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Abstract

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due
to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel
the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be
investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and
by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the
biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on
the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological
explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific
adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on
protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and
proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation
integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease
networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety
signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular
mechanisms underlying adverse drug reactions.
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Introduction

Drug safety issues can arise during pre-clinical screening,

clinical trials and, more importantly, after the drug is marketed

and tested for the first time on the population [1]. Although

relatively rare once a drug is marketed, drug safety issues

constitute a major cause of morbidity and mortality worldwide.

In 1998, Lazarou et al estimated that yearly about 2 million

patients in the US are affected by a serious adverse drug reactions

(ADRs) resulting in approximately 100 000 fatalities, ranking ADRs

between the fourth and sixth cause of death in the US, not far

behind cancer and heart diseases [2]. Similar figures were estimated

more recently for other western countries [3,4,5]. Serious ADRs

resulting from the treatment with thalidomide prompted modern

drug legislation more than 40 years ago [6]. Over the past 10 years,

19 broadly used marketed drugs were withdrawn after presenting

unexpected side effects [1,3]. The current and future challenges of

drug development and drug utilization, and a number of recent

high-impact drug safety issues (e.g. rofecoxib) highlight the need of

an improvement of safety monitoring systems [5]. In this regard,

initiatives such as the EC-funded EU-ADR project seek to develop

methodologies to improve the way drug safety signals are detected

and analyzed [7,8].

Due to the important implications of an ADR in both public

health and the pharmaceutical industry, unraveling the molecular

mechanisms by which the ADR is elicited is of great relevance.

Understanding the molecular mechanisms of ADRs can be

achieved by placing the drug adverse reaction in the context of

current biomedical knowledge that might explain it. Due to the

huge amounts of data generated by the ‘‘omics’’ experiments, and

the ever-increasing volume of data and knowledge stored in

databases related with ADRs, the application of bioinformatics

analysis tools is essential in order to study and analyze the

molecular and biological basis of ADRs.

ADR mechanisms
Although the factors that determine the susceptibility to ADRs

are not completely well understood, accumulating evidence over

the years indicate an important role of genetic factors [9]. ADRs

can be mechanistically related to drug metabolism phenomena,
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leading for instance to an unusual drug accumulation in the body

[9]. They can be associated with inter-individual genetic variants,

most notably single nucleotide polymorphisms (SNPs), in genes

encoding drug metabolizing enzymes and drug target genes [9].

One of the first ADRs explained by a genetic factor was the

inherited deficiency of the enzyme glucose-6-phosphate dehydro-

genase causing severe anemia in patients treated with the

antimalarial drug primaquine [10]. Alternatively, an ADR can

be caused by the interaction of the drug with a target different

from the originally intended target (also known as off-targets) [11].

A well-known example of an off-target ADR is provided by

aspirin, whose anti-inflammatory effect, exerted by inhibition of

prostaglandin production by COX-2, comes at the expense of

irritation of the stomach mucosa by its unintended inhibition of

COX-1 [12,13]. Furthermore, in addition to mechanisms related

to off-target pharmacology, it is becoming evident that ADRs may

often be caused by the combined action of multiple genes [9]. The

anticoagulant warfarin, which shows a varying degree of

anticoagulant effects, is often associated with hemorrhages, and

leads the list of drugs with serious ADR in the US and Europe [9].

A 50% of the variable effects of warfarin are explained by

polymorphisms in the genes CYP2C9 and VKORC1 [14,15]. A

recent study furthermore identified a third gene, CYP4F2

explaining about 1.5% of dose variance [16]. However, the genes

accounting for the remaining variability in the response to

warfarin are still unknown.

Other cases of ADRs may arise as a consequence of drug-drug

interactions, or the interplay between the effect of the drug and

environmental factors [9,15]. Indeed, the interaction between

genotype and environment observed in several aspects of health

and disease also extend to drug response and safety. For example,

alcohol consumption and smoking are both associated with

changes in the expression of the metabolic enzyme CYP2E1,

therefore affecting the pharmacokinetics of certain drugs [17].

Challenges in studying ADRs
From the above paragraphs, it is clear that the study of the

molecular and biological mechanisms underlying ADRs requires

achieving a synthesis of information across multiple disciplines. In

particular, it requires the integration of information from a variety

of knowledge domains, ranging from the chemical to the biological

up to the clinical. Different resources cover information about

these different knowledge domains, and many of them are freely

available on the web, such as biological and chemical databases

and the biomedical literature. On the other side, new data is

produced continuously, and the list of resources and published

papers that a researcher interested in ADRs needs to cope with is

turning more into a problem than into a solution. It has been

recognized that the adequate management of knowledge is

becoming a key factor for biomedical research, especially in the

areas that require traversing different disciplines and/or the

integration of diverse and heterogeneous pieces of information

[18]. A key aspect is the integration of heterogeneous data types,

and several authors have discussed the challenges of data

integration in the life sciences [19,20], which are rooted in the

inherent complexity of the biological domain, its high degree of

fragmentation, the data deluge problem, and the widespread

ambiguity in the naming of entities [21]. In addition to the

complexity of extracting, storing and integrating heterogeneous

data from multiple domains one needs to consider the lack of

completeness of the data available [22], an aspect that has a direct

impact on the scope and conclusions of any analysis performed on

the integrated data.

On the other hand, approaching current biomedical research

questions by computational analysis requires a combination of

different methods. An attractive approach that emerged in the last

years is the combination of different bioinformatics analysis

modules by means of pipelines or workflows [23]. This technology

allows the integration of a variety of computational techniques into

a processing pipeline in which the input and outputs are

standardized. This kind of integration has been greatly facilitated

by the use of public APIs and web services allowing programmatic

access to data repositories and analysis tools. The open source

software Taverna is one of such approaches that allow integration

of different analysis modules, shared as web services, into a

scientific workflow to perform in silico experiments [24]. Similar

approaches are also used for the processing of free-text documents

(http://uima.apache.org/) or for combining data mining methods

(http://www.knime.org/).

In this article we present a general framework developed in the

context of the EU-ADR project for a systematic analysis of adverse

drug reactions. The entry point of the system is a potential drug

safety signal, which is composed of the drug and its associated

adverse reaction. In the process of signal filtering, we search for

previous reports of the potential signal in specialized databases and

in the biomedical literature. In the process of signal substantiation, we

seek to provide a plausible biological explanation to the potential

signal. This framework was implemented by means of software

modules accessible through web services and integrated into

workflows ready to be used for automatic filtering and substan-

tiation of drug-event associations. Finally, we present a detailed

analysis of antipsychotic drugs and their association with the

prolongation of the QT interval, as well as a large scale analysis of

drug-side effect pairs from SIDER [25] emphasizing the usefulness

of our signal filtering and substantiation workflows.

Results

A framework for the filtering and substantiation of drug-
event pairs

The here presented framework for the filtering and substanti-

ation of drug safety signals consists of placing the potential signal

Author Summary

Adverse drug reactions (ADRs) constitute a major cause of
morbidity and mortality worldwide. Due to the relevance
of ADRs for both public health and pharmaceutical
industry, it is important to develop efficient ways to
monitor ADRs in the population. In addition, it is also
essential to comprehend why a drug produces an adverse
effect. To unravel the molecular mechanisms of ADRs, it is
necessary to consider the ADR in the context of current
biomedical knowledge that might explain it. Nowadays
there are plenty of information sources that can be
exploited in order to accomplish this goal. Nevertheless,
the fragmentation of information and, more importantly,
the diverse knowledge domains that need to be traversed,
pose challenges to the task of exploring the molecular
mechanisms of ADRs. We present a novel computational
framework to aid in the collection and exploration of
evidences that support the causal inference of ADRs
detected by mining clinical records. This framework was
implemented as publicly available tools integrating state-
of-the-art bioinformatics methods for the analysis of drugs,
targets, biological processes and clinical events. The
availability of such tools for in silico experiments will
facilitate research on the mechanisms that underlie ADR,
contributing to the development of safer drugs.

Filtering and Substantiation of Drug Safety Signals
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in the context of current knowledge of biological mechanisms that

might explain it. Essentially, we are searching for evidence that

supports causal inference of the signal, i.e. feasible paths that

connect the drug with the clinical event of the adverse reaction.

The signal filtering analysis looks for evidence reporting the drug-

event association in the biomedical literature and biomedical

databases. The signal substantiation process considers two

scenarios able to provide a causal inference of the signal (see

Figure 1). First, we look for connections between the drug and the

event through their associated protein profiles. Here, a connection

is established if there are proteins in common between the drug-

target and the event-protein profile (Figure 1A). Many ADRs are

caused by altered drug metabolism for which genetic variants in

metabolizing enzymes are often responsible. Consequently, we

also consider drug metabolism phenomena as an underlying

mechanism of the observed ADR by assessing if the drug

metabolites are targeting proteins that are known to be associated

with the clinical event. Second, the association between the drug

and the clinical event can involve proteins that are not directly

associated with the drug and the clinical event, but indirectly in the

context of biological networks. The final consequence of the drug

action is the observed clinical event. Thus, the proteins in the

drug-target profile and event-protein profile are mapped onto

biological pathways to evaluate if the drug and the event can be

connected through biological pathways (Figure 1B).

Our approaches for signal filtering and signal substantiation were

implemented using dedicated bioinformatics methods that are

accessed through web services and integrated into processing

pipelines by means of Taverna workflows. The substantiation

workflow results can be visualized and analyzed by means of other

bioinformatics tools such as Cytoscape [26], a software for network

visualization and analysis. For the signal filtering process, we have

implemented two Taverna workflows (ADR-FM and ADR-FD)

that access data mined from databases such as DrugBank [27],

DailyMed (http://dailymed.nlm.nih.gov/) and MedlineH. A third

Taverna workflow, (ADR-S), performs the signal substantiation

process and was implemented by combining in silico target

profiling, text mining and pathway analysis, among other

bioinformatics approaches. More details about the implementation

of web services and workflows can be found in the Methods

section.

Antipsychotic drugs and risk of cardiac arrhythmias
In the following section we describe the results of the analysis of

potential drug safety signals as a proof of concept of the here

proposed framework and tools.

In the 1990s, the occurrence of several cases of serious, life-

threatening ventricular arrhythmias and sudden cardiac deaths,

secondary to the use of non-cardiac drugs raised concerns with

regulators [28]. In 1998, several drugs received a black-box

warning in the US due to concerns regarding prolongation of the

QT interval. Nowadays, it is known that many seemingly

unrelated drugs can cause the prolongation of QT interval and

Torsade de Pointes, which eventually may lead to fatal

arrhythmias. For instance, cisapride, a drug for gastrointestinal

protection, was withdrawn from the market in 2000 due to

increased risk for QT prolongation. The first report of sudden

cardiac death with an antipsychotic drug appeared in 1963 [29].

Since then, several studies found an increased risk for ventricular

arrhythmias, cardiac arrest and sudden death associated with the

use of antipsychotics [30], which can partly be explained by the

prolongation of QT intervals observed with several antipsychotic

drugs. It has been suggested that the mechanisms by which

antipsychotics can cause prolongation of QT interval involve the

potassium channel encoded by the KCNH2 gene that regulates

myocyte action potential [31,32]. Drugs blocking this potassium

channel can slow down repolarization, which in turn may lead to

the prolongation of the QT interval, eventually resulting in sudden

cardiac death. We selected six antipsychotic drugs according to

their risk of producing cardiac arrhythmias from [33] and from the

QTdrugs database (http://www.qtdrugs.org) (Tables 1 and 2) and

analyzed their association with the prolongation of the QT interval

as defined in the EU-ADR project (referred to as QTPROL) using

our signal filtering and substantiation workflows. The results of the

filtering analysis (shown in Table 1) indicate that all drug-event

associations are discussed in the literature or recorded in

specialized databases, with the only exception of DrugBank that

does not contain any information on the association of the selected

drugs with QTPROL. When comparing both Medline-based

filtering workflows, ADR-FM/MeSH and ADR-FD/Medline, the

latter appears to be more sensitive as the number of abstracts

found is generally higher (compare columns ADR-FM/MeSH and

ADR-FD/Medline in Table 1). This difference might be explained

by the different methods used by the two approaches. The

MeSHH-based approach uses the MeSH terms assigned to each

citation and the ADR-FD approach uses Natural Language

Processing on title and abstracts to identify drug-event associa-

tions. Both Medline-based approaches can be compared with a

PubMed query (‘‘(QT or QTc) prolongation ,one of the six

antipsychotic drugs.’’), which resulted in 2–3 times more

abstracts being returned than by ADR-FD/Medline. This does

not come as a surprise since PubMed searches for keyword co-

occurrences at the abstract level. The workflows are more specific

since they search at the sentence level (ADR-FD/Medline) or use

additional information provided by the MeSH subheadings and

the use of the pharmacological action (ADR-FM/MeSH). It

should be noted that Medline is only one source of information to

filter known signals; DrugBank and DailyMed are other,

potentially complementary, sources. In the case of pimozide, no

results are obtained from DailyMedH, since QT prolongation is

not mentioned in the adverse reactions section but in the

contraindications and warnings sections.

We furthermore explored the mechanisms underlying the

association between QTPROL and the selected antipsychotics

using the substantiation workflow. The results are summarized in

Table 2 (see Table 3 for a quick reference guide to gene and

protein names discussed throughout the example) and Figure 2,

which shows a detail of the Cytoscape graph representing the

drug-protein-event network resulting from analyzing haloperidol

and its association with QTPROL. For all the antipsychotic drugs,

with the exception of sulpiride, connections are established

through proteins associated with both, drug and event. All the

connections between the drug and the event include the protein

HERG encoded by the KCNH2 gene. All of the found

connections are statistically significant except for ziprasidone (see

Table 3). The high-risk antipsychotics haloperidol, ziprasidone

and pimozide are potent potassium channel blockers (IC50 or Ki

in the 0.1 mM range, Table 2). In the case of ziprasidone, it is

worth to mention that one of the metabolites of the drug is

predicted to bind to the protein HERG. Contrasting, olanzapine

shows a lower activity on the protein HERG, while sulpiride has

no activity on this protein. In addition to HERG, for the high-risk

antipsychotics pimozide and haloperidol the drug and the event

can be connected through the proteins encoded by the genes

KCNH1 and CANCNA1C. In the case of KCNH1, which

encodes the protein hEAG1, the ADR-S workflow provides

evidence indicating that mutations in an animal model showed an

association with prolonged QT interval and cardiac arrhythmia

Filtering and Substantiation of Drug Safety Signals
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Figure 1. Schematic representation of the signal substantiation process. The signal substantiation process involves the automatic search for
evidences that support the causal inference of the potential signal. A. Signal substantiation through proteins. The profile of targets of the drug and its
metabolites is obtained by in silico profiling methods (Drug-Target-Profile). The profile of proteins associated with the clinical event is obtained by
mining DisGeNET (Event-Protein Profile). The profiles are compared to find proteins in common in both profiles (Drug-Event Linking Proteins). The
evidences that support the association of the drug and event with the Drug-Event Linking proteins are explored to determine if they support the
causal inference of the signal. B. Signal substantiation through pathways. Proteins in the Drug-Target-Profile and in the Event-Protein Profile are
searched in The Human Protein Atlas database to determine if they are expressed in the same tissue and cell type. Proteins that share expression at

Filtering and Substantiation of Drug Safety Signals
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[34]. The mutations in the CACNA1C gene, which encodes the

depolarizing long-lasting calcium current channel, are associated

with Timothy syndrome, characterized by severe prolongation of

the QT interval.

Interestingly, our analysis also indicates that the antipsychotics

in our study have an important activity on adrenergic receptors

(Figure 2 B).

Moreover, haloperidol shows activity on the drug transporter

encoded by the gene ABCB1 (Ki 0.2 mM, Figure 1B). Similar

activities are found for pimozide, whereas ziprasidone, olanza-

pine, sulpiride and quetiapine do not show activity on the

transporter.

Regarding the substantiation through pathways, for haloperidol

and pimozide we found several Reactome pathways (Integration of

energy metabolism, Axon guidance, Synaptic transmission,

Signaling by GPCRs and Diabetes pathways), which connect the

drug and the event, and where the involved proteins are expressed

in cardiac tissues. It is likely that the effect of a drug on its target

proteins will affect proteins in their direct neighborhood in the

biological pathway. Hence, we computed the average shortest

path length between pairs of drug and event associated proteins in

the Reactome pathways and compared them to the average

shortest path length between randomly selected drug and event

proteins. Interestingly, for all five antipsychotic drugs, the drug

and event proteins are in close proximity in the Reactome

pathways with average shortest path lengths between 2 and 3,

which are significantly shorter than the average shortest path

length of 5 of randomly selected drug and event proteins (p-

value, = 0.05).

In summary, the ADR-S workflow provides different

hypotheses explaining the antipsychotics-induced QTPROL,

including the direct action of the drug on proteins associated

with the clinical event (e.g. HERG), the cross-talk between

different biological processes (adrenergic signaling and cardiac

action potential), and the differential distribution of drugs

among tissues (due to inhibition of transporters exerted by the

drug). Moreover, it also highlights several interesting evidences

that might explain the differences between low and high-risk

antipsychotics.

Analysis of drug-event pairs from SIDER
In addition to the example case presented above, the ADR-S

workflow was evaluated on a large-scale data set. The SIDER

database was used to extract drug-event pairs (see Methods). Here,

an event refers to a known side effect of a drug compiled from

package inserts of the drugs from several public sources [25]. For a

total of 28251 drug-event pairs, 6108 (4265 with p-value, = 0.01)

pairs can be directly linked through at least one protein connecting

the drug with the side effect. Interestingly, 2692 (44%) of the

60108 drug-event pairs are connected by means of the drug

metabolites. Moreover, the substantiation through pathways

module finds connections between 21526 pairs (10789 with p-

value, = 0.01). This quantitative analysis should be followed by a

thorough qualitative study on selected drug-event pairs of interest

in order to explore the found connections and derive mechanistic

hypothesis. Hence, we make the results of the analysis available as

Supplementary Material (Dataset S1 and S2).

Discussion

Recent studies highlight the use of disparate data sets in the

study of ADRs, enabled by bioinformatics methodologies.

Combining the study of protein–drug interactions on a structural

proteome-wide scale with protein functional site similarity search,

small molecule screening, and protein–ligand binding affinity

profile analysis, Xie and colleagues [35] have elucidated a

possible molecular mechanism for the previously observed, but

molecularly uncharacterized, side effect of selective estrogen

receptor modulators (SERMs). In another study, the side effect

information from prescription drug labels was exploited to

identify novel molecular activities of existing drugs [25]. The

Unified Medical Language System (UMLS) MetathesaurusH [36]

was used as a vocabulary for the side effects, and a weighting

scheme to account for the rareness and interdependence of side

effects was developed. Since similarity in side effects correlated

with shared targets between drugs, side effect similarity was used

to predict novel targets between any two ‘‘unexpected’’ drug pair

[25]. In another study, Berger and colleagues used a computa-

tional systems biology approach to analyze drug-induced long

both levels (tissue and cell type) are used to query Reactome database, and pathways that contain at least one protein from the Drug-Target-Profile
and one protein from the Event-Protein Profile are retrieved. Then, these pathways are explored to determine if they support the causal inference of
the signal.
doi:10.1371/journal.pcbi.1002457.g001

Table 1. Antipsychotics with low and high risk of producing prolongation of the QT interval (QTPROL) analyzed with the filtering
workflows (ADR-FM and ADR-FD).

Workflow

ADR-FM ADR-FD

Risk of QTPROL Drug Name ATC code MesH Medline DailyMed DrugBank

Low Sulpiride N05AL01 7 6 NA 0

Quetiapine N05AH04 7 18 2 0

Olanzapine N05AH03 14 20 1 0

High Ziprasidone N05AE04 15 38 3 0

Pimozide N05AG02 0 16 0 0

Haloperidol N05AD01 23 55 12 0

For the ADR-FD, the individual results obtained from the three different sources used (Medline, DailyMed and DrugBank) are shown. The table shows the number of
records found in each case. NA: Not Available.
doi:10.1371/journal.pcbi.1002457.t001

Filtering and Substantiation of Drug Safety Signals
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QT syndrome, and showed that the analysis of a human protein

interaction network associated with congenital long QT syn-

drome can be used to predict new gene variants for long QT

syndrome, to explain the complexity of the adverse drug reaction,

and to predict the susceptibility of new drugs to cause long QT

syndrome [32].

All these examples illustrate how computational approaches are

paving the way toward elucidating the molecular mechanisms of

ADRs. The here presented framework follows this direction, by

traversing and integrating information from the chemical domain,

through genes and proteins, molecular and cellular networks, and

finally to the clinical domain. The filtering workflows interrogate

specialized databases and literature repositories in order to

determine the novelty of a drug-event association. On the other

hand, the substantiation framework seeks to find hypotheses that

might explain drug-induced clinical events by looking for

evidences supporting causative connections between the drug, its

targets, and their direct or indirect (through biological pathways)

association to the clinical event. The signal substantiation process

can be framed as a closed knowledge discovery process, analogous

to the Swanson model based on hidden literature relationships

[37], which we extend by considering not only relationships found

in the literature, but also relationships discovered by mining other

data sources or found by applying different bioinformatics

methods (vide infra). For a drug-event association, we collect

information about the drug-targets by querying publicly available

databases and by applying in silico drug-target profiling methods

[38]. In parallel, we retrieve information about the genes and

proteins associated with the clinical event from a database

covering knowledge about the genetic basis of diseases [39].

Then, we combine these two pieces of information under the

following assumption: if the disease phenotype elicited by the drug

is similar to the phenotype observed in a genetic disease, then the

drug acts on the same molecular processes that are altered in the

disease. This can be regarded as phenocopy, a term originally coined

by Goldschmidt in 1935 [40] to describe an individual whose

phenotype, under a particular environmental condition, is

identical to the one of another individual whose phenotype is

determined by the genotype. In other words, in the phenocopy the

environmental condition mimics the phenotype produced by a

Table 2. Antipsychotics with low and high risk of producing prolongation of the QT interval (QTPROL) and the results of the
substantiation process.

Risk of QTPROL Drug Name ATC code Events
Drug-event
linking proteins p-value

Low Sulpiride N05AL01 None None None

Quetiapine N05AH04 LONG QT SYNDROME 1/2, 2, 2/5 and 2/3, TIMOTHY
SYNDROME, Torsades de Pointes, Romano-Ward Syndrome

HERG (KCNH2, pKi 5.24) 0.0190

Olanzapine N05AH03 LONG QT SYNDROME 1/2, 2, 2/5 and 2/3, TIMOTHY
SYNDROME, Torsades de Pointes, Romano-Ward Syndrome

HERG (KCNH2, pKi 4.64,
pIC50 6.18)

0.0190

High Ziprasidone N05AE04 LONG QT SYNDROME 1/2, 2, 2/5 and 2/3, TIMOTHY
SYNDROME, Torsades de Pointes, Romano-Ward Syndrome

HERG (KCNH2, pKi 6.77,
pIC50 6.36)

0.1979

Pimozide N05AG02 LONG QT SYNDROME 1/2, 2/3, 2 and 2/5, TIMOTHY
SYNDROME, Torsades de Pointes, Romano-Ward
Syndrome, cardiac arrhythmia

HERG (KCNH2, pKi 6.99,
pIC50 6.73), Cav1.2
(CACNA1C, pKi 6.7), hEAG1
(KCNH1, pIC50 6.2)

0.0025

Haloperidol N05AD01 LONG QT SYNDROME 2/3, 2, 2/5 and 1/2, TIMOTHY
SYNDROME, Torsades de Pointes, Romano-Ward Syndrome

HERG (KCNH2, pKi 6.99,
pIC50 6.73), Cav1.2
(CACNA1C, pKi 6.7),
hEAG1 (KCNH1, pIC50 6.2)

0.0025

The columns display the risk of producing QTPROL for each drug, the drug name, the ATC code of the drug, the proteins that explain the connection between the drug
and the event (Drug-event linking proteins), the clinical events associated with these proteins (Events), as well as p-values. For the drug-event linking proteins, the
common protein name is given, and the Gene Symbol and the drug activity values of each drug-event linking protein (pKi or pIC50, average of the multiple values from
different sources) are shown in parenthesis.
doi:10.1371/journal.pcbi.1002457.t002

Table 3. List of proteins discussed in the text with their corresponding protein and gene identifiers.

Gene Symbol Approved name (HGCN) Other names
UniProt
Accession

UniProt
Identifier

NCBI Entrez
Gene

KCNH1 potassium voltage-gated channel,
subfamily H (eag-related), member 1

hEAG1, Kv10.1,
eag, eag1, h-eag

O95259 KCNH1_HUMAN 3756

KCNH2 potassium voltage-gated channel,
subfamily H (eag-related), member 2

HERG, Kv11.1, erg1 Q12809 KCNH2_HUMAN 3757

CACNA1C calcium channel, voltage-dependent,
L type, alpha 1C subunit

Cav1.2, CACH2, CACN2, TS Q13936 CAC1C_HUMAN 775

ABCB1 ATP-binding cassette, sub-family B
(MDR/TAP), member 1

Multidrug resistance protein 1,
ABC20, CD243, GP170, P-gp

P08183 MDR1_HUMAN 5243

HGNC: HUGO Gene Nomenclature Committee (http://www.genenames.org/).
doi:10.1371/journal.pcbi.1002457.t003
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gene. In the case of ADRs, the environmental condition is

represented by the exposure to the drug, whose effect mimics the

phenotype (disease) produced by a gene in an individual. In this

way, we can capitalize on all the knowledge about the genetic basis

of diseases to explore mechanisms underlying ADRs.

We illustrate our approach by analyzing a clinically relevant

drug safety signal: prolongation of the QT interval (QTPROL)

leading to cardiac arrhythmias produced by a set of antipsychotic

drugs. The results of the filtering workflows show that the

association of QTPROL with the antipsychotic drugs has been

extensively discussed in the literature and is documented in

specialized databases. On the other hand, the substantiation

workflow provides different hypotheses explaining the antipsy-

chotics-induced QTPROL. First, we were able to confirm the

widely accepted mechanism proposed for drug-induced

QTPROL, in which the drug blocks the potassium channel

HERG (encoded by the KCNH2 gene) and this blockade leads to

a prolongation of the QT interval [41,42]. The known association

of congenital long QT syndrome being associated with mutations

in the KCNH2 gene furthermore supports this concept [38,39].

Interestingly, our analysis reveals that high-risk antipsychotics

show higher activities on the potassium channel than low-risk

antipsychotics (see Table 2), suggesting that the strength of binding

might explain the different risks of observing the side effect for

different antipsychotics. For all except one antipsychotic (ziprasi-

done), the associations between the drugs and QTPROL are

statistically significant (p-value, = 0.01). We want to point out,

that even for ziprasidone with a higher p-value, the evidences

provided by the workflow give enough confidence to establish the

hypothesis of the blockage of HERG being related with

QTPROL. We believe that each drug-event pair and the

evidences provided by the workflows have to be studied carefully

in order to generate hypotheses valid to be tested. We furthermore

find a connection of high-risk antipsychotics and QTPROL

through other proteins different from HERG, suggesting that the

prolongation of the QT interval might result from the effect of the

drugs on other channel proteins regulating the action potential. In

addition to the direct blockade of channels creating ion currents

involved in the action potential, other factors can be considered for

the mechanism of antipsychotics-induced QTPROL. Adrenergic

activation due to stress can precipitate cardiac arrhythmias [35]; in

fact, the main treatment for patients with congenital long QT

syndrome is beta-adrenergic blocking [41]. Alpha and beta-

receptors agonists produce an inhibition of the potassium channel

leading to the prolongation of QT [34]. Interestingly, our results

indicate that the antipsychotics in our study have an important

activity on adrenergic receptors. Haloperidol has been reported to

act as partial agonist in cerebral alpha-adrenergic receptors [43].

Hence, our results suggest that the modulation of adrenergic

signaling by haloperidol might be an additional factor resulting in

the inhibition of the potassium repolarizing current. Thus, in the

case of haloperidol, direct inhibition by the drug combined with an

indirect mechanism involving the activation of beta adrenergic

signaling might lead to HERG blockade. These findings are in line

with evidences supporting the notion that ADRs may often be

caused by the combined action of multiple genes [9].

We furthermore found that activities of haloperidol and

pimozide on the drug transporter encoded by the gene ABCB1

(Ki 0.2 mM, Figure 1B), while ziprasidone, olanzapine, sulpiride

and quetiapine do not show activity on this transporter. Titier and

Figure 2. Cytoscape graph for QTPROL-haloperidol. The results of the ADR-S workflow can be visualized as a graph in which the nodes are
proteins, compounds and clinical events. A: Detail of the network depicting the haloperidol targets, the proteins associated with QTPROL and the
connection between them. The proteins encoded by the genes KCNH1, KCNH2 and CACNA1C constitute Drug-Event linking proteins between
haloperidol and the terms corresponding to QTPROL. B: Detail of the targets of haloperidol, showing the adrenergic receptors (light blue) and the
drug transporter encoded by the gene ABCB1 (purple). In both graphs, the multiple edges between two nodes represent different evidences for the
corresponding association between the nodes.
doi:10.1371/journal.pcbi.1002457.g002
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colleagues studied the myocardium to plasma concentration ratio

of several antipsychotic drugs, reporting ratios of 2.7 for

olanzapine and 6.4 for haloperidol [43]. Therefore, the different

distributions of the antipsychotics between plasma and the heart

could be another factor influencing the varying risk of different

antipsychotic drugs to induce QTPROL.

Regarding the analysis through biological pathways, our

workflow does not provide novel hypotheses that might explain

drug-induced QTPROL in addition to the above presented

hypotheses. Nevertheless, it is interesting that the drug target

proteins and event-associated proteins are closely located in the

Reactome pathways. All in all, a detailed analysis of the generated

paths might add valuable information about the mechanism

underlying the drug adverse reaction. Ultimately, the usefulness of

the pathway module strongly depends on the drug-safety signal of

interest. For example, the cholesterol-lowering drug cerivastatin

was withdrawn from the market in 2001 due to its fatal risk to

induce rhabdomyolysis leading to kidney failure [44]. While the

ADR-S workflow connects cerivastatin and rhabdomyolisis

through proteins and pathways, it only finds a meaningful

connection between the drug and acute renal failure through the

pathway module. Hence, in this example the pathway module

adds valuable information to the analysis. We also want to

mention some limitations of the pathways module. The publicly

available information on pathways is not complete, and the level of

detail differs between the pathways. Moreover, the Reactome

pathways used are at a very high level in the Reactome hierarchy

and can be very general; hence the substantiation results need to

be carefully analyzed in order to determine if the connection found

between the drug and the event represents a plausible explanation

of the ADR.

In summary, using antipsychotics and their risk to induce

QTPROL, we showed that the filtering workflows are able to

extract relevant information from the literature and dedicated

databases. We also showed that the substantiation workflow

provides different hypotheses explaining the antipsychotics-

induced QTPROL. These hypotheses include the direct action

of the drug on proteins associated with the clinical event (e.g.

HERG), the cross-talk between different biological processes

(adrenergic signaling and cardiac action potential), and the

differential distribution of drugs among tissues (due to inhibition

of transporters exerted by the drug). Moreover, the analysis also

highlights several interesting evidences that might explain the

differences between low and high-risk antipsychotics. In addition,

we provide the results of a large-scale analysis of drug-side effect

pairs from SIDER and show that about 22% of the known side

effects of drugs might involve direct effects of drugs on proteins

being associated with the events. This relatively small number is

not surprising because not all drug side effects can be attributed to

the direct action of the drug onto its targets, such as on-target and

off-target pharmacological effects. Other mechanisms of drug

toxicity have been discussed. For example, metabolites can react

with nucleophiles including DNA, which can trigger regulatory

processes leading to inflammation, apoptosis and necrosis [45].

Moreover, the workflow uses public data sources on drug-target

and event-protein associations, which are not complete. Interest-

ingly, almost half (44%) of the direct connections through proteins

involve metabolites of the drugs. This finding is in good agreement

with current opinion on the relevance of drug metabolism for drug

adverse reactions [9]. The pathway module connects many more

drug-side effect pairs. Although, the results of our workflow for

each drug-side effect pair have to be carefully analyzed in detail,

this finding suggests that the indirect connection of drug and event

in the context of biological networks plays an important role. We

want to stress that the substantiation workflow provides a variety of

evidences, such as the binding strength of the drug to its targets, as

well as the provided literature sources supporting the associations

of proteins to the events. All pieces of evidence need to be carefully

considered to generate hypotheses of mechanisms that are valid to

be further tested.

Both filtering and substantiation workflows are available to the

community and allow a systematic and automatic analysis of drug

safety signals detected by mining clinical records, providing a user-

friendly framework for the analysis of drug-event combinations.

We believe that with the availability of such tools for in silico

experimentation, research on the mechanism that underlies drug-

induced adverse reactions will be facilitated, which will have great

impact in the development of safer drugs.

Methods

The signal filtering and substantiation framework has been

implemented by means of software modules that perform specific

tasks of the processes. To allow access and integration of the

modules in high-level analysis pipelines, the modules were

implemented as web services and combined into data processing

workflows to achieve the aforementioned signal filtering and signal

substantiation. To standardize data exchanges between the

different web services, we have developed two complementary

schemas using XSD to define a common XML interoperability

structure. The first one describes general data types (http://

bioinformatics.ua.pt/euadr/common_types.xsd) and the second

one defines the specific types needed for signal filtering and

substantiation in the context of the EU-ADR project (http://

bioinformatics.ua.pt/euadr/euadr_types.xsd). Both schemas allow

a smooth integration of the different modules in Taverna

workflows, by enabling content and structure validation for the

workflow input and output XML files. Moreover, the use of

schemas facilitates further data transformations, for example, by

applying XSL transformation to XML files of the signal

substantiation workflow to create XGMML file graphs that can

be visualized with Cytoscape. The workflows and web services are

described in the following sections. All workflows have been

implemented and tested using Taverna Workflow Management

system version 2.2.

Workflows: Signal filtering
We have implemented two workflows for signal filtering. The

ADR-FM workflow is a MeSHH-based approach to find drug-

event pairs in MedlineH citations. The ADR-FD workflow uses

text-mining to find the drug-event pairs in MedlineH abstracts,

databases such as DrugBank and drug labels available at

DailyMedH.

ADR-FM. The aim of this signal filtering workflow is to

automate the search of publications related to a given drug-

adverse event association. It is based on an approach that uses the

MeSHH annotations of MedlineH citations, in particular the

subheadings ‘‘chemically induced’’, ‘‘adverse effects’’ and

‘‘Pharmacological Action’’ [46]. This workflow offers the

opportunity to automatically determine if an ADR has already

been described in MedlineH. However, the causality relationship

between the drug and an event may be judged only by an expert

reading the full text article and determining if the methodology of

this article was correct and if the association is statically significant,

among other factors. The workflow uses the method getListPublis of

the UB2_EUADR web service (Table 4).

Workflow input. The ADR-FM workflow accepts two

inputs, the ATC (Anatomical Therapeutic Chemical, http://
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www.whocc.no/atc_ddd_index/) code of the drug at the 7 digits

level (e.g. M01AH02 for rofecoxib) and the event represented by a

string as defined in the EU-ADR project (see Table 5).

Workflow output. The workflow returns an XML file and an

HTML page summarizing the results, showing the PubMed

identifiers of the retrieved citations grouped by publication type. A

chart of the number of retrieved citations per year is generated

using Google Charts Tools (http://code.google.com/apis/chart/).

ADR-FD. This workflow looks for associations between drugs

and side effects that have been recorded in literature (MedlineH) or

in databases (DailyMedH and Drugbank). These resources have

been indexed, and co-occurrences of drugs (corresponding to ATC

codes) and side effects as defined in the EU-ADR project were

captured and stored in a database. Briefly, all abstracts in the

Medline database were split into sentences, and all sentences were

indexed by the concept-recognition tool Peregrine [47] to find

drugs and adverse events. A chi-square test was performed to

check if the probability of the drug and the adverse event co-

occurring together in a sentence was significantly different than

would be expected by chance. Regarding the databases, for each

entry in DrugBank a field specifying ATC codes and a field

listing potential adverse events were extracted and processed by

Peregrine. DailyMedH contains Summary Product Characteristics

(SPCs) of drugs. Each SPC was parsed to extract the ‘‘title’’ field

(containing the drug name) and the ‘‘adverse reaction’’ and

‘‘boxed warning’’ fields (containing the adverse events). These

fields were subsequently indexed by Peregrine and the output was

processed to link ATC codes to UMLS concept identifiers of

adverse events. The workflow uses the method get FilteredRelations

(Table 4), which provides relationships between a drug and an

event in one or more of the data sources.

Workflow input. The ADR-FD workflow accepts three

inputs: the ATC code of the drug at the 7-digit level (e.g.,

M01AH01 for celecoxib), the event as defined in the EU-ADR

project (Table 5), and the data resources in which the specified

drug-event pair is sought (MedlineH, DailyMedH, or DrugBank).

Workflow output. The output of the workflow consists of a

list of links to entries in the input data sources (MedlineH abstracts,

DailyMedH SPCs, or Drugbank cards) in which the input drug-

event association is mentioned. The output is generated in XML

format and in HTML format.

Workflows: Signal substantiation
ADR-S. The ADR substantiation (ADR-S) workflow seeks to

establish a connection between the clinical event and the drug

through (i) proteins targeted by the drug (or by its metabolites) and

associated with the clinical event and (ii) biological pathways. In

the first connecting path, the link between the drug and the event

is established through the set of proteins in common between the

Drug-Target-Profile and the Event-Protein-Profile (Figure 1A). In

the second path, the link is established through a set of proteins

that are part of the same biological pathway (Figure 1B). For

example, consider a protein A targeted by the drug and a protein

B associated with the clinical event, and both proteins A and B are

part of the same biological pathway C. Then, the drug and the

event are connected through biological pathway C (see more

details in the description of the service adrPathService). Two SOAP

web services (cglService and adrPathService) allowing access to

databases and bioinformatics modules relevant for the signal

substantiation have been implemented (Table 4). A tutorial

describing how to use the ADR-S workflow can be found in the

Supportive information (Protocol S1) and at http://ibi.imim.es/

ADR_Substantiation.html.

getSmileFromATC (cglAlertService). This method accepts

as input a drug encoded by the ATC code at the 7-digits level and

provides as output the chemical structure by means of SMILE

(Simplified Molecular Input Line Entry Specification).

getUniprotListFromSmile (cglAlertService). This method

accepts as input a drug or metabolite encoded by a SMILE and

returns a list of proteins that are related to the drug (Drug-Target-

Profile). We use known drug-target associations (Table 6) and

extend them with in silico target profiling methods [38]. Drug

metabolites are obtained from a commercial database (GVK

Biosciences) and are also processed by in silico target profiling. The

evidences that support each drug-target relationship, such as the

binding affinity of the compound to the protein or the source

database, are provided.

getDiseaseAssociatedProteins (adrPathService). This method

accepts as input a clinical event (encoded as a list of UMLSH
concept identifiers or as a string as defined in Table 5) and

returns a list of proteins associated to the event (Event-Protein-

Profile), by interrogating the DisGeNET database [39].

Evidences that support each association, including the

association type, source database, publications discussing the

association, and in the case of text-mining derived associations,

the sentence that reports the gene-disease association, are

provided.

getPathways (adrPathService). This method assesses if

proteins associated with the drug and the event are annotated to

the same biological pathway by interrogating Reactome [48]. In

Table 4. Availability of web services and workflows.

URL Description Type

http://bioinformatics.ua.pt/euadr/common_types.xsd XSD schema defining common data types. XSD schema

http://bioinformatics.ua.pt/euadr/euadr_types.xsd XSD schema defining specific types used in the EU-ADR project. XSD schema

http://lesim.isped.u-bordeaux2.fr/axis2/services/UB2_EUADR?wsdl Web service with the method getListPublis Web service endpoint

http://aneurist.erasmusmc.nl/euadr-manager-db/euadr-service-db?wsdl Web service with the method get FilteredRelations Web service endpoint

http://cgl.imim.es/axis2/services/cglAlertService?wsdl Web service with the methods getSmileFromATC and
getUniprotListFromSmile

Web service endpoint

http://ibi.imim.es/axis2/services/AdrPathService?wsdl Web service with the methods getDiseaseAssociatedProteins
andgetPathways

Web service endpoint

http://www.myexperiment.org/workflows/2280.html ADR-FM workflow Workflow

http://www.myexperiment.org/workflows/2279.html ADR-FD workflow Workflow

http://www.myexperiment.org/workflows/1988.html ADR-S workflow Workflow

doi:10.1371/journal.pcbi.1002457.t004
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general, pathway databases such as Reactome contain a canonical,

general description of biological processes and pathways [49]. These

pathways can be found in different cell types and tissues, or in

different time points in the life of an organism; however, not all the

pathway components might be active in all circumstances.

Combining information from pathways with protein expression in

tissues and cell types can result in a cell and tissue type specific view

of a given pathway. Thus, this method combines annotation of

proteins to pathways with information of protein expression in cells

and tissues. Briefly, we determine if the proteins associated with the

drug and the event are expressed in the same tissue and cell type

according to the The Human Protein Atlas version 7.1 [50]. Only

the proteins that share expression at both levels (tissue and cell type)

are kept for the next step. Then, for this list of proteins, we retrieve

all annotations to pathways using the Reactome web service

(Figure 1B). The input of the method is composed of two lists of

UniProt identifiers and the output is an XML document listing the

pathways, the annotated proteins and their expression profile.

Workflow input. The substantiation workflow has five input

ports, called atc, event, eventType, eventName, and cytoscape. The signal

is represented by the ATC code of the drug at the 7-digits level

(e.g. M01AH02 for celecoxib) and the event, which is defined by

the three input ports event, eventName and eventType. We allow two

different types of event definitions: events as defined in the EU-

ADR project (Table 5), and events defined by a set of UMLSH
concept identifiers. The input port eventType is then used to

distinguish between the two definitions for events. The eventName

can be set by the user and is only required for user-friendly

visualization of the results. The cytoscape input port defines the

location of the local Cytoscape installation (e.g. /home/user/

cytoscape-v2.7.0); it is optional and only required for the

visualization of the signal substantiation results (Figure 2).

Workflow output. The output of the signal substantiation

workflow consists of 7 ports representing different layers of the

results. Besides the raw outputs from the individual web services

(drugTargetOutput and diseaseProteinOutput), the protein profile of the

drug or its metabolites (drugTargets), and the protein profile of the

event (diseaseProteins) are provided. The signal substantiation

workflow combines two ways of connecting drug and event,

through proteins or through biological pathways. The outcome of

these results is shown to the user during workflow execution by pop-

up windows. The list of connecting proteins, that is, the protein

annotated to both the drug and the event is provided

(connectingProteins). For a user-friendly visualization and analysis of

the results, a Cytoscape graph (CytoscapeResultGraph) is generated. The

Table 6. Drug-target databases used in the ADR-S workflow.

Database Description URL

AffinDB The Affinity Database (AffinDB) contains affinity data for protein-ligand complexes of the PDB. http://pc1664.pharmazie.uni-marburg.de/affinity/

BindingDB BindingDB is a public, web-accessible database of measured binding affinities for
biomolecules, genetically or chemically modified biomolecules, and synthetic compounds.

http://www.bindingdb.org/bind/index.jsp

ChemblDB ChEMBL is a database of bioactive drug-like small molecules, it contains 2-D structures,
calculated properties (e.g. logP, Molecular Weight, Lipinski Parameters, etc.) and
abstracted bioactivities (e.g. binding constants, pharmacology and ADMET data).

https://www.ebi.ac.uk/chembl/

DrugBank DrugBank is a unique bioinformatics and chemoinformatics resource that combines
detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with
comprehensive drug target (i.e. sequence, structure, and pathway) information.

http://www.drugbank.ca/

hGPCRlig hGPCRlig is a bank of 3-D human G-Protein Coupled Receptor models and their known ligands. http://cheminfo.u-strasbg.fr:8080/hGPCRlig

IUPHARdb IUPHARdb incorporates detailed pharmacological, functional and pathophysiological
information on G Protein-Coupled Receptors, Voltage-Gated Ion Channels, Ligand-Gated
Ion Channels and Nuclear Hormone Receptors.

http://www.iuphar-db.org/index.jsp

MOAD Binding MOAD’s goal is to be the largest collection of well resolved protein crystal structures
with clearly identified biologically relevant ligands annotated with experimentally determined
binding data extracted from literature.

http://www.bindingmoad.org/

NRacl NRacl is an annotated compound library directed to nuclear receptors as a means for
integrating the chemical and biological data being generated within this family. All data
incorporated in NRacl were collected from public sources of information, mainly reviews
and medicinal chemistry journals of the last 10 years [53].

[53]

PDSP This service provides screening of novel psychoactive compounds for pharmacological and
functional activity at cloned human or rodent CNS receptors, channels, and transporters.

http://pdsp.med.unc.edu/indexR.html

PubChem PubChem provides information on the biological activities of small molecules. It is a
component of NIH’s Molecular Libraries Roadmap Initiative.

http://pubchem.ncbi.nlm.nih.gov/

doi:10.1371/journal.pcbi.1002457.t006

Table 5. Event codes and names of events as defined in the
EU-ADR project [48,49].

Event code Event name

BE Bullous Eruptions

AS Anaphylactic Shock

ARF Acute Renal Failure

AMI Acute Myocardial Infarction

ALI Acute Liver Injury

CARDFIB Cardiac Valve Fibrosis

UGIB Upper gastrointestinal bleeding

RHABD Rhabdomyolysis

PANCYTOP Aplastic anemia/Pancytopenia

NEUTROP Neutropenia/Agranulocytosis

QTPROL QT Prolongation

doi:10.1371/journal.pcbi.1002457.t005
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graph is composed of three types of nodes: drug, event, and proteins,

and two types of edges: drug-protein, protein-event. The attributes of

the edges contain supporting information for each association, such

as source databases, association type, binding value for the drug, etc.

(Tables 7 and 8). As result of the pathway analysis the output port

connectingPathways provides a list of all pathways connecting drug and

event that can be visualized as HTML file.

Workflow run. The different web services run in parallel.

The drug ATC code is first processed by the module

getSmileFromATC, which returns the SMILE code of the drug.

The SMILE code is then further processed by the module

getUniprotListFromSmile, which returns the relationships

between the drug and its targets, including targets of the

metabolites of the drug. The event is processed by the module

getDiseaseAssociatedProteins, which returns relationships between

the event and associated proteins. The lists of proteins associated

with drug or event are extracted by means of Java scripts using

XPath queries and are further processed to remove duplicates.

The module ConvertToCytoscapeGraph converts the output of

the web services to a Cytoscape graph for user-friendly

visualization by means of XSL transformation. For the signal

substantiation through proteins, the two protein profiles are

combined to determine the proteins in common between the two

profiles (module CheckIntersection). For the signal substantiation

through pathways, the two protein profiles are subjected to the

module getPathways, which returns a list of pathways to which at

least one drug and one event protein that are expressed in the

same tissue are annotated to. The output is further processed by

module ConvertToHTML, which generates an HTML file listing

the pathways that connect the drug and the event.

Analysis of drug-side effects from SIDER
A dataset of drug-side effects was downloaded from SIDER

(December 2011) [25]. We restricted the SIDER dataset of total

61102 drug-event associations to 28251 associations between 492

drugs and 974 side effects by (i) mapping the used drug and event

identifiers to the vocabularies used in our framework (ATC codes

for drugs and UMLS concept identifiers for adverse events), and

(ii) restricting to drugs and events for which protein annotations

were available. P-values were computed using Fisher exact test and

FDR was used to correct for multiple hypothesis testing.

Shortest path analysis
We used the protein-protein interaction representation of the

Reactome pathways (http://www.reactome.org/download/

current/homo_sapiens.interactions.txt.gz, January 2012) to calcu-

Table 7. Node attributes in the Cytoscape graph.

Entity ID SMILE styleName nodeType

Drug Internal identifier for the node in the network. The SMILE string corresponding
to the drug structure.

Common name for the node. Drug

The ATC code for the drug. The generic drug name.

Metabolite Internal identifier for the node in the network. Not provided Common name for the node. Drug

Internal identifier for the metabolite. Numbered metabolite.

Event Internal identifier for the node in the network. Not applicable Common name for the node. Event

The UMLSH CUI for the event. Name of the UMLSH CUI
concept extracted from UMLSH.

Protein Internal identifier for the node in the network. Not applicable Common name for the node Protein

The UniProt accession number for the protein. Gene symbol for the protein
as in UniProt.

doi:10.1371/journal.pcbi.1002457.t007

Table 8. Edge attributes in the Cytoscape result graph.

ID bindingValue evidenceLink evidenceSource evidenceType relationshipType

Drug-protein Internal identifier
constructed of the ATC
code of the drug and
the UniProt identifier
of the protein.

The binding affinity
value as reported in
the original database.

Not applicable Database providing
the association.

OBSERVATIONAL for
associations taken from
databases. SIMILARITY for
associations from in silico
profiling.

BINDS for
drug-target
binding

Metabolite-
protein

Internal identifier
constructed of the
metabolite identifier
and the UniProt
identifier for
the protein.

The binding affinity
value as reported in
the original database
or transferred during
in silico profiling.

Not applicable Database providing
the association.

OBSERVATIONAL for
associations taken from
databases. SIMILARITY for
associations from in silico
profiling.

BINDS for
metabolite-target
binding.

Event-protein Internal identifier
constructed of the
UMLSH CUI concept
and the UniProt
identifier of the protein.

Not applicable PubMed identifier
of the publication
supporting the
association, empty
if not available.

Database providing
the association.

OBSERVATIONAL for
associations from curated
databases. TEXT-MINING for
text-mining derived
associations.

Association type
according to the
gene-disease
association ontology
available in [23].

doi:10.1371/journal.pcbi.1002457.t008
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late the shortest path between any pair of antipsychotic drug

and QTPROL associated proteins. For this purpose, we

used the implementation of the Dijkstra algorithm in the Perl

package Graph (http://search.cpan.org/,jhi/Graph-0.94/lib/

Graph.pod). We then computed the average shortest path length

for randomly chosen combinations of drug and event proteins and

used a one-sided t-test to assess if the shortest path between the

drug and event proteins as observed in our analysis was shorter

than compared to random.

Event definition and terminology mapping
The EU-ADR project focuses on a selection of adverse drug

reactions that are monitored in electronic health records and

further analyzed by the filtering and substantiation workflows

[7,8]. These events were defined in terms of UMLS Metathesaur-

usH concept identifiers as described in [51,52]. The event codes

and names as defined in the EU-ADR project are listed in Table 5.

The mapping of events codes or strings to UMLS MetathesaurusH
concept identifiers and other vocabularies such MeSHH and

OMIM is implemented within the web services. The ADR-S

workflow accepts events as defined in the EU-ADR project or any

other clinical event defined by UMLS concept identifier. The

UMLS concept identifiers are processed to map them to MeSHH
and OMIM identifiers using the UMLS MetathesaurusH.

Availability
The availability of web services and workflows presented in this

work is detailed in Table 4.
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