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Finding a multidimensional potential landscape is the key for addressing important global issues, such as the
robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene
regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the
gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small
number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis
rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch
is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of
proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for
a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier
between the two basins determines the time scale of conversion from one to the other. We found as the protein
synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the
potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the
protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is
general and can be applied to explore the potential energy landscape of the gene networks.
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Introduction

In the post-genome era, with a wealth of data on genomic
sequences, the crucial question becomes how to understand
the organization of these sequences in nature and how genes
function [1–4]. This is a challenging task. According to the
central dogma, turning gene switches on and off controls
certain types of protein synthesis and production. Further-
more, the on and off of gene switches determines the
developmental plans of the cell. On the other hand, the
protein products generated by the gene switches act back on
the genes to control their expression patterns. The gene
regulations thereby form a network with inherent many-body
interactions and feedback loops. That is why the system often
becomes quite complicated and hard to study.

The underlying nature of cellular networks has been
explored by many experimental techniques [4]. It has often
been found that cellular networks are in general quite robust
and perform their biological functions in the midst of
environmental perturbations. There have recently been an
increasing number of studies on the global topological
structures of cellular networks [5–8]. However, so far there
are very few studies from the physical point of view of why the
networks are so robust and why they perform their biological
functions [9–20].

Theoretical models of cellular networks have often been
formulated with a set of chemical reaction equations in bulk.
These averaged dynamical descriptions are inherently local.
To probe the global properties, one often has to explore
different parameters. Since the parameter space is huge, the
issue of global robustness is hard to address directly from
these approaches.

Here we will explore the nature of the network from
another angle: we formulate the problem in terms of the
potential energy function or potential energy landscape. If
the potential landscape of the cellular network is known, the
global properties can be explored [21,22]. This is analogous to
the fact that the global thermodynamic properties can be
explored when knowing the inherent interaction potentials
in a system.
There is another intriguing factor controlling the gene

expression patterns. In the cell, there are a finite number of
molecules (typically on the order of several hundreds or
thousands). The intrinsic statistical fluctuations, usually not
encountered in bulk due to the large-number averaging, can
be significant and play an important role in the dynamics of
gene expression. This gives the source of intrinsic statistical
fluctuations or noise. On the other hand, the fluctuations
from highly dynamical and nonhomogeneous environments
of the interior of the cell give the source of the external noise
for the networks [23–30]. It is important to investigate the
roles of the statistical fluctuations or noises on the robustness
and stability of the network.
In general, instead of studying the averaged chemical
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reaction network equations in bulk, we should use statistical
descriptions to model the cellular process. This can be
realized by constructing a master equation for the evolution
of probability instead of average concentration for the
corresponding chemical reaction network equations [26,31–
35]. One can also study the steady state properties of these
probabilistic chemical reaction network equations. The
generalized potential energy for the steady state of the
network can be shown to be closely associated with the steady
state probability of the network in general [10–12,15–
20,31,32]. Once the network problem has been formulated
in terms of the generalized potential function or potential
landscape, the issue of the global stability or robustness is
much easier to address. In fact, some explicit illustrations of
the potential energy landscape and robustness for the MAP
Kinase signal transduction network and cell cycle have been
given recently [19,20]. It is the purpose of this paper to study
the global robustness problem directly from the properties of
the potential landscape for a simple yet important gene
regulatory network: a toggle switch. Figure 1 shows a toggle
switch. Gene networks often involve many degrees of
freedom. To resolve the issue of multidimensionality, instead
of using the direct Monte Carlo simulation [33] for solving the
master equations, a Hartree mean field approximation can be
applied to reduce the dimensionality and address the global
issues [11,12,36–38].

There are three aims of this paper. Our first aim is to
develop a time-dependent Hartree approximation scheme
[36] to solve the associated master equations to follow the
evolution of multidimensional probability of the network.
Our second aim is to construct the underlying potential
energy landscape for a toggle switch [39] and explore both the
steady state and time evolution of the landscape. Our third
aim is to study the phase diagram of the system and the
kinetic time scale from one stable basin of attraction to
another in different conditions. We will address the global
robustness condition for a toggle switch.

Methods and Materials

As our goal is to uncover the potential energy landscape,
we first studied the chemical reaction network involved in
gene regulations. In particular we need to take into account
the intrinsic statistical fluctuations due to the finite number
of molecules in the cells. The statistical nature of the chemical
reactions can be captured by the corresponding master
equations. We established master equations for the gene
regulations that describe the evolution of the networks
probabilistically. The master equation is almost impossible
to solve due to its inherent huge dimensions. We therefore
used the Hartree approximation to reduce the dimensionality
[11,12,36]. In this way, we could follow the time evolution and
steady state probability of the protein concentrations. The
steady state probability is closely associated with the under-
lying potential energy landscape, which is our ultimate target.

Assumptions
Gene expression is regulated in various and complex ways,

and can be represented by many coupled biochemical
reactions. In this report, our goal was not just to explain
some specific gene network system as accurately as possible,
but to illustrate mathematical tools for exploring the general
mechanisms of transcriptional regulatory gene networks. We
therefore took abstractions of some essential biochemical
reactions from complicated reactions of diverse systems.
Let us start with the explanation of some terminologies

used in this manuscript: ‘‘activator’’ is a regulatory protein
that increases the level of transcription, ‘‘repressor’’ is a
regulatory protein that decreases the level of transcription.
By ‘‘operator’’ we mean the DNA site or the gene where
regulatory proteins (either an activator or a repressor) bind.
First we are interested in the effect of ‘‘operator fluctuation’’
by which we mean the biochemical reactions that change the
state of the operator. The operator is said to be in an
occupied state if a regulatory protein is bound to it, and in an
unoccupied state if the protein is not bound to it. For the
repressor we include the following reaction.

O1
a þ qabMb�!

hRab
O0

a ð1Þ

O0
a�!

f Rab
O1

a þ qabMb ð2Þ

where O1ð0Þ
a stands for the active (inactive) operator state of

gene a, Mb represents the regulatory protein synthesized or
produced by gene b, and qab is for the multimer-type of
proteins. For example, if qAB¼ 2(3), dimer (tetramer) proteins
produced from gene B repress the expression of gene A, hRa;b

Figure 1. Toggle Switch: Protein A Represses Gene B (Dotted Line), and

Protein B Represses Gene A (Solid Line)

doi:10.1371/journal.pcbi.0030060.g001
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Author Summary

Cellular networks are at the heart of systems biology at present. To
understand how cellular networks function in these highly fluctuat-
ing environments, a global approach is needed. Here we provide a
global framework, in terms of potential landscapes, for studying the
gene regulatory networks in the presence of the intrinsic statistical
fluctuations. We uncovered the underlying landscape for the
network. We identified the basins of attraction of the landscape as
the biological functional states. The potential barrier between the
two basins determines the time scale of conversion from one to the
other. The robustness of the biological functional states of the
network, the gene switches in this case, can be guaranteed if the
conversions among the basins of attraction are not frequent, or, in
other words, the barriers among the basins are relatively large. More
detailed features of the network, such as the key genes or regulating
links relevant to diseases (i.e., cancers), can be uncovered from the
underlying landscape. Our technique is general and can be applied
to explore the potential landscape of more realistic gene networks.
Furthermore, our approach can also be helpful in guiding the
network optimal design for synthetic biology.

Energy Landscape of Gene Regulatory Network



and f Ra;b are reaction probabilities per unit time. In a similar
way, we may also consider the activator:

O0
a þ qabMb�!

hPab
O1

a ð3Þ

O1
a�!

f Pab
O0

a þ qabMb ð4Þ

Notice that the superscript 1(0) in O1ð0Þ
a indicates the

activity state of the operator and does not represent the
bound state of regulatory protein. We will say the gene is on
(off) when the operator of the gene is active (inactive). The
gene will be on when it is occupied by activators or when
repressors are unbound from it.

Next we include the transcription and translation steps.
Here we ignore mRNA and consider only one step combining
transcription and translation:

B�!
ga1

baMa for O1
a ð5Þ

B�!
ga0

baMa for O0
a ð6Þ

Ma�!
ka

B ð7Þ

where B denotes a protein sink or source, ba stands for the
burst size of produced proteins (Ma), g1(0) is a protein
synthesis probability per unit time, and ka is the degradation
probability per unit time.

We can say that Equations 1–7 are ‘‘effective reactions’’ of
the transcriptional regulatory gene network system. Roughly
speaking, we can say the other biochemical reactions could be
taken into account by adjusting the parameters of the
reaction probabilities per unit time. In this sense, the
reaction parameters are not really constants but functions
of time. Furthermore, the proteins may not be well-mixed in
the cell, and the number of proteins could be a function of
position. So we can generalize this formalism in a space-
dependent manner. We also can add more species and
reactions to the master equations. In this report we will
assume homogeneity of the number of proteins and ignore
the time delay (for example, due to the translation process) so
that all the parameters are constants. Now we can construct
the master equation based on the above assumptions and
chosen effective reactions.

Hartree Approximation of the Master Equation
The master equation is the equation for the time evolution

of the probability of some specific state P:

PðnA; SA; nB; SB; nC ; SC ; . . . ; tÞ ð8Þ

where A,B,C, . . . is the label of each gene; nA, nB, nC, . . . is the
number of proteins expressed by gene A,B,C, . . . , respec-
tively. SA, SB, SC, . . . is 1 or 0, and represents the activity state
of the operator. The number of states, N, is nA 3 23 nB 3 23

nC 3 2 3 . . . . We expected to have N-coupled differential
equations, which are not feasible to solve. Following a mean
field approach [11], we used the Hartree approximation to
split the probability into the products of individual ones:
First, let us assume

PðnA; SA; nB; SB; nC ; SC ; . . . ; tÞ ¼
Y
b

Pðnb; Sb; tÞ; ð9Þ

and sum over all indexes except one specific index that we are
interested in, say a. This effectively reduces the dimension-
ality from exponential nA3 nB 3 � � � nN 3 2N to multiples (nAþ
nBþ . . .) 3 2 3 N, and therefore the problem is computation-
ally tractable. Finally we are left with two equations, one for
P(na, 1) and one for P(na, 0). (In fact, these are not just two
equations because na varies from 0 to hundreds.) With the two
component vector notation,

Pa :¼ Pa1ðna; tÞ
Pa0ðna; tÞ

� �
:¼ Pðna; Sa ¼ 1; tÞ

Pðna; Sa ¼ 0; tÞ

� �
ð10Þ

we have the compact form for the network:

@

@t
Paðna; tÞ ¼

ga1 0
0 ga0

� �
3 fhðna � baÞPaðna � ba; tÞ � Paðna; tÞg

þ kafðna þ 1ÞPaðna þ 1; tÞ � naPaðna; tÞg

þ

" X
b

�HR
ab f Rab

HR
ab �f Rab

� �
|{z}
Repressive interaction

þ
X

b

�f Pab HP
ab

f Pab �HP
ab

� �
|{z}
Promoting interaction

#
Paðna; tÞ ð11Þ

where

HRðPÞ
ab :¼ hRðPÞab

nb!

ðnb � qabÞ!qab!|{z}
¼nbCqab

* +
;

qab :¼

1 monomer
2 dimer
3 trimer
q q- th multimer

0
BB@

1
CCA: ð12Þ

Notice that Equation 11 is simply a ‘‘birth–death’’ process
without the last term. We will call the first two terms in
Equation 11 the birth–death part or ‘‘drift and diffusion’’
part from the viewpoint of the diffusional Fokker–Plank
equation [10,35]. Furthermore, we will call the last term the
operator fluctuation part. In Equation 11, all other indices
except a appear only in Hab in the ensemble-averaged form
(fab is just some number). If we deal with the one gene case,
there is no ensemble average in Equation 12. The first effect
of the operator fluctuation is the sum over nb and Sb. The
second effect is to cancel out many of the birth–death terms
of other genes. Since a ¼ A, B, C, . . . , we have the vector
equation set of the same numbers as those of the genes. They
are coupled to each other through the term Hab. All network
interactions can be determined by assigning every hab. ba is
the number of proteins produced in bursts from gene a, and h
is a step function. In Equation 12, we take into account
several kinds of binding proteins, and use proper combina-
torics and ensemble average.
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Quantum Field Theoretic Description
The techniques of quantum field theory can be used to

solve the master equation [11,37]. The first step is to construct
a many-body quantum state. Notice that the probabilities
defined by Equation 10 are imbedded in the quantum state as
coefficients (Equation 14)

jWi :¼
Y
a

jwai ¼ jwAi � jwBi � jwCi � � � � ð13Þ

where

jwai :¼

X
na

Pa1ðna; tÞjnaiX
na

Pa0ðna; tÞjnai

0
B@

1
CA: ð14Þ

In Equation 13 we make an ansatz of Hartree-type product
for the many-body state. Then non-Hermitian ‘‘Hamiltonian’’
of only repressive proteins, X, yields:

X :¼
X

a

  
Da þ

�Haa 0
Haa 0

� �!
�
Y
b6¼a

1b

|{z}
self repressive

þ1a �
X
b6¼a

�Hab 0
Hab 0

� �
�
Y

c6¼a;b

1c

|{z}
interaction partðnetworkÞ

!
ð15Þ

where

Hab :¼
X
qab

hab

ðaþb abÞ!
ðaþb ab � qabÞ!qab!

ð17Þ

For each protein concentration, a creation and an
annihilation operator are introduced, such that aþjni ¼ jn þ
1i and ajni ¼ njn� 1i. These operators satisfy [a, aþ]¼ 1. The
generalization to include activating proteins is straightfor-
ward. While the state vector is a simple product of individual
genes, the operator product form of X is chosen deliberately
to reproduce the original master Equation 11. The X of a
many-gene system seems to be X¼R Xi [11], but it would not
be the simple sum of individual operators because of the
interaction terms. Like the master equation, Da is the birth–
death part and plays a role in the diffusion and drift terms in
the context of Fokker–Plank equation. The second term and
third term in Equation 15 are repressor-related terms, and
Hab is the counterpart of Mab in Equation 12. Finally, we have
the following quantum system:

@

@t
jWi ¼ XjWi: ð18Þ

To complete the mean-field approximation, we need to
average all interaction effects by doing an inner product with
some reference state, which is a two-component general-
ization of the Glauber state [37]. If we are interested in an a-
gene (operator) state and the associated protein, we may
define the reference state:

h~/aj :¼
Y
b6¼a

hSbj :¼
Y
b 6¼a

ð h0jeab h0jeab Þ: ð19Þ

Then,

h~/aj
@

@t
jWi ¼ h~/ajXjWi ð20Þ

is equivalent to the master Equation 11.

Solutions
Ritz’s variational method with coherent state ansatz. We

will use the Rayleigh–Ritz variational method to obtain an
approximate solution of a non-Hermitian Hamiltonian
system (nonequilibrium system) like Equation 18 [11,38].
The master equation is equivalent to the functional variation
dC/dU ¼ 0 of an effective action C ¼

R
dt hUj(@t � X)jWi. The

method is analogous to the traditional procedure in quantum
mechanics, except the modification due to non-Hermitian
properties of the operator, of which left eigenvectors and
right eigenvectors do not have to be the same. We will make a
ket state ansatz, jWi, and a bra state ansatz, hUj, respectively
[11]:

jWi :¼
Y
a

jwai hUj :¼
Y
a

h/aj ð21Þ

jwai :¼ Ca1eXa1ðaþa �1Þj0ai
Ca0eXa0ðaþa �1Þj0ai

� �
ð22Þ

h/aj :¼ ð h0ajeaa era1þka1aa h0ajeaa era0þka0aa Þ ð23Þ

where Ca1, Ca0, Xa1, Xa0, aa1, aa0, ka1, ka0 are time-dependent
parameters to be determined by the variational principle.
The ket ansatz is chosen as coherent state, which corresponds
to a Poisson distribution. Ca1 and Ca0 are the probabilities of
the two DNA-binding states, S¼ 1 and S¼ 0, respectively. The
coupled dynamics of the DNA-binding state and the protein
distribution are described as the motion of wavepackets with
amplitudes Ca1 and Ca0 as well as by means of the protein
concentrations at Xa1 and Xa0 (from the Poisson distribution
ansatz). With the following notation

aR
aj ¼ Ca1;Ca0;Xa1;Xa0 j ¼ 1; 2; 3; 4; ð24Þ

respectively a ¼ A, B, C, . . .

aL
aj ¼ aa1; aa0; ka1; ka0 j ¼ 1; 2; 3; 4; ð25Þ

respectively a ¼ A, B, C, . . . .
Here, hUj(aL ¼ 0) is set to be consistent with the

probabilistic interpretation hU(aL ¼ 0)jW(aR)i ¼ 1. The
condition for the extremum of the action with respect to
hUj is:

@W
@aL

ai
j @W
@aR

aj

* +
daR

aj

dt
¼ @W

@aL
ai
jXjW

� �
; all aL

ai ¼ 0 ð26Þ

which is reduced to the coupled ordinary differential
equations with parameters:

Da :¼ ga1ððaþa Þ
ba � 1Þ þ kaðaa � aþa aaÞ fa

0 ga0ððaþa Þ
ba � 1Þ þ kaðaa � aþa aaÞ � fa

� �
ð16Þ
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dCa1

dt
¼ �Ca1HR

total þ Ca0f Rtotal þ Ca0HP
total � Ca1f Ptotal ð27Þ

dCa0

dt
¼ � dCa1

dt
ð28Þ

Ca1
dXa1

dt
þ Xa1

dCa1

dt
¼ Ca1ðbaga1 � kaXa1Þ � Ca1H 9Rtotal

þ Ca0f RtotalXa0 þ Ca0H 9Ptotal

� f PtotalCa1Xa1 ð29Þ

Ca0
dXa0

dt
þ Xa0

dCa0

dt
¼ Ca0ðbaga0 � kaXa0Þ þ Ca1H 9Rtotal

� Ca0f RtotalXa0 � Ca0H 9Ptotal

þ f PtotalCa1Xa1 ð30Þ

HR
total :¼ h0jeaaHR

aae
Xa1ðaþa �1Þj0i þ

X
b6¼a

h~/jHR
abjwbi ð31Þ

HP
total :¼ h0jeaaHP

aae
Xa0ðaþa �1Þj0i þ

X
b6¼a

h~/jHP
abjwbi ð32Þ

f RðPÞtotal :¼ f RðPÞaa þ
X
b 6¼a

f RðPÞab ð33Þ

H 9Rtotal :¼ h0jeaaaþa H
R
aae

Xa1ðaþa �1Þj0i þ
X
b6¼a

h~/bjHR
abjwbiÞXa1 ð34Þ

H 9Ptotal :¼ h0jeaaaþa H
P
aae

Xa0ðaþa �1Þj0i þ
X
b6¼a

h~/bjHP
abjwbiÞXa1 ð35Þ

where h~/bj is defined by Equation 19. We can interpret
Equation 27 as a master equation of probabilities of active
operator states related to reactions Equation 1–4. However its
change of the rate is based on the average number of proteins
(Equations 31–32) unlike usual master equations which deal
with the specific state. Equation 28 is just probability
conservation. The first term of Equation 29 and Equation
30 is related to protein synthesis and degradation (Equations
5–7), and the rest are the effects of operator fluctuations.

Equations 27–30 are the general equations for parameters;
we can use these equations for any number of gene systems
and for any kind of regulatory patterns by assigning the
binding and unbinding probability rate.

Moments equation. The mean-field approximation ap-
proach should inherently provide information on moments
(Equation 12), so it is natural to construct moment equations
from Equation 11 [12]. The k-th moment of the protein
number is obtained by the following equations. The 0-th
moment of protein number is interpreted as the probability
that gene is on or off. We also derived the moments equations
from Equation 18

ð h0jeaa ðaþa aaÞk 0 Þ �
Y
b 6¼a

h~/bj
 !

@

@t
jWi � XjWi

� �
¼ 0 ð36Þ

ð 0 h0jeaaðaþa aaÞk Þ �
Y
a 6¼b

h~/bj
 !

@

@t
jWi � XjWi

� �
¼ 0 ð37Þ

In principle, once we know all the moments, we can construct
a probability distribution; but in many cases, we cannot get all
the moments. However, Equations 36 and 37 have a good
structure if there is no self-interaction, since all the moments
can be computed by some lower moments recursively. If we
deal with q-th multimer proteins, we can get all the moments
higher than q from 0-th, . . . ,q-th moments. In the toggle
switch and the dimer protein cases, for example, we have 12
independent equations (3 3 2 3 2: (k ¼ 0, 1, 2), (a ¼ A,B) for
each Equation 36 and Equation 37) and 12 variables (Ca1, Ca0,
hna1i, hna0i, hn2a1i, hn2a0i, a ¼ A, B); we show these explicitly in
Equations 45–50, where we used two constraints of proba-
bility conservation, so there are only ten equations. We can
say these equations are closed. However, if we include self-
interaction, the equations are not closed, so they cannot be
solved exactly [12].
Relation between the ansatz equation and the moments

equation. Equations 27–30 can be derived from Moment
Equations 36 and 37 without using the variational principle.
We can start from moment equations and then assume a
specific probability distribution based on a physical argu-
ment, which gives some specific relations between moments.
For example, the Poisson distribution has only one param-
eter, so we may calculate all other moments from the first
moment, the mean. Moment equations with a Poisson ansatz
give us the same equations as the variational approach in
Equations 27–30.
Moment equations are more exact than the variational

approach, but the approach cannot be used to obtain exact
solutions for the system having self-interaction, in which
equations are not closed. Even in the closed system, an ansatz
reduces the degrees of freedom significantly and makes the
problem easier to handle. Mathematically, using an ansatz is
equivalent to giving specific relations between moments. We
may, therefore, not need to take care of higher moments if an
infinite number of higher moments is automatically given by
assuming a specific ansatz. In practice, ansatz might be useful.
Then the issue would be how faithful the ansatz we choose is.
In this paper we used both the moment equation and the
Poisson ansatz. Notice that Equation 11 is merely a birth–
death process without the last term. In the limit that the last
term is small enough, the so-called adiabatic limit (faster
protein number fluctuations compared with the DNA state
alterations), we expect the solution will be close to the
Poisson distribution.

Interpretation of the Solutions
The final output we get from these equations is basically

moments. From these moments we need to construct the total
probability. There are several important features to be
pointed out. We start with the single gene case.
First, notice that the total probability does not have the

structure of C1P1 þ C0P0. We started with a two-component
column vector and to extract the physical observables we
needed to do the inner product with a two-component row
state vector. (We never added the spin up and down
component directly in quantum mechanics.) The total
probability should therefore not follow the steps of con-
structing P1 and P0 first and then weighing by C1 and C0. The
correct procedure is the following. With the moments, the
solutions of equations, we construct new moments:
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1 ¼ C1 þ C0

hni ¼ C1hnion þ C0hniof f
hnki ¼ C1hnkion þ C0hnkiof f k ¼ 2; 3; . . . :

In principle, we can get arbitrary order of moments and
construct the corresponding probability if the equations are
closed. In practice, however, we may choose one of two
probability distributions: Poisson or Gaussian distributions.

Second, the probability obtained above corresponds to one
limit point or basin of attraction. One solution of the
equations determines one of the limit points and also gives
the variation around the basin of attraction, so it is intrinsic.
If the system allows multistability, then there are several
probability distributions localized at each basin of attraction,
but with different variations. Thus, the total probability is the
weighted sum of all these probability distributions. The
weighting factors (wa, wb) are the size of the basin, which is
nothing but the relative size of the set of initial values ending
up with a specific basin of attraction.

PðnÞ ¼ waPaðnÞ þ wbPbðnÞ wa þ wb ¼ 1: ð38Þ

Notice that the steady state solution is not enough to
describe the total probability. It does not say anything about
the volume of the basin, it only tells us the limit point. So the
effort to derive an effective potential energy from the steady
state solution on general grounds needs to take into account
the volume of the basin of attraction. One simple exception is
the symmetric toggle switch, where the weighting factors are
simply (0.5, 0.5) by symmetry.

Third, the total probability of many genes is simply the
product of each gene based on our basic assumption, the
mean field approximation. For example, the probability of a
toggle switch can be written as

PðnA; nBÞ ¼ waPaðnAÞPaðnBÞ þ wbPbðnAÞPbðnBÞ ð39Þ

where a and b denote each limit point, and wa and wb are the
weighting factors. Even though it is simply multiplication, the
interactions between them are already taken into account
from the coupled equations.

Finally, once we have the total probability, we can
construct the potential energy (or potential energy land-
scape) by the relationship with the steady state probability:

Uðn!Þ ¼ �lnPðn!Þ: ð40Þ

This is the reverse order of the usual statistical mechanics
of first obtaining the potential energy function, exponentially
Boltzman weighting it, and then studying the partition
function or probability of the associated system. Here we
look for the inherent potential energy function from the
steady state probability. In the gene-network system, every
chemical parameter, such as the protein production/decay
rates and binding/unbinding rates, will contribute to the
fluctuation of the system. All these effects are encoded in the
total probability distribution, and, consequently, in the
underlying potential energy landscape.

Results

We looked at an important example of two genes
interacting with each other. The interactions are through
the proteins synthesized by the genes, which act back to
regulate the gene switch. The bacterial lambda phage is a
good biological example of a toggle switch. The two lysogenic

and lysosic genes are both stable and robust. It has been a
long-standing problem to explain why the lambda phage is so
stable [11,12,16,34,40]. We addressed this issue in the
presence of the intrinsic statistical fluctuations of the finite
number of the proteins in the cell by exploring the under-
lying potential energy landscape. First we solved the master
equation to obtain both the time-dependent and steady state
probability distributions of the protein concentrations of the
corresponding genes. Then we inferred the underlying
potential energy landscape from the steady state probability
distribution of the protein concentrations. We then consid-
ered the symmetric toggle switch.
All applications to specific network systems start with

Equations 27–30. First, we chose the number of genes and
designed the interaction type (network topology) and protein
types (multimers). Second, we assigned the strength of the
parameters. Then we solved this coupled ordinary differential
equation system numerically with certain initial conditions.
We considered a toggle switch [39] of two genes, as shown in
Figure 1, which has wide application in molecular biology,
such as the bacteriophage k problem [34]. Let us start with the
toggle switch case.

Symmetric Toggle Switch
For the symmetric switch, we first solved the equations of

motion determining the amplitude, the mean, and the higher
order moments of the probability distribution of the protein
concentrations of the corresponding genes. These are given
below.

Poisson and Moment Equation Solutions of Master
Equations
We solved the master equation with two methods. One is

the Poisson ansatz, mentioned above, by assuming the
inherent Poisson distribution, and the other is the exact
method, using the moment equation. For the inherent
Poisson distribution, we can write down the equations of
motion for the amplitude and mean.
Poisson ansatz.

dCA1

dt
¼ � hA

2
CA1fCB1X2

B1 þ ð1� CB1ÞX2
B0g þ fAð1� CA1Þ ð41Þ

dXA1

dt
¼ �fA

1� CA1

CA1
ðXA1 � XA0Þ þ gA1 � kAXA1 ð42Þ

dXA0

dt
¼ fAðXA1 � XA0Þ þ gA0 � kAXA0 �

XA1 � XA0

1� CA1
CA1 ð43Þ

three� more� equationsðA$ BÞ ð44Þ

where we eliminated two variables by the probability
conservation (Ca1 þ Ca0 ¼ 1), and recollected terms.
For the exact solution with moment equations, we also

wrote down the equations of motion of the moment of
protein concentration of the corresponding genes.
The corresponding moment equations.

dCA1

dt

¼ � hA
2
CA1fCB1ðhn2B1i � hnB1iÞ þ ð1� CB1Þðhn2B0i � hnB0iÞg

þ fAð1� CA1Þ ð45Þ
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dhnA1i
dt

¼ �fA
1� CA1

CA1
ðhnA1i � hnA0iÞ þ gA1 � kAhnA1i ð46Þ

dhnA0i
dt

¼ fAðhnA1i � hnA0iÞ þ gA0 � kAhnA0i �
hnA1i � hnA0i

1� CA1
CA1

ð47Þ

dCA1

dt
hn2A1i þ CA1

dhn2A1i
dt

¼ CA1gA1ð2hnA1i þ 1Þ þ kACA1ð�2hn2A1i

þ hnA1iÞ þ fAð1� CA1Þhn2A0i

� CA1
hA
2
hn2A1iðCB1ðhn2B1i � hnB1iÞ

þ ð1� CB1Þðhn2B0i � hnB0iÞÞ ð48Þ

� dCA1

dt
hn2A0i þ ð1� CA1Þ

dhn2A0i
dt

¼ ð1� CA1ÞgA0ð2hnA0i þ 1Þ

þ kAð1� CA1Þð�2hn2A0i
þ hnA0iÞ � fAð1� CA1Þhn2A0i

þ CA1
hA
2
hn2A1iðCB1ðhn2B1i

� hnB1iÞ þ ð1� CB1Þðhn2B0i
� hnB0iÞÞ

f ive� more� equationsðA$ BÞ ð50Þ

Monostability versus Bistability for Symmetric Toggle
Switch
By giving some initial conditions, and taking the long time

limit, we obtained the steady state solution. We fixed all
parameters except the protein synthesis rate gA1(¼ gB1). We
looked at the probability of genes that were in the active state
versus the relative importance of synthesis rate versus
degradation rate. By increasing the synthesis rate, gA1, we
could observe the bifurcation from the monostable state to
the bistable state after passing a certain critical point. Figure
2 shows the result of taking the long time limit of the
equations of motion. The two curves (with subscript Moment)
are from moment equations, and the others are from the
Poisson ansatz. This is consistent with the results directly
from time-independent equations (Figure 3A in [12]). We
used the parameter Xad¼ �g/k as the horizontal axis variable. It
is simply g1/2 in our choice.
In the parameter range in which the bistability occurs, we

found two limit points (named a and b) in the numerical
analysis. Now from the solution of the equations we
constructed the probability of protein numbers or concen-
trations (all illustrations in this paper were based on the
Poisson ansatz for simplicity, but it can be easily done with
the moment equations and qualitative features will not be
changed),

PðnA; nBÞ ¼ waPaðnAÞPaðnBÞ þ wbPbðnAÞPbðnBÞ ð51Þ

For the symmetric toggle switch case, the weight factor was

Figure 2. Probability C That Genes Are in the Active State as a Function of Xad¼ (g1 þ g0)/2kA for a Symmetric Switch Showing the Bifurcation

Exact moment equation solutions are compared with Poisson ansatz solutions 0 , Xad(¼g1/2) , 100 , kA¼ kB¼ 1, fA¼ fB¼ 0.5, hA¼hB¼ fA/500, and gA0

¼ gB0¼ 0.
doi:10.1371/journal.pcbi.0030060.g002
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simply (0.5, 0.5) due to symmetry. The change of the
probability distribution shape in terms of the adiabatic
parameter of the relative importance of the protein synthesis
rate compared with the degradation rate is shown in Figure 3.
These figures show the monostability to bistability of the
symmetric toggle switch. For a large enough protein synthesis
rate relative to degradation rate, bistability emerges.

Potential Energy Landscape: Monostability to Bistability
As we discussed, the steady-state distribution function Pn

!

for the state variable n
!

can be expressed to be exponential in
a function Un

!
:

Pðn!Þ ¼ expf�Uðn!Þg; ð52Þ

where Pn
!

is already normalized. From the steady state
distribution function, we can therefore identify U as the
generalized potential energy function of the network system.
In this way, we map out the potential energy landscape.
Figure 4 shows the potential energy landscape corresponding
to Figure 3.

We can see that when the protein synthesis rate is small
relative to degradation rate, only a single basin of attraction
exists for the underlying potential energy landscape. For
large enough protein synthesis rate relative to degradation
rate, two basins of attraction emerge. Once we have the
potential energy landscape, we can discuss the global stability
of the gene regulatory networks. The time scale of the
transition between the two stable minimum basins of
attraction can be estimated by s ; s0exp[U

6¼ � Umin] [41].
Here, s0 is the pre-factor and s is the time scale of transition
from one basin of attraction to the other. U 6¼ is the potential
energy at the saddle point between the two stable basins of
attraction. Umin is the potential energy at one of the basins of

attraction. Thus U 6¼ � Umin represents the potential energy
barrier height between two stable basins of attraction. In
Figure 5 we can see that as the synthesis rate and unbinding
rate of protein to DNA increase relative to the degradation
rate, the potential barrier height between the two basins of
attraction increases. The time scale of the transition from one
basin of attraction to the other exponentially increases with
the barrier height.
Figure 5 shows the phase diagram of the parameter ranges

for the monostable basin and two bistable basins of
attraction. We can see that when the synthesis rate and
unbinding rate of protein to DNA are low relative to the
degradation rate, the potential energy landscape prefers one
stable basin of attraction. As the synthesis rate and unbinding
rate of protein to DNA increases relative to the degradation
rate, the potential energy landscape gradually develops the
two stable basins of attraction from the monostable one.
There is a transition from monostable to bistable basins of
attraction of the underlying potential energy landscape at
certain parameters.
This illustrates how biological robustness is realized for the

toggle switch. As the protein synthesis rate and unbinding
rate of protein to DNA increase relative to the degradation
rate, more proteins are synthesized. These proteins are strong
repressors. This leads to smaller fluctuations. Furthermore,
the associated barrier height between the two basins of
attraction becomes large, and the two basins of attraction
become more stable since it is harder to go from one well to
another. So, small fluctuations and large barrier heights both
serve as the source for the robustness and stability of the gene
toggle switch. In other words, it is more unlikely for the
system to change from one basin of attraction to the other.
Therefore, the system becomes robust. The robustness issue is

Figure 3. Steady State Probability of Symmetric Toggle Switch (Long Time Limit) as a Function of the Number of Protein A and the Number of Protein B

for Different Xad¼ gA1/2kA

The other parameters are the same as Figure 2.
doi:10.1371/journal.pcbi.0030060.g003
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not yet well-understood for cellular networks in general. Here
we explored the robustness of the switches against the
intrinsic statistical fluctuations coming from the finite
number of protein and DNA molecules. This is clearly very
important and has potential applications to the robustness
problem of lambda phage in bacteria.

Time Evolution of the Underlying Potential Energy
Landscape

We also studied the time evolution of the probability and
the potential energy landscape with dynamic equations. We
chose the specific parameters and initial conditions to
illustrate the idea. The results are shown in Figures 6 and 7.

In Figures 6 and 7, we see the evolution in time of the
probability and the underlying potential energy landscape
from the flat land at the beginning to the full development of
two basins of attraction at the steady state. This is the first
illustration of the dynamical evolution or formation of

development of the potential energy landscape of a toggle
switch.

Discussion

Finding the multidimensional potential energy landscape is
the key to addressing important global issues such as the
robustness of cellular networks. We have uncovered the
underlying potential energy landscape of a simple gene
network: toggle switch. We found that as the protein synthesis
rate and the unbinding of protein to DNA rate relative to
degradation change from small to large, the underlying
potential energy landscape changes from having monostable
to bistable basins of attraction. These basins correspond to
stable, biologically functional states. The potential barrier
between the two basins determines the time scale of
conversion from one to the other. We found that as the
protein synthesis rate and unbinding of protein with DNA

Figure 4. Potential Energy of Symmetric Toggle Switch as a Function of the Number of Protein A and the Number of Protein B for Different Xad ¼
gA1/2kA

The other parameters are the same as Figure 2.
doi:10.1371/journal.pcbi.0030060.g004
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Figure 5. The Time Scale of the Transition between the Two Stable Minimum Basins of Attractions as a Function of x¼ fA/kA and Xad ¼ gA1/2kA

The other parameters are the same as Figure 2.
doi:10.1371/journal.pcbi.0030060.g005

Figure 6. The Time Evolution of the Probability of Symmetric Toggle Switch as a Function of the Numbers of Protein A and the Numbers of Protein B

Xad¼ 60, and the other parameters are the same as Figure 2. t¼ 0, 10, 55, 60, 70, 100.
doi:10.1371/journal.pcbi.0030060.g006
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rate relative to degradation became greater, the potential
energy barrier became greater and the statistical fluctuations
were effectively more severely suppressed. This leads to the
robustness of the biological basins of the gene switches.

In principle, our approach can be generalized to more
realistic networks involving multiple genes as well as addi-
tional levels of regulations. This could be realized by
averaging the interactions among genes in the corresponding

Figure 7. The Time Evolution of the Potential of Symmetric Toggle Switch as a Function of the Numbers of Protein A and the Numbers of Protein B

Xad¼ 60, and the other parameters are the same as Figure 2. t¼ 10, 55, 60, 70, 100.
doi:10.1371/journal.pcbi.0030060.g007
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master equations. It effectively reduces the dimensionality of
the problem from exponential to polynomial number of
degrees of freedom. It is worthwhile to note the limitation of
this approach. When the interactions among genes are very
strong, our approach is less effective.

Recently, synthetic biology became an important part of
systems biology [42–45]. There has been significant progress
in this field. However, there still seems to be a lack of general
principles and algorithms guiding the design and construc-
tion of synthetic gene networks. The robustness condition
(see Figure 5) found in this study would help us to identify the
parameter and connectivity region to reach global robustness
and function of the network. The optimal network design will
be based on that. Furthermore, we can vary the parameters
and connections to design different distinct features while
maintaining the stability of the network.

The adaptive landscape idea was first introduced into
biology by S. Wright in the 1930s [46–49]. Landscape
construction for one dimension is rather straightforward.
However, even the two-dimensional case becomes nontrivial.
The recent efforts to understand global systems biology need
the concept of landscape. Progress wasmade towards this from
the dynamic system point of view, where the nontrivial nature

of low-dimensional systems was illustrated [20,36,50]. There
are still conceptual and methodological issues remaining for
high dimensional systems. The stochastic method introduced
here may pave the road towards solving this problem.
This model can be modified to include more biochemical

reactions. To investigate the role of mRNA, we can consider
the transcription and translation process separately. To focus
on the statistical fluctuations of genes turning on and off, it is
possible to generalize the formalism to compute the statistical
fluctuations quantitatively. We also can take into account the
spatial variation of the state variables, such as the number of
proteins.
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