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Abstract

Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point
mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular
fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved
throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large
representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were
computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability
(i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all
proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of
homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was
indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability
were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic
mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-
thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics
despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second,
some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a
phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the
principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future
thermodynamically informed classification of protein homology.
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Introduction

Protein structure and function are ultimately determined by

thermodynamics. For example, Anfinsen’s seminal work [1]

demonstrated that the native state of a protein exists at a

minimum in Gibbs free energy of stability under physiological

conditions. Binding and catalysis are also governed by free energy:

the sign and magnitude of the free energy change of each

functional reaction controls the reaction’s direction and equilib-

rium extent, respectively [2,3].

Gibbs free energy (DG) results from the summed, often opposing,

contributions of enthalpy (DH) and entropy (TDS): DG =DH2TDS.

Generally, in the case of proteins, changes in free energy are small as

compared to the underlying enthalpic or entropic changes [4].

Reactions can be dominated by either enthalpy or entropy, but it is

most often the case that a sometimes delicate balance between enthalpy

and entropy controls protein structure and function.

Unfortunately for the goal of thermodynamic characterization

of protein folds, each of these quantities can be challenging to

accurately predict. While enthalpy can be rationalized in terms of

information derived from atomic coordinates (i.e. from the number

and types of bonds seen in the structure) [5], entropy is harder to

estimate, frequently requiring knowledge not apparent from a

single structure, such as information about the conformational

degeneracy of the protein [6–8]. Equally as challenging is the task

of developing a robust analysis that reports the position-specific (i.e.

local) stability within the protein, rather than reporting either: 1)

the energetic contribution of a residue (which would be highly

sequence-dependent) or 2) the stability of a protein as a whole (i.e.

global stability).

Due in part to the inherent difficulty of accurately computing

global and local enthalpy, entropy, and free energy, all protein

structure classification strategies of which we are aware do not

incorporate thermodynamic information. It is our hypothesis that

this theoretical omission limits the complete understanding of

protein fold space. There may also be practical consequences to

such an omission. For example, it is possible that thermodynamic

information, as a protein observable independent of sequence or

structure[9], could improve computational tools for sequence

alignment, fold recognition [10], or homology detection, thereby

clarifying discrepancies in existing classification schemes that are

based on only sequence and structure.

Thermodynamic information may also yield new understand-

ing, not available from current schemes, about evolutionary
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sequence, structure, and functional relationships [11]. One

particularly important and as yet unanswered question is the

degree to which protein stability and its components (i.e. enthalpy

and entropy) are conserved during fold evolution: does the concept

of ‘‘thermodynamic homology’’ meaningfully exist beyond con-

servative point mutations?

As a step towards integration of thermodynamic information

into existing protein classification schemes, the local (or position-

specific) free energy of stability (DG), enthalpy (DH), and entropy

(TDS) are here computed for a large representative database of

protein domains using the previously described COREX/BEST

algorithm [12–14]. Importantly, the diverse proteins studied have

accepted evolutionary relationships [15] and are expertly curated

[16] such that any homologs are remote (i.e. ‘‘twilight zone’’ [17]

pairwise sequence identity or less on average). Thus, by

experimental design, trivial comparisons between the thermody-

namics of closely related proteins are explicitly excluded from this

analysis. The central aim of this work is to assess the degree of

thermodynamic conservation among remotely homologous pro-

tein domains.

Three findings relating thermodynamics to protein sequence

and structure are reported. First, in accordance with previous work

[18], it is confirmed that homologous proteins exhibit correlated

thermodynamic information. Second, enthalpy and entropy are

less correlated than stability, suggesting that homologous sequence

differences result in enthalpic and entropic changes that largely

balance to preserve the local stability of an evolved protein as

compared to an ancestral one. Third, based on manual inspection

of structural and thermodynamic alignments of homologous and

non-homologous pairs of proteins, an organizational framework

is postulated to guide the future integration of COREX/

BEST thermodynamic information into theories of protein fold

evolution.

Materials and Methods

Selection and processing of protein structure data
Structural coordinates for all protein domains of length less than

or equal to 150 residues were obtained from the ASTRAL 1.69

database [16] of 40% maximum sequence identity representatives.

Those domains defined as SCOP [15] class ‘‘e’’ (membrane

protein domains) were discarded, as the COREX/BEST algo-

rithm was parameterized for globular proteins and thus was not

expected to accurately estimate the thermodynamic characteristics

of membrane proteins. To focus on single domains, those included

in SCOP class ‘‘f’’ (multidomain proteins) were also discarded.

Coordinate files were preprocessed and standardized to

minimize run-time errors during subsequent analysis; these minor

edits included modification of selenomethionine residues to

methionine, removal of multiple atom occupancies other than

‘‘A’’, removal of multiple NMR models other than ‘‘1’’, and

modification of non-standard amino acids to alanine. In total,

3,688 domains from 666 unique SCOP families, 463 SCOP

superfamilies, and 292 SCOP folds were represented within the

five SCOP classes: all-a, all-b, a+b, a/b and small proteins. These

statistics demonstrated a reasonable and diverse sampling of single

domain protein structure space, yet included thousands of

homologous protein pairs (as defined by SCOP) at less than

approximately ‘‘twilight-zone’’ (i.e. ,25%) sequence identity.

Computation of local thermodynamic stability, enthalpy,
and entropy using the COREX/BEST algorithm

The COREX/BEST algorithm [12–14] constructs a protein

conformational ensemble using its high-resolution structure as a

template. COREX/BEST requires as input the three-dimensional

structural coordinates of a protein and employs a sliding window

to generate a large number of conformational microstates varying

from fully folded to fully unfolded. Output is a thermodynamic (i.e.

energetic) model of the protein’s native state ensemble. The

algorithm has been tested by both retrospective validation and

blind prediction [12,14,19–23], and thus has been demonstrated

to reasonably represent the ensemble. For this work, a COREX/

BEST analysis was performed on each member of the prepro-

cessed ASTRAL database described above using standard

parameters: window size, 12; minimum window size, 4; temper-

ature T, 25.0uC; and entropy weighting, W, 0.5.

The strength of COREX/BEST is the ability to capture local,

also known as ‘‘position-specific’’, thermodynamic quantities. The

important distinguishing feature of these position-specific quanti-

ties is that they reflect the ensemble-averaged thermodynamic

contributions of many residues in the three-dimensional neighbor-

hood of one residue, rather than reflecting the independent

contribution of only that particular residue [24]. Thus, local

thermodynamic quantities, although reported at individual residue

positions, greatly depend on the rest of the protein, in the sense

that surrounding residues may influence the probability of a

particular residue being folded, making it more likely, for example,

for blocks of folded residues to be found together. In other words,

this ensemble-based formalism separates the energetic contribu-

tion of the residue from the position itself. It is possible, and

preferable, for these quantities to be obtained from experiment, for

example local stability as measured by NMR-detected hydrogen

exchange[25] or local enthalpy as measured by the temperature

dependence of local stability [26–28]. Indeed, comparisons with

such experiments have shown that COREX/BEST thermody-

namic quantities plausibly reproduce the measured values [12,14].

However, large scale studies such as the present one are currently

difficult, if not impossible, to execute experimentally.

Author Summary

Protein structure and function are fundamentally deter-
mined by thermodynamics. However, for technical as well
as historical reasons, current evolutionary classification
schemes and bioinformatics tools do not fully utilize
thermodynamic information to describe or analyze pro-
teins. In this work, we address this deficiency by
computationally estimating the position-specific thermo-
dynamic quantities of stability (DG), enthalpy (DH), and
entropy (TDS) for a large and diverse representative
sample of protein structures. The sample was drawn from
an expertly curated database, such that accepted evolu-
tionary relationships existed for all protein pairs. Impor-
tantly, trivial relationships between pairs highly similar in
amino acid sequence were explicitly excluded. We found
that all position-specific thermodynamic quantities DG,
DH, and TDS were more similar between proteins that
were evolutionarily related (i.e., homologous), and were
less similar between proteins that were not evolutionarily
related (i.e., non-homologous), with stability being partic-
ularly similar between homologous proteins. However,
interesting statistically significant exceptions to these
trends were observed, exceptions that could indicate
novel processes of functional adaptation or evolutionary
fold change, mediated by thermodynamics, for the
proteins involved. Taken together, these results expand
our understanding of the role of thermodynamics in
protein evolution and suggest an organizational frame-
work for a future thermodynamically-informed classifica-
tion of protein homology.

Thermodynamic Conservation in Homologous Proteins
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Figure 1. Quantitative comparison of position-specific thermodynamic stabilities between two remotely homologous proteins
using pairwise structure alignment as a guide. A. Structural alignment of two SH2 domains, Homo sapiens Xlp protein Sap (ASTRAL domain
d1d4ta [64]) and Mus musculus Eat2 (d1i3za [65]). The quality of the superposition is 0.95 Å RMSD over 102 CA atoms, Dali Z-score of 19.4, sequence
identity of 38%; the high similarity of the two structures is evident. B. Profile comparison of local stability values (DG, Equation (3) as computed by the

Thermodynamic Conservation in Homologous Proteins
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Computation of position-specific thermodynamic quantities

from a COREX/BEST ensemble has been described in detail

[12,24,29]. Briefly, for each partially folded microstate i of the

ensemble, a Gibbs free energy of global stability DGi is computed

from a previously validated and calibrated energy function

composed of solvent-exposed surface area and conformational

entropy terms [12]. From these stabilities, the probability Pi of

each microstate i can be estimated by

Pi~
KiPN

i~1

Ki

~
Ki

Q
: ð1Þ

In Equation (1), Ki = exp(2DGi/RT) is the statistical weight of

each microstate, R is the gas constant and Q is the partition

function for the system. Given the probabilities of each microstate,

a so-called ‘‘residue stability constant’’, kf, j, can be defined for

every residue j of the protein [12]:

kf , j~

P
Pf , jP
Pnf , j

: ð2Þ

In Equation (2), the numerator is the summed probability of

states in the ensemble in which a particular residue j is in a folded

conformation and the denominator is the corresponding sum for

states in which residue j is in an unfolded conformation. The

residue stability constant directly gives the local thermodynamic

stability DG at each residue position j, equivalent to the difference

in energy between the Boltzmann-weighted subensembles of states

in which residue j is folded (f) and unfolded (nf) [24,29]:

DG½ �j~{RT lnkf , j~RT ln
X

Pnf , j{RT ln
X

Pf , j

~SDGf , jT{SDGnf , jT
ð3Þ

Similarly, local enthalpy (DH) and entropy (TDS) were

computed as a function of residue position j in each protein from

the COREX/BEST ensembles as differences between the folded

and unfolded subensembles for each respective thermodynamic

descriptor [24]:

DH½ �j~SDHf , jT{SDHnf , jT

~SDHap,f , jT{SDHap,nf , jTzSDHpol,f , jT{SDHpol,nf , jT
ð4Þ

TDS½ �j~STDSf , jT{STDSnf , jT

~STDSap,f , jT{STDSap,nf , jTzSTDSpol,f , jT

{STDSpol,nf , jTzSW :TDSconf , f , jT{SW :TDSconf , nf , jT

ð5Þ

In Equations (4) – (5), subscript ‘‘ap’’ refers to energetic

contributions arising from apolar solvent accessible surface area,

‘‘pol’’ refers to contributions from polar surface area, and ‘‘conf’’

refers to conformational entropy. The specific values of T and W

are given above. Note that the total entropy of the calculation,

Equation (5), reflects contributions from both solvent and

conformational terms, while the enthalpy, Equation (4), reflects

contributions from only solvent. Thus, this statistical thermody-

namic treatment can distinguish between the two main classes of

entropy. Under the native state conditions simulated in this work,

the total entropy appears largely dominated by solvent contribu-

tions (Text S1, Figure S1).

Thermodynamic pairwise residue equivalences obtained
from structural alignment

At least two different strategies could be envisioned to compare

local thermodynamic quantities of two proteins: direct alignment

of thermodynamic quantities or alignment of quantities according

to residue equivalencies obtained from another source. Although

the former strategy is under development [18,30], for expediency

we chose here to implement the latter strategy by aligning

thermodynamic quantities according to structure alignment.

Pairwise structure alignment was performed for the proteins in

the dataset in an all-vs.-all manner using the DALI-Lite package

[31] with default parameters. More than 6 million nonredundant

pairwise comparisons were attempted; approximately 95% of

these comparisons were successful and were retained for further

analysis.

Quantitative correlation of structurally equivalenced
thermodynamic descriptors

Given two sets of N equivalenced thermodynamic descriptors, a

Pearson correlation coefficient r [32] was computed using the

equation:

r~

PN
i~1

xi{�xxð Þ yi{�yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

xi{�xxð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1

yi{�yyð Þ2
s ð6Þ

where, x and y represent sets, one set from each protein, of

thermodynamic descriptors (DG, DH, or TDS from Equations (3)

– (5), the corresponding correlation coefficients are denoted rDG,

rDH, rTDS, respectively, in the text). The horizontal bar indicates an

average.

A perfect positive correspondence was given by r = +1, no

correspondence by r = 0, and a perfect negative correspondence by

r = 21. Structural alignments of less than an arbitrary length cutoff

of 20 residues were ignored, to reduce artifactual correlations due

to the sensitivity of the Pearson r to outlier data points.

Thermodynamic descriptors of the first or last four residues in

every protein were also ignored, due to end effects in the

COREX/BEST calculation caused by the minimum window size.

The Spearman rank-order correlation method [32], perhaps less

widely used but more statistically rigorous than the Pearson r, was

implemented as an additional test of the robustness of the results. It

was observed in essentially all pairwise thermodynamic compari-

sons, regardless of homology, that the Spearman and Pearson r

values were highly correlated (Pearson r = 0.92, Pearson p,1026,

COREX/BEST algorithm), aligned according to the equivalenced residue positions from structure superposition. The high similarity of the two sets of
local stabilities is evident. C. Quantitative comparison of the two sets of equivalenced local stabilities results in a Pearson correlation coefficient of
r = 0.91. As described in Materials and Methods, the estimated probability of obtaining such a result is p,0.01 against Null Model 1 and p,1024

against Null Model 2.
doi:10.1371/journal.pcbi.1000722.g001
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Spearman r = 0.92, Spearman p,1026, 9,241,311 points, data not

shown), with significant individual Spearman p-values of p,0.05

occurring at Pearson r values of approximately |r|.0.25. As this

threshold value of significance represented more than 45% of all

9,241,311 data points, it was decided to report the data in terms of

the more widely used Pearson r. However, it is emphasized that the

qualitative results and conclusions drawn were unchanged whether

the Pearson or Spearman methods were used.

A relatively small, but not necessarily exhaustive, number (,50)

of homologous protein comparisons involving conformational

changes (data not shown) were discovered through manual

inspection and discarded, since the conformational change usually

dominated the thermodynamics. Although biologically interesting

and deserving of future investigation, these changes were not the

principal objects of the present study. Mode estimations for

probability distributions of correlation coefficients and other

quantities were computed using the method of Bickel and

Fruewirth [33]. The results reported below were additionally

filtered to only include relatively well-determined X-ray crystal-

lographic structures (resolution of #2.5 Å). However, all conclu-

sions were unchanged when NMR structures and structures with

resolution .2.5 Å were also included (data not shown).

Null models to estimate significance of correlated
thermodynamic descriptors

The statistical significance of individual structural and thermo-

dynamic alignments was assessed through construction of two

simple null models. In Null Model 1, the probability of chance

occurrence at a particular level of structural or thermodynamic

similarity was empirically estimated from the frequency of

observed length-matched DALI-alignments at or above the

particular similarity level. In this model, separate background

distributions were used for homologs and non-homologs. In Null

Model 2, the probability of chance occurrence at a particular level

of structural or thermodynamic similarity was estimated from the

frequency of observed length-matched gapless alignments between

randomly selected pairs of non-homologous protein fragments. In

this model, a minimum alpha-carbon RMSD structure superpo-

sition [34–36] of the fragment pair as well as the Pearson r-value

between thermodynamic descriptors was computed. 30,000 pairs

of fragments were chosen for each gapless alignment length L,

where 10#L#100. In effect, the two null models occupied

extremes of background distributions: Null Model 1 accounted for

the interdependence of thermodynamic and structural similarity,

while Null Model 2 weakened this interdependence. In both

models, p-values were conservatively estimated, rounding up to the

next lesser power of 10.

Results

Homologous proteins exhibit similar thermodynamic
characteristics

Figure 1 illustrates the methods used to compare position-

specific thermodynamic descriptors of homologous (and non-

homologous) protein pairs. A structural superposition of two

homologous SH2-family domains, human Xlp protein SAP and

mouse Eat2, is displayed in Figure 1A. The equivalenced residue

pairings from this structure superposition were employed in

Figure 1B to align the thermodynamic descriptors (e.g. local

stability, DG) of the two proteins. A Pearson correlation of the

aligned thermodynamic descriptors (Figure 1C) quantified the

similarity between the two sets of descriptors. Analogous

correlations were performed using the enthalpic (DH) and entropic

(TDS) values (data not shown). This process was repeated for all

non-redundant pairwise comparisons in the structure and

sequence diverse protein set, as described in Materials and

Methods.

Because every protein in the set held a known position in the

SCOP hierarchy, many comparisons could be sub-classified into

either homologous (identical SCOP family) or likely non-

homologous (different SCOP class) relationships. A clear pattern

emerged when the correlations were tabulated for these two

subsets: regardless of the thermodynamic descriptor used (i.e., DG,

DH, TDS), homologous proteins exhibited significantly more

highly correlated descriptors than did non-homologous proteins

(Figure 2). The general absence of sequence similarity between

protein pairs suggested the importance of the structural context of

the position (as opposed to the identity of the amino acid at that

Figure 2. Probability densities of all vs. all Pearson correlations of thermodynamic descriptors between homologous and non-
homologous proteins. A. Similarities in local stability (DG) between homologous pairs are greater than similarities between non-homologous pairs
(modes of r = 0.61 and r = 0.29, respectively). B. Similarities in local enthalpy (DH) are also greater between homologs as compared to non-homologs
(modes of r = 0.39 and r = 0.06, respectively), but the degree of similarity is less than that observed for stability. C. Similarities in local entropy exhibit a
similar trend as observed for enthalpy (modes of r = 0.50 for homologs and r = 0.19 for non-homologs, respectively). Taken together, these
distributions suggest that stability, enthalpy, and entropy are all conserved between homologs, but that stability is conserved to a greater extent
than is enthalpy or entropy. The probability of the homolog and non-homolog distributions in each panel A – C arising from an identical underlying
distribution is p,1026, as assessed by the chi-square test for unequal numbers of points with 20 d.o.f. Thus, differences between homolog and non-
homolog distributions are highly significant.
doi:10.1371/journal.pcbi.1000722.g002

Table 1. Similarity of pairwise protein sequence, structure, and thermodynamic comparisons for each level of the SCOP hierarchy.

Level of SCOP hierarchy rDG rDH rTDS Sequence Identity Alignment Length RMSD Number of Protein Pairs

Identical SCOP family 0.61a 0.39 0.50 14% 66 residues 2.2 Å 8,287

Identical SCOP superfamily 0.57 0.14 0.36 11% 60 residues 2.7 Å 18,207

Identical SCOP fold 0.43 0.05 0.27 8% 60 residues 3.0 Å 54,651

Identical SCOP class 0.26 0.10 0.20 6% 30 residues 3.4 Å 1,285,025

Different SCOP class 0.29 0.06 0.19 6% 29 residues 3.6 Å 3,072,150

aAll values are estimated modes of the particular probability density distribution indicated in the column heading, as described in Materials and Methods.
doi:10.1371/journal.pcbi.1000722.t001
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position) in determining the energetics at each position. In

quantitative terms, the mode of the homologous pairs’ distribution

of stability correlations was 0.61, as compared to 0.29 for the non-

homologous pairs (Figure 2A and Table 1). Similarly, the modes

for the enthalpy correlation distributions were 0.39 and 0.06 for

homologs and non-homologs, respectively (Figure 2B). Modes for

the entropy distributions were 0.50 and 0.19 for homologs and

non-homologs, respectively (Figure 2C).

Figure 3. Local stability is conserved in homologous proteins to a greater extent than is component enthalpy or entropy. A.
Correlation coefficients for both enthalpy and entropy are generally smaller in magnitude as compared to those for stability in the same homologous
protein pair. Each point in the scatterplot represents a pair of Pearson correlation coefficients for the thermodynamic descriptors of a particular
protein pair. The vast majority of enthalpy (y-axis) and entropy (triangles) points lie below an identity line (dashed) representing a given stability
correlation (x-axis), demonstrating that stability is more similar than enthalpy or entropy for almost every homologous pair. B. Enthalpy and entropy
of the SH2 domains shown in Figure 1 clearly demonstrate regions of large correlated changes spanning approximately 10–20 residues (boxed) in DH
(yellow) and TDS (blue) that result in minimal changes to DG (green).
doi:10.1371/journal.pcbi.1000722.g003
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Position-specific stability is correlated to a greater extent
than is enthalpy or entropy

Closer inspection of the correlation distributions suggested a

second pattern: within homologous proteins, enthalpy and entropy

generally did not exhibit correlations as great as those for stability

(modes of 0.39, 0.50, and 0.61 respectively, Table 1; differences

between these homolog distributions were all highly significant,

exhibiting p,1026 as assessed by chi-square tests with 19 d.o.f).

This trend was more fully revealed by plotting individual enthalpy

and entropy correlations as a function of the stability correlation

for the same homologous protein pair (Figure 3A).

Examination of selected thermodynamic descriptor alignments

demonstrated that the source of the differences in correlation

coefficients was due to greater variation in position-specific enthalpy

and entropy values as compared to the variation in stability values

(Figure 3B). In particular, continuous regions of approximately 10 –

20 residues appeared to encompass much of the variation

(Figure 3B, boxes). Within these variable regions, changes in

enthalpy between the two proteins appeared to be somewhat

balanced by changes in entropy such that the overall difference in

stability was minimized (Figure 3B, boxes, discussed in detail below).

A structural - thermodynamic ‘‘gradient’’ is a major
organizing principle of protein homology

A clear ‘‘gradient’’ was observed relating structural similarity to

thermodynamic correlation: as structural similarity and likelihood

of homology decreased, thermodynamic similarity also decreased

(Table 1). In other words, proteins of similar structure exhibited

similar thermodynamic stability. Such an overall gradient was not

surprising, given that it would be expected that in the limit of two

identical structures, two identical COREX/BEST ensembles, and

thus identical thermodynamics, would result.

However, the correlation distributions of Figure 2 showed a non-

negligible degree of overlap between homologs and non-homologs. For

example, approximately 10 percent of non-homologous pairs exhibited

stability correlation coefficients larger than the homolog mode of 0.61,

and the same percentage of homologous pairs even exhibited zero or

negative correlation. There are at least two explanations for the

significant overlap between the distribution of correlations for

homologous and non-homologous proteins. The first is that the

overlap is real and reflects actual differences between structural and

thermodynamic representations of proteins. The second is that the

cases of high correlation between non-homologs are a statistical artifact

stemming from an enrichment of poorly described data in certain

sequence stretches. To address this issue, we adopted a two-fold

strategy designed to probe both for biases in the thermodynamics of the

different positions associated with the correlations, as well as biases in

the amino acid compositions in those positions.

First, in an effort to ensure that the overlap regions were not

enriched with residue positions that occupied a particular region of

thermodynamic parameter space, we performed principal com-

ponents analysis (PCA) on the thermodynamic parameter space of

the sequence segments that had the highest frequency of

occurrence (top 10%) in the overlap regions and compared the

eigenvalues to those obtained for the overall dataset, as well as for

the datasets corresponding to the regions of no overlap[9]. The

results (Text S1, Figure S2) revealed no bias in the overlap region,

indicating that the high correlations were not driven by sequences

enriched in a certain type of energetic environment.

To further investigate possible sampling bias as a source of the

overlap in the distributions, we investigated the thermodynamic

information content of those sequence segments that most

frequently aligned with non-homologous proteins. Previously,

propensities of amino acids in different thermodynamic environ-

ments were used as the basis for a fold recognition algorithm,

demonstrating that the thermodynamic architecture outlined in this

study represented a general framework within which to understand

protein organization [10,24,29]. Among several noteworthy results

from those studies was the ability to match all helical (or all beta)

sequences to their folds (as described by a thermodynamic signature)

using propensity information derived exclusively from all beta (or all

helical) proteins[29], a result that demonstrated the universality of

the thermodynamic representation of proteins as well as its

independence from structural descriptors.

To ensure that frequently paired non-homologous sequences

(i.e. those sequence stretches that most frequently paired with non-

homologs) contained the same thermodynamic information as the

overall set, we performed fold recognition experiments using

thermodynamic propensities derived exclusively from those

sequences. The comparable fold recognition success (Text S1,

Figure S3) clearly demonstrated that the thermodynamic infor-

mation content was identical across the distribution of sequences.

In short, the similarity in both the range of thermodynamic

parameter space occupied, as well as the distribution of amino

acids within this parameter space between sequences that

frequently correlate with non-homologs and those that do not,

suggested that the overlap regions in the distributions shown in

Figure 2 are not statistical artifacts. Instead, the results may

provide insight into the relationship between structure, energy,

and the evolution of this diverse library of folds. This point is

discussed in more detail below.

Exceptions to shared structure and thermodynamic
similarity between homologous proteins

As expected, inspection of the proteins contained in the overlap

regions in Figure 2 revealed interesting exceptions to the overall

Figure 4. Null models to estimate probability of particular levels of thermodynamic similarity in the presence or absence of
structural similarity. Panel A represents background distributions of homology-specific subsets of Null Model 1, and panel B represents the
background distribution of Null Model 2. In each of these panels, ellipses centered on the mean values of structural and thermodynamic similarity for
a given alignment length are displayed. The semi-axes of a particular ellipse each correspond to one standard deviation of the similarity values for
that length set. Comparison of each panel conveys a visual sense of the structural/thermodynamic probability space covered by each null model: Null
Model 2 covers substantially more probability space than does Null Model 1. A. Background distributions for homologous protein pairs are displayed
as solid lines, background distributions for non-homologous pairs as dotted lines. Structural alpha-carbon RMSD is almost independent of homolog
alignment length, while similarity in local thermodynamic stability increases with length. In contrast, RMSD, as well as thermodynamic similarity,
decreases with alignment length for non-homologs. B. Background distribution for randomly drawn fragments. RMSD increases with alignment
length while thermodynamic similarity decreases. At lengths less than approximately 20 residues, a substantial probability for either correlated or
anti-correlated thermodynamic stability exists. C. Projections of null model distributions into the thermodynamic stability dimension. Probability
density functions from Null Model 1 for homologs (solid line) and non-homologs (dotted line) are displayed, as well as from Null Model 2 for
randomly drawn fragments (dashed line). Each of these distributions is composed of alignments of lengths 70–75 residues. Progressive rightward
shifting of the non-homologous and homologous distributions relative to random suggests the importance of structural context to thermodynamic
similarity, as discussed in the text.
doi:10.1371/journal.pcbi.1000722.g004
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Figure 5. Four examples of non-homologous protein pairs that show regions of similar structure and thermodynamic stability.
Examples of this type are a modest fraction (approximately 10%) of thermodynamically similar comparisons (rDG.0.61) between non-homologous
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structural-thermodynamic gradient, exceptions that required a

more nuanced interpretation of the gradient. More generally,

these exceptions suggested an organizational framework for the

integration of thermodynamic information into existing fold

classification schemes (as described below). The exceptions could

be broadly ordered into at least three distinct classes: 1) non-

homologous proteins that contained regions of coincident

structural and thermodynamic similarity, 2) homologous proteins

containing regions of thermodynamic similarity and structural

dissimilarity, and 3) homologous proteins containing regions of

structural similarity and thermodynamic dissimilarity.

To facilitate quantitative description of these exceptional cases,

two empirical probability models of thermodynamic similarity

were constructed to assess how often these cases might be expected

due to chance, as described in Materials and Methods and

displayed in Figure 4. These models could be regarded as

occupying extremes in structural and thermodynamic similarity

space and consequently resulted in different probability estimates.

The first model (Null Model 1) accounted for the interdependence

of structural and thermodynamic similarity at each alignment

length. P-values for homologs and non-homologs were determined

separately at each length by comparing the specific combination of

structural and thermodynamic similarities with the frequency of

obtaining such a combination across all comparisons. The density

of points is summarized in Figure 4A for different alignment

lengths. We note that the comparisons in Null Model 1 are DALI-

aligned structures and thus represent comparisons between

sequence stretches that have been selected for high structural

similarity. To determine the probability of obtaining a particular

thermodynamic correlation across any sequence comparison in the

database, a second null model (Null Model 2) was adopted.

According to Null Model 2, length-matched gapless alignments of

randomly paired protein fragments were examined, a step taken to

reduce the interdependence of structural and thermodynamic

similarity. The Null Model 2 exhibited an inverse dependence of

structural and thermodynamic similarity on length, in particular

revealing that alignments of less than 20 residues had a substantial

probability of high positive or negative thermodynamic correlation

(Figure 4B). Because the background distribution of Null Model 2

covered a larger amount of structural/thermodynamic similarity

space, p-values estimated from Null Model 2 were generally more

significant, as compared to Null Model 1. Projections of these two-

dimensional null model distributions into the single dimension of

thermodynamic stability similarity, for alignments of approxi-

mately 70 residues in length, are displayed in Figure 4C.

As Figure 4C reveals, the probability density of stability

correlation coefficients for random alignments of approximately

70 residue stretches (Null Model 2) is centered on zero, with

approximately 80% of the comparisons falling below correlations

of 0.5. As expected, the probability density functions of structurally

aligned sequences for both non-homologs and homologs are

shifted to higher correlations, with the shift for homologs being

more dramatic. The significance of this result is discussed in more

detail below. For now we simply note that these distributions can

be used to identify statistically significant exceptions to homolo-

gous structural and thermodynamic similarity and to investigate

the possible biological and evolutionary relevance of such

examples.

Several examples of non-homologous proteins that nonetheless

exhibited correlated position-specific stability are displayed in

Figure 5. These examples were representative of approximately

10% of non-homologs with high thermodynamic correlation

(defined as those above the homolog mode stability correlation

value of 0.61, about 10% of the total non-homologs), in that they

contained structurally and thermodynamically similar regions

within otherwise dissimilar proteins. Some specific types repeat-

edly observed were b-a-b units (Figure 5A), non-local b-hairpins

forming a sheet (Figure 5B), antiparallel helices (Figure 5C), and

amphipathic single helices (Figure 5D).

Additional statistically significant exceptions to the structural-

thermodynamic gradient, involving homologous proteins, are

displayed in Figures 6 and 7. Figure 6 shows three instances of

homologous pairs exhibiting conserved local stability despite

secondary structure variation. This phenomenon has been

previously identified as a possible thermodynamic mechanism

for evolutionary fold change[9], and the examples seen here,

occurring in a variety of secondary structural contexts, suggest its

generality.

However, a novel hypothesis is that these regions of thermo-

dynamically conserved structure change possibly coincide with

regions of functional importance; this hypothesis is illustrated with

several examples. Figure 6A shows the structure superposition and

aligned stability profiles of two immunoglobulin C1-set domains.

Highlighted are two boxed regions where stability is conserved

despite sequence and structure variation; one region contains

functional residues involved in binding of the murine cytomega-

lovirus m144 protein, alpha 3 domain to the b2m subunit [37].

Figure 6B highlights a strand to helix conversion between

aspartate and glutamate racemases, located in a region known to

mediate the different dimerization modes of the two enzymes

[38,39]. Similarly, Figure 6C highlights a region of structure

change important for dimerization in each of two biotin

carboxylase C-terminal domain-like proteins.

In contrast, Figure 7 shows three statistically significant

examples of homologous protein pairs whose native state

structures were quite similar (RMSD <1 Å) and yet exhibited

low or modest thermodynamic stability correlations (rDG#0.5).

One similar example of thermodynamic dissimilarity in the

context of high structural similarity has recently been experimen-

tally confirmed using point mutations of Escherichia coli adenylate

proteins. It is not clear at present if these similarities are entirely analogous or homologous in nature. In each panel, the DALI structure superposition
(top) and the aligned thermodynamic stability profile (bottom) are displayed. Structurally similar regions exhibiting similar thermodynamics are
colored shades of red; unaligned regions are colored shades of gray. The first protein named in every pair is colored darker than the second protein.
Chain termini are labeled. A. Methanocaldococcus jannaschii ribosomal protein L7ae (d1sdsa [66], bacillus chorismate mutase-like fold) and
Caulobacter crescentus DivK (d1mb3a [67], flavodoxin-like fold); two b-a-b units (RMSD of 5.0 Å over 70 aligned residues) within dissimilar overall
structures share similar local stabilities (rDG = 0.77, Null Model 1 p,0.20, Null Model 2 p,1024). B. Bacillus subtilis YwiB (d1r0ua (unpublished),
lipocalins fold) and Serratia marcescens chitinase insertion domain (d1edqa3 [68], FKBP-like fold); one b-hairpin and one three-stranded b-sheet form
a larger sheet (RMSD of 3.9 Å over 35 aligned residues) with similar local stabilities (rDG = 0.85, Null Model 1 p,0.10, Null Model 2 p,1023) in the
context of dissimilar overall structures. C. Archaeoglobus fulgidus AF2008 (d1sfxa (unpublished), DNA/RNA binding three helical bundle) and
Saccharomyces cerevisiae YBL001C (d1lxja [69], ferredoxin-like fold); two antiparallel a-helices (RMSD of 3.3 Å over 34 aligned residues) exhibit similar
local stabilities (rDG = 0.75, Null Model 1 p,0.06, Null Model 2 p,1024) within dissimilar overall structures. D. Gallus gallus histone H2B (d1tzyb [70],
histone fold) and H. influenzae HI0442 (d1j8ba [71], YbaB-like fold); one long amphipathic a-helix (RMSD of 4.5 Å over 37 aligned residues) has similar
local stabilities (rDG = 0.87, Null Model 1 p,0.03, Null Model 2 p,1024) in the context of two different folds.
doi:10.1371/journal.pcbi.1000722.g005
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Figure 6. Three examples of remotely homologous proteins exhibiting regions of secondary structure change with concomitant
minimal disruption of the local stability. These examples illustrate a plausible thermodynamically-mediated process of evolutionary fold
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kinase[40]. As suggested by the relatively small area of negative

correlations between homologs in Figures 2A–C, structure

similarity in the absence of thermodynamic similarity did not

occur very often between homologous proteins in the database

(only 8% of homologous pairs with an RMSD ,2.5 Å exhibited a

negative correlation coefficient).

Despite its relatively low frequency of occurrence, this class of

exceptions to the structural-thermodynamic gradient also may

have functional relevance, as illustrated by several examples.

Displayed in Figure 7A are the superposition and aligned stability

profiles of two extremely structurally similar thioredoxins from E.

coli and human, with an RMSD of 1.2 Å over 122 CA atoms.

However, the stability profiles are only weakly correlated (r = 0.45),

largely due to stability differences in the middle half of the

proteins’ alignment. The region of largest difference (approxi-

mately alignment positions 60 – 80) encompasses the conserved

Cys 73 residue, not found in the E. coli protein, which facilitates a

unique and functionally important dimer form of human

thioredoxin [41]. Figure 7B shows the comparison between two

MurCD N-terminal domains from Haemophilus influenzae and the

thermophile Thermotoga maritima; the low correlation between

stability profiles clearly results from the greater predicted stability

of the thermophile. Similarly, the stabilized N-terminal region of

the zeta-class GST N-terminal domain shown in Figure 7C

reduces the correlation with its delta-class homolog’s stability

profile. The predicted increase in stability is possibly related to the

region’s unique active site residues and associated novel function-

ality noted for the zeta-class [42].

Discussion

Position-specific thermodynamic attributes of proteins, such as

local stability, enthalpy, and entropy, are preserved to a large

degree in remote (i.e., twilight-zone sequence identity and below)

homologs. One implication of this result is that thermodynamics

reinforces structure and sequence similarity, suggesting that

thermodynamic attributes are likewise evolutionarily conserved

properties. Upon closer inspection, however, several important

features of the current analysis emerge regarding the relationship

between the conservation of structure and energy. As noted above,

Figure 4C reveals the shifting of the probability density function

for non-homologs and homologs when comparisons are made with

DALI-aligned structures, relative to random alignments. The shift

observed for the non-homologs relative to the random sequence

comparison is expected. In anecdotal terms, this result indicates

that a particular stretch of structural elements (e.g., a helix-loop-

helix) will have more similar energetics than two stretches of

randomly selected structure. Perhaps surprisingly, the energetic

correlation for homologs is improved over the non-homologs for a

given sequence length (even though homologs with substantial

sequence similarity were specifically not included in the analysis).

This latter result is important because the difference between the

improvement between homologs and nonhomologs provides a

quantitative measure of the impact of the ‘‘structural context’’ of

the specific sequences being compared. This is noteworthy because

it undermines the notion that thermodynamic identity is defined

by the RMSD of the structural units being compared. To the

contrary, the results suggest a great deal of energetic heterogeneity

for a particular structural motif. In other words, not all helix-loop-

helix motifs of a given length and structural similarity, for

example, will be thermodynamically equal. In fact, over the entire

database, the results not only reveal significant instances of

energetic heterogeneity for a specific structural motif, but more

importantly, energetic similarity between different structures. It is

our hypothesis, which we are currently testing, that it is precisely

this context dependence of the energies of structural elements that

determines how different folds can evolve from parental folds and

why minimal sequence changes can dramatically change a protein

fold[43–45].

Another implication of the conservation of local stability in

remotely homologous proteins suggests that some aspect of protein

behavior vital to the robustness of the organism is contingent on

maintaining the regional stability. There are at least two possible

reasons for such conservation. First, it is possible that a specific

balance of regional stability within a protein may bias (or preclude)

certain folding pathways, thus rendering the stability hierarchy in

the protein critical to maintaining folding fidelity [46,47]. Second,

and perhaps more prevalent, is that the locally unfolded state plays

an important functional role. Indeed, locally unfolded states have

been shown to be functionally important in numerous native state

ensembles, mediating catalysis [48,49], allostery [50,51], and

signaling transduction [22,52].

Intriguingly, exceptions to the trend of thermodynamic

conservation exist, just as they are already known to exist for

structure or sequence (i.e. homologous sequences are able to adopt

unrecognizably different structures [44,53] and homologous

structures can result from unrecognizably different sequences

[54,55], respectively). As suggested by the examples given in

Figures 6 and 7, these exceptions to thermodynamic conservation

may be evolutionarily or functionally important, despite their low

frequency of occurrence.

One interesting type of exception found here is that position-

specific enthalpy and entropy are less conserved than stability. This

observation suggests that in regions where this phenomenon occurs,

the overall stability is more important than the thermodynamic

mechanism utilized to achieve that stability. It is tempting to speculate

that amino acid mutation driven changes in local entropy and

enthalpy balance in conservation of local stability, as seen in

Figure 3B. However, such ‘‘enthalpy-entropy compensation’’, long

reported in proteins as well as other chemical systems, has a

change. Interestingly, the boxed regions sometimes, though not always, have functional associations, possibly related to the structural change, as
described in the text. In each panel, the DALI structure superposition (top) and the aligned thermodynamic stability profile (right) are displayed.
Structurally similar regions exhibiting similar thermodynamics are colored shades of orange; unaligned regions are colored shades of gray. The first
protein named in every pair is colored darker than the second protein. Chain termini are labeled. A. Immunoglobulin C1 set domains, murine
cytomegalovirus m144 protein, alpha 3 domain (d1pqza1, (Miley, M. J. and Fremont, D. H., unpublished)) and H. sapiens CL-lambda domain (d1rzfl2,
[72]). The solid boxed region, located near the N-terminal end of the proteins, has functional significance for m144 binding to b-2 microglobulin, [37],
but its function, if any, in the human protein is not known. The RMSD of the structural alignment is 2.6 Å over 82 residues, the rDG = 0.92 (Null Model 1
p,0.02, Null Model 2 p,1025). B. Aspartate/glutamate racemase family, Pyrococcus horikoshii aspartate racemase (d1jfla2, [38]) and Aquifex pyrophilus
glutamate racemase (d1b74a2, [39]). The boxed region encompasses the dimerization interface for both proteins, but each protein is known to have
a different dimerization mode [38], possibly related to the structural change. The RMSD of the structural alignment is 3.7 Å over 89 residues, the
rDG = 0.92 (Null Model 1 p,0.03, Null Model 2 p,1025). C. E. coli biotin carboxylase C- domain (d1dv1a1, [73]) and E. coli N5-carboxyaminoimidazole
ribonucleotide synthetase PurK (AIRC) C-domain (d1b6ra1, [74]). Although the boxed region also encompasses part of the dimerization interfaces for
these two molecules, it is not known whether the structural differences are of functional significance. The RMSD of the structural alignment is 2.8 Å
over 64 residues, the rDG = 0.90 (Null Model 1 p,0.03, Null Model 2 p,1025).
doi:10.1371/journal.pcbi.1000722.g006
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Figure 7. Three examples of remotely homologous proteins that are extremely structurally similar, yet the local stabilities exhibit
substantial differences. This class of thermodynamic relationships also may have functional importance, as described in the text. In each panel,
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controversial history [56–59], with the apparent compensation being

due (in many cases) to errors in enthalpy and entropy that are

effectively amplified when the free energy is determined from the

difference between them. Thus, although it is possible that such

balance is somehow a mathematical artifact [60], there is currently no

evidence for such an artifact in the current analysis.

Other types of exceptions, in the form of stability differences,

may arise from differences of structure, organism temperature, or

functionality. It is also possible that thermodynamic similarities

between putative non-homologs, now treated as ‘‘exceptions’’ (i.e.

thermodynamic analogy), may reveal heretofore unknown evolu-

tionary relationships.

We propose in this regard that thermodynamics can mediate

mechanisms for evolutionary fold change[9]. In other words, local

native state structure change between two homologous proteins is

possible without major disruption of local stability and, possibly,

enthalpy or entropy. Conversely, functional or temperature

adaptation can be achieved by changing the thermodynamics of

excited state conformational fluctuations without disrupting the

ground (native) state structure[40]. These two complementary

processes may be thought of as ways to affect function by

‘‘sculpting’’ (i.e., changing the size, shape, and energetic properties

of) a protein’s native state ensemble. Future experimental work will

be directed at ways to intelligently employ these processes in

protein design and engineering.

Finally, we note that considerable debate has emerged regarding

whether protein fold space is continuous or discontinuous [61–63],

with a major limiting factor in its resolution being the absence of a

metric that can quantitatively compare different structures within a

unified framework. One potential benefit of the unique thermody-

namic representation of protein fold space used here is that it

provides a quantitative connection between protein stability and

fold specificity, in effect providing a vehicle for directly addressing

this question. Indeed, this discovery of conserved position-specific

thermodynamics not only furthers our understanding of the role of

energetics in protein structure, function, and evolution, but also

suggests an organizational framework for a possible thermodynam-

ically-informed classification of protein homology.

Supporting Information

Text S1 Supporting Information Text

Found at: doi:10.1371/journal.pcbi.1000722.s001 (0.05 MB

DOC)

Figure S1 Contributions of solvent and conformational terms to

the total native state entropy. Profile comparison of local total

entropy, solvation entropy, or conformational entropy values for

two SH2 domains, human Xlp protein Sap (d1d4ta) and mouse

Eat2 (d1i3za). Entropies were computed by the COREX/BEST

algorithm, using Equation (5) from the main text. The SH2

domains are the same as those displayed in Figures 1 and 3 of the

main text, aligned according to the equivalenced residue positions

from the DALI structure superposition as described in the

corresponding figure legends. Similarity of the various local

entropies, as well as the dominant contribution of solvation

entropy to the total, is evident.

Found at: doi:10.1371/journal.pcbi.1000722.s002 (1.35 MB TIF)

Figure S2 Eigenvectors and percent variance of thermodynamic

descriptors space for subsets of residue positions. Subsets of residue

positions were constructed from regions of overlap, as described in

the text. The percent variance explained by each eigenvector is

shown in parentheses. All eigenvectors and percent variances are

similar between each subset of residue positions and the full data

set. A. Values for eigenvector 1. B. Values for eigenvector 2.

Found at: doi:10.1371/journal.pcbi.1000722.s003 (0.94 MB TIF)

Figure S3 Thermodynamic fold recognition results for fifty

randomly chosen query proteins using information derived from

subsets of residue positions. Subsets of residue positions were

constructed from regions of overlap, as described in the text. A.

Distributions of percentile rank for fold-recognition Z-scores

between a thermodynamically defined query and its correct amino

acid sequence. Successful fold recognition experiments exhibit

lower percentile ranks. Distributions of percentile ranks are similar

regardless of the subset source of thermodynamic information. B.

Correlation of fold recognition raw scores between experiments

using different subset sources of thermodynamic information.

Scores are similar (visibly correlated) regardless of the subset

source of thermodynamic information.

Found at: doi:10.1371/journal.pcbi.1000722.s004 (1.04 MB TIF)
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the structural alignment is 1.2 Å over 95 residues, the rDG = 0.45 (Null Model 1 p,0.04, Null Model 2 p,1025). B. H. influenzae (d1p3da1, [76]) and T.
maritima (d1j6ua1, [77]) MurCD N-terminal domains; the greater stability of the thermophilic protein is evident. The RMSD of the structural alignment
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