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Abstract

Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV,
after choriocapillaries initially penetrate Bruch’s membrane (BrM), invading vessels may regress or expand (CNV initiation).
Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between
BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-
retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that
CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the
normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from
combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane
complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion).
Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment
to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal
epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM)
results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion
(e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-
BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings
suggest that defects in adhesion dominate CNV initiation and progression.
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Introduction

Organization
We first review the key components of the retina and the

processes commonly hypothesized to underlie CNV. We then

discuss our main hypotheses for CNV mechanisms and why we

believe adhesion may play an important role in both initiation and

progression of CNV. We then use a multi-cell computer

simulation of a mechanistic computational model of the chorio-

capillaris, BrM and photoreceptors to investigate the effects of

adhesion variations on CNV initiation and progression. Finally,

we focus on how adhesion in the BrM-RPE-POS complex changes

due to aging and inflammation both in human retina and in

animal models of CNV and discuss the biomedical implications of

our results.

Age-Related Macular Degeneration and Pathological
Choroidal Neovascularization

Sprouting angiogenesis, growth of new blood vessels from preexist-

ing vessels, occurs in response to chemical and mechanical stimuli

and to hypoxia in both adult and embryonic tissues. Sprouting

angiogenesis requires activation of normally quiescent endothelial

cells in pre-existing blood vessels, breakdown of existing basement

membranes, migration of activated cells led by one or more

endothelial tip cells or immune cells (which can also function as tip

cells) in response to environmental and cell-contact cues and

proliferation of a subset of activated endothelial cells (stalk cells)

with possible recruitment of support cells (pericytes and smooth

muscle cells) during blood-vessel maturation [1].

In pathological angiogenesis, e.g. in vascular tumors, vessels do

not mature, resulting in leaky capillary vasculature which causes
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severe edema, inefficient blood transport and reduced oxygena-

tion. Maturation failure can result in a pathological feedback loop,

where worsening hypoxia leads to higher levels of proangiogenic

factors, including vascular endothelial growth factor A (VEGF-A)

and platelet-derived growth factor (PDGF), and the greater excess

of proangiogenic factors produces even more inefficient capillaries,

worsening the hypoxia.

The hallmark of wet or exudative age-related macular degener-

ation (AMD), which is the leading cause of irreversible blindness in

North America, Europe, and Australia [2], is lesioning choroidal

neovascularization (CNV), the invasion of the retina by new blood

vessels growing from the choriocapillaris (CC). In humans, CNV

frequency increases with age, independent of other risk factors or

specific insults, though numerous risk factors and insults can

greatly increase its probability of occurrence in an individual.

CNV in all patients shares the same basic neoangiogenic steps. We

distinguish the following three temporal phases: Initiation, when

endothelial cells first cross Bruch’s membrane (BrM); Early CNV,

when endothelial cells spread and form capillaries in a defined

locus, and Late CNV, when additional loci may become involved,

often leading to retinal pigment epithelium (RPE) detachment and

degeneration, CNV regression/involution and photoreceptor

death.

The diverse CNV scenarios are categorized based on histolog-

ical [3] and clinical observations [4]. Neovascular vessels

originating from the choroid can grow in the plane between the

RPE and BrM (sub-RPE, occult or Type 1 CNV), between the retina

and the RPE (sub-retinal, classic or Type 2 CNV) or in both locations

(combined or Type 3 CNV). Type 3 CNV can also form as a late stage

of Early Type 1 or Early Type 2 CNV. In wet AMD, severe visual

loss results from subretinal hemorrhage from the leaky CNV,

which leads to the eventual formation of a disciform scar. While

CNV is generally a disease of the elderly, with onset occurring

after 70 years, progression after onset may be rapid. According to

the Macular Photocoagulation Study Group [5], about 40% of

patients with untreated Type 1 CNV loose significant visual acuity

within 12 months. 23% of these patients develop Type 3 CNV

within 3 months and an additional 23% develop Type 3 CNV

within 12 months. Current therapeutic strategies depend on the

CNV locus (subfoveal, juxtafoveal or extrafoveal) and include

photodynamic therapy, laser photocoagulation and most-com-

monly, anti-angiogenic drugs (Lucentis, Macugen or Avastin) [6].

Long-term prognoses are poor; only 20% of patients with Type 1

CNV have stabilized or improved vision 36 months after initial

diagnosis and treatment [5].

Developing more effective targeted intervention strategies will

depend on understanding CNV mechanisms. However, because of

the structural complexity of the normal and diseased retina and

the numerous homeostatic and developmental mechanisms

operating concurrently, experiments have yet to identify clearly

the mechanisms responsible for either CNV initiation or

progression. As a novel approach to developing such understand-

ing, this paper applies quantitative models and computer

simulations to test hypotheses for the mechanisms leading to

CNV initiation and controlling early and late Type 1, 2 and 3

CNV.

Current Hypotheses for CNV Initiation and Progression
Multiple hypotheses compete to explain CNV initiation, growth

and patterning (for comprehensive reviews, see [7,8]). These

hypotheses form two major groups depending on their primary

mechanism of action: 1) VEGF overexpression, and 2) irregular-

ities in BrM (including focal defects and basal deposits).

Inflammation affects both mechanisms because it promotes

formation of irregularities in BrM and participates in angiogenesis.

To better understand CNV, we consider its risk factors and

correlated pathological conditions and briefly discuss their

relationship to the steps of angiogenesis.

Excessive expression of VEGF, mainly in response to injuries

and hypoxia, without balancing expression of angiogenesis

inhibitors is a major stimulator of neoangiogenesis in most tissues.

Excess VEGF has been considered a primary cause of CNV [9]

because anti-VEGF drugs can significantly inhibit CNV progres-

sion. This hypothesis seems reasonable, because activation,

proteolytic activity and survival of ECs depend on VEGF

concentrations, and directional migration of tip cells depends on

gradients of VEGF, which in turn depend on the composition of

the ECM and the proteolytic activity of ECs [10] (in many cases

VEGF-A is bound to the ECM and is only sensed by ECs when

released by proteolytic enzymes). In animal models, excess

secretion of VEGF by the RPE due to subretinal injections of

reactive oxygen species (ROS) [11] or adenovirus [12] can induce

CNV. However, other studies in transgenic mice show that

increased expression of VEGF-A and/or angiopoietin-2 in RPE is

not sufficient to initiate CNV and that overexpression of VEGF

can only initiate CNV when combined with subretinal injections

[13] which disturb the integrity of the RPE, probably by triggering

inflammation, reducing RPE-POS contact adhesion and inducing

RPE growth [14–16]. Also in transgenic mice [17], overexpression

of VEGF-A164 in the RPE causes extensive intrachoroidal

neovascularization, but does not lead to sub-RPE or sub-retinal

CNV, again suggesting that an intact Bruch’s membrane/RPE

barrier prevents choroidal neovascularization from penetrating

into the subretinal space. Immunohistochemical analyses of

human subjects with a history of chorioretinal disease show that

compared to age-matched control subjects (mean age about 80

years) their PEDF levels are significantly lower than their VEGF

levels in RPE cells, the RPE basal lamina, BrM and the choroidal

stroma [9,18]. This imbalance shows that disturbed angiogenic

and antiangiogenic factor levels correlate with late-stage chorio-

retinal disease, but the relative expression levels of these factors

would need to be measured experimentally before CNV

initiation to establish whether the imbalance is a cause or a result

of CNV. However, secreted proteome profiling in human RPE cell

cultures derived from donors with AMD shows a 2- to 3-fold

increase in their levels of PEDF compared to age-matched healthy

donors [19]. Thus, while the experimental evidence shows a clear

increase in proangiogenic factors, this increase may be compen-

sated by an increase in antiangiogenic factors. Whether an

imbalance develops is thus not definitively established. Another

serious objection to the VEGF-hypothesis is that it fails to explain

the distinct loci and progression of CNV. VEGF levels are high

throughout the retina and cannot provide spatial cues to lead to

Author Summary

This paper tests hypotheses for the mechanisms of
choroidal neovascularization (CNV), the pathological
growth of capillaries in response to physical defects in a
structured tissue, the retina, showing that previously
neglected cell-cell, cell-ECM and ECM-ECM adhesion
failures suffice to determine the loci and progression of
neovascularization. Surprisingly, a simple theory based on
classes of adhesion failures, which involve variation of only
five parameters, can coherently explain the heterogeneous
range of CNV growth patterns and dynamics. Our results
are generally applicable to other types of tissues where
capillaries are close to an epithelium, e.g., lung and gut.

3D Simulations of Choroidal Neovascularization
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the localization of CNV to either the RPE-BrM boundary (Type 1)

or the RPE-POS boundary (Type 2). Indeed, no experiment has

established the presence of VEGF gradients within the BrM-RPE-

POS complex.

Both age-related changes of the retina and pathological

conditions can increase VEGF expression. Life-long accumulation

of lipids in BrM and their gradual oxidation (producing reactive

oxygen species and recruiting immune cells) correlate with

increased production of VEGF by the RPE and greater likelihood

of developing CNV [20]. Hypoxia also temporarily increases the

secretion of VEGF in cultured RPE cells by up to 3-fold over

48 hours, followed by a return to baseline [21,22]. Inflammatory

cells also secrete VEGF and other proangiogenic and antiangio-

negic factors (see Inflammation subsection in supplementary Text

S1).

Irregularities of BrM include focal breaks and thinning in BrM,

abnormal production of ECM by the RPE, and formation of soft

drusen. All of these BrM defects correlate with CNV [23,24].

However, the common hypotheses that BrM presents a physical

barrier to the invasion and/or growth of choriocapillaries into the

retina and that small gaps in BrM may be responsible for initiation

of CNV, contradict several experimental and clinical observations:

1) BrM is never an impenetrable barrier to immune and tip cells

and has not been shown to physically block the invasion of

activated ECs into the sub-RPE space. BrM is only 2–4 mm thick,

with pores up to 0.5 mm diameter [25]. The BrM elastin layer in

the macula of healthy young adults (age,62) can have gaps of up

2 mm [26]. 2) Activated endothelial cells, which are always present

in the normal choriocapillaris, probe their micro-environment by

sending out processes (like filopodia) as thin as 0.1 mm and as long

as 200 mm even in dense embryonic and adult tissues. Such

flilopodial processes can easily cross BrM through its pores.

Leukocytes can cross BrM rapidly under both normal and

inflammatory conditions [27] (taking at most a few hours to cross

the BrM-RPE barrier and only a few minutes to cross the

endothelium in an in vitro flow model [28]). ECs digest and

penetrate an intact BrM in less than a week when RPE is severely

damaged due to phototoxicity in a rat model [29]. 3) The rate of

CNV in persons younger than 50 years old is negligible (except in

cases of excess inflammatory response in the eyes). 4) The CNV

initiation probability when BrM is mechanically disrupted in

animal models is about 10% [30]. These observations suggest that

focal defects and thinning of BrM do not significantly reduce the

already minimal efficacy of the physical barrier function of healthy

BrM. Instead, other mechanisms may explain the correlation of

focal defects in BrM with CNV, e.g., breaks in BrM due to

calcification may disrupt both the RBaMs and the basement

membranes of CC cells, disrupting the epithelial junctional

structure of the RPE [23] and activating CC endothelial cells.

This simultaneous activation of ECs and disruption of the RPE

may explain the correlation of focal defects in BrM with CNV.

However, while BrM does not form a mechanical barrier to

persistent EC penetration of the retina, BrM and the RPE

attached to it clearly do form an effective barrier to choroidal

penetration, even in the presence of small holes in BrM. The

nature of this barrier is not clear. Haptotaxis may play a role. ECs

exhibit strong haptotactic preference for their own basement

membrane. The basement membrane of the RPE (RBaM) differs

in structure and components from the CC basement membrane

(CC BaM) (reviewed in [31]). ECs preferentially adhere to their

own basal lamina and new blood vessels follow the pattern of any

pre-existing EC-manufactured basal lamina after capillary atrophy

[32]. Thus, in the absence of factors that induce directed

migration of ECs (chemotaxis or haptotaxis), we hypothesize that

activated ECs of the choriocapillaris prefer to stay on the outer

side of BrM, which has a high level of CC BaM, and not to invade

sub-RPE space, which almost entirely lacks CC BaM.

Since overexpression of VEGF and reduction in BrM’s barrier

function may not fully explain CNV initiation, multiple types, loci

and progression [23], this paper investigates the possible role of

additional mechanisms, particularly adhesion defects.

Adhesion Failure and CNV
While not usually considered crucial to CNV, a great deal of

experimental evidence suggests that failures of adhesion are

essential for the development of CNV (Table 1). The strict spatial

separation of the CC from the normal retina and the distinct loci

of Type 1 and Type 2 CNV suggest that the physical structure and

properties of the BrM-RPE-POS complex may determine both

CNV initiation and progression. Experimental evidence suggests

that reduced RBaM-BrM adhesion may enable CNV to invade

the sub-RPE space. The differences in properties and effects of

hard and soft drusen support this hypothesis. Soft drusen are

strong risk factors for CNV and are often associated with

detachment of the RPE from BrM, suggesting that they

substantially reduce RBaM-BrM adhesion [33–35]. However,

hard drusen, which contain hyalinised material and attach firmly

to the inner collagenous layer of BrM (based on EM images) do

not greatly increase the likelihood of CNV [24,35]. Softening of

hard drusen, which reduces their adhesion to RBaM, correlates

with CNV [36,37]. Similarly, the ability of inflammation to induce

CNV suggests that impaired lateral adhesion between cells in the

RPE promotes Type 2 CNV. Pathological conditions that

compromise the integrity of the oBRB by weakening junctional

epithelial adhesion in the RPE cause a wide range of neovascular

diseases in the retina [38–42]. Recent studies show that subretinal

drusenoids, which are drusen-like deposits that accumulate

between the RPE and photoreceptors, perturb RPE-POS adhe-

sion and correlate with CNV [43–45]. Finally, the detachment of

the POS from the RPE (retinal detachment) reduces the integrity

of the oBRB and significantly increases the risk of CNV in animal

models of CNV, suggesting that impaired RPE-POS adhesion also

promotes CNV.

Since the relative importance, roles and interactions among the

different types of adhesion impairment during CNV initiation and

progression are unclear, this body of experimental evidence

motivated us to study the role of adhesion failures in the BrM-

RPE-POS complex in CNV.

The need for models and simulation. While a detailed

experimental analysis of adhesion effects in CNV is desirable, it is

currently impractical. No animal model exhibits the full range of

AMD-related CNV pathologies [46], while in vitro experiments do

not reproduce the complex layering and porosity of BrM, the

interlocking of the RPE and POS, the accumulation of lipids in the

BrM layers or the formation of soft drusen. Independent

quantitative control of biological mechanisms is experimentally

difficult, especially in vivo. We therefore chose to develop

computational models which allow us to titrate the effects of

specific mechanisms without confounding crosstalk or quantitative

uncertainties and to study the synergistic or antagonistic effects of

multiple mechanisms acting simultaneously or sequentially.

Computational models also allow us to explore many more

combinations of bio-mechanistic hypotheses and parameter

choices than we could in experiments. Our computational models

include key retinal components, cell-cell, cell-ECM and ECM-

ECM adhesion mechanisms and major angiogenesis-related

processes, like BrM breakdown by proteases, hypoxic signaling

upregulating VEGF production and VEGF and oxygen transport.

3D Simulations of Choroidal Neovascularization
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Our computational model of the retina allows us to investigate the

significance of these hypothesized mechanisms in both CNV

initiation and progression. In this paper, we focus on the

significance of adhesion failures in the BrM-RPE-POS complex

to CNV early and late progression, deferring a detailed

comparative study of the roles of VEGF overexpression and

BrM defects to future publications.

A Quantitative Model of the Retina-RPE-CC Complex
CNV involves the interaction of two complex components, the

retina, with its supporting structures, and the choriocapillaris. We

briefly review the functional and structural properties of these

components in the context of CNV in supplementary Text S1.

To allow unbiased study of CNV mechanisms, our model of the

retina-RPE-CC includes objects and processes (Table 2) capable of

recapitulating all the major CNV hypotheses (VEGF overexpres-

sion, BrM defects, adhesion failures and inflammation). We list our

key modeling assumptions in supplementary Text S2. We translate

our quantitative model into a computational model in the Methods

section in supplementary Text S3 (for a detailed explanation of our

modeling terminology see supplementary Text S4). To avoid

confusion, we use normal fonts for biological objects and boldface
to represent objects and times in the quantitative model, e.g. RPE
denotes the model’s representation of biological RPE and one year
denotes one simulated biological year. We also use boldface to

distinguish the specific simulation interactions of junctional
adhesion, labile adhesion and plastic coupling in our model

from their biological correlates, but we do not use a separate font to

distinguish other modeled and biological processes.

Anatomical components of the model. Since CNV is

usually limited to the outer retina, we model the choriocapillaris,

BrM, RPE and parts of the outer retina in detail, and represent the

inner retina implicitly through appropriate boundary conditions at

the outer limiting membrane (see Figure 1, for normal anatomical

components). Our model does not explicitly represent the OLM

which defines the innermost (towards the inner retina) boundary
of the modeled outer retina. The properties of the retinal layers

depend on the in-layer distance from the fovea. We could

represent these typical anatomical/thickness variations of the

biological retina in our model by changing a limited number of

geometrical and metabolic parameters, though we do not do so in

the present paper. Our model explicitly represents BrM, but

neglects its layered structure and assumes that the inner and outer

basal laminae and basement membrane of BrM provide

equivalent adhesion substrates. Modeled BrM is composed of

small blocks of non-diffusible solid material (frozen generalized

cells). We assume that cells cannot cross intact BrM. So our

modeled BrM blocks cell migration (See Discussion section for

more details). Our model does not explicitly represent basal

deposits, which play a major role in CNV initiation and

progression, but includes them implicitly via their effects on the

adhesion properties of the RPE-BrM complex. Since CNV

originates from the outgrowth of capillaries in the choriocapillaris,

our model represents the capillary network of the choriocapil-
laris (CC) and the endothelial cells (ECs) explicitly. Modeled

CNV capillaries are composed of stalk cells (see the Angiogenesis

and BrM Degradation subsection, below). Our model represents

extracellular fluid in the tissue by a medium that fills spaces

unoccupied by cells or BrM.

Oxygen transport and metabolism in the model

retina. The choriocapillaris secretes diffusing oxygen at a

constant rate (see the Methods section in supplementary Text S3)

and PO2 at the OLM boundary is constant. Numerous

experimental and theoretical studies of oxygen tension profiles in

the retina show that the oxygen consumption by the RPE is

negligible compared to that of the PIS [47]. Our model assumes

that RPE oxygen uptake is negligible [47,48]. Our model neglects

the effects of blood flow entirely and assumes that PO2 is

independent of position along a capillary, or whether a capillary is

a sprout or has anastomosed with other vessels. The effects of

blood flow on vascular remodeling and tumor growth have been

extensively studied by Owen et al. [49], Szczerba and Székely [50],

Perfahl et al. [51], Alarcon et al., Bartha and Rieger [52], Welter et

al. [53,54], McDougall et al. [55], Stephanou et al. [56,57], Pries et

al. [58–61] and Macklin et al. [62]. Our flow-related simplifying

assumptions generally have the effects of increasing oxygen

availability, reducing the rate and extent of neovascularization.

We have performed simulations (data not shown) in which PO2 at

choriocapillaris is set to half of its normal level, representing

continuous systemic hypoxia. These simulations show that lower

PO2 at the choriocapillaris has little effect on the generic

behavior of our model.

Adhesion properties of EC, RPE, POS and PIS cells. Our

model has two types of cell-cell and cell-BrM adhesion: 1)

labile adhesion and 2) junctional adhesion. Modeled labile
adhesion represents cell-cell or cell-ECM surface adhesion in the

absence of strong junctional structures (e.g. RPE-POS adhesion).

Junctional adhesion combines labile adhesion at cell bound-

aries with plastic coupling (e.g. between neighboring cells or

between BrM and cells). The plastic coupling simulates

cytoskeletally-coupled junctional structures as breakable springs

(see the Methods section in supplementary Text S3) that mechan-

ically connect neighboring cells and also connects cells to BrM.

Junctional adhesion represents biological epithelial/endothelial

junctional adhesion or cell-ECM focal adhesion. Our representa-

tion of adhesion gives us the flexibility to represent both

mesenchymal cells and cells organized in an epithelium. When

plastic coupling between neighboring or ECM-adhering cells
is strong relative to other effects including labile adhesion, cells
are less likely to break their plastic couplings and change their

neighbors, as is typical in epithelial-junction-coupled cells in an

epithelium (e.g. a layer of differentiated epithelial cells in vitro at

100% confluency). However, when plastic coupling is weak or

absent, cells can relatively easily migrate or change their

neighbors, as is typical of mesenchymal cells or epithelial cells in

vitro well below 100% confluency. In our model, we use this

flexibility to vary the strengths of labile adhesion and plastic
coupling independently to represent the differing adhesion

properties of cells in healthy and pathological tissues.

Our model represents the in-plane epithelial junctions between

healthy RPE cells by junctional adhesion with both strong

labile adhesion and strong plastic coupling between RPE
cells (Figure 2). Since RPE cells adhere strongly to their basement

membranes, we treat the RBaM as a part of each RPE cell and

assume that attachment of RPE cells to BrM depends on the

adhesion of the RBaM (not of basal lamina) to BrM. During RPE

detachment, cleavage occurs between the RBaM and BrM. Since

we do not model the RBaM, we represent this RPE-RBaM-BrM

adhesion as a single junctional adhesion between RPE and

BrM cells (RPE-BrM junctional adhesion) (Figure 2). Since

no known junctional structures couple RPE to the POS, we

represent RPE-POS adhesion by relatively weak RPE-POS
labile adhesion between RPE cells and POS cells. RPE-
POS labile adhesion is weak relative to the strength of labile
adhesion in RPE-RPE junctional adhesion. Neighboring

PIS and POS cell segments adhere via junctional adhesion
(Figure 2), limiting traverse photoreceptor displacement under

normal conditions.

3D Simulations of Choroidal Neovascularization
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In an endothelium, ECs mainly adhere to other ECs via vascular

endothelial cadherin (VE-Cadherins) and tight junctions. When forming

the CC, modeled ECs adhere via junctional adhesion to

neighboring ECs and BrM (Figure 2). Stalk cells (representing

activated ECs) adhere to all other ECs via junctional adhesion
with labile adhesion at the same strength as ECs in the CC, but

have relatively weak plastic coupling to ECs and BrM

(Figure 2). We assume ECs adhere to the RPE and to

photoreceptor segments (PIS and POS generalized cells) weakly

via labile adhesion representing nonspecific biological surface

adhesion (Figure 2).

Adherent cells suspended in liquid assume a spherical shape,

meaning that non-specific cell-liquid adhesion is weak. We

represent this weak cell-liquid adhesion by weak labile adhesion

Table 2. Model objects and processes.

Object Types Processes

Generalized Cells Endothelial Cells (EC) Vascular Cells (of the CC) Adhere via junctional adhesion to ECs and BrM

Adhere via labile adhesion to RPE, PIS, POS and Medium

Take up RPE-derived VEGF-A

Secrete short-diffusing VEGF-A

Secrete Oxygen

Die when RPE-derived VEGF-A is less than a threshold

Have intrinsic random motility

Migrate via chemotaxis up gradients of short-diffusing VEGF-A
(Contact-inhibited)

Stalk Cells (of the CNV) All Processes of Vascular Cells and:

Migrate via chemotaxis up gradients of RPE-derived VEGF-A
(Contact-inhibited)

Grow in response to RPE-derived VEGF-A (Contact-inhibited)

Tip Cells All Processes of Vascular Cells except secretion of Oxygen:

Migrate via chemotaxis up gradients of RPE-derived VEGF-A
(Contact-inhibited)

Secrete MMP

RPE Cells Adhere via junctional adhesion to RPE cells and BrM

Adhere via labile adhesion to ECs, PIS, POS and Medium

Secrete RPE-derived VEGF-A

Die in absence of contact with RPE and BrM

Have intrinsic random motility

Photoreceptor
Compartments

POS Cell-parts Adhere via junctional adhesion to POS and PIS cells

Adhere via labile adhesion to ECs, RPE, BrM and Medium

Have intrinsic random motility

PIS Cell-parts All Processes of POS Cell-parts and:

Consume Oxygen

Extracellular Materials BrM Non-diffusing solid material (implemented as non-motile generalized
cells)

Adheres via labile and/or junctional adhesion (see EC, RPE, PIS,
POS)

Degraded by MMP

Medium Adheres via labile adhesion to cells and BrM

Fills space unoccupied by cells or BrM

Fields Oxygen Diffuses

Decays

RPE-derived VEGF-A Diffuses

Decays

Short-diffusing VEGF-A Diffuses

Decays

MMP Diffuses

Decays

Degrades BrM

doi:10.1371/journal.pcbi.1002440.t002
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between cells and medium. Thus cells prefer to adhere to other

cells or BrM rather than to be surrounded by medium.

We do not model explicitly the differences in adhesion between

the apical, lateral, and basal surfaces of biological RPE cells and

photoreceptors. In our model labile adhesion strengths depend

only on the types of cells or membranes in contact, not on the

apical, basal or lateral identity of the contacting regions. However,

effective cell polarization in the model develops from the specific

geometry and contacts which occur in the normal and diseased

retina, so at most times, cells emergently exhibit correctly

polarized adhesivity, even though we do not impose it. We also

neglect temporal adhesion changes observed clinically or exper-

imentally during CNV progression, assuming temporally constant

adhesivity of RPE, POS, PIS cells in our individual simulations.

Since we can vary independently the strength of the labile
adhesion and plastic coupling which contribute to junctional

adhesion, we refer to the labile components of RPE-RPE or

RPE-BrM junctional adhesion as RPE-RPE or RPE-BrM
labile adhesion and to the plastic coupling components of

RPE-RPE or RPE-BrM junctional adhesion as RPE-RPE or

RPE-BrM plastic coupling.

Angiogenic and antiangiogenic factors. To aggregate the

effects of RPE-derived diffusible growth factors on the chorio-
capillaris and CNV capillaries we include a diffusible growth-

factor field, RPE-derived VEGF-A which represents the

aggregate proangiogenic effect of all biological long-diffusing

proangiogenic and antiangiogenic factors. All types of ECs in our

model take up RPE-derived VEGF-A uniformly at a constant

rate. We omit growth factors and cytokines from other sources.

Since we assume that PEDF affects CNV only as an anti-

angiogenic factor and that it diffuses at the same rate as RPE-

derived VEGF, we can combine the effects of the two RPE-

derived VEGF isoforms (120 and 165) and PEDF on CNV growth

and regression into an effective cell response to RPE-derived
VEGF-A. While numerous other diffusible proangiogenic and

antiangiogenic factors [63,64] may play a modulatory role in

capillary behavior (see Inflammation subsection in supplementary

Text S1), we lack detailed experimental data on their spatial and

temporal distribution and function. All modeled ECs (including

CC and activated ECs, see below) secrete a short-diffusing
VEGF-A. The short-diffusing VEGF-A is not a survival factor

for ECs and we ignore its uptake by ECs. Both short-diffusing
VEGF-A and RPE-derived VEGF-A decay at constant rates

and diffuse uniformly everywhere in our modeled retina.

However, the two VEGF-A diffusion lengths differ significantly.

Typically, RPE-derived VEGF-A diffuses ,5 times farther than

short-diffusing VEGF-A. Assuming the decay rates for both

RPE-derived VEGF-A and short-diffusing VEGF-A are the

same, a five-fold difference in diffusion length translates into a

twenty-five fold larger diffusion constant for RPE-derived
VEGF-A compared to short-diffusing VEGF-A.

Angiogenesis and BrM degradation. Computer simula-

tions can help us analyze the role of multiple mechanisms during

angiogenesis, both in pathological conditions like tumor-induced

angiogenesis [65–68] and corneal angiogenesis [69] and in healthy

tissues like muscle [70]. Here, we use a multi-cell 3D angiogenesis

model which we have previously described [65] to simulate CNV
growth and patterning. Our model includes two types of activated

ECs: tip cell and stalk cell types. The tip cell type is a

transient cell type that lasts one day, then differentiates into the

stalk cell type. Cells of stalk cell type remain stalk cells.

Both stalk and tip cells migrate via chemotaxis up gradients of

both RPE-derived VEGF-A and short-diffusing VEGF-A at

any cell boundaries which are not in contact with other ECs, i.e.

they exhibit contact-inhibited chemotaxis. Thus, a stalk cell at

the tip of an angiogenic sprout, which has less contact area with

Figure 1. Retinal structure, the retinal pigment epithelium, Bruch’s membrane and the choriocapillaris. Left large-scale: Structure of the
outer retinal layers, the RPE and the CC. Right: Detail of the CC-BrM-RPE-POS complex. CC: choriocapillaris, BrM: Bruch’s membrane, RPE: Retinal
pigment epithelium, CC BaM: Basement membrane of the CC, OCL: Outer collagenous layer, EL: Elastin layer, ICL: Inner collagenous layer, RPE BaM:
Basement membrane of the RPE (we abbreviate RPE BaM as RBaM), POS: Photoreceptor outer segment, PIS: Photoreceptor inner segment, ONL: Outer
nuclear layer. Light purple shading indicates the location of the inner retina. Scale bars ,10 mm.
doi:10.1371/journal.pcbi.1002440.g001
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other ECs, migrates more strongly than other stalk cells in

response to VEGF-A gradients. Thus stalk cells can function as

biological endothelial tip cells, leading other stalk cells in the

trunk of an angiogenic sprout, as seen in experiments. Stalk cells
self-organize into capillary-like network patterns [71].

Since experiments suggest that both ECs and macrophages can

function as tip cells in CNV, we can interpret a tip cell either as

an EC tip cell or as an immune cell that invades BrM. Modeled

tip cells secrete a single MMP field. Our model is agnostic

about the type of MMP, though experiments seem to favor MMP-

2 which is activated on contact with tip cells or macrophages

expressing MT1-MMP. Our model’s MMP field represents a

very short-diffusing molecule that degrades BrM. If we assume

that other types of MMP remain bound to the EC, it does not

greatly affect our simulations, data not shown. Active tip cells

produce MMPs at rates which allow them to invade even dense

ECM at speeds of more than a few mm per day (e.g. during

intersegmental blood vessel formation in zebrafish embryos). At

this rate of degradation, a single tip cell could destroy the entire

simulated BrM within a few simulated months. However, the

typical hole size in BrM in vivo is less than a few cell diameters [29].

To generate a simulated hole in BrM compatible with these in vivo

observations (a roughly one cell-diameter hole), we must switch off

MMP secretion by the tip cell after 24 simulated hours. In our

simulations we represent this cessation of MMP secretion by the

differentiation of the tip cell into a stalk cell at 24 h. We neglect

the slow reconstruction of BrM by RPE cells.

Inflammation. We represent the adhesion-reducing effects of

inflammation due to inflammatory factors and immune cells

implicitly by weakening RPE-RPE, RPE-POS (due to acute

inflammation) and RPE-BrM adhesion (due to chronic

irregularities in complement cascade). We neglect the role of

inflammation on juxtacrine Delta/Notch coupling between ECs.

Cell proliferation and death. Typically, adherent cells like

RPEs need to adhere to other cells (of the same or different types)

or to an appropriate substrate to remain viable. Otherwise they

die. Modeled RPE cells require RPE-RPE and RPE-BrM
contact to remain viable. In the absence of such contact, RPE
cells die. RPE cells do not proliferate or grow. Both CC and

ECs require a low concentration of RPE-derived VEGF to

remain viable, and die below a threshold level of RPE-derived
VEGF-A. Stalk cells grow at a rate depending on the local

concentration of RPE-derived VEGF-A unless their growth is

inhibited by stalk-EC contact (contact-inhibited growth, see the

Methods section in supplementary Text S3 for details).

Results

In this section, we discuss how adhesion in the BrM-RPE-POS
complex forms an effective physical barrier to CNV and how

adhesion failures increase the risk of CNV initiation. We then

relate the different modes of adhesion failure to the resulting CNV
loci (CNV types), CNV progression and translocation (changes of

CNV locus). We also discuss the CNV dynamics for individual

adhesion scenarios and individual simulations representative of

those adhesion scenarios.

All simulations begin with either no tip cell or one tip cell. In

our simulations, the tip cell degrades BrM via MMP secretion,

forming a roughly one cell diameter hole in BrM which allows it

to cross BrM into the retina. The tip cell does not divide;

24 hours after the start of the simulation, it differentiates into a

stalk cell, ending its degradation of BrM. All other stalk cells
descend from this stalk cell. Stalk cells at the tip of angiogenic

sprouts behave like biological tip cells. This tip- cell-like behavior

allows stalk cells to migrate away from existing stalk-cell
clusters, releasing their contact-inhibition. They then grow and

divide when they reach a preset doubling-volume. CNV refers to

the ensemble of stalk cells in a simulation. We define the time of

CNV onset (the CNV initiation time) to be the time at which the

total number of stalk cells exceeds three. For implementation

parameter values and additional simulation details see the Methods

section in supplementary Text S3.

We simulated 108 different adhesion scenarios (sets of adhesion

parameters) (ID: 1 to 108) assigning one of three levels: normal: 3,

moderately impaired: 2 and severely impaired (weak): 1 to each of the five

key adhesion parameters: 1) the RPE-RPE labile adhesion
strength (RRl), 2) the RPE-RPE plastic coupling strength (RRp),

3) the RPE-BrM labile adhesion strength (RBl), 4) the RPE-
BrM plastic coupling strength (RBp), and 5) the RPE-POS
labile adhesion strength (ROl). For each adhesion scenario we

Figure 2. Adhesive interaction processes in the model retina.
Our model includes two types of cell-cell and cell-BrM adhesion: 1)
labile adhesion and 2) junctional adhesion. Modeled labile adhesion
represents cell-cell or cell-ECM labile adhesion in the absence of strong
junctional structures (e.g., RPE-POS adhesion). Junctional adhesion
combines labile adhesion at cell boundaries with plastic coupling
(e.g., between neighboring cells or between BrM and cells). Plastic
coupling simulates cytoskeletally-coupled junctional structures as
breakable springs (see the Methods section in supplementary Text S3)
that mechanically connect neighboring cells and also connect cells to
BrM. Junctional adhesion represents biological epithelial or
endothelial junctional adhesion or cell-ECM focal adhesion. In the
model, a single junctional adhesion between RPE cells and BrM
represents the complex biological adhesion between RPE cells and their
basal laminae (RBaL), adhesion between the basal laminae and their
basement membrane (RBaM) and adhesion between RBaM and BrM
(inset). Modeled adhesion processes are: EC-EC and EC-BrM
junctional adhesion; EC-RPE, EC-POS and EC-PIS labile adhe-
sion; RPE-RPE and RPE-BrM junctional adhesion; RPE-PIS and
RPE-POS labile adhesion; PIS-PIS, PIS-POS and POS-POS
junctional adhesion. Key: BrM: Bruch’s membrane, RPE: retinal
pigment epithelium, RBaM: basement membrane of the RPE, RBaL:
basal lamina of the RPE, POS: photoreceptor outer segment, PIS:
photoreceptor inner segment.
doi:10.1371/journal.pcbi.1002440.g002
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simulated our retina both in the absence and presence of a tip
cell for one simulated year. In the presence of a tip cell, CNV
may initiate (see below, in the Necessary and Sufficient Conditions for

CNV Initiation section). We ran 10 simulation replicas for each

adhesion scenario in which we included a tip cell (1080

simulations), and 3 simulation replicas for each adhesion scenario

in the absence of a tip cell (324 simulations). Although not all the

adhesion scenarios are physiologically likely (for example, Table

S7: adhesion scenario ID: 90), a comprehensive exploration of the

adhesion-parameter space clarifies the role of each corresponding

mechanism in CNV initiation and progression.

The results of our simulations are 3D time-varying structures
and fields. Quantitative comparison and classification of patterns

and changes in patterns in 3D are often challenging. We have

developed a morphometric quantification and classification

algorithm (see the Quantification and Classification of Simulations

subsection in supplementary Text S3 for details) that is able to

classify CNV patterns, i.e. CNV types, and their time-dependent

(CNV-type) changes, i.e. CNV progression (Table 3, Table 4,

Table 5). Our algorithm calculates a morphometric weight, MW,

based on the total contact area between stalk cells and BrM,

and between stalk cells and the POS. A MW close to 1 indicates

that most stalk cells are confined between the RPE and BrM
(sub-RPE) in Type 1 CNV. A MW close to 0 indicates that most

stalk cells are confined between the RPE and POS (sub-
retinal) in Type 2 CNV. A MW close to 0.5 usually indicates

Type 3 CNV (see the Quantification and Classification of Simulations

subsection in supplementary Text S3 for additional conditions

when MW,0.5). Our computational classification is compatible

with current static histological classifications and can be applied to

images of appropriately labeled histological sections and 3D

microscopy images of the retina.

We use multiple-regression analysis to relate the CNV initiation

probability, types, progression and dynamics to the typical

adhesion scenarios which cause them (e.g., Figures 3–6). When

statistical inference is ambiguous (R2,0.7), we look at individual

simulation time series in detail.

Necessary and Sufficient Conditions for CNV Initiation
CNV initiation in our simulations requires: 1) a tip cell, and 2)

adhesion failures. A tip cell is not sufficient to initiate CNV if all

adhesions are normal. Even when a tip cell makes a hole in BrM,

crosses BrM and differentiates into a stalk cell CNV does not

initiate if all adhesions are normal (Table S1, adhesion scenario

ID:1).

The strong adhesion of RPE cells to neighboring RPE cells,

POSs and BrM means that the BrM-RPE-POS ensemble

behaves as a mechanically stable complex. This complex effectively

obstructs CNV by limiting the proliferation and invasion of stalk
cells into the sub-RPE and sub-retinal spaces. We discuss, in

greater detail below, how different modes of adhesion failure in the

complex allow stalk cells to proliferate and invade. Chemotaxis

greatly affects how stalk cells invade the sub-RPE and sub-
retinal spaces. Stalk cells migrate via chemotaxis up gradients

of both short-diffusing and RPE-derived VEGF-A. RPE-
derived VEGF-A is especially important because its concentra-

tion is maximal in the RPE, encouraging stalk cells to migrate

from the CC into the sub-RPE and sub-retinal spaces.

Adhesion between components of the BrM-RPE-POS complex

opposes such invasion, inhibiting CNV initiation. Our simulations

show that finite-strength adhesive interactions among the compo-

nents of the BrM-RPE-POS complex can prevent invasion by

stalk cells if the adhesion forces are greater than the forces which

stalk cells exert on the RPE-RPE and RPE-BrM boundaries

due to chemotaxis. Because of the complicated interactions among

components during angiogenesis, the existence of such adhesion

thresholds is not obvious a priori. Our simulations therefore allow

us to refine our understanding of these thresholds to show that EC-

EC adhesion is also important in vivo. Self-organization of ECs
into a capillary network pattern requires: 1) Strong chemotaxis

forces that balance EC-EC adhesion (ECs form clusters rather

than networks when chemotaxis to both short-diffusing and

RPE-derived VEGF-A is weak), 2) the EC-EC adhesion

strength must be comparable to the adhesion strengths in the

BrM-RPE-POS complex. Thus the strength of adhesion among

RPE-RPE, RPE-BrM and RPE-POS required to resist

chemotaxing ECs also depends on EC-EC adhesivity.

We performed multiple-regression analysis (see the Methods

section in supplementary Text S3 for details) against five adhesion

parameters (RRl, RRp, RBl, RBp, ROl) to relate specific adhesion

failures to the probability of CNV initiation. The five adhesion

parameters and their (multi)linear combinations account for 88%

of the observed variance in the CNV initiation probability

(adjusted R2 = 0.83). To visualize the five-dimensional (5D)

regression relations, we reduce 5D to 3D by assuming that

RRp = RRl and RBp = RBl. We call this reduction symmetric since it

assumes that impairing RPE-RPE labile adhesion also impairs

RPE-RPE plastic coupling. E.g., we would expect changes in

Table 3. Classification of CNV type based on Morphometric
Weight.

Morphometric Weights (MWs) CNV Type

MW$0.75 Type 1

MW#0.25 Type 2

0.25,MW,0.75 Type 3

We define the type of CNV based on the mean morphometric weight during a
three month window. A MW$0.75 throughout the window indicates that most
stalk cells lie between BrM and the RPE (in the sub-RPE space) and do not
contact the POS. We therefore assign the time window to Type 1. A MW#0.25
throughout the window indicates that most stalk cells lie between RPE and
the POS (in sub-retinal space) and do not contact BrM. We therefore assign
the time window to Type 2 CNV. 0.25,MW,0.75 usually indicates that stalk
cells occur in both the sub-RPE and sub-retinal spaces. In a few exceptional
cases (Table S10) with 0.25,MW,0.75, most stalk cells lie between
neighboring RPE cells rather than in either the sub-RPE or sub-retinal
spaces (discussed in the Stable Type 3 CNV subsection in supplementary Text
S5).
doi:10.1371/journal.pcbi.1002440.t003

Table 4. (Temporal) Nomenclature for CNV.

CNV Classification Relevant Adhesion Scenarios

Early Type 1 (ET1) Table S2

Late Type 1 (LT1) -

Early Type 2 (ET2) Table S3

Late Type 2 (LT2) -

Early Type 3 (ET3) Table S4

Late Type 3 (LT3) -

To classify CNV progression dynamics during a simulated year, we determine
the early and late loci of stalk cells using the mean MWs during the first and
last three months of each simulation (we can make this calculation whether or
not CNV initiates).
doi:10.1371/journal.pcbi.1002440.t004
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cytoskeletal architecture due to inflammation to affect both

adhesion mechanisms together. We consider asymmetric reductions

in adhesion later in this section. Figure 3 shows a 3D volumetric

visualization of the CNV initiation probability (Pinit) in the

symmetrically reduced parameter space (RRp = RRl and

Table 5. Nomenclature for CNV dynamics.

Dynamics Classification CNV Dynamics Relevant Adhesion Scenarios

Stable Type 1 (S11) Early Type 1RLate Type 1 Table S5

Sub-RPE to Sub-Retinal Translocation (T12) Early Type 1RLate Type 2 Table S6

Sub-RPE to Sub-Retinal Progression (P13) Early Type 1RLate Type 3 Table S7

Sub-Retinal to Sub-RPE Translocation (T21) Early Type 2RLate Type 1 Not Observed

Stable Type 2 (S22) Early Type 2RLate Type 2 Table S8

Sub-Retinal to Sub-RPE Progression (P23) Early Type 2RLate Type 3 Table S9

Type 3 to Sub-RPE Translocation (T31) Early Type 3RLate Type 1 Not Observed

Type 3 to Sub-Retinal Translocation (T32) Early Type 3RLate Type 2 Not Observed

Stable Type 3 (S33) Early Type 3RLate Type 3 Table S10

We classify CNV progression dynamics in each simulation based on its early and late CNV types, allowing for nine CNV-dynamics scenarios. We use the term
progression when a simulation replica initially develops either Early Type 1 CNV or Early Type 2 CNV and then develops Late Type 3 CNV and translocation when
a replica initially develops either Early Type 1 CNV or Early Type 3 CNV, then Late Type 2 CNV or initially develops either Early Type 2 CNV or Early Type 3
CNV, then Late Type 1 CNV. Three translocation scenarios, T21, T31 and T32, did not occur in our simulations.
doi:10.1371/journal.pcbi.1002440.t005

Figure 3. CNV Initiation probability dependence on key
adhesion mechanisms. 3D plot of the regression-inferred CNV
initiation probability (Pinit) vs. three key adhesion strengths using ten
simulation replicas for each adhesion scenario in the 3D parameter
space obtained by setting RRp = RRl and RBp = RBl. Red corresponds to
Pinit = 1 and purple to Pinit = 0. The black region at the top-front corner
indicates the locus of normal adhesion. The three isosurfaces of CNV
initiation probability correspond to Pinit = 0.25 (front), 0.5 (middle) and
0.75 (back). The five adhesion parameters and their (multi)linear
combinations account for 88% of the observed variance in CNV
initiation probability (adjusted R2 = 0.83). Regression predicts a mini-
mum CNV initiation probability of 0.08 for normal adhesion, much
higher than observed in either our simulations or experiments. For
normal RPE-POS labile adhesion, moderate impairment of either
RPE-RPE (RRp = RRl) or RPE-BrM (RBp = RBl) junctional adhesion
increases the CNV initiation probability to ,50%. Severe impairment of
RPE-POS increases the CNV initiation probability to ,50% even when
both RPE-RPE and RPE-BrM are normal.
doi:10.1371/journal.pcbi.1002440.g003

Figure 4. Sub-RPE CNV dependence on adhesion. 3D plot of the
regression-inferred average MW using 10 simulation replicas for each
adhesion scenario in the 3D parameter space obtained by setting
RRp = RRl and RBp = RBl. The average MW shows the stalk cell locus
even when CNV fails to initiate, so a region prone to ET1 CNV
develops ET1 CNV only if CNV initiates. Red corresponds to MW = 1
and purple corresponds to MW = 0. The black region at the top-left
corner indicates the locus of normal adhesion. MW = 1.0 for RPE-RPE
junctional adhesion normal, RPE-BrM junctional adhesion
severely impaired (weak) and RPE-POS labile adhesion normal.
The three isosurfaces correspond to MW = 0.25 (back), 0.5 (middle) and
0.90 (front). The five adhesion parameters and their (multi)linear
combinations account for 93% of the observed variance in average MW
for all 108 adhesion scenarios (adjusted R2 = 0.89). Severe impairment of
RPE-POS labile adhesion greatly reduces the MW, so ET1 CNV can
only occur when RPE-POS labile adhesion is near normal. Scenarios
with severe impairment of RPE-BrM junctional adhesion
(RBp = RBl = 1), and normal RPE-POS labile adhesion are prone to
ET1 CNV for a wide range of RPE-RPE junctional adhesion
impairment (MW.0.95 for RRp = RRl.1.5). The red region with MW.0.9
has Pinit.0.8. We have rotated the axes from their orientation in Figure 3
to show the regions in the parameter space prone to ET1 CNV. To
show the structure of the isosurfaces, we have rotated the axes relative
to Figure 3.
doi:10.1371/journal.pcbi.1002440.g004
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RBp = RBl). The three isosurfaces of CNV initiation probability

correspond to Pinit = 0.25, 0.5 and 0.75 in order from front to

back. Regression predicts a minimum CNV initiation probability

of 0.08 for normal adhesion, while CNV did not initiate in any of

our simulation replicas for normal adhesion. Thus the simulated

CNV initiation probability for normal adhesion is effectively 0, as

observed clinically, while the regression-inferred 0.08 initiation

probability is an artifact of the linear inference, an example of the

greater predictive power of mechanistic simulations compared to

pure statistical inference.

Figure 3 shows that when RPE-POS labile adhesion is

normal, even moderate impairment of either RPE-RPE
(RRp = RRl) or RPE-BrM (RBp = RBl) junctional adhesion
increases the CNV initiation probability to ,50%. When both

RPE-RPE and RPE-BrM junctional adhesion are normal

(RRp = RRl = RBp = RBl = 3) and RPE-POS labile adhesion is

severely impaired (ROl = 1) CNV initiation probability is also

,50%. Thus, for severe impairments of any one of the three

adhesion failure mechanisms can each independently induce

CNV, as predicted both by our regression model and our

mechanistic interpretation. Adhesion failures in the BrM-RPE-
POS complex show strong combinatorial effects. When either

RPE-RPE or RPE-BrM junctional adhesion is moderately

impaired and RPE-POS labile adhesion is severely impaired,

CNV initiation probability increases to 100%. Table S1 shows

that asymmetrical impairment of either RPE-RPE or RPE-BrM
plastic coupling alone, without impairment of the correspond-

ing labile adhesion barely increases the probability of CNV
initiation. Thus, the plastic coupling strengths have only a

minor effect on the ability of the BrM-RPE-POS complex to

oppose CNV.

We believe that our simulated initiation probabilities are higher

than those observed in experiments due to two simplifying

assumptions of our model: 1) We assumed that all stalk cells
can divide indefinitely. Limiting the number of stalk-cell
divisions (due to senescence), would lower the probability of

CNV initiation. In in vitro experiments, less than 2% of endothelial

cells have high proliferation potential [72,73], so angiogenic

sprouts often fail to grow, or even regress, if the ECs forming the

sprouts have low proliferation potential. 2) We assumed that stalk
cells adhere equally to both sides of BrM, while BrM and CC

basement membrane are histologically distinct. In experiments,

ECs haptotax to the basement membrane of the CC on the outer

side of BrM (Figure 1), reducing their probability of crossing BrM

compared to our simulations. We expect that increasing adhesion

between stalk cells and the CC-side of BrM would reduce the

CNV initiation probability, since stalk cells would then prefer to

remain on the CC-side of BrM, where contact with the

preexisting vasculature would inhibit their growth.

Figure 5. Sub-Retinal CNV dependence on adhesion. 3D plot of
the regression-inferred average (12MW) using 10 simulation replicas for
each adhesion scenario in the 3D parameter space obtained by setting
RRp = RRl and RBp = RBl. The average (12MW) shows the stalk cell
locus even when CNV fails to initiate, so a region prone to ET2 CNV,
develops ET2 CNV only if CNV initiates. Red corresponds to
(12MW) = 1 and purple corresponds to (12MW) = 0. The black region
at the top-back corner indicates the locus of normal adhesion. The
three isosurfaces correspond to (12MW) = 0.25 (right), 0.5 (middle) and
0.90 (left). The five adhesion parameters and their (multi)linear
combinations account for 93% of the observed variance in average
MW for all 108 adhesion scenarios (R2 = 0.89). The red region with
(12MW).0.9, can be divided into three sub-regions: 1) When RPE-RPE
junctional adhesion is normal, RPE-BrM junctional adhesion is
moderately impaired, and RPE-POS labile adhesion is severely
impaired (weak). 2) When RPE-RPE junctional adhesion is severely
impaired (weak) and RPE-BrM junctional adhesion is normal,
independent of RPE-POS labile adhesion. 3) When RPE-RPE
adhesion is weak, RPE-BrM adhesion is moderately to severely
impaired, and RPE-POS adhesion is severely impaired. The red region
does not include all adhesion scenarios in Table S3 leading to Early
Type 2 CNV. To show the structure of the isosurfaces, we have rotated
the axes relative to Figure 3.
doi:10.1371/journal.pcbi.1002440.g005

Figure 6. Stable Type 1 CNV dependence on adhesion. 3D plot
of the regression-inferred probability of occurrence of Stable Type 1
CNV (S11 CNV probability) using 10 simulation replicas for each
adhesion scenario in the asymmetrically reduced parameter space
obtained by setting RRp = RRl and RBp = 3 (indicated by the RPE-BrM*
axis label). Red corresponds to a S11 CNV probability of 1 and purple
corresponds to a S11 CNV probability of 0. The black region at the top-
left corner indicates the locus of normal adhesion. The maximal
regression-inferred probability of S11 CNV is 0.93 when RPE-RPE
junctional adhesion is normal (RRp = RRl), RPE-BrM labile adhe-
sion is severely impaired (RBl = 1), RPE-BrM plastic coupling is
normal (RBp = 3), and RPE-POS labile adhesion is normal. The three
isosurfaces correspond to S11 CNV probabilities of 0.25 (back), 0.5
(middle) and 0.8 (front). The five parameters and their (multi)linear
combinations account for 76% of the observed variance in the
probability of occurrence of S11 CNV (R2 = 0.67). Severe impairment
of RPE-POS labile adhesion and RPE-RPE junctional adhesion
greatly reduces MW, so S11 CNV can only occur when both adhesion
strengths are near normal. To show the structure of the isosurfaces, we
have rotated the axes relative to Figure 3.
doi:10.1371/journal.pcbi.1002440.g006
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Early and Late CNV and CNV Progression
To classify CNV progression during a simulated year, we

determine the early and late loci of stalk cells, using the mean

(weighted by the number of stalk cells) MWs during the first and

last three months of each simulation whether or not CNV
initiates (we can calculate the MW even if CNV fails to spread and

thus in the absence of initiation). The mean MW measures the

ability of the BrM-RPE-POS complex to confine stalk cells to

specific regions. A MW$0.75 during a given time interval

indicates that most stalk cells lie between BrM and the RPE
(in the sub-RPE space) and that they do not contact the POS. We

therefore assign the time interval to Type 1 CNV. A MW#0.25

during a given time interval indicates that most stalk cells lie

between the RPE and the POS (in sub-retinal space) and do not

contact BrM. We therefore assign the time interval to Type 2
CNV. 0.25,MW,0.75 usually indicates that stalk cells occur in

both the sub-RPE and sub-retinal spaces (since few sub-RPE
stalk cells touch the POS and few sub-retinal stalk cells
touch BrM). We therefore assign the time interval to Type 3
CNV. In a few exceptional cases (Table S10) with

0.25,MW,0.75, most stalk cells lie between neighboring

RPE cells rather than in either the sub-RPE or sub-retinal
spaces (discussed in the Stable Type 3 CNV section in supplementary

Text S5). The type of CNV during the early window which we call

the early CNV type (the first three months of a simulation) is

especially revealing, because all simulations start from the same

initial condition. The early CNV type shows the efficacy of the

BrM-RPE-POS complex in blocking stalk cell invasion of the

sub-RPE and sub-retinal spaces. Since tissue structure and cell

function can change significantly in the BrM-RPE-POS complex

during a simulated year, changes in CNV type between the

early and late windows can result from either structural or

barrier-function changes in the BrM-RPE-POS complex. For

example, the adhesion failures which typically lead to Early Type
3 CNV differ from those which typically leading to Late Type 3
CNV.

Because our simulations are stochastic, different replicas of the

same adhesion scenario can lead to different combinations of

early and late types of CNV. Such variation is common

clinically and indicates that a simple population average of MWs

over simulation replicas may reveal neither the types, progression

dynamics nor degree of heterogeneity of outcomes. To retain this

dynamic and population information, we classify CNV dynamics

(progression) in each simulation separately based on its early and

late CNV type, for a total of 9 CNV dynamics scenarios

(Table 5). We use the term progression when a simulation replica

initially develops either Early Type 1 CNV or Early Type 2
CNV and then develops Late Type 3 CNV and translocation when

a replica initially develops either Early Type 1 CNV or Early
Type 3 CNV, then Late Type 2 CNV or initially develops either

Early Type 2 CNV or Early Type 3 CNV, then Late Type 1
CNV. Three translocation scenarios sub-retinal to sub-RPE
CNV (T21 CNV), Type 3 to sub-RPE CNV (T31 CNV) and

Type 3 to sub-retinal CNV (T32 CNV) did not occur in our

simulations.

Early Type 1 (ET1) CNV and its progression. Stalk
cells remain confined to the sub-RPE space in two main classes

of adhesion scenarios: 1) When RPE-BrM labile adhesion is

moderately to severely impaired, RPE-BrM plastic coupling
satisfies RBl+RBp#4, and both RPE-RPE and RPE-POS labile
adhesion are normal (RRl = 3 and ROl = 3). 2) When both RPE-
RPE and RPE-BrM labile adhesion are severely impaired

(RRl = 1 and RBl = 1), RPE-BrM plastic coupling is moder-

ately to severely impaired (RBp#2), and both RPE-RPE plastic

coupling and RPE-POS labile adhesion are normal (RRp = 3,

ROl = 3) (Table S2, adhesion scenario ID: 83 and 84). In both

classes of adhesion scenarios, CNV initiation leads to Early Type
1 CNV (ET1). Table 6 shows the MW and CNV initiation

probabilities for the adhesion scenarios most prone to ET1 CNV
(MW.0.9).

Multiple-regression analysis of the five adhesivities accounted

for 93% of the observed variance in the average MW for all 108

adhesion scenarios (adjusted R2 = 0.89). Figure 4 shows the stalk
cell locus regression-inferred from the average MW as a function

of the adhesion parameters obtained by setting RRp = RRl and

RBp = RBl. Since Figure 4 shows the stalk cell locus even when

CNV fails to initiate, a region prone to ET1 CNV, develops ET1
CNV only if CNV initiates. Severe impairment of RPE-POS
labile adhesion greatly reduces the MW, so ET1 CNV can only

occur when RPE-POS labile adhesion is near normal.

Scenarios with severe impairment of RPE-BrM junctional
adhesion (RBp = RBl = 1), and normal RPE-POS labile adhe-
sion are prone to ET1 CNV over a wide range of RPE-RPE
junctional adhesion impairment (MW.0.95 for

RRp = RRl.1.5). The red region with MW.0.9 has Pinit.0.8

(Figure 4).

In most adhesion scenarios that develop Early Type 1 CNV
with MW.90% the CNV remains in the sub-RPE space during

one simulated year (Late Type 1 CNV, MW.75%). I.e. they

exhibit Stable T1 CNV (S11 CNV) (see Figure 6, Table 7 and

supplementary Text S5 for details). Generally, CNV growth speed

differs from replica to replica in adhesion scenarios prone to S11
CNV (compare to S22 CNV dynamics, below). Figure 7 shows

typical S11 CNV dynamics for 10 simulation replicas of a single

adhesion scenario (RRl = 3, RRp = 3, RBl = 2, RBp = 2, ROl = 3)

(Table S5, adhesion scenario ID: 38). We visualize snapshots of

S11 CNV dynamics in one replica in Figure 8 and Video S1.

Adhesion scenarios in which some replicas exhibit T12 CNV
can also have replicas which exhibit either S22 or S11 over one

simulated year. Figure 9 shows T12 CNV dynamics for 10

simulation replicas of the adhesion scenario (RRl = 3, RRp = 3,

RBl = 1, RBp = 1, ROl = 1) (Table S6, adhesion scenario ID: 93).

We visualize snapshots of the T12 CNV dynamics in one replica

in Figure 10 and Video S2.

CNV dynamics is very similar across all replicas in adhesion

scenarios prone to P13 CNV and much less heterogeneous than

for T12 CNV. Figure 11 shows typical P13 CNV dynamics for 10

Table 6. Adhesion scenario classification based on early CNV
type.

Typical Adhesion Scenario

Early CNV Sub-classes RRl RRp RBl RBp ROl

Type 1 1 3 * 1,2 RBl+RBp#4 3

2 1 3 1 1,2 3

Type 2 1 3 * 2,3 * 1

2 1 * 2,3 * *

3 1 RBp+RRp.3 1 RBp+RRp.3 1

Type 3 1 1 * 1,2 * 3

Key: RRl: RPE-RPE labile adhesion strength, RRp: RPE-RPE plastic coupling
strength, RBl: RPE-BrM labile adhesion strength, RBp: RPE-BrM plastic
coupling strength, ROl: RPE-POS labile adhesion strength. Scaled adhesion
strengths: 3: normal, 2: moderately impaired, 1: severely impaired (weak),
*: all strength levels.
doi:10.1371/journal.pcbi.1002440.t006
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simulation replicas of the adhesion scenario (RRl = 1, RRp = 3,

RBl = 1, RBp = 2, ROl = 3) (Table S7, adhesion scenario ID: 83).

We visualize snapshots of P13 CNV dynamics in one replica in

Figure 12 and Video S3.

Early Type 2 (ET2) CNV and its progression. Stalk cells
initially invade the sub-retinal space (Early Type 2 CNV) in

three main classes of adhesion scenarios: 1) When RPE-RPE
labile adhesion is normal (RRl = 3), RPE-BrM labile adhe-
sion is normal or moderately impaired (RBl$2), and RPE-POS
labile adhesion is severely impaired (ROl = 1). 2) When RPE-
RPE labile adhesion is severely impaired (RRl = 1) and RPE-
BrM labile adhesion is either normal or moderately impaired

Figure 7. Dynamics of stable Type 1 CNV (S11 CNV). A) Total number of stalk cells vs. time. B) Total number of stalk cells confined in the
sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-retinal space) vs. time. D) Total number of
RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area between POS cells and BrM vs. time. The
different colors represent the dynamics of 10 simulation replicas of the adhesion scenario (RRl = 3, RRp = 3, RBl = 2, RBp = 2, ROl = 3) (Table S5, adhesion
scenario ID: 38). (A, B) CNV initiates in 9 out of 10 simulation replicas. All develop Early Type 1 CNV. CNV remains confined in the sub-RPE space
during one simulated year (Stable Type 1 CNV). A Fully developed sub-RPE capillary network contains about 45 stalk cells (,3000 cells/mm2).
In 5 simulation replicas a few stalk cells die during the simulated year due to lack of RPE-derived VEGF-A. (C) Stalk cells have minimal contact
with the POS. (D, E) The RPE remains viable and its total contact area with BrM decreases as stalk cells proliferate. (F) The POS never contacts
BrM, indicating that the RPE does not develop any holes.
doi:10.1371/journal.pcbi.1002440.g007

Table 7. Adhesion scenario classification based on CNV dynamics.

Typical Adhesion Scenarios

CNV Progression
Dynamics Sub-classes RRl RRp RBl RBp ROl

S11 1 3 2, 3 1, 2 3#RBl+RBp#4 3

T12 1 3 RRp+RBp$4 except
RRp = RBp = 2

1 RRp+RBp$4 except RRp = RBp = 2 1

P13 1 1 * 1 1, 2 3

S22 1 3 * 2, 3 * 1

2 1 * 2, 3 * *

3 1 RBp+RRp.3 1 RBp+RRp.3 1

P23 1 1 1, 2 1 1 1

S33 1 1 * 2 RBl+RBp#4 3

2 1 * 1 3 3

To simplify, we list only the adhesion scenarios most prone to each type of CNV progression dynamics. Key: RRl: RPE-RPE labile adhesion strength, RRp: RPE-RPE
plastic coupling strength, RBl: RPE-BrM labile adhesion strength, RBp: RPE-BrM plastic coupling strength, ROl: RPE-POS labile adhesion strength. Scaled
adhesion strengths: 3: normal, 2: moderately impaired, 1: severely impaired (weak), *: all strength levels. See Table 5, for nomenclature for CNV dynamics.
doi:10.1371/journal.pcbi.1002440.t007
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(RBl$2). 3) When RPE-RPE, RPE-BrM and RPE-POS labile
adhesion are severely impaired (RRl = RBl = ROl = 1), and the

combination of RPE-RPE and RPE-BrM plastic coupling
satisfies RBp+RRp.3. Unless all labile adhesions are severely

impaired, impairment of either RPE-RPE or RPE-BrM plastic
coupling has little effect on the average MW, though it does

increase the CNV initiation probability. For example, adhesion

scenarios ID: 22 and 24, which differ only in their RPE-BrM

plastic coupling, exhibit the same mean MW; however,

Pinit = 0.8 for normal RPE-BrM plastic coupling (ID: 22) and

Pinit = 1 for severely impaired RPE-BrM plastic coupling (ID:

24).

Figure 5 shows (12MW), which measures the degree of

confinement of stalk cells to the sub-retinal space, based on

the regression-inferred average MW (see, the Early Type 1 (ET1)

CNV subsection, above) as a function of the five adhesion

Figure 8. Snapshots of a simulation replica with stable Type 1 CNV. 3D visualization of a simulation replica exhibiting Stable Type 1 CNV
over one simulated year (adhesion scenario ID: 38, simulation ID: 902) (RRl = 3, RRp = 3, RBl = 2, RBp = 2, ROl = 3). Snapshots of the simulation at
months 3 (A), 6 (B), 9 (C) and 12 (D). (A) Stalk cells (black arrows) invade the sub-RPE space through a hole (black outline arrow) in BrM (light blue
outline arrow) that the tip cell opens during the first 24 hours. Brown outline arrow shows the RPE cells. Red outline arrow shows the CC (B, C)
Stalk cells proliferate until they fill the sub-RPE space in month 9, after which proliferation slows down (D) The 45 stalk cells form a connected
capillary network in the sub-RPE space. Cell type colors: 1) POS and PIS: light purple, 2) RPE: brown, 3) Stalk cells: green, 4) Vascular cells (CC):
red, 5) BrM: light blue. Scale bar ,50 mm. We have rendered the boundaries of individual cells as semi-transparent membranes. POS, PIS and RPE
cells are more transparent to show the underlying structures. See also Video S1.
doi:10.1371/journal.pcbi.1002440.g008
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parameters, reduced to 3D by setting RRp = RRl and RBp = RBl.

The red region with (12MW).0.9, can be divided into three sub-

regions: 1) When RPE-RPE junctional adhesion is normal,

RPE-BrM junctional adhesion is moderately impaired, and

RPE-POS labile adhesion is severely impaired (weak). 2) When

RPE-RPE junctional adhesion is severely impaired (weak) and

RPE-BrM junctional adhesion is normal, independent of

RPE-POS labile adhesion. 3) When RPE-RPE junctional
adhesion is severely impaired (weak), RPE-BrM junctional
adhesion is moderately to severely impaired, and RPE-POS
labile adhesion is severely impaired. Figure 5 does not include

all the adhesion scenarios in Table S3 leading to Early Type 2
CNV.

In Stable Type 2 CNV (S22 CNV), stalk cells initially

invade the sub-retinal space to develop Early Type 2 CNV
and remain confined in the sub-retinal space in Late Type 2
CNV. Most adhesion scenarios that develop ET2 CNV in which

the MW remains less than 0.15 during the first three months also

exhibit S22 CNV (Figure 13, Table 7 and supplementary Text

S5). Generally, CNV dynamics is very similar across all replicas of

the adhesion scenarios prone to S22 CNV (Table 7 and

supplementary Text S5). As for P13 CNV, the variability from

replica to replica is smaller than for S11 CNV. Figure 14 shows

typical S22 CNV dynamics for 10 simulation replicas of the

adhesion scenario (RRl = 1, RRp = 1, RBl = 3, RBp = 3, ROl = 3)

(Table S8, adhesion scenario ID: 16). We show snapshots of the

S22 CNV dynamics in one replica in Figure 15 and Video S4.

CNV dynamics is very similar across all replicas of the adhesion

scenarios prone to P23 CNV (Table 7 and supplementary Text

S5). Variability from replica to replica is low and comparable to

the variability observed in P13 CNV and S22 CNV. Figure 16

shows typical P23 CNV dynamics for 10 simulation replicas of the

adhesion scenario where all adhesions are severely impaired

(RRl = 1, RRp = 1, RBl = 1, RBp = 1, ROl = 1) (adhesion scenario

ID: 108). We visualize snapshots of the P23 CNV dynamics in one

replica in Figure 17 and Video S5.

Early Type 3 (ET3) CNV and its progression. In Early
Type 3 (ET3) CNV, Stalk cells initially grow both between the

RPE and BrM and between the RPE and the POS. Most

adhesion scenarios have severely impaired RPE-RPE labile
adhesion (RRl = 1), normal RPE-POS labile adhesion
(ROl = 3) and either severely or moderately impaired RPE-
BrM labile adhesion (RBl#2) (Table S4). In these adhesion

scenarios, RPE-RPE and RPE-BrM plastic coupling have

little effect on mean MW and CNV initiation probability. For

example, adhesion scenarios ID: 82 (RRp = 3), 85 (RRp = 2) and

88 (RRp = 1) have similar mean MW and CNV initiation

probability, despite differing in their RPE-RPE plastic cou-
pling strengths (RRp).

Generally, CNV dynamics is very similar across all replicas of

the adhesion scenarios prone to S33 CNV (Table 7 and

supplementary Text S5). Variability from replica to replica is

comparable to the variability in P13 CNV, S22 CNV and P23
CNV. Figure 18 shows the typical S33 CNV dynamics in 10

simulation replicas of the adhesion scenario (RRl = 1, RRp = 1,

RBl = 2, RBp = 2, ROl = 3) (Table S10, adhesion scenario ID: 53).

We visualize snapshots of S33 CNV dynamics in one replica in

Figure 19 and Video S6.

Figure 9. Dynamics of sub-RPE to sub-retinal translocation (T12 Translocation). A) Total number of stalk cells vs. time. B) Total number of
stalk cells confined in the sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-retinal space)
vs. time. D) Total number of RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area between POS
cells and BrM vs. time. The different colors represent the results of 10 simulation replicas of the adhesion scenario (RRl = 3, RRp = 3, RBl = 1, RBp = 1,
ROl = 1) (Table S6 adhesion scenario ID: 93). (A, B) CNV initiates in all replicas. By 3 months, most replicas form a developed sub-RPE capillary
network composed of ,20 to 40 stalk cells (,1500 to 3000 cells/mm2). 8 replicas develop Early Type 1 (ET1) CNV. Only one replica shows
Stable Type 1 (S11) CNV. Some stalk cells in most replicas die due to lack of RPE-derived VEGF-A. (C) Two replicas show Stable Type 2 (S22)
CNV (Early (ET2) and Late Type 2 (LT2) CNV, black and dark red lines). 7 replicas show LT2 CNV. (D) The RPE remains viable in all replicas. (E)
The contact area between the RPE and BrM decreases as either ET1 CNV or S11 CNV develops, and remains constant during ET2 CNV. RPE
reattaches to BrM during T12 CNV. (F) The POS contacts BrM once, but the contacts area and duration are both small, so the RPE does not
develop any persistent or substantial holes.
doi:10.1371/journal.pcbi.1002440.g009
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Discussion

Our simulations show that variations in five key adhesion

strengths suffice to explain many of the experimentally and

clinically observed dependencies of CNV initiation on drusen,

inflammation, retinal detachment and iatrogenic to reproduce the

main observed types and progression dynamics of CNV associated

with those defects. Since pathological conditions can cause

multiple adhesion failures in the BrM-RPE-POS complex, we

simulated factorial combinations of graded impairments of the five

adhesion types to explore the effects of biologically-coupled

adhesion failures. In this section, we discuss the effects of both

Figure 10. Snapshots of a simulation replica showing sub-RPE to sub-retinal translocation (T12 Translocation). 3D visualization of a
simulation replica exhibiting T12 CNV translocation during one simulated year (RRl = 3, RRp = 3, RBl = 1, RBp = 1, ROl = 1) (adhesion scenario ID: 93,
simulation ID: 849). Snapshots of the simulation at months 3 (A), 5 (B), 9 (C) and 12 (D). (A) Stalk cells (solid black arrow) invade the sub-RPE space
through a hole in BrM (black outline arrow) and form a capillary network. All stalk cells remain in the sub-RPE space during the first 3 months. A
few vascular cells fill the hole in BrM (black outline arrow) to connect CNV capillaries to the CC (red outline arrow). Brown outline arrow shows an
RPE cell. (B) Half of the stalk cells (black outline arrow) have crossed the RPE and transmigrated into the sub-retinal space, forming a new
capillary network in the sub-retinal space. The black arrow shows a stalk cell in the sub-RPE space. (C) Most stalk cells have transmigrated into
the sub-retinal space and the RPE has completely reattached to BrM (Figure 9E, dark green line). A few vascular cells of the CC have
transmigrated into the sub-retinal space (red outline arrow) (D) The sub-retinal capillary network has fewer stalk cells than (C) since stalk cells
that migrate into the retina far from the RPE die. Cell type colors: 1) POS and PIS: light purple, 2) RPE: brown, 3) Stalk cells: green (stalk cells in
the sub-retinal space have lighter shading), 4) Vascular cells (CC): red, 5) BrM: light blue. Scale bar ,50 mm. We have rendered the boundaries of
individual cells as semi-transparent membranes. POS, PIS and RPE cells are more transparent to show the underlying structures. See also Video S2.
doi:10.1371/journal.pcbi.1002440.g010

3D Simulations of Choroidal Neovascularization

PLoS Computational Biology | www.ploscompbiol.org 16 May 2012 | Volume 8 | Issue 5 | e1002440



individual adhesion failures and their combinations on CNV
initiation, type and dynamics and explain their clinical and

experimental relevance.

Table 1 aggregates a spectrum of clinical and experimental

observations for a variety of conditions, with rough estimates of the

degree of impairment of the three main inter-component

adhesions present in the BrM-RPE-POS complex. Table 1 also

lists the most common types of CNV associated with each

condition. In this section, we compare clinical and experimental

observations for these conditions to the results of our simulations

for appropriate adhesion scenarios. Since we assume adhesion is

constant over the duration of the simulation, to understand the

effects of the gradual changes in adhesion which occur in patients

as CNV develops, we must look successively at the results of

multiple simulations for an appropriate series of adhesion

impairments comparable at each time to those of the disease as

it progresses.

Clinical and Experimental Types of CNV and their
Relation to Simulations

CNV due to soft drusen in older humans. As we discussed

earlier (see the section Current Hypotheses for CNV Initiation and

Progression), soft drusen significantly reduce the adhesion of the

basement membrane of the RPE to BrM (RBaM-BrM adhesion).

Sub-RPE CNV often starts by growing between these weakly

adhered layers. Although soft drusen are seen clinically, the early

stages of invasion of ECs into the sub-RPE space have little effect

on visual acuity, so early EC invasions can remain unreported and

unnoticed. In these patients, initial vision acuity prior to CNV

initiation is not severely impaired compared to typical age-

controlled visual acuity, suggesting that their photoreceptors

remain healthy or at most moderately impaired compared to

age-matched controls. Since the RPE plays multiple roles in

maintaining both photoreceptors (e.g. through the phagocytosis of

spent disks from the photo receptors) and the outer retina (e.g.

through the transport of fluids), near-normal photoreceptors can

only persist in the presence of near-normal RPE cells. Near-

normal vision also requires that the POS remain attached to the

RPE without accumulation of sub-retinal fluid or retinal detach-

ment, indicating that RPE-POS adhesion must remain near-

normal. Based on these observations, we hypothesize that in

patients with soft drusen, both RPE-RPE and RPE-POS adhesion

are near-normal, but BaM-BrM adhesion is impaired with the

level of impairment differing patient-to-patient. This spectrum of

adhesion impairments in the BrM-RPE-POS complex is compa-

rable to the first sub-class of adhesions scenarios which are prone

to Early Type 1 CNV (Table 6). Within this sub-class, variation

in the degree of adhesion impairment of RPE-RPE plastic

coupling, RPE-BrM labile adhesion and RPE-BrM plastic

coupling affects many aspects of CNV in simulations, including

the CNV initiation probability, CNV onset time and CNV
dynamics. Additionally, some adhesion scenarios in this class show

significant variability among simulation replicas with identical

adhesivities.

Patients with multiple large soft drusen or confluent drusen (soft

indistinct drusen) have a higher chance of developing CNV [74],

suggesting that CNV initiation probability depends on total area of

drusen and their shape. In standard clinical usage, drusen with a

diameter ,63 mm are called small drusen and those with a diameter

.125 mm are called large drusen. Confluent drusen or soft indistinct

Figure 11. Dynamics of sub-RPE CNV to sub-retinal CNV progression (P13 Progression). A) Total number of stalk cells vs. time. B) Total
number of stalk cells confined in the sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-
retinal space) vs. time. D) Total number of RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area
between POS cells and BrM vs. time. The different colors represent the results of 10 simulation replica of the adhesion scenario (RRl = 1, RRp = 3,
RBl = 1, RBp = 2, ROl = 3) (Table S7, adhesion scenario ID: 83). CNV initiates in all replicas and all develop ET1 CNV. A few stalk cells in most replicas
die due to lack of RPE-derived VEGF-A. (C) Stalk cells cross the RPE and invade the sub-retinal space once the number of stalk cells in the sub-
RPE space reaches ,60 cells, which usually occurs within first two months after initiation. CNV progression to the sub-retinal space is complete
around month 5. (D) The RPE remains viable in all replicas. (E) The contact area between the RPE and BrM decreases as ET1 CNV develops, and
remains constant afterwards throughout LT3 CNV. (F) The POS contacts BrM a few times, but the contact area and duration are both small, so the
RPE does not develop any persistent or substantial holes.
doi:10.1371/journal.pcbi.1002440.g011
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drusen form when multiple soft drusen touch and merge.

Confluent drusen strongly correlate with CNV and serous RPE

detachment due to fluid accumulation between BrM and the RPE,

indicating severe impairment of RBrM-BrM adhesion due to the

larger area of impaired RBrM-BrM adhesion and high lipid levels

in the drusen affected regions. These experimental observations

suggest that the probability of CNV initiation increases with both

the degree and total area of RBrM-BrM adhesion impairment. In

our simulations, the total area of impaired adhesion is the same in

all replicas, so it does not affect the CNV initiation probability.

However, the CNV initiation probability increases with the degree

of impairment of RPE-BrM junctional adhesion in those

Figure 12. Snapshots of a simulation replica showing sub-RPE CNV to sub-retinal CNV progression (P13 Progression). 3D and 2D
visualizations of a simulation replica exhibiting P13 CNV progression during one simulated year (RRl = 1, RRp = 3, RBl = 1, RBp = 2, ROl = 3) (Table S7,
adhesion scenario ID: 83, simulation ID: 515). Snapshots of the simulation at months 1 (A), 2 (B), 6 (C) and 12 (D). (A) Stalk cells (solid black arrow)
invade the sub-RPE space through a hole in BrM (blue outline arrow) and form a capillary network. The vascular cells (black outline arrow) of the
CC (red outline arrow) occupy the hole that the tip cell forms during the first 24 hours of the simulation, connecting the CNV capillaries to the CC.
All stalk cells remain in the sub-RPE space during the first month of the simulation. (B) A few stalk cells (black outline arrow) cross the RPE into
the sub-retinal space. (C) Additional stalk cells migrate into the sub-retinal space and form vascular cords (black outline arrow). (D) A 2D cross-
section of the retina showing the hole in BrM. The stalk cells form a sub-RPE capillary network (black arrow) connected to a sub-retinal capillary
network (black outline arrows). Two vascular cells connect the CC to the CNV capillaries through the hole in BrM. Cell type colors: 1) POS and
PIS: light purple, 2) RPE: brown, 3) Stalk cells: green (stalk cells in the sub-retinal space have lighter shading), 4) Vascular cells (CC): red, 5)
BrM: light blue. Scale bar ,50 mm. We have rendered the boundaries of individual cells as semi-transparent membranes. POS, PIS and RPE cells are
more transparent to show the underlying structures. See also Video S3.
doi:10.1371/journal.pcbi.1002440.g012
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adhesion scenarios exhibiting ET1 CNV (Table 6, ET1 CNV first

sub-class), supporting our experimentally-based hypothesis.

The locus of stalk cells in all simulation replicas of the first

sub-class of ET1 CNV agrees with that in clinical and sub-clinical

(sub-clinical CNV appears in histology but not clinically) sub-RPE

CNV, the typical early CNV type in these patients. It also agrees

with the appearance of drusen-like deposits and the initial stages of

EC invasion into BrM observed in a fat-fed aged-mouse model (16

months old) exposed to non-phototoxic levels of blue light [75].

However, CNV did not progress in this mouse model [75].

While experimental and clinical results are incomplete, as we

discussed above, they do suggest that patients with stable sub-RPE

CNV do not suffer high rates of severe RPE detachment,

indicating that their RBaM-BrM adhesion is not severely

impaired. Among simulations with ET1 CNV, those in which

RPE-BrM junctional adhesion is not too severely impaired

(Table 7, RBl = 1 or 2 and 3#RBl+RBp#4), exhibit Stable Type
1 CNV, agreeing with our interpretation of this clinical

observation.

Since we hypothesize that more severe impairment of RBaM-

BrM adhesion facilitates CNV spreading and progression, we

expect higher variability of outcomes in patients with moderately

impaired adhesion than in patients with severely impaired

adhesion. In older patients, CNV progression timing and the size

and growth rate of the CNV-affected area vary significantly

patient-to-patient [5,76–78]. About one third of untreated sub-

RPE CNV cases in older patients remain stable for extended

periods of time (,30% remain stable 3 years after diagnosis). A

slightly larger population of apparently similar patients progress to

more damaging sub-retinal CNV in a short period of time (,40%

develop sub-retinal CNV within the 12 months after diagnosis).

According to a different study [76], sub-RPE CNV lesion size

doubles in 12 months in ,30% of patients and quadruples in

,40% of patients and remained stable in the remainder. Such

patient-to-patient variability corresponds closely to the variability

we observe in stalk cell proliferation, CNV area growth and

onset time in our corresponding simulations. As in clinical

observations, simulations of adhesion scenarios with moderately

impaired RPE-BrM junctional adhesion (Table 7, RBl = 1 or

2 and 3#RBl+RBp#4,) have greater variability in stalk cell

proliferation, CNV growth rate and CNV onset time than

simulations with severely impaired RPE-BrM junctional
adhesion (Table 6, RRl = 3, RRp = 3, RBl = 1, RBp = 1,

ROl = 3). For example, in the 10 simulation replicas of an adhesion

scenario with moderately impaired RPE-BrM junctional
adhesion and all other adhesion normal (Table 7, RRl = 3,

RRp = 3, RBl = 2, RBp = 2, ROl = 3) (Figure 7) nine out of ten

replicas initiate CNV, but the total number of stalk cells after one

simulated year shows a four-fold variation (from a minimum of 10

stalk cells to a maximum of 45 stalk cells) and the CNV onset

time varies from a minimum of two weeks to a maximum of 4

months (after formation of the initial hole in BrM). For less

impaired adhesion, when the plastic component of RPE-BrM
junctional adhesion is severely impaired but the labile
component is normal (Table S1, RRl = 3, RRp = 3, RBl = 3,

RBp = 1, ROl = 3), CNV initiates in only 30% of simulations, the

initiation onset time is around 10 months (after formation of the

initial hole in BrM) and the total number of stalk cells remains

less than 6 in all replicas during the simulated year.

Overall, the stalk cell growth and proliferation rate among

simulations that develop ET1 CNV, is slowest in those simulations

exhibiting S11 CNV and fastest in those simulations exhibiting

P13 CNV. The stalk cell division rate (the frequency of stalk
cell division within the tissue) in S11 CNV ranges from one or

two cell divisions per year to one cell division every 48 hours.

The stalk cell division rate in P13 CNV is less variable, about

one cell division every ,12 hours during ET1 CNV (Figure 11A,

the first month in most replicas). The long initiation delays and

slow sub-RPE CNV development observed in some of our

simulation replicas correspond to the slow sub-RPE CNV

development and long-term CNV stability observed in a small

population of patients (,30% as mentioned in [78]). Fast-

progressing ET1 CNV in some of these simulations agrees with

the clinically-observed rapid increase in sub-RPE CNV size in a

different set of otherwise similar patients. Based on the observed

variability in CNV onset time and growth rate in our simulations

and its dependence on the degree of adhesion impairment, we

believe that the observed clinical patient-to-patient variability may

result from both intrinsic stochasticity in certain adhesion regimes

and from small patient-to-patient differences in the degree and

type of adhesion impairments in the patient’s BrM-RPE-POS

complex.

In older patients, sub-RPE CNV may later also invade the sub-

retinal space (sub-RPE CNV to CNV sub-retinal progression is a

common CNV progression scenario). The factors involved in this

transition are not well understood. Gradual degradation of the

RPE due to sub-RPE hemorrhaging, formation of sub-RPE

fibrosis and inflammation triggered by initial sub-RPE CNV are

associated with this transition. The death of RPE cells during this

degradation indicates that RPE-RPE adhesion is impaired. The

rapid vision loss associated with the transition from sub-RPE CNV

Figure 13. Stable Type 2 CNV dependence on adhesion. 3D plot
of the regression-inferred probability of occurrence of Stable Type 2
CNV (S22 CNV probability) using 10 simulation replicas for each
adhesion scenario in the 3D parameter space obtained by setting
RRp = RRl and RBp = RBl. Red corresponds to a S22 CNV probability of 1
and purple corresponds to a S22 CNV probability of 0. The black
region at the top-back corner indicates the locus of normal adhesion.
The three isosurfaces correspond to S22 CNV probabilities of 0.25
(right), 0.5 (middle) and 0.9 (left). The five parameters and their
(multi)linear combinations account for 89% of the observed variance in
the probability of occurrence of S22 CNV in all 108 adhesion scenarios
(adjusted R2 = 0.84 ). S22 CNV occurs primarily when RPE-RPE
junctional adhesion is moderately to severely impaired, RPE-BrM
junctional adhesion is normal or moderately impaired, independent
of RPE-POS labile adhesion (red region with S22 CNV probabili-
ty.0.9). The red region does not include all adhesion scenarios in Table
S8 leading to S22 CNV. To show the structure of the isosurfaces, we
have rotated the axes relative to Figure 3.
doi:10.1371/journal.pcbi.1002440.g013
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to sub-retinal CNV, indicates impaired RPE-POS adhesion,

though, clinically, we do not know whether RPE-POS adhesion

impairment is a cause or result of the transition. Thus these

conditions imply impairment of RPE-RPE junctional adhe-
sion and/or RPE-POS labile adhesion in addition to

preexisting impairment of RPE-BrM junctional adhesion
(due to lipid accumulation). Three classes of adhesion scenarios are

relevant: 1) When both RPE-POS labile adhesion and RPE-
BrM junctional adhesion are impaired, 2) when both RPE-
RPE and RPE-BrM junctional adhesion are impaired, and 3)

when RPE-RPE junctional adhesion, RPE-POS labile
adhesion, RPE-BrM junctional adhesion are impaired.

These three classes include all the sub-classes of adhesion scenarios

leading to T12 CNV, P13 CNV, S22 CNV, S23 CNV and S33
CNV. These three classes never lead to S11 CNV (for definitions

of the sub-classes of adhesion scenarios see Table 7), suggesting

that impairment of RPE-RPE and/or RPE-POS adhesion in

addition to preexisting impairment of RBaM-BrM in patients is

the primary mechanism leading to the sub-RPE CNV to sub-

retinal CNV transition.

Clinically, adhesion strengths may change as CNV progresses.

However our simulations show that P13 CNV progression can

occur in patients even for time-independent adhesion. We can thus

use our simulations to develop a prognosis for patients with sub-

RPE CNV and in whom RPE-RPE and/or RPE-POS adhesion

are impaired in addition to preexisting impairment of RBaM-

BrM. Simulations that exhibit ET1 CNV and later invade the sub-

retinal space in P13 CNV (Table 7, RRl = 1, independent of RRp,

RBl = 1, RBp = 1 or 2, ROl = 3) correspond to the most common

clinically observed progression of AMD-induced CNV, which

begins as sub-RPE CNV and later progresses to involve the sub-

retinal space. Simulations with T12 CNV (Table 7, RRl = 3,

RBl = 1, ROl = 1, RRp+RBp$4 except RRp = RBp = 2) do not

appear to correspond to any standard clinical CNV progression

dynamics, perhaps, because the transient nature of the sub-RPE to

sub-retinal translocation makes its clinical detection difficult; we

hypothesize that T12 CNV may be occurring but is not being

diagnosed. Clinically, depending on the time of observation, T12

CNV could be diagnosed as sub-RPE CNV, Type 3 or sub-retinal

CNV. Only frequent prospective eye examinations and long-term

follow up can determine whether our prediction of clinical sub-

RPE to sub-retinal translocations is correct.

Clinically, ET2 and ET3 CNV are not common in drusen-

induced CNV in patients. However, the adhesion scenarios that

exhibit ET2 and ET3 in our simulations might correspond to

secondary CNV which develops later to a primary site of CNV in

patients with pre-existing ET1 CNV. To explore the relevance of

these scenarios, we could conduct simulations beginning with pre-

existing ET1 CNV instead of a single tip cell in the CC. For

example, we would expect the pre-existing ET1 CNV to

translocate to the sub-retinal space when simulated in adhesion

scenarios that exhibit primary S22 CNV. Such CNV dynamics

would look like T12 CNV (discussed above). Clinically, this result

implies that if we were to increase RBaM-BrM adhesion

therapeutically (e.g. by extraction of lipids from BrM or by

removing/reducing fluids between RBaM and BrM) in the

presence of pre-existing sub-RPE CNV, stalk cells could translo-

cate to the sub-retinal space in a transition to sub-retinal CNV.

Since sub-retinal CNV is much more damaging to vision than sub-

RPE CNV, this translocation would be a serious iatrogenic side

effect. We can make similar analogies for the significance of

simulated S23 CNV and S33 CNV.

Vascular RPE detachment caused by growth of CNV under the

RPE is a common complication of sub-RPE CNV in AMD. We

Figure 14. Dynamics of stable Type 2 CNV (S22 CNV). A) Total number of stalk cells vs. time. B) Total number of stalk cells confined in the
sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-retinal space) vs. time. D) Total number of
RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area between POS cells and BrM vs. time. The
different colors represent the results of 10 simulation replicas of the adhesion scenario (RRl = 1, RRp = 1, RBl = 3, RBp = 3, ROl = 3) (Table S8, adhesion
scenario ID: 16). (A, C) CNV initiates in all replicas and all develop ET2 CNV during the first three months of the simulation. All replicas exhibit S22
CNV. A few stalk cells in most replicas die due to lack of RPE-derived VEGF-A. (C) Few or no stalk cells reach the sub-RPE space. (D) The RPE
remains viable in all replicas. (E) The contact area between the RPE and BrM does not change as S22 develops. (F) The POS contacts BrM a few
times, but the contact area and duration are both small, so the RPE does not develop any persistent or substantial holes.
doi:10.1371/journal.pcbi.1002440.g014
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observe a corresponding pathology when RPE-BrM junctional
adhesion is severely impaired (Table 6, Early Type 1 sub-class

1, RBl = RBp = 1). In this case, Early Type 1 CNV results in later

RPE detachment, leading to either T12 CNV translocation or

P13 CNV progression in conjunction with the formation of holes

in the RPE (we will discuss late-stage CNV complications in detail

in future papers).

Inflammation-induced CNV. Sub-retinal CNV without

prior diagnosed sub-RPE CNV occurs, but is not as common in

older patients as drusen-induced CNV [79]. It also occurs in

young patients in conjunction with acute inflammatory conditions,

particularly in cases of serpiginous choroidopathy, multifocal

choroiditis and panuveitis [80]. The mechanisms leading to this

type of CNV are not well understood and we lack clinical insight

Figure 15. Snapshots of a simulation replica showing stable Type CNV (S22 CNV). 3D visualization of a simulation replica showing S22
CNV in one simulated year (RRl = 1, RRp = 1, RBl = 3, RBp = 3, ROl = 3) (adhesion scenario ID: 16, simulation ID: 556). Snapshots of the simulation at
months 1 (A), 2 (B), 6 (C) and 12 (D). (A) Stalk cells (solid black arrow) invade the sub-retinal space through a hole in BrM (black outline arrow)
and form a partially developed capillary network (B). CNV finishes sub-retinal invasion around month 5 and remains in the sub-retinal space
throughout LT2 CNV (C–D). A few vascular cells (A, black outline arrow) fill the hole in BrM to connect the CNV capillaries to the CC (red outline
arrow). Brown outline arrow shows an RPE cell. Cell type colors: 1) POS and PIS: light purple, 2) RPE: brown (stalk cells in the sub-retinal space
have lighter shading), 3) Stalk cells: green, 4) Vascular cells (CC): red, 5) BrM: light blue. Scale bar ,50 mm. We have rendered the boundaries of
individual cells as semi-transparent membranes. POS, PIS and RPE cells are more transparent to show the underlying structures. See also Video S4.
doi:10.1371/journal.pcbi.1002440.g015
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into how specific risk factors affect the probability of CNV

initiation. Younger patients usually lack both drusen [80] and

significant dispersed build up of lipids in BrM. As we discussed

earlier active inflammation reduces RPE-RPE epithelial adhesion.

Alteration of RPE-RPE epithelial adhesion combined with edema

due to active inflammation may also reduce RPE-POS adhesion.

We do not know whether inflammation always impairs RPE-RPE

and RPE-POS adhesion at the same time, or to the same degree.

Since CNV initiation occurs promptly during acute inflammation,

we do not expect acute inflammation to decrease RBaM-BrM

adhesion significantly. Thus, in young patients inflammation both

RPE-RPE epithelial adhesion and RPE-POS adhesion are

impaired, but not RBaM-BrM adhesion. This adhesion impair-

ment corresponds to impairments of RPE-RPE junctional
adhesion and RPE-POS labile adhesion, while RPE-BrM
junctional adhesion is near-normal (Table 6, Early Type 2
CNV sub-class 1 and 2). Simulations of these adhesion scenarios

consistently exhibit Early Type 2 CNV (ET2 CNV), in which

stalk cells initially invade the sub-retinal space without prior

invasion of the sub-RPE space, in agreement with clinically-

observed sub-retinal CNV in these patients.

In our simulations, when RPE-RPE labile adhesion is

severely impaired and all other adhesions are normal (RRl = 1,

RRp = RBl = RBp = ROl = 3) (Table S8, adhesion parameter set ID:

10) CNV always initiates, followed by Early Type 2 CNV (ET2
CNV). When RPE-POS labile adhesion is severely impaired

and all other adhesions are normal (RRl = RRp = RBl = RBp = 3,

ROl = 1) (Table S8, adhesion parameter set ID: 19), the CNV
initiation probability is 50% and initiation always leads to ET2
CNV. When both RPE-RPE junctional adhesion and RPE-

POS labile adhesion are impaired CNV, always initiates and

leads to ET2 CNV (see also Figure 5, for more information on

how sub-retinal CNV depends on adhesion). Our results make

two predictions that can be tested against clinical and experimen-

tal observations: 1) Disruption of RPE-RPE epithelial junctions,

due to inflammation, by itself should lead to sub-retinal CNV in

patients with a relatively intact retina, independent of any defects

in RPE-POS adhesion 2) Disruption of RPE-POS contact, by

itself, should increase the probability of developing sub-retinal

CNV.

Our understanding of CNV dynamics in young patients is

incomplete. Neither sub-retinal CNV to sub-RPE CNV progres-

sion (P23 CNV) nor sub-retinal CNV to sub-RPE CNV

translocation (T21 CNV) has been observed clinically or

histologically (since CNV is not fatal, histological data for young

patients with CNV is rare). We currently do not know whether this

absence of observation is due to major retinal damage due to sub-

retinal CNV, which precludes the later transition (and is not

included in our model), or whether Late Type 1 CNV is simply

overlooked clinically because sub-retinal CNV causes much more

severe vision loss. Our simulations make three predictions relevant

to inflammation-induced CNV in young patients: 1) If RPE-BrM
adhesion junctional is near normal (RBl = 2 or 3, independent

of RBp) any combination of severely impaired RPE-RPE
junctional adhesion (RBl = 1, independent of RBp) and RPE-
POS labile adhesion (ROl = 1) will exhibit Stable Type 2
CNV. 2) When all adhesions are severely impaired

(RRl = RBl = RBp = ROl = 1, RRp = 1 or 2), Sub-retinal CNV to

sub-RPE CNV progression (P23 CNV) will occur. 3) Sub-
retinal CNV to sub-RPE CNV translocation (T21 CNV) is

Figure 16. Dynamics of sub-retinal CNV to sub-RPE CNV progression (P23 CNV Progression). A) Total number of stalk cells vs. time. B)
Total number of stalk cells confined in the sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-
retinal space) vs. time. D) Total number of RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area
between POS cells and BrM vs. time. The different colors represent the results of 10 simulation replicas of the adhesion scenario (RRl = 1, RRp = 1,
RBl = 1, RBp = 1, ROl = 1) (Table S9, adhesion scenario ID: 108). CNV initiates in all replicas and all develop ET2 CNV. A few stalk cells in most replicas
die due to lack of RPE-derived VEGF-A. (B) Stalk cells cross the RPE and invade the sub-RPE space once the number of stalk cells in the sub-
RPE space reaches ,50 cells, which usually occurs during the first month after initiation. Stalk cells gradually invade the sub-RPE space during
one simulated year. (D) Up to 30 RPE cells (30% of the total) die. The number of RPE cell deaths increases with the number of sub-RPE stalk
cells. (E) The contact area between the RPE and BrM decreases as P23 CNV develops. (F) In all replicas the POS contacts BrM persistently and
extensively, as the RPE develops substantial holes (see Figure 17).
doi:10.1371/journal.pcbi.1002440.g016
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unlikely. These predictions mean that once CNV invades the sub-

retinal space, it will not leave this space, so CNV lesions will

expand primarily in the sub-retinal space as long as RBaM-BrM is

not severely impaired.

Chemotoxicity (10% solution of naphthalene force-fed by

gavage for 5 weeks) in a rabbit model [81] causes degradation of

photoreceptors and proliferation of RPE leading to sub-retinal

CNV. In this rabbit model, the RPE cells proliferating phagocy-

Figure 17. Snapshots of a simulation replica exhibiting sub-retinal CNV to sub-RPE CNV progression (P23 CNV). 3D and 2D
visualization of a simulation replica forming P23 CNV in one simulated year (RRl = 1, RRp = 1, RBl = 1, RBp = 1, ROl = 1) (adhesion scenario ID: 108,
simulation ID: 1080). Snapshots of the simulation at months 1 (A), 3 (B), 6 (C) and 12 (D). (A2-D2) Cross-sections of (A1-D1) parallel and adjacent to
BrM, so stalk cells shown in (A2-D2) contact BrM. The black open circles (A1-2) at the top corner and outline back arrows (A1-2) at the location of
the hole in BrM are guides to the eye to align A2 to A1. The alignment is consistent across all panels. (A) Stalk cells (solid black arrow) invade the
sub-retinal space through the hole in BrM (A1-2, black outline arrows) that the tip cell form during the first 24 hours of the simulation and form a
fully developed sub-retinal capillary network by month 1. (A2) Only a few stalk cells, mostly near the hole in BrM, invade the sub-RPE space
during the first month. (B1, C1) The sub-retinal capillary network does not grow significantly. (B2, C2) Additional stalk cells invade the sub-RPE
space. (D) More stalk cells invade the sub-RPE space, disrupting the RPE and causing a micro-tear (D1-2, black arrows). The POS contacts BrM at
the location of the RPE tear. Cell type colors: 1) POS and PIS: light purple, 2) RPE: brown (stalk cells in the sub-retinal space have lighter
shading), 3) Stalk cells: green (3D-visualized stalk cells in the sub-retinal space have lighter shading), 4) Vascular cells (CC): red, 5) BrM: light
blue. Scale bars ,50 mm. We have rendered the boundaries of individual cells in A1-D1 as semi-transparent membranes. POS, PIS and RPE cells are
rendered more transparent to show the underlying structures. See also Video S5.
doi:10.1371/journal.pcbi.1002440.g017

3D Simulations of Choroidal Neovascularization

PLoS Computational Biology | www.ploscompbiol.org 23 May 2012 | Volume 8 | Issue 5 | e1002440



tose damaged photoreceptors during the first three weeks. Sub-

retinal CNV follows about 3 months after the beginning of

treatment. Because RPE cells with normal epithelial adhesion do

not proliferate, we hypothesize that chemotoxicity in this animal

model reduces RPE-RPE epithelial adhesion, allowing RPE cells

to proliferate. Since the photoreceptors are damaged, we infer that

RPE-POS adhesion is severely disrupted. BrM remains intact for

the first 3 weeks of treatment. Initial signs of BrM invasion by RPE

cells and ECs appear about 3 months after the beginning of

treatment. Due to newly synthesized extracellular matrix at the

location of the CNV, the RPE basement membrane and BrM

become irregular after 6 months, with bundles of extracellular

microfilaments connecting RPE basement membrane to BrM.

These modifications of the RPE basement membrane and BrM,

suggest that RBaM-BrM adhesion is initially normal and gradually

decreases to moderately impaired over a period of six months.

These adhesion impairments resemble adhesion impairments in

younger patients with inflammation. For these adhesion scenarios

(Table 6, Early Type 2 CNV sub-class 1 and 2) our simulations

always predict early sub-retinal CNV, in agreement with

experiments.

Iatrogenic CNV. Iatrogenic sub-retinal CNV may develop

after laser photocoagulation treatment of diabetic macular edema,

central serous retinopathy, proliferative diabetic retinopathy,

choroidal vascular and neoplastic lesions, vascular occlusive

disease and degenerative retinal-pigment-epithelium disorders

(reviewed in [82]). Some believed that the primary mechanism

for such iatrogenic induction of sub-retinal CNV to be the creation

of breaks in Bruch’s membrane, with inflammatory cells,

angiogenic factors and choroidal ischemia contributing to the

development of CNV in some cases [82]. However, we believe

that RPE phototoxicity due to excess (focal) laser exposure is more

likely primary cause. Phototoxicity stresses RPE cells which can

decrease RPE-RPE epithelial adhesion and RPE-POS adhesion

and also promote excess expression of VEGF-A by RPE cells. This

condition of pathologies is similar to those caused by inflamma-

tion, so we would expect these classes of iatrogenic CNV to

resemble inflammation-induced CNV, as is indeed observed.

CNV due to sub-retinal injections in animal

models. Subretinal injections in most animal models (Table 1)

lead to sub-retinal CNV adjacent to the site of injection within

weeks, but not to sub-RPE CNV [83–85]. CNV initiation

probability depends on the type and amount of material injected

(Matrigel, polystyrene beads suspended in liquid, vitreous humor,

…) (see [46], for a detailed review). Secondary sub-RPE CNV may

follow sub-retinal CNV in some animal models, e.g., in a rabbit

model [86], a sub-retinal injection of a cocktail containing

endotoxins and growth-factors, incorporated in heparin-sepharose

leads rapidly to primary sub-retinal CNV and secondary sub-RPE

CNV forms farther from site of injection between 2 weeks and 8

months later [86]. The mechanisms leading to this secondary sub-

RPE CNV are not well understood. Ni et al. [86] believed that the

major factors were changes in RPE cell function due to diffusion of

soluble mediators originating from the area of primary CNV, e.g.

from atrophied primary RPE cells or newly-formed activated

secondary RPE cells or changes in function of endothelial cells,

Figure 18. Dynamics of stable Type 3 CNV (S33 CNV). A) Total number of stalk cells vs. time. B) Total number of stalk cells confined in the
sub-RPE space vs. time. C) Total number of stalk cells in contact with the POS (stalk cells in the sub-retinal space) vs. time. D) Total number of
RPE cells vs. time. E) Total contact area between RPE cells and BrM vs. time. F) Total contact area between POS cells and BrM vs. time. The
different colors represent the results of 10 simulation replicas of the adhesion scenario (RRl = 1, RRp = 1, RBl = 2, RBp = 2, ROl = 3) (Table S10, adhesion
scenario ID: 53). (A, B, C) CNV initiates in all replicas and all replicas develop ET3 CNV. During the first month after initiation, stalk cells gradually
invade both the sub-RPE space and the sub-retinal space, with more invading the sub-RPE space. Between months 1 and 2 about 30% of the
sub-RPE stalk cells transmigrate into the sub-retinal space. After month 3, the number of sub-RPE stalk cells increases slowly, while the
number of sub-retinal stalk cells remains constant. (E) During the first month of the simulation, the contact area between the RPE and BrM
rapidly decreases as stalk cells invade the sub-RPE space. Between months 1 and 2, the contact area between the RPE and BrM rapidly increases
as sub-RPE stalk cells transmigrate into the sub-retinal space. The contact area between the RPE and BrM slowly decreases after month 3
throughout the simulated year. (D) A few RPE cells die in most replicas. (F) In a few replicas the POS persistently contacts BrM, as the RPE
develops small holes.
doi:10.1371/journal.pcbi.1002440.g018
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photoreceptors and Müller cells in regions peripheral to the

primary CNV, e.g., increased expression of FGF-1, FGF-2, TGF-

alpha and VEGF.

Subretinal injections can cause acute physical retinal detach-

ment, instantaneously destroying RPE-POS contact at the site of

injection. However, RPE active pumping and passive flow

gradually remove the excess sub-retinal fluid, allowing the retina

to reattach within a few days. Sub-retinal injection also almost

always induces significant inflammation, which gradually reduces

RPE-RPE epithelial adhesion over a period lasting a few days to a

Figure 19. Snapshots of a simulation replica exhibiting stable Type 3 CNV (S33 CNV). 3D and 2D visualization of a simulation replica
developing S33 CNV in one simulated year (RRl = 1, RRp = 1, RBl = 2, RBp = 2, ROl = 3) (adhesion scenario ID: 53, simulation ID: 917). Snapshots of the
simulation at months 1 (A), 2 (B), 6 (C) and 12 (D). (A2-D2) Cross-sections of (A1-D1). All cross-section planes in (A1-D1) panels defined by the two
thick black lines in A1. (A) Stalk cells invade the sub-RPE space through a hole in BrM (A1-2, black outline arrows) that the tip cell form during the
first 24 hours of the simulation. These stalk cells then form a fully developed sub-RPE capillary network. (A2) Only a few stalk cells (black arrow,
A1-2) reach the sub-retinal space during the first month. (B1, C1) The sub-retinal and sub-RPE capillary networks do not grow significantly. (C2)
A capillary (black arrows), enveloped by a bilayer of RPE cells, connects the sub-retinal space to the CC via the hole in BrM (D) Stalk cells disrupt
the RPE, forming small holes in the RPE (D2, black arrow). The stalk cells at the location of the hole in the RPE (D2, black arrow) contact both the
POSs and BrM. The black outline arrow shows sub-retinal stalk cells. Cell type colors: 1) POS and PIS: light purple, 2) RPE: brown, 3) Stalk
cells: green, 4) Vascular cells (CC): red, 5) BrM: light blue. Scale bar ,50 mm. We have rendered the boundaries of individual cells in A1-D1 as semi-
transparent membranes. POS, PIS and RPE cells are rendered more transparent to show the underlying structures. See also Video S6.
doi:10.1371/journal.pcbi.1002440.g019
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few weeks. Such condition of transient detachment and followed

by long-lasting inflammation induces RPE migration [83] and

proliferation [86] (RPE activation). Because RPE cells neither

proliferate nor migrate when they are in epithelium and RPE-RPE

epithelial adhesion remain normal, the combination of RPE

migration and proliferation suggest that RPE-RPE epithelial

adhesion may decrease significantly over a period of a few days to

a few weeks. Inflammation can also cause the death of

photoreceptors [81], suggesting prolonged disruption of RPE-

POS contact. Sub-retinal injections can also directly cause focal

rupture in all layers of BrM, suggesting that RBaM-BrM adhesion

is initially (near) normal at least far from the location of the

rupture.

Based on these experimental observations, sub-retinal injections

appear mainly to impair RPE-RPE and RPE-POS adhesion

comparable to the adhesion scenarios prone to Early Type 2

Table 8. Geometrical and transport parameters.

Geometrical Parameters

Name Description Values

LOS POS layer thickness ,30 mm (compare to [97])

LIS PIS layer thickness ,24 mm (compare to [97])

LOLM Location of OLM measured from RPE side of BrM ,67 mm (compare to [97])

LBrM BrM thickness 6 mm (compare to [24])

LRPE RPE thickness 12 mm (compare to [24])

Oxygen Transport Parameters

Name Description Values

Dox Diffusion coefficient of oxygen in retinal tissue 2.061025 cm2 s21 [98]

QOPIS Light-adapted (dark-adapted) Oxygen consumption per 100 g of PIS tissue 13 (26) ml O2 min21 [47,48,99]

POCC
N

Oxygen partial pressure in choriocapillaries under normoxia 80 mmHg [48,99]

POCC
H

Oxygen partial pressure in choriocapillaries under systemic hypoxia 60 mmHg (extrapolated from rat [100])

POOLM Oxygen partial pressure at OLM under normoxia and hypoxia 18 mmHg [47]

PORPE
N

Average oxygen partial pressure in the RPE under normoxia 65 mmHg during light-adaptation, 61 mmHg during dark-adaptation
(see Oxygen Transport Parameters in Text S3)

PORPE
H

Average oxygen partial pressure in the RPE under systemic hypoxia 49 mmHg during light-adaptation, 45 mmHg during dark-adaptation
(see Oxygen Transport Parameters in Text S3)

SCN
ox

Oxygen flux from 100 g of choriocapillaris tissue to the
retina under normoxic condition

3.42 (CC3D) or 102 ml O2 (100 g tissue min)21 during dark-adaptation
2.67 (CC3D) or 80 ml O2 (100 g tissue min)21 during light-adaptation

SCH
ox

Oxygen flux from 100 g of choriocapillaris tissue to
the retina under systemic hypoxia

2.81 (CC3D) or 84 ml O2 (100 g tissue min)21 during dark-adaptation
2.05 (CC3D) or 61 ml O2 (100 g tissue min)21 during light-adaptation

VEGF Transport Parameters

Name Description Values

cVEGF Decay rate of RPE-derived VEGF-A and short-diffusing VEGF-A 1 h21 [101,102]

LRPE
VEGF

Diffusion length of RPE-derived VEGF-A secreted by RPE cells
13.4 mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRPE

VEGF

cVEGF

s !

DEC
VEGF

Diffusion coefficient of short- diffusing VEGF-A secreted by ECs 0.25610210 cm2 s21

LEC
VEGF

Diffusion length of short-diffusing VEGF-A secreted by ECs
3 mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEC

VEGF

cVEGF

s !

SVRPE
max

Secretion rate of VEGF by HRPE cells ,50 pg (cell h)21 (compare to [103]) (0.1 molecules (voxel MCS)21)

SVRPE
basal

Basal secretion rate of VEGF by RPE cells ,25 pg (cell h)21 (compare to [103]) (0.05 molecules (voxel MCS)21)

SVEC Basal secretion rate of short-diffusing VEGF by ECs ,25 pg (cell h)21 (0.2 (voxel MCS)21)

QVEC Basal uptake rate of RPE-derived VEGF-A by vascular cells ,300 ligated molecules per EC62.861024 (internalization rate) [104]
,0.084 molecule (cell sec)21 = 0.28 molecule (voxel MCS)21

MMP Transport and BrM Degradation Parameters

Name Description Values

SM tip Secretion rate of MMP by the tip cell 0.148 molecule (cell sec)21 (1 molecule (voxel MCS)21)

LMMP Diffusion length of MMP secreted by the tip cell
0.2 mm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DMMP

cMMP

r� �

GB BrM degradation rate 0.0094 mm3 (sec molecule)21 (0.075 voxel (MCS molecule)21)

doi:10.1371/journal.pcbi.1002440.t008
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CNV (Table 6, Early Type 2 CNV sub-class 1 and 2) and in

inflammation-induced CNV in younger patients. Thus our

simulations both agree with the cause, initiation and progression

of sub-retinal CNV in these animal models.

Our simulations predict that for secondary sub-RPE CNV to

develop near a pre-existing sub-retinal CNV RPE-BrM (RBaM-

BrM) adhesion must be severely impaired, to develop, indepen-

dent of the degree of impairment of other types of adhesion in the

BrM-RPE-POS complex. To validate our prediction, experiments

would need to examine in detail the interface between BrM and

the RPE basement membrane in retinal regions far from site of

injection and before any initiation of sub-RPE CNV.

In these animal models, sub-retinal injection often causes rapid

(less than a month) CNV initiation. We can infer that injection

impairs RPE-RPE adhesion because of observed inflammation

and RPE proliferation and RPE-POS adhesion because of

photoreceptor degradation [81,83,86]. In agreement with these

experiments, our simulations show that severe impairment of

RPE-RPE labile adhesion, when all other adhesions are

normal (RRl = 1, RRp = RBl = RBp = ROl = 3) (Table S8, adhesion

parameter set ID: 10), increases the probability of CNV initiation

within a month to 100%. In our simulations prolonged

impairment of RPE-POS labile adhesion when all other

adhesions are normal (RRl = RRp = RBl = RBp = 3, ROl = 1) (Table

S8, adhesion parameter set ID: 19) increases initiation probability

to 50%, higher than observed for experimental RPE-POS

detachment. This discrepancy may result from the long (up to

six month) onset time for CNV in this adhesion scenario. Six

months is much longer than the CNV initiation time due RPE-

RPE adhesion impairment and the typical time for retinal

reattachment and is too long to see in most experiments.

Experiments exploring the effects of RPE-POS adhesion impair-

ment on CNV would need to disrupt RPE-POS adhesion for

several months without inducing severe inflammation, e.g. by sub-

retinal injection of neutral polystyrene microbeads (coated with

anti-inflammation compounds).

The role of overexpression of VEGF. We now consider

how local cytokines and growth factors that can increase the

chemotactic activity of endothelial cells could affect CNV

initiation and progression. Our simulations did not explore the

role of these factors on the chemotactic activity of ECs directly.

However, our simulations using different VEGF-A levels suggest

that increased chemotactic activity of stalk cells should increase

the CNV initiation probability, as in our simulations in which

RPE expresses RPE-derived VEGF-A at twice the normal level.

We would also expect that if these factors were short-diffusing and

thus formed local gradients, they should promote sub-RPE CNV if

their source were localized in the sub-RPE space, or promote sub-

retinal CNV if their source were localized in the sub-retinal space.

If these factors were long-diffusing, we would expect that the

resulting global increase in chemotactic activity of stalk cells
would not affect either early or late CNV loci, only the probability

of initiation and the rate of progression.

In transgenic mice with inducible expression of VEGF in their

RPE cells, induction of excess VEGF only induces CNV if

combined with sub-retinal injections which disrupt the RPE [13].

In our simulations, when RPE overexpresses RPE-derived
VEGF-A at twice the normal level, the probability of CNV

initiation increases (data not shown), but the Early CNV types

and CNV dynamics do not change. Thus, our simulations show

that VEGF overexpression can increase the CNV initiation

probability, but does not determine either the early or late CNV

loci.

In experiments, ocular hypoxia caused by systemic hypoxia

usually promotes retinal angiogenesis, but has no observed effect

on the RPE and does not induce choroidal angiogenesis (reviewed

in [40]). We do not know what levels of PO2 can trigger hypoxic

signaling by RPE cells. Based on experimentally-measured

parameters, our simulations show that the PO2 at the RPE

decrease from ,65 mmHg to ,49 mmHg when the PO2 at the

CC decreases from 80 mmHg to 60 mmHg during systemic

hypoxia in the anatomically normal retina (under light-adapted

condition). If we assume that biological RPE cells are hypoxic

during systemic hypoxia, then the PO2 below which RPE cells

become hypoxic is 49 mmHg. However, PO2,50 mmHg is

significantly higher than both PO2,20 mmHg, the typical PO2

in the inner retina and PO2,1 mmHg, the PO2 at which

mitochondria work at their maximum metabolic rate. In our

simulations, RPE cells become hypoxic (PO2,49 mmHg) only

after RPE detachment, a CNV-associated complication which we

will discuss in a future paper. Thus, neither the threshold for RPE

hypoxia nor RPE hypoxic signaling affects the results we present in

this paper.

The nature of the BrM-RPE-POS complex barrier to CNV

(activated ECs). As we discussed in the Angiogenic and Antiangio-

genic factors section in supplementary Text S1, activated endothelial

cells are present in the normal choriocapillaris, so the frequency of

ECs crossing BrM is significant even in the normal eye. Clinically,

the probability of CNV initiation before age 50 in a normal retina

is negligible. Our adhesion-based hypotheses for CNV initiation

and progression may resolve this discrepancy. In simulations when

all adhesions are normal (referenced to a normal human eyes aged

less than 50 years old) activated ECs and small holes in BrM
never initiate CNV, suggesting that strong adhesion among BrM-

RPE-POS components is the crucial mechanism preventing

activated ECs from invading the sub-RPE and sub-retinal
space once they have crossed BrM.

Future Directions and Suggestions
Our current model does not include several mechanisms which

may also be important to CNV. In future refinements, we will

include multiple types of basal deposits and fibrosis (synthesis of

new ECM) explicitly to clarify their role in the initiation and

progression of CNV. We particularly are interested in how

differences in the size and structure of soft and hard drusen affect

the initiation and progression of CNV and the frequency of

occurrence of RPE detachment and RPE tear formation after

therapeutic intervention to treat CNV.

Many hypothesized mechanisms for CNV initiation and

progression involve irregularities in transport. We plan more

realistic models including capillary maturation, blood flow and

Table 9. Field object names.

Fields

Name Description Units

PO x!
� �

Oxygen partial pressure at x! mmHg

VL x!
� �

RPE-derived VEGF-A at x! molecule/voxel

VS x!
� �

Short-diffusing VEGF-A

secreted by ECs at x!
molecule/voxel

M x!
� �

MMP secreted by tip cells at x! molecule/voxel

doi:10.1371/journal.pcbi.1002440.t009

3D Simulations of Choroidal Neovascularization

PLoS Computational Biology | www.ploscompbiol.org 27 May 2012 | Volume 8 | Issue 5 | e1002440



retinal-CC fluid flow to study how oxygen, nutrient and waste

transport promote or inhibit CNV.

Since cell adhesion is essential to multicellularity and is

important in embryonic development, homeostatic maintenance

of adult tissues and diseases like cancer, its importance in CNV is,

perhaps, not surprising, given CNV’s many parallels with tumor-

induced angiogenesis. However, the role of adhesion in CNV has not

been widely appreciated, so neither the relationship between known

CNV risk factors and specific adhesion failures, nor the actual

adhesivities in the retina and RPE have been quantified

experimentally. Quantitative measurements of these adhesion

properties and their regulation in the normal and pathological

retina would allow more clinically relevant models. Such

experiments would greatly reduce uncertainty in our model

definition, improve our understanding of CNV initiation and

progression. Since measuring adhesivities directly may be difficult,

especially in humans, our model also allows us to quantify

adhesion failures by looking at how they affect CNV initiation and

progression and matching those computational outcomes with

experimental observations, then correlating the simulated adhe-

sion changes with experimental risk factors.

Beyond retinal CNV, our results on CNV initiation and

epithelial breakdown apply to any tissue in which a basement

membrane separates a capillary network from a nearby epitheli-

um, e.g. lung and gut. We expect that the relationships between

specific classes of adhesion failures and the loci and dynamics of

CNV which we observe in our simulations should carry over to the

neovascularization-dependent pathologies of those tissues.

Ultimately, a database of verified simulations for different

adhesion scenarios might allow systematic CNV prediction based

on clinically-measurable properties of the eye, especially if the

adhesion properties can be inferred noninvasively, e.g. by

measuring optically, changes in CC or RPE morphology or

autofluorescence due to lipid accumulation. In the absence of

direct measurements of adhesivity, our simulations allow us to

infer adhesion defects from pathologies. For example, if a patient

with a functional retina exhibits micro-detachments of the RPE

(due to lipid accumulation or small soft drusen), the relationship

between the number and degree of detachments and the

underlying classes of adhesion failures predicts the probability of

CNV initiation and the distribution of CNV onset times, making

clinically-useful suggestions for frequency of follow-up examina-

tions and possible prophylactic interventions. To aid diagnosis and

treatment we can also develop statistical analyses of the most

significant scenarios capable of producing the observed pattern of

disruption in each patient (including the probability of initiation,

the time of onset of progression and progression speed,…). Follow-

up observations could then narrow the range of admitted

hypothetical scenarios to improve the accuracy of the prognosis.

More accurate diagnoses may improve both administration of

drugs and disease management.

One crucial aspect of a model-based approach to CNV

diagnosis, prognosis and treatment is that both the simulation

database and the statistical predictors could be continuously

refined using feedback from both clinical and histopathological

sources, so they would improve with use, providing a platform to

integrate clinical and histopathological data for even more

accurate diagnosis and prognosis.

Methods

Our simulations use the Glazier-Graner-Hogeweg model (GGH,

also known as the Cellular Potts Model, CPM), a multi-cell, lattice-

based, stochastic methodology which describes biological cells and

their interactions in terms of Effective Energies and constraints [87].

GGH applications include models of vascular tumors [65],

avascular tumor growth [88], biofilms [89], chick limb growth

[90], somitogenesis [91], blood flow and thrombus development

[92] and angiogenesis [66,71,93,94]. See supplementary Text S3

for details of implementation of objects and processes listed in

Table 2. Tables 8–12 summarize the key variables and parameters

in our simulations (see also Text S6 for simulation files used to run

replicas of adhesion scenario ID: 38).

Implementation
All our simulations use the open-source CompuCell3D simu-

lation environment (http://www.compucell3d.org/) [95]. We ran

our simulations on a computer cluster (Quarry, Indiana Univer-

sity) using CompuCell3D v3.4.2. A typical simulation replica takes

about 30 hours on a single core of a 2.0 GHz quad-core Intel

Table 11. Labile adhesion strengths (contact energies).

Labile Adhesion Strength

Cell-Type Pairs Name Normal: 3 Moderately Impaired: 2 Severely Impaired: 1

RPE-RPE RRl 240 - 218

RPE-BrM RBl 238 228 218

RPE-POS ROl 216 - 21

POS-POS - 216 - -

PIS-PIS - 216 - -

More negative contact energies indicate stronger adhesive interactions. (-) denotes labile adhesion strengths not used in our simulations.
doi:10.1371/journal.pcbi.1002440.t011

Table 10. Labile adhesion parameters (contact energies).

Cell Types Stalk BrM RPE POS PIS Medium

Stalk 220 210 210 210 210 3

BrM 212 238/228/218 0 0 21

RPE 240/218 216/21 216/21 3

POS 216 216 3

PIS 216 3

Medium 0

Negative contact energies represent adhesive interactions; positive contact
energies represent repulsive interactions. More negative contact energies
indicate stronger adhesive interactions. (/) separates the reference, moderately
impaired and severely impaired levels of labile adhesion.
doi:10.1371/journal.pcbi.1002440.t010
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Xeon 5335 processor. We stored the cell and field-lattice

configurations every 6 simulated hours and rendered each

snapshot using the integrated post-processing rendering provided

by CompuCell3D.
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Table S1 Adhesion Scenarios with Infrequent or No
CNV Initiation.
(PDF)

Table S2 Adhesion Scenarios Prone to Early Type 1
CNV (MW.0.9) if CNV Initiates.
(PDF)

Table S3 Adhesion Scenarios Prone to Early Type 2
CNV (MW,0.05) if CNV Initiates.
(PDF)

Table S4 Adhesion Scenarios Prone to Early Type 3
CNV (0.35,MW,0.65) if CNV initiates.
(PDF)

Table S5 Adhesion Scenarios Prone to Stable Type 1
CNV (S11 CNV Probability.0.9).
(PDF)

Table S6 Adhesion Scenarios Prone to Sub-RPE to Sub-
Retinal Translocation (T12 Translocation).
(PDF)

Table S7 Selected Adhesion Scenarios Prone to Sub-
RPE to Sub-Retinal Progression (P13 Progression) (P13
Probability.0.7).
(PDF)

Table S8 Adhesion Scenarios Prone to Stable Type 2
CNV (S22) (S22 Probability.0.9).
(PDF)

Table S9 Adhesion Scenarios Prone to Sub-Retinal CNV
to Sub-RPE CNV Progression (P23 CNV) (P23 Probabil-
ity.0.6).
(PDF)

Table S10 Adhesion Scenarios Prone to Stable Type 3
CNV (S33 CNV) (S33 Probability.0.9).

(PDF)

Text S1 Biological Components and Processes in CNV.

(PDF)

Text S2 Simplifying Assumptions of Our Model.

(PDF)

Text S3 GGH Implementation of the Multi-cell Model.

(PDF)

Text S4 Modeling Terminology.

(PDF)

Text S5 CNV Progression Dynamics.

(PDF)

Text S6 CompuCell3D Code to Simulate Adhesion
Scenario ID: 38.

(ZIP)

Video S1 Time-Series of a Simulation Replica with
Stable Type 1 CNV. 3D visualization of a simulation replica

exhibiting Stable Type 1 CNV over one simulated year
(adhesion scenario ID: 38, simulation ID: 902) (RRl = 3, RRp = 3,

RBl = 2, RBp = 2, ROl = 3). Stalk cells invade the sub-RPE
space through a hole in BrM that the tip cell opens during the

first 24 hours. Stalk cells proliferate until they fill the sub-RPE
space in month 9, after which proliferation slows down. The 45

stalk cells form a connected capillary network in the sub-RPE
space. Cell type colors: 1) POS and PIS: light purple, 2) RPE:

brown, 3) Stalk cells: green, 4) Vascular cells (CC): red, 5)

BrM: light blue. We have rendered the boundaries of individual

cells as semi-transparent membranes. POS, PIS and RPE cells

are more transparent to show the underlying structures.

(AVI)

Video S2 Time-Series of a Simulation Replica Showing
Sub-RPE to Sub-Retinal Translocation (T12 Transloca-
tion). 3D visualization of a simulation replica exhibiting T12
CNV translocation during one simulated year (RRl = 3, RRp = 3,

Table 12. Plastic coupling strengths (lplastic t sð Þ,t rð Þð Þ) links between cell-type pairs.

Plastic Coupling Strength

Cell-Type Pairs Name Normal: 3 Impaired: 2 Severely Impaired: 1

RPE-RPE RRp 300 60 30

RPE-BrM RBp 300 60 30

POS-POS - 30 - -

PIS-PIS - 30 - -

PIS-POS - 30 - -

Vascular-Vascular - 200 - -

Stalk-Vascular - 150 - -

Tip-Vascular - 50 - -

Stalk-Stalk - 50 - -

Stalk-Tip - 50 - -

Vascular-BrM - 200 - -

Stalk-BrM - 25 - -

Tip-BrM - 25 - -

Larger plastic coupling strengths represent stiffer linear springs. (-) denotes values of lplastic t sð Þ,t rð Þð Þ not used in our simulations.
doi:10.1371/journal.pcbi.1002440.t012
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RBl = 1, RBp = 1, ROl = 1) (adhesion scenario ID: 93, simulation

ID: 849). Stalk cells invade the sub-RPE space through a hole

in BrM and form a capillary network. All stalk cells remain in

the sub-RPE space during the first 3 months. A few vascular
cells fill the hole in BrM to connect CNV capillaries to the CC.

Half of the stalk cells have crossed the RPE and transmigrated

into the sub-retinal space by month 5, forming a new capillary

network in the sub-retinal space. Most stalk cells have

transmigrated into the sub-retinal space and the RPE has

completely reattached to BrM by month 9. A few vascular
cells of the CC have transmigrated into the sub-retinal space.

The sub-retinal capillary network has fewer stalk cells than

the capillary in month 9 since stalk cells that migrate into the

retina far from the RPE die. Cell type colors: 1) POS and PIS:

light purple, 2) RPE: brown, 3) Stalk cells: green (stalk cells in

the sub-retinal space have lighter shading), 4) Vascular cells
(CC): red, 5) BrM: light blue. We have rendered the boundaries of

individual cells as semi-transparent membranes. POS, PIS and

RPE cells are more transparent to show the underlying structures.

(AVI)

Video S3 Time-Series of a Simulation Replica Showing
Sub-RPE CNV to Sub-Retinal CNV Progression (P13
Progression). 3D visualizations of a simulation replica exhibit-

ing P13 CNV progression during one simulated year (RRl = 1,

RRp = 3, RBl = 1, RBp = 2, ROl = 3) (adhesion scenario ID: 83,

simulation ID: 515). Stalk cells invade the sub-RPE space

through a hole in BrM and form a capillary network. The

vascular cells of the CC occupy the hole that the tip cell forms

during the first 24 hours of the simulation, connecting the CNV
capillaries to the CC. All stalk cells remain in the sub-RPE
space during the first month of the simulation. Month 2: A few

stalk cells cross the RPE into the sub-retinal space. Month 6:

Additional stalk cells migrate into the sub-retinal space and

form vascular cords. The stalk cells form a sub-RPE capillary

network connected to a sub-retinal capillary network. Cell type
colors: 1) POS and PIS: light purple, 2) RPE: brown, 3) Stalk
cells: green (stalk cells in the sub-retinal space have lighter

shading), 4) Vascular cells (CC): red, 5) BrM: light blue. We

have rendered the boundaries of individual cells as semi-

transparent membranes. POS, PIS and RPE cells are more

transparent to show the underlying structures.

(AVI)

Video S4 Time-Series of a Simulation Replica Showing
Stable Type CNV (S22 CNV). 3D visualization of a simulation

replica showing S22 CNV in one simulated year (RRl = 1,

RRp = 1, RBl = 3, RBp = 3, ROl = 3) (adhesion scenario ID: 16,

simulation ID: 556). Stalk cells invade the sub-retinal space

through a hole in BrM and form a partially developed capillary

network by month 2. CNV finishes sub-retinal invasion around

month 5 and remains in the sub-retinal space throughout LT2
CNV. Cell type colors: 1) POS and PIS: light purple, 2) RPE:

brown (stalk cells in the sub-retinal space have lighter

shading), 3) Stalk cells: green, 4) Vascular cells (CC): red, 5)

BrM: light blue. We have rendered the boundaries of individual

cells as semi-transparent membranes. POS, PIS and RPE cells

are more transparent to show the underlying structures.

(AVI)

Video S5 Time-Series of a Simulation Replica Exhibit-
ing Sub-Retinal CNV to Sub-RPE CNV Progression (P23
CNV). 3D visualization of a simulation replica forming P23 CNV
in one simulated year (RRl = 1, RRp = 1, RBl = 1, RBp = 1,

ROl = 1) (adhesion scenario ID: 108, simulation ID: 1080). Stalk
cells invade the sub-retinal space through the hole in BrM that

the tip cell form during the first 24 hours of the simulation and

form a fully developed sub-retinal capillary network by month
1. Only a few stalk cells, mostly near the hole in BrM, invade

the sub-RPE space during the first month. Additional stalk
cells invade the sub-RPE space by month 6, disrupting the

RPE and causing a micro-tear. The POS contacts BrM at the

location of the RPE tear. Cell type colors: 1) POS and PIS: light

purple, 2) RPE: brown, 3) Stalk cells: green (stalk cells in the

sub-retinal space have lighter shading), 4) Vascular cells (CC):

red, 5) BrM: light blue. We have rendered the boundaries of

individual cells as semi-transparent membranes. POS, PIS and

RPE cells are more transparent to show the underlying structures.

(AVI)

Video S6 Time-Series of a Simulation Replica Exhibit-
ing Stable Type 3 CNV (S33 CNV). 3D visualization of a

simulation replica developing S33 CNV in one simulated year
(RRl = 1, RRp = 1, RBl = 2, RBp = 2, ROl = 3) (adhesion scenario

ID: 53, simulation ID: 917). Stalk cells invade the sub-RPE
space through a hole in BrM that the tip cell form during the

first 24 hours of the simulation. These stalk cells then form a

fully developed sub-RPE capillary network by month 1. Only a

few stalk cells reach the sub-retinal space during the first

month. The sub-retinal and sub-RPE capillary networks do

not grow significantly between month 1 and 2. RPE cells
envelop stalk cells. Stalk cells disrupt the RPE, forming small

holes in the RPE. Cell type colors: 1) POS and PIS: light purple,

2) RPE: brown, 3) Stalk cells: green, 4) Vascular cells (CC):

red, 5) BrM: light blue. We have rendered the boundaries of

individual cells as semi-transparent membranes. POS, PIS and

RPE cells are more transparent to show the underlying structures.

(AVI)
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