in contact prediction is the large

number of distal pairs with high statistical dependency. In the

foregoing sections we have shown that many of these distal co-

evolving pairs are indirect, induced by chains of dependencies

between contacting residues, and we have shown that our

Bayesian network model can rigorously disentangle direct from

indirect dependencies, thereby greatly improving contact predic-

tions. In the remaining sections we develop a number of extensions

of our basic method to further improve the predictions.

As mentioned in the introduction, the phylogenetic relationships

of the underlying sequences is a major confounding factor when

determining the statistical dependency between several residues

(nicely explained in eg [9,13]) and it is a difficult task to ‘subtract’

from the apparent statistical dependency between two residues the

part that is purely due to phylogeny. The best way to address this

difficulty would of course be to construct a phylogenetic tree of all

sequences in the multiple alignment and to explicitly model the

evolution of the sequences along the tree, using an evolutionary

model that takes dependencies between positions into account.

Unfortunately, it appears that such a rigorous approach is

computationally intractable for several reasons. First, one would

either have to accurately reconstruct the phylogenetic tree, which

is very challenging for large sets of sequences, or sum over all

possible trees, which is computationally infeasible. The second

issue is the evolutionary model. In our Bayesian network model,

the conditional probabilities P(xijxj) are different at every pair

(ij), introducing 380 parameters per pair, which are integrated

over. However, for the evolutionary case analytic integration is no

longer possible, which makes such models intractable. Indeed,

models that treat dependencies between residues in an explicit

phylogenetic setting [12,15] consider much simpler evolutionary

models in which only correlations in the overall rates of mutations

at different positions are considered and not the specific identities

of the mutations.

As an alternative to explicit phylogenetic methods, recently a

number of simple ad hoc phylogenetic corrections have been

proposed, which do not involve a reconstruction of the

phylogenetic tree, which can be efficiently calculated, and which

clearly improve contact predictions [13,14]. One of these

corrections, the so-called average-product correction APC has been

shown to provide the most accurate contact predictions [14]. It is

based on the idea that the statistical dependency between every

pair of columns is the sum of a true statistical dependency and a

background dependency due to the phylogenetic relationships. In

the APC it is assumed that the background dependency is a

product of independent factors associated with the two positions.

Since a given position will interact with only a small fraction of

other positions, the background dependencies can be estimated by

calculating, for each column, its average statistical dependence

with all other columns. The background dependence for each pair

is then subtracted to obtain a corrected statistical dependency. As

described in Materials and Methods, we adapted the APC to our

Bayesian model, essentially replacing log (R) with a corrected

version log (Rc) that subtracts out the background dependency.

These log (Rc) values can then be used, analogously to log (R)
values, to determine corrected posterior probabilities (see Materials

and Methods).

In figure 10, we show the accuracy of our predictions using the

corrected posterior probabilities (in blue) and compare it with

predictions based on mutual information using the average-

product correction APC (in black). The latter has been recently

shown to outperform other existing methods [14]. The red curves

show the performance of the method without the phylogenetic

correction, i.e. as was shown in Figure 7. It is clear that the

predictions based on posterior probability combined with the

phylogenetic correction significantly outperform the current best

methods. For example, considering pairs at primary sequence

separation at least 3, the sensitivities at PPV of 0:5 are 0:5% for the

uncorrected posterior, about 1% for the APC, and about 2% for

the corrected posterior. The clear improvement in prediction

accuracy is also evident for pairs with primary sequence separation

of at least 24 amino acids (Figure S5).

Although Figure 10 combines results of the predictions on

protein domains of differing sizes, the fact that the true interactions

are a much smaller fraction of all possible interactions for long

sequences makes the prediction task significantly harder for long

sequences, see e.g. [29]. In Figures S6, S7, S8, and S9, we show

the performance of the various methods separately for short,

medium length, and long sequences. We find that, independent of

the length of the sequences, our method clearly outperforms

current methods.

Co-evolution of residue pairs is independent of primary
sequence separation

In protein structure prediction, where prediction of contacts at

large sequence separations is particularly important [21], it is well-

known that contact prediction accuracy generally decreases with

increasing sequence separation ([20,21], also seen in figure 10).

Figure 10. Improved accuracy of contact predictions when a phylogenetic correction is included. In blue, we show the performance of
the phylogenetically-corrected posterior probabilities, in black the performance of the predictions based on the average-product corrected (APC)
mutual information [14], and in red the performance of the posterior probability without phylogenetic correction. Curves were calculated as in
figure 7.
doi:10.1371/journal.pcbi.1000633.g010
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This is a direct consequence of the fact that the fraction of contacts

decreases rapidly as a function of sequence separation (roughly as

1=d , where d is the primary sequence separation, see the left panel

in figure 11), which makes the prediction problem much more

difficult for contacts at large primary sequence separations. Vice

versa, because contacts at large primary distances are rare, they

are most informative for protein structure prediction [21].

The left panel of Figure 11 shows that there are several regimes

in the distribution of contact-density at different primary sequence

distances. First, residues at distance 1 and 2 are almost always

contacts and thus contain very little information about protein

structure. In contrast, at distances 3 and 4 the fraction of contacts

has already dropped to roughly 50%, i.e. about 1 bit of

information per contact, and the fraction then drops quickly,

reaching about 5% at primary sequence separation 10. For

distances between 10 and 30 the fraction stays roughly constant at

5% and for even larger distances it drops approximately as 1=d.

Clearly, the information contained in Figure 11 regarding

protein structures can be used to improve contact prediction, i.e.

by assigning prior probabilities to different contacts based on their

distance in primary sequence. However, before pursuing this we

ask to what extent contacts at different primary sequence distances

show statistical evidence of co-evolution. The almost ubiquitous

contacts at primary sequence distances 1 and 2 are probably

mainly the result of geometrical constraints, the contacts at

intermediate distances are likely often part of the same secondary

structure, and the very distal contacts might correspond to

contacts between different secondary structure elements. Given

the different nature of these contacts at different primary sequence

separations, one might expect very different distributions of

statistical dependencies, and this would clearly affect contact

prediction.

To investigate this, we determined the distribution of the Z-

values of corrected log (Rc) for all contacts at each primary

sequence separation d (Figure 11, right panel). Interestingly, the

distribution of statistical dependencies is almost constant across the

entire range of primary sequence distances. The only significant

deviation is a slight peak at sequence separation 4, corresponding

to residues on the same side of alpha helices ([30] and data not

shown), which apparently have slightly increased statistical

dependency compared to other contacts. However, far more

important for the purpose of predicting protein structure is that,

with regard to the statistical dependency between alignment

columns, all contacts appear to be essentially equal, so that the

evidence of statistical dependency between residues can be treated

completely independently of the prior information regarding

which contacts are more or less likely to exist based on general

structural considerations. From a biological and evolutionary

perspective this result shows that, interestingly, different ‘types’ of

contacts apparently lead to similar evolutionary constraints.

Influence of entropy on contact prediction
An important, but poorly understood issue in covariation-based

contact prediction is the influence of conservation on prediction

accuracy. The ‘conservation’ shown by a position in a multiple

alignment can be most generally quantified by the entropy of the

amino acid distribution in the column. It is well known that this

column entropy can vary immensely along protein sequences,

most probably due to functional and structural constraints. One

would intuitively expect that a position that is contacting many

other residues would generally have to satisfy more constraints and

would thus be expected to show relatively low entropy.

To investigate this, we calculated, for each position in each

domain, the column entropy and the number of contacts of the

corresponding residue. As shown in the left panel of Figure 12

there is indeed a clear negative correlation between the column

entropy and the number of contacts. For very low entropies, i.e.

less than 1, the average number of contacts is constant and

approximately 10:5. As the entropy increases from 1 to about 2:75
(which is close to the entropy of a uniform distribution of amino

acids) the average number of contacts drops to almost 6. That is,

very low entropy columns have on average almost twice as many

contacts as high entropy columns. Since the number of residues in

a sphere of 8Å around the Cb atom of an amino acid (which is

exactly our definition of a contact) is commonly used as a measure

for how strongly a residue is buried in the core of the protein (e.g.

[31]), the left panel of Figure 12 reiterates the well-known

dependence between surface accessibility and conservation [32].

It is well appreciated in the literature that the variation of

entropy across positions has important effects on predictions based

on statistical dependencies. For example, a comparative study of

different prediction methods has shown that commonly used co-

Figure 11. Occurrence of contacts and co-evolution as a function of primary sequence separation. Left panel: The fraction of residue
pairs that are in contact in the structure as a function of primary sequence separation d . The solid blue line shows the mean, the dashed blue lines the
mean + one standard error. The dashed black line shows the function 1=d . Right panel: The Z-value distribution of the log (R) statistics for all
contacting pairs at different primary sequence separations. The blue line represents the median and the red lines represent the 5th, 25th, 75th and
95th percentiles, respectively. The Z-value was calculated with respect to the mean and standard deviation of the log (R) distribution of all pairs
(including distal ones). In both panels only sequence separations up to 100 residues are shown as the curves become very noisy for larger sequence
separations.
doi:10.1371/journal.pcbi.1000633.g011
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variation measures differ in their sensitivity to per-site variability

and generally, each method has highest accuracy within its specific

preferred range of variability [10]. In analogy to our analysis of

statistical dependency as a function of distance in primary

sequence (Figure 11, right panel), we investigated how the

statistical dependency that different contacts exhibit depends on

the column entropies of the residues. As before, we transformed

the log (R) values to Z-values and determined the Z-value

distribution of all contacts as a function of the sum of the

entropies of the corresponding columns (Figure 12, blue lines). We

see that contacts indeed show a strong correlation between the

sum of column entropies and statistical dependency. For low

entropy columns the Z-values are mostly negative, and they

become only positive at an entropy sum of about 3. It is thus clear

that contact predictions that use mutual information (log (R)) will

preferentially predict contacts between residues of high entropy

columns.

That mutual information and log (R) is low for contacts with

low entropy columns is to a certain extent unavoidable. It is a basic

result of information theory [17] that the mutual information

between two variables cannot be larger than the minimum of the

marginal entropies of the two variables. Intuitively, one could

imagine a position that is so constrained by its function and its

many contacts that only a single amino acid is viable at the

position. Obviously, since this position shows no variation

whatsoever it cannot display any signs of statistical dependency

with any other column, even though it may contact many other

residues. This is a basic limitation of using statistical dependency

for contact prediction that cannot be avoided. However, it has

been argued that modified versions of mutual information, such as

the product or sum correction [14], besides correcting for the

phylogenetic background signal, are also able to better identify co-

evolution between less variable residues. The red lines in the right

panel of Figure 12 show the mean and standard deviation of the Z-

values of product-corrected statistical dependency log (Rc). We see

that indeed, the correlation between the Z-values and the sum of

column-entropies is significantly reduced when using log (Rc), and

low entropy contacts no longer show negative Z-values on

average.

Still, a clear correlation between the column-entropy sum and

the statistical dependency remains even for log (Rc). On the one

hand this may be the result of the inherent inability to ‘detect’

statistical dependency when columns are very conserved. On the

other hand, it is also conceivable that those positions that have low

entropy, and that form many contacts, may generally show weaker

statistical dependency per contact. For example, it could be argued

that hydrophobic residues that lie in the core of the protein and

thus contact many other residues are less variable because they

need to remain on the interior and therefore do not allow for

changes towards non-hydrophobic residues. Such residues may

not be constrained so much by their contacting residues, but rather

by the necessity to stay away from the solvent-exposed protein

surface, leading to relatively weak statistical dependencies with the

contacting residues.

Incorporation of prior information improves prediction
accuracy

So far our Bayesian method assumes that a contact between any

pair of positions is a priori equally likely. However, as seen in the

previous sections, the probability for a contact to occur depends

strongly on the primary sequence distance between the residues

and the column-entropies of the residues. We therefore developed

an ‘informative prior’ which makes the prior probability for a

contact to occur depend on both of these variables. For a given

pair of positions, let d be the distance in the primary-sequence of

the two positions, and let H denote the sum of the column-

entropies of these positions. As described in Materials and Methods,

we estimated the fractions f (d,H) of pairs at sequence distance d
and entropy-sum H that are contacts and using these fractions

constructed prior probability distributions that can be easily

incorporated into our method.

Figure 13 shows the results of the contact predictions performed

with our Bayesian network model incorporating the informative

prior and using posterior probabilities (blue lines). For comparison

the results using posteriors based on log (Rc) (the blue lines in

Figure 10) are shown as well (red lines). We see that, for the set of

all pairs, and all pairs that are at least d§3 apart in primary

sequence, the incorporation of the prior probability dramatically

improves the predictions. For example, looking at all pairs, our

method can predict roughly 40% of all existing contacts at a

positive predictive value of 80%. If we restrict ourselves to non-

trivial contacts, i.e. those with primary-sequence distance d§3, we

find that at a positive predictive value of 50% our method reaches

a sensitivity of roughly 20%. For comparison, without the prior an

approximately 10 times lower sensitivity is reached at the same

positive predictive value.

Figure 12. Contact-degree and co-evolution as a function of positional entropy. Left panel: Average number of contacts of a residue (solid
line) as a function of the entropy of its alignment column. The dashed lines denote mean + one standard error. The right panel shows the Z-value
distribution of both log (R) (blue) and log (Rc) (red) for all contacting pairs versus the sum of entropies of the corresponding columns. The solid lines
denote the medians and the dashed lines the 25th and 75th percentiles.
doi:10.1371/journal.pcbi.1000633.g012
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Somewhat surprisingly, we find that the quality of the

predictions for distal pairs d§12 is slightly reduced by the

incorporation of the prior, especially at low sensitivities. We

speculate that this is a result of the fact that we constructed the

prior distribution assuming that f (d,H) is independent of the

length of the domain itself. This approximation breaks down most

significantly when focusing on distal pairs because, whereas

contacts at short primary distances occur in all domains, contacts

at long primary distances are more common in long domains.

However, it should be noted that, given that contacts at this

primary-sequence distance are rare, one would most likely need to

perform predictions at reasonably high sensitivity, i.e. 10% or

more. In this regime, the performance with prior is comparable to

or even a tiny bit better than without prior.

Discussion

One of the key problems in using co-evolution analysis to

predict residue contacts is that so many structurally distal pairs

show strong statistical dependencies [14–16]. A number of reasons

have been proposed to explain this fact. One explanation is that

sequences in multiple alignments are generally phylogenetically

related and these phylogenetic relationships can induce strong

apparent statistical dependencies between many pairs of columns.

Although there is of yet no computationally tractable way for

treating the phylogenetic dependencies in a rigorous manner, i.e.

by explicitly modeling the evolution of the sequences including

arbitrary dependencies, several procedures have been proposed

that can correct at least for the main phylogenetic signal

[8,9,14,15]. Indeed the application of such methods has been

shown to very significantly improve contact predictions [9,14,15].

Still, even with the current best phylogenetic corrections, strong

statistical dependencies remain evident between many structurally

distal pairs. One proposed explanation that has received little

attention in the contact prediction literature is that statistical

dependencies between distal pairs can be induced by the

percolation of statistical dependencies along chains of co-evolving

contacts [23,24]. Here we have shown that such chains of co-

evolving contacts are indeed pervasive across all protein domains

and that they explain many if not most of the distal co-evolving

pairs. Statistical analysis shows that these chains travel on average

3:25+0:05Å per contact, and that the total distance covered by

these chains is exponentially distributed with an average of 16Å,

corresponding to a chain that consists of 5 contacts. Note that,

whereas residues up to 8Å apart are generally considered contacts,

our results strongly suggest that the typical distance between co-

evolving contacts is only 3:25Å. Another interesting observation is

that, although it is likely that contacts between residues at different

distances in primary sequences are different in nature, our analysis

shows that the statistical dependency shown by contacts is

completely independent of their primary-sequence separation.

This is an important insight because it demonstrates that co-

evolutionary analysis is equally informative about close and distal

contacts.

We have adapted our recently evolved Bayesian network model

[27] in order to assign, to any pair of positions, a posterior

probability that they interact directly. This posterior probability

rigorously takes into account all possible ways in which the

statistical dependence between the pair can be explained in terms

of chains of other co-evolving pairs. Analysis of the predictions of

this model shows that it correctly detects distal pairs that can be

explained by co-evolving contact chains, and that it also allows one

to detect true interacting pairs that have only weak direct statistical

dependency.

Recently Halabi et al [33] have shown that, by a spectral

analysis of the matrix of statistical dependencies between positions,

one can identify so called ‘protein sectors’: sets of positions that co-

evolve significantly with each other, but that are relatively

independent of the positions in other sectors. Since in [33] a

rather simple measure of direct statistical dependency is used, we

speculate that a much more accurate identification of protein

sectors could be obtained by using statistical dependencies as

assessed by our posterior probabilities.

While finishing the work in this study, a paper appeared that also

aims to disentangle direct from indirect interactions [22]. Like our

approach, [22] models the joint probability of sequences in the

multiple alignment in terms of a set of pairwise interactions. What is

appealing about the approach of [22] is that it is based on the more

‘physical’ assumption that an interaction energy is associated with

each pairwise interaction such that a total interaction energy can be

calculated for each sequence, and that the probability to observe a

particular sequence is given simply by the Boltzmann distribution in

terms of this total energy. However, the great disadvantage of this

model is that its solution requires a heuristic approximation and is

computationally very expensive to calculate. For example, in [22]

the authors were forced to restrict themselves to only 60 positions in

the alignment, and even then the calculations for a single alignment

took several days. Therefore, an application of the approach of [22]

on as large a scale as in this work, with thousands of multiple

alignments of up to several hundred positions, is not feasible. In

addition, it is not clear how the approach of [22] could

accommodate a phylogenetic correction, which would be necessary

to obtain a competitive performance with this method.

Figure 13. Improved accuracy of contact prediction when an informative prior is included. In blue, we show the performance of the
posterior probabilities that take primary-sequence separation and column entropy into account. For comparison we show in red the performance of
the posteriors with phylogenetic correction but uniform prior, which are the same as the blue lines in Figure 10.
doi:10.1371/journal.pcbi.1000633.g013
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Although the disentangling of direct and indirect statistical

dependencies strongly improves contact predictions, and incor-

porating a phylogenetic correction further improves the perfor-

mance, the predictions are still far from perfect. In particular, at

reasonably high positive predictive value the sensitivity amounts

to less than 10% of all true contacts. Although it is clear that

contact predictions based only on statistical dependencies could

be further improved, for example by a more rigorous treatment of

the phylogenetic dependencies, we believe that it is unlikely that

such improvements would dramatically enhance the perfor-

mance. First of all, simple inspection of the data shows that a

large number of the pairs that are contacts in the sense that they

are less than 8Å apart, really show no sign of co-evolution at all.

That is, a large fraction of ‘contacts’ may simply not interact

directly, and these obviously can never be detected using

statistical dependence measurements. On the other end of the

scale are residues that contact so many others that they are very

strongly constrained, and show almost no variability in evolution.

For such highly conserved residues it is also inherently impossible

to identify their interaction partners using co-evolutionary

analysis.

We thus believe that the largest further improvements to

contact prediction are to be expected from incorporating

information other than statistical dependency. To illustrate that

additional information can be easily incorporated into our model,

we developed an informative prior that takes into account that

the likelihood of a contact to exist depends on the primary-

sequence distance of the residues, and that highly conserved

residues tend to have a higher number of contacts. The

incorporation of even this simple additional information already

leads to dramatic improvements in contact prediction. Clearly

more powerful priors could be developed that take into account

more sophisticated structural knowledge. In addition, in our

current method we integrate over all possible joint probabilities

for pairs of interacting residues, effectively assuming that all

possible joint probability distributions are equally likely. Here too

improvements could likely be made by taking into account prior

knowledge on which joint probability distributions are more or

less likely for interacting pairs of amino acids. Ultimately the most

satisfying approach would be to combine our approach with

direct structural modeling, i.e. somewhat along the lines of the

approach taken in [34].

Following the plausible intuition that, the more different kinds

of information are taken into account, the greater the prediction

accuracy that can be obtained, several machine learning and

statistical methods have been proposed that incorporate a much

larger number of different features (see [20,34,35] and references

therein). Besides primary sequence separation and conservation,

these methods include features such as domain length, relative

solvent accessibility, predicted secondary structure, the amino acid

composition in short windows around the positions of interest,

chemical properties of the amino acids, and contact potentials.

Due to varying training and test sets and varying standards of

evaluation, it is very difficult to compare the performance of our

method with these approaches. However, some principal differ-

ences between these methods and ours should be noted. First, all

these methods rely on training sets to fit parameters, so that

additional methods are required to avoid over-fitting, whereas our

method is essentially without any tunable parameters and does not

require any training sets. Second, some of these methods are

rather ad hoc ‘black box’ methods, e.g. neutral networks [20] or

support vector machines [35], that use partially redundant sets of

features, from which it is typically hard to derive mechanistic

insights. In contrast, our method is derived directly from first

principles. In any case, the results that we have presented show

that it is crucial to take indirect dependencies into account when

incorporating co-evolution information. We have provided a

rigorous method for doing so and it is clear that any contact

prediction method that incorporates co-evolution information

would strongly benefit from using our method for disentangling

direct and indirect dependencies.

Whereas we have here applied our method to predict contacting

residues in a single protein, it is straight forward to use the same

method for predicting contacting residues between pairs of

proteins that are known to interact. That is, given two set of

orthologs proteins s1 and s2, for which it is known that each

member of set s1 interacts with the corresponding member of set

s2, we can simply concatenate the multiple alignments of s1 and s2

into one longer multiple alignment, and apply our method to this

longer alignment.

More generally, our method provides a computationally

tractable extension of weight matrix models to take into account

arbitrary pairwise dependencies, and there are a number of more

general applications that we envisage pursuing in the future. First,

our method can be generally used to ‘score’ multiple alignments in

a way that includes pairwise dependencies. This could be used to

discover subfamilies within large multiple alignments or to

generally refine multiple alignments. Since the performance of

alignment-based contact prediction methods is expected to depend

strongly on the quality of the alignments, such a refinement may

further improve contact prediction. Finally, another attractive

application is to develop a regulatory-motif finding algorithm that

takes into account arbitrary pairwise dependencies between

positions.

Materials and Methods

Domain sequences and structures
Domain alignments and the mappings from domains to

available structures in the PDB database were downloaded from

the Pfam database [19,36]. We only used Pfam A, which is the

high-quality and manually curated part of Pfam [19]. For each

Pfam domain with at least one known structure, we reduced the

alignment to positions corresponding to match states of the

corresponding Pfam hidden Markov model with no more than 20
percent gaps. The removal of columns with many gaps is necessary

as gaps can cause spurious correlations (see below) and make it

difficult to compare the phylogenetic background signal between

different columns. We removed from each alignment all multiple

copies of identical sequences as well as sequences that had more

than 50 percent gaps with respect to the match states.

Additionally, alignments containing less than 100 sequences or

less than 50 columns were discarded. To keep computational times

limited we also removed alignments with more than 400 columns.

For each Pfam alignment, all corresponding PDB files were

collected according to the iPfam annotation [36] and distances

between pairs of residues were determined as the distance between

the Cb atoms (Ca for glycines). In the case of NMR models, the

minimal distances of all models contained in the PDB entry were

chosen. If a Pfam domain was present in multiple protein

structures or in several chains of one protein structure, we chose

the median distance over all chains and structures. For some

alignments the corresponding structure did not cover all columns

in the alignment and we discarded the small number of examples

where the coverage was less than 50%. This resulted in 2009
domains with structurally-defined distances between residues.

Finally, distance in primary sequence was defined as the distance

between the match states of the alignment.

Disentangling Direct from Indirect Co-Evolution
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Probabilistic model
Our Bayesian network model was described in detail in [27].

Briefly, given a single column i of the alignment with observed

amino acid counts ni
a, the probability P(Dijwi) of the column is

given in terms of the (unknown) probability distribution wi, with

wi
a the probability that letter a occurs at position i, i.e.

P(Dijwi)~Pa (wi
a)ni

a . Using a Dirichlet prior for wi with

parameter l, we obtain the marginal probability of the column

P(Di) by integrating over all possible distributions wi. This integral

can be performed analytically and the result can be expressed in

terms of gamma functions:

P(Di)~
C(20l)

C(nz20l)
P

a

C(ni
azl)

C(l)
, ð2Þ

where n is the number of sequences in the alignment. Similarly,

the joint probability of the data Dij in a pair of columns (ij) is given

in terms of the number of times n
ij
ab that the combination of letters

(ab) occurs at positions (ij), i.e.

P(Dij)~
C(202l’)

C(nz202l’)
P

ab

C(n
ij
abzl’)

C(l’)
: ð3Þ

Here, we set the parameter l’ of the Dirichlet prior for the joint

probability distribution to 0:5. As shown in [28], in the context of a

dependence tree model, consistency requires that l equals 20l’.
The statistical dependence between columns i and j is

quantified by the ratio

Rij~
P(Dij)

P(Di)P(Dj)
: ð4Þ

The connection of log (R) to mutual information is easily

established by substituting equations (2) and (3) into the logarithm

of R as given by (4) and using Stirling’s approximation to the

logarithm of the gamma function. We then find that approxi-

mately

Rij!enIij ð5Þ

for large n, with Iij the mutual information between columns i and

j. Importantly, when determining the counts n
ij
ab and ni

a in order to

determine Rij , we discard all pairs of residues within a given

sequence where either a or b is a gap. Treating gaps as a 21 amino

acid causes strong spurious correlations between residues that are

close in primary sequence since gaps usually come in blocks (data

not shown).

A dependence tree p specifies for each position i (except for the root

of the tree) a parent position p(i) which is the residue that i
depends on. To keep the notation simple, we here use the symbol

p to both denote the mapping from a node to its parent node and

the dependence tree itself. It can be shown [27] that, given a

dependence tree, the joint probability P(Djp) of the entire

alignment can be written as

P(Djp)~P
i

P(Di)P
j=r

Rjp(j), ð6Þ

where the first product goes over all positions and the second over

all positions except for the root r.

Finally, the probability P(D) of the whole alignment is given by

summing over all possible dependence trees p

P(D)~P
i

P(Di)
X

p

P(p)P
j=r

Rjp(j)

 !
, ð7Þ

where P(p) is the prior probability of a particular spanning tree p.

The last product is in fact the product of the R-values over all

edges of the tree given by p and is independent of the choice of the

root. If the prior probability of a spanning tree can be written as a

product of probabilities Wjp(j) along each edge (j,p(j)) of the tree

P(p)~P
j=r

Wjp(j) ð8Þ

then equation (7) can be rewritten as

P(D)~P
i

P(Di)
X

p
P
j=r

Mjp(j)

 !
ð9Þ

with Mjp(j) ¼: Rjp(j)Wjp(j). Thus, the weight of each edge is simply

multiplied by its prior probability. The largest term in the sum of

equation (9) is the maximum spanning tree when a weight log (Mij) is

assigned to each edge (ij) and this maximum spanning tree can be

easily determined [37].

The sum over spanning trees in (9) can be calculated using a

generalization of Kirchhoff’s matrix-tree theorem [28]. For this we

need to calculate the Laplacian of the matrix Mij , which is defined

as

Lij~dij(
X

k

Mik){Mij ð10Þ

where the sum goes over all columns (or rows) of the M-matrix

and dij is the Kronecker delta function, which is one if i~j and

zero otherwise. We can then write the sum over all spanning trees

as

X
p
P
i=r

Mip(i)~det(Q(L)) ð11Þ

where Q(L) is the matrix L with one line and column removed

(the determinant is independent of which line and column are

removed). The summation over all spanning trees (there are nn{2

spanning trees for a full graph with n nodes) thus reduces to the

calculation of a determinant, which can be done in a time

proportional to n3.

As discussed previously [27], the calculation of the determinant

of the matrix Mij is numerically very challenging since the entries

Mij vary over many orders of magnitude. In order to circumvent

this problem, we rescale the entries of the matrix as suggested in

[38]:

Mij?b Mij

� �a ð12Þ

with a~
K log (10)

logMz{logM{

and b~{K log (10)
logMz

logMz{logM{

where logMz (logM{) is the logarithm of the maximal (minimal)

entry of the matrix Mij . This function maps all M values into the

interval 10{K ,1½ �, preserves the relative ordering of entries and does

not exaggerate relative differences in belief [38]. The lower bound

10{K ensures that the rescaled M-matrix remains numerically non-

singular. K can be set according to the numerical precision of the

machine and we set K~5. We then use these rescaled M-values to

calculate the posterior probabilities.
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Calculating posteriors
Using expression (7), the posterior probability of a particular

edge (kl) is given by

P((kl)jD)~
Pkl(D)

P(D)
ð13Þ

where

Pkl(D)~P
i

P(Di)
X

p:(kl)[p
P
j=r

Mjp(j)

 !
ð14Þ

which is the sum of the probabilities P(Djp)P(p) for all spanning

trees p that contain the edge (kl). This expression can be

calculated by replacing the set of n nodes with a set of (n{1)
nodes, in which nodes k and l are contracted to one node, say kl,

and the edge weights of this new node kl are given by

Mkl,f ~Mk,f zMl,f for all nodes f=k,l [39]. Using this

construction we can write the sum over all spanning trees

containing edge (kl) as

Pkl(D)~P
i

P(Di) Mkl

X
p’
P
j=r

Mjp’(j)

 !
ð15Þ

where the sum now goes over all spanning trees p’ of the (n{1)
nodes. This sum over spanning trees can of course also be

calculated as a determinant as described above. Roughly speaking,

an edge (kl) will have high posterior if it occurs in the large

majority of all spanning trees p that have high probability P(D,p).

Phylogenetic correction
Due to the phylogenetic relatedness of the sequences in the

alignment, there typically will be a statistical dependence between

residues even in the absence of a functional linkage of these

positions. Previous work [14] showed that this dependence can be

corrected for (to some extent) by assuming that, due to

phylogenetic relationships, each position has a certain amount of

‘background’ statistical dependence with other columns. Since

each position interacts only with a small fraction of all other

positions this background dependence can be estimated by

calculating the average mutual information of that position with

all the remaining positions. In [14], two types of corrections were

proposed, a multiplicative one, named APC, and a additive one,

named ASC. We here briefly review the derivation of these

corrections.

The idea of the ASC is that the mutual information Iij between

positions i and j is the sum of the true mutual information I true
ij and

background mutual informations Bi and Bj , associated with

positions i and j, i.e.

Iij~I true
ij zBizBj : ð16Þ

We define average mutual informations as

SIi:T~
1

m

Xm

j~1

Iij , ð17Þ

with m the number of columns of the alignment. Other averages

like SI::T, SBT, and so on, are defined analogously. Note that, for

notational simplicity, in these averages we have adopted the

convention that Iii~0. We can then derive the equalities

SI::T~SI true
:: Tz2SBT, ð18Þ

and

SIi:T~SI true
i: TzBizSBT: ð19Þ

If one assumes that, since true interactions are relatively rare, the

averages SI true
:: T and SI true

i: T are much smaller than SBT, we can

set SI true
:: T&0 and SI true

i: T&0 and have

SBT~SI::T=2, ð20Þ

and

Bi~SIi:T{SI::T=2: ð21Þ

Finally, under these assumptions the true mutual information I true
ij

is then given by

I true
ij ~Iij{SIi:T{SIj:TzSI::T: ð22Þ

Motivated by this derivation, the ASC is defined as

Ic
ij~Iij{SIi:T{SIj:TzSI::T: ð23Þ

In the product correction APC we assume that the background

mutual information between i and j can be written as a product of

contributions of the two columns, i.e.

Iij~I true
ij zBiBj : ð24Þ

Assuming again that the true average mutual informations are

small we find

SBT2~SI::T, ð25Þ

and

Bi~
SIi:Tffiffiffiffiffiffiffiffiffiffi
SI::T

p : ð26Þ

Using this the APC version of the mutual information is given by

Ic
ij~Iij{

SIi:TSIj:T
SI::T

: ð27Þ

Since the APC performs better than the ASC we focused on

adapting the APC for our Bayesian model. As mentioned above,

the logarithms of the R values are the equivalent of mutual

information in our model. Therefore, naively we would simply

replace Iij with log (Rij) in equation (27) above. However, whereas

the mutual information naturally has a lower bound of zero, which

is reached only for independent positions, log (R) is off-set with

respect to mutual information and becomes negative for indepen-

dent positions. Note also that all posterior probabilities are

invariant under a global shift of all the log (R) values by a
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constant. Therefore, we substitute into equation (27) a shifted

version of log (R) which is guaranteed to be non-negative. For

each domain we determine the minimal value log (Rmin) and

define a shifted version of log (R) as

Sij~ log (Rij){ log (Rmin): ð28Þ

Using these shifted log (R)s we then define the corrected log (R) as

log (Rc
ij)~Sij{

SSi:TSSj:T
SS::T

: ð29Þ

In our model with phylogenetic correction we simply replace each

factor Rij with Rc
ij .

Prior probability of spanning trees
Our Bayesian model easily allows for the incorporation of prior

probabilities on each spanning tree via the edge probabilities

Wjp(j) in equation (9). Here, we use these edge probabilities to

include the dependence on both the primary sequence separation

of the positions in the pair (Figure 11), as well as the sum of the

entropies of the corresponding columns (Figure 12). To estimate

the fraction f (d,H) of all pairs with sequence-separation d and

entropy-sum H that are contacts, we separated all pairs of columns

into entropy bins of width 0:2, spanning the whole range of

entropies ½0,2 log (20)� and compared the dependence on primary

sequence separation within the different bins (Figure 14, left

panel).

We see that, irrespective of the column entropy sum H , the

fraction f (d,H) has approximately the same shape as a function

of d as the overall fraction of contacts f (d) which we showed in

Figure 11. We find that for distances d~4 or less the fraction is

virtually independent of entropy, i.e. f (d,H)&f (d), while for

larger distances the fractions f (d,H) are roughly proportional to

f (d), with a proportionality constant that decreases with

entropy H . That is, we assume the following general form for

f (d,H):

f (d,H)~

f (d) if dv~4

f (d)g(H) if dw4

8><
>: ð30Þ

We first estimated f (d) directly from the observed fractions as

shown in Figure 11 for all sequence separations up to d~50. As

f (d) is proportional to 1=d for sequence separations §50 and

becomes very noisy for large sequence separations (data not

shown), we approximate the curve as f (d)~C=d for sequence

separations §50 (blue line in Figure 14). The constant C is chosen

so that the curve is continuous at d~50. We then determined the

function g(H) by numerically maximizing, for each fixed entropy

bin Hi, the likelihood of the data, which is given by

P(X )~ P
e[E

f (de)X

" #
P
e=[E

(1{f (de)X )

" #
, ð31Þ

where the first product runs over all edges E with dw4 and

H~Hi that are contacts, the second product over all edges

with dw4 and H~Hi that are not contacts, and de stands for

the primary sequence separation of edge e. The value X � that

maximizes the likelihood of the data determines the value of

g(H) for the bin Hi, i.e. g(Hi)~X �. The resulting function

g(H) is shown in the right panel of figure 14. Clearly the

probability of an edge decreases with the entropy-sum H , i.e. it

drops by almost a factor of 5 from the lowest to the highest

entropy edges.

Finally, in order to assign prior probabilities to different possible

spanning trees, we assume a random graph model where each

edge e occurs with a probability me that is proportional to

f (de,He), with de the primary sequence separation, and He the

entropy sum of edge e. Note that each spanning tree only contains

(l{1) edges for a domain of length l, and we thus have to ensure

that our random graph model produces on average (l{1) edges.

Figure 14. Estimation of prior probabilities. The left panel shows the dependence between the fraction of pairs that are in contact and primary
sequence separation for all pairs (in blue) as well as for pairs whose sum of entropies lies in a given entropy bin (H[½0,0:2) in red, H[½0:2,0:4) in green,
H[½3:4,3:6) in black and H[½5:4,5:6) in magenta). For the sake of clarity, only a few selected entropy bins across the entire range are shown. The right
panel shows the estimated function g(H), which describes how the probability of an edge to be a contact depends on the sum of entropies of the
corresponding columns of the alignment (see text).
doi:10.1371/journal.pcbi.1000633.g014
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As the expected number of edges in a random graph is equal to the

sum over all me, we set me to

me~(l{1)
f (de,He)P

e

f (de,He)
: ð32Þ

Let G be the full graph including all
l

2

� �
edges of a particular

domain and let p be one particular spanning tree p. We can now

write the prior probability of the tree as

P(p)~P
e[p

me P
e[G\p

(1{me) ð33Þ

Here, the first product runs over all edges e in the tree p and the

second one over all edges in G that are not in the tree p. Since the

posteriors are independent of a global rescaling of all prior

probabilities P(p), we divide P(p) by the probability of the graph

that contains no edges, to obtain

P(p)!P
e[p

me

1{me

ð34Þ

which is independent of the edges that are not contained in the

tree. We can thus set the edge weights Wjp(j) in equation 9 to

Wjp(j)~
mjp(j)

1{mjp(j)

: ð35Þ

Unfortunately, we cannot directly used Wjp(j) to calculate the

matrix entries Mjp(j)~Rjp(j)Wjp(j) in equation 9. As discussed

above, the R-values relate to mutual information I through

R!enI , where n is the total number of sequences in the alignment.

However, even when the phylogenetic correction is employed,

because the n sequences contain many phylogenetically closely-

related sequences, the number of statistically independent sequences is

generally much smaller than n. Because of this, even the corrected

R-values still significantly overestimate statistical dependence. To

take this into account we define the matrix entries Mjp(j) as

Mjp(j)~ Rjp(j)

� �a
Wjp(j) ð36Þ

where a is a free parameter, which must lie between 0 (only prior

information) and 1 (original R-values). Note that, through this

transformation, we are assuming that instead of n independent

sequences, there are only an effectively independent sequences.

The PPV-sensitivity curves for varying values of a are shown in

Figures S10, S11, and S12. For the curve in the main text, we

chose a~0:025, so as to maximize the accuracy for pairs with

d§3 without a significant decrease in accuracy for pairs with

d§12.

Supporting Information

Figure S1 Number of contacts n versus the number of residues l

per protein domain for varying separations in primary sequence.

The red lines are the regression lines (in log-space), corresponding

to the power-laws n = 2.43l1.12, n = 0.16l1.43 and n = 0.05l1.62. The

dashed black line corresponds to n = l.

Found at: doi:10.1371/journal.pcbi.1000633.s001 (0.33 MB TIF)

Figure S2 Accuracy of contact predictions for all 2009

alignments based on mutual information (black), log(R) (blue),

and posterior probabilities (red). For different values of sensitivity,

the corresponding number of predictions for each domain and

each method were selected and their positive predicted value

(PPV), i.e. the fraction of correct predictions, was calculated

(vertical axis). Dashed lines indicate mean PPV plus/minus one

standard error. The top left panel shows predictions for all residue

pairs, the top right one using only predictions for residues

separated by at least 3 positions in the primary sequence, the

bottom left one for pairs separated by at least 12 positions, and the

bottom right panel for pairs separated by at least 24 positions.

Found at: doi:10.1371/journal.pcbi.1000633.s002 (0.32 MB TIF)

Figure S3 Comparison of prediction accuracy for log(R) (blue),

for the log(R) values contained in the maximum-likelihood tree

(green) and for the posterior probability (red). As the maximum-

likelihood tree only predicts l-1 edges, where l is the number of

columns of the alignment, the different measures cannot be

directly compared in terms of sensitivity (there would be finite-

length effects as predictions by the maximum-likelihood tree

measure cannot reach a sensitivity of 1). Instead, we sort the

predictions per domain and, for each fixed cut-off on the rank r,

we show the average positive predictive value (solid lines) for all

predictions with rank r or higher. The dashed lines indicate plus/

minus one standard error. As the shortest domains in our dataset

have length 50, all domains are included in the calculation of the

green curve for ranks 1 to 49. The blue and green curves are

identical for high ranks as all the highest-scoring edges are

included in the maximum spanning tree. However, for decreasing

ranks, the maximum-spanning tree discards edges that can be

explained indirectly, which leads to an improvement in perfor-

mance. Importantly, the posterior probability significantly outper-

forms the maximum-spanning tree predictions both for low and

high ranks.

Found at: doi:10.1371/journal.pcbi.1000633.s003 (0.36 MB TIF)

Figure S4 Posteriors reflect the extent to which co-evolving pairs

can be explained by contact chains. Shown are the reverse

cumulative distributions of distal co-evolving pairs (Z.4) that

cannot be easily explained by contact chains, i.e. where the best

scoring chain has a score of S.2 (red), S.3 (dark blue), or S.4

(light blue). For comparison the reverse cumulative distributions of

posteriors for all co-evolving distal pairs (green) and all co-evolving

contacts (black) are also shown.

Found at: doi:10.1371/journal.pcbi.1000633.s004 (0.13 MB TIF)

Figure S5 Accuracy of contact predictions for all alignments. In

blue, we show the performance of the phylogenetically-corrected

posterior probabilities, in black the performance of the predictions

based on the average-product corrected (APC) mutual informa-

tion, and in red the performance of the posterior probabilities

without phylogenetic correction. Curves were calculated as

described in the main text.

Found at: doi:10.1371/journal.pcbi.1000633.s005 (0.33 MB TIF)

Figure S6 Accuracy of contact predictions for alignments of

length 50 to 100. In blue, we show the performance of the

phylogenetically-corrected posterior probabilities, in black the

performance of the predictions based on the average-product

corrected (APC) mutual information, and in red the performance

of the posterior probabilities without phylogenetic correction.

Curves were calculated as described in the main text.

Found at: doi:10.1371/journal.pcbi.1000633.s006 (0.33 MB TIF)

Figure S7 Accuracy of contact predictions for alignments of

length 101 to 200. In blue, we show the performance of the

phylogenetically-corrected posterior probabilities, in black the

performance of the predictions based on the average-product

corrected (APC) mutual information, and in red the performance
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of the posterior probabilities without phylogenetic correction.

Curves were calculated as described in the main text.

Found at: doi:10.1371/journal.pcbi.1000633.s007 (0.33 MB TIF)

Figure S8 Accuracy of contact predictions for alignments of

length 201 to 300. In blue, we show the performance of the

phylogenetically-corrected posterior probabilities, in black the

performance of the predictions based on the average-product

corrected (APC) mutual information, and in red the performance

of the posterior probabilities without phylogenetic correction.

Curves were calculated as described in the main text.

Found at: doi:10.1371/journal.pcbi.1000633.s008 (0.33 MB TIF)

Figure S9 Accuracy of contact predictions for alignments of

length 301 to 400. In blue, we show the performance of the

phylogenetically-corrected posterior probabilities, in black the

performance of the predictions based on the average-product

corrected (APC) mutual information, and in red the performance

of the posterior probabilities without phylogenetic correction.

Curves were calculated as described in the main text.

Found at: doi:10.1371/journal.pcbi.1000633.s009 (0.33 MB TIF)

Figure S10 Accuracy of contact predictions including the

informative prior for different values of the weighting parameter

a, including the limit of using only the informative prior (a = 0).

The positive predictive value (vertical axis) is shown as a function

of sensitivity (horizontal axis). Different colors correspond to

different values of a (see legend) and dashed lines show mean plus

and minus one standard error. For comparison, we also show the

performance of the posterior when using no prior information

(black). Note that the horizontal axis is shown on a logarithmic

scale.

Found at: doi:10.1371/journal.pcbi.1000633.s010 (0.37 MB TIF)

Figure S11 Accuracy of contact predictions including the

informative prior for different values of the weighting parameter

a, including the limit of using only the informative prior (a = 0),

when considering only pairs that are at least d = 3 apart in primary

sequence. The positive predictive value (vertical axis) is shown as a

function of sensitivity (horizontal axis). Different colors correspond

to different values of a (see legend) and dashed lines show mean

plus and minus one standard error. For comparison, we also show

the performance of the posterior when using no prior information

(black). Note that the horizontal axis is shown on a logarithmic

scale.

Found at: doi:10.1371/journal.pcbi.1000633.s011 (0.36 MB TIF)

Figure S12 Accuracy of contact predictions including the

informative prior for different values of the weighting parameter

a, including the limit of using only the informative prior (a = 0),

when considering only pairs that are at least d = 12 apart in

primary sequence. The positive predictive value (vertical axis) is

shown as a function of sensitivity (horizontal axis). Different colors

correspond to different values of a (see legend) and dashed lines

show mean plus and minus one standard error. For comparison,

we also show the performance of the posterior when using no prior

information (black). Note that the horizontal axis is shown on a

logarithmic scale.

Found at: doi:10.1371/journal.pcbi.1000633.s012 (0.33 MB TIF)
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