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Abstract

A recent measure of ‘integrated information’, WDM, quantifies the extent to which a system generates more information than
the sum of its parts as it transitions between states, possibly reflecting levels of consciousness generated by neural systems.
However, WDM is defined only for discrete Markov systems, which are unusual in biology; as a result, WDM can rarely be
measured in practice. Here, we describe two new measures, WE and WAR, that overcome these limitations and are easy to
apply to time-series data. We use simulations to demonstrate the in-practice applicability of our measures, and to explore
their properties. Our results provide new opportunities for examining information integration in real and model systems and
carry implications for relations between integrated information, consciousness, and other neurocognitive processes.
However, our findings pose challenges for theories that ascribe physical meaning to the measured quantities.
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Introduction

How can the complex dynamics exhibited by networks of

interconnected elements best be measured? Answering this question

promises to shed substantial new light on many complex systems,

biological and non-biological. Neural systems in particular are

characterized by richly interconnected elements exhibiting complex

dynamics at multiple spatiotemporal scales [1], which have been

associated with a variety of behavioral, cognitive, and phenomenal

properties [2,3,4]. Characterizing dynamical complexity for such

systems therefore presents a key challenge for developing new

theoretical accounts [5] and for designing and evaluating new

experiments. A common and attractive intuition is that dynamical

complexity consists in the coexistence of differentiation (subsets of a

system are dynamically distinct) and integration (the system as a whole

exhibits coherence) in a system’s dynamics. Applied to neural

systems, this intuition may underpin notions of cognitive and

behavioral flexibility. A system that is able to respond specifically

and selectively to a broad range of stimuli, in an integrated way,

may require conjoined functional integration and differentiation

[6,7]. More ambitiously, the intuition may also characterize basic

aspects of conscious experience [8]. At the phenomenal level, each

conscious scene is composed of many different parts and is different

from every other conscious scene ever experienced (differentiation),

yet each conscious scene is experienced as a coherent whole

(integration). Therefore, dynamical complexity in neural systems

may actually account for (and not merely correlate with) fundamental

aspects of consciousness [9].

Several measures now exist which operationalize the above

intuition under different assumptions and with varying practical

applicability [5]. In this paper, we critically evaluate ‘integrated

information’ (W) [10,11], a candidate measure that has received

significant recent attention, especially in the domain of conscious-

ness science [12,13,14,15]. We present new versions of this

measure that are both theoretically well-grounded and, in contrast

to previous versions, practically applicable given time-series data.

W has been proposed as a measure of the amount of information

that is integrated by a system, where ‘information’ reflects the

differentiated states of a system and ‘integration’ their global

cohesion. According to the ‘integrated information theory of

consciousness’ (IITC), this quantity is identical to the quantity of

consciousness generated by the system; in other words, on the

IITC, consciousness is integrated information [12,14]. This

dramatic claim invites a close examination of the in-principle

and in-practice properties of W.

A first version of W (which we call WC, ‘W-capacity’,) was

conceived as a measure of the capacity of a system to integrate

information, and did not take into account time or changing

dynamics [10,12]. Also, measuring WC requires flexible, repeated,

and reversible perturbation of arbitrary system subsets, which is

infeasible for non-trivial systems (except in simulation). We do not

discuss this measure any further. Recently, a new version of W has

been introduced in the context of the IITC, which we call WDM,

‘W-discrete/Markov’ [11]. In contrast to WC, WDM is defined for

systems of discrete elements that evolve through time with

Markovian transitions. Specifically, WDM measures the informa-

tion generated when a system transitions to one particular state out

of a repertoire of possible states, but only to the extent that this

information is generated by the whole system, over and above the

information generated independently by the parts [11]. Impor-

tantly, WDM measures information as reduction in entropy from a

prior maximum entropy distribution, which is taken to represent the

repertoire of possible states.
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It has been shown, using simulations, that WDM behaves

consistently with several intuitions about dynamical complexity

[11]. In particular, high values of WDM are generated by networks

that exhibit both differentiation and integration in their dynamics.

However, WDM is defined only for idealized discrete Markovian

systems (a Markovian system is one for which the future depends

only on the present, and not on the past). This in-principle

restriction severely limits its in-practice applicability because

complex biological systems are typically continuous (or are

measured as continuous) and are non-Markovian). This limitation

in turn imposes a serious obstacle for developing and evaluating

theories, such as the IITC, which depend on quantifying

integrated information.

In this paper we introduce an alternative measure of integrated

information, WE (‘W-empirical’), which is applicable to time-series

data, and to continuous or discrete stochastic systems, Markovian

or otherwise (and without perturbation of the studied system).

These key features arise because WE is based on the reduction in

Shannon entropy from the empirical, as opposed to the maximum

entropy, distribution. Our basic formulation of WE therefore

addresses the in-principle restrictions of WDM mentioned above.

WE is best suited for application to stationary systems, for which it

provides a single value for a given stationary epoch. However, its

in-practice applicability still faces the difficulty of accurately

estimating entropies from limited data. This is a problem that

scales poorly as the number of elements (variables) increases,

especially for continuous systems [16]. Confronting this problem,

we show that when states are Gaussian distributed, WE can be

computed directly from empirical covariance matrices, rendering

it extremely easy to apply in practice for these systems. Meanwhile,

for non-Gaussian systems, we introduce a second measure, WAR

(‘auto-regressive W’), which is based on auto-regressive prediction

error. WAR can be understood as measuring how well the present

state of a system predicts some previous state, but only to the

extent that predictions based on the whole outstrip predictions

based on the parts considered independently. WAR and WE are

constructed analogously, and indeed for Gaussian systems we are

able to show, using a connection between linear regression and

information theory [17,18], that they are precisely equivalent.

Recognizing this equivalence allows us to interpret WE in the same

way as WAR, i.e., in terms of predictive ability. Importantly,

although for non-Gaussian systems WAR and WE may differ, the

former remains easy to measure in practice from empirical

covariance matrices.

The difference between WE/WAR and WDM is not only a matter

of practical applicability. Using the empirical distribution as

opposed to the maximum entropy distribution substantially

changes possible interpretations of the measure. According to

WE, integrated information is a measure of a process, since the

empirical distribution is a characterization of the actual behavior

of the system. According to WDM integrated information is to some

extent a measure of capacity [14], since the maximum entropy

distribution is maximally agnostic about the behavior of the

system, representing instead its potential or capacity.

The above distinction carries implications for theories, such as

the IITC, that ascribe physical meaning to measures of integrated

information. Under the IITC, consciousness is explicitly charac-

terized in terms of the capacity of a system [14], and not, following

William James [19], as a process. Our new measures imply a

Jamesian modification of the IITC by considering consciousness as

a process; they also challenge the identity relation between

consciousness and integrated information assumed in the IITC.

More generally, many other brain-based phenomena are best

considered in terms of process rather than capacity, and may

admit useful interpretations in terms of integrated information. For

example, multi-modal binding and perceptual categorization [20]

could involve integrated information in the perceptual domain,

and action selection (decision making) [21] may require the

integration of sensory, cognitive and motor processes, while

retaining differentiation among competing alternatives. In these

and other cases, having a measure of integrated information

framed in terms of process, that is practically applicable to time-

series data, will permit the formulation of testable hypotheses and

synthetic models relating information integration to cognitive and

neural operations.

Results

The ‘Results’ section is organized as follows. In the ‘Notation,

conventions and preliminaries’ section we lay out our notation and

introduce some necessary mathematical concepts. In the section

‘The previous measure, WDM’ we review WDM using our current

notation, noting its limitations especially with respect to discrete

Markovian systems. The section ‘The new measure, WE’ describes

the new measure WE and provides practical recipes for its

computation either numerically from time-series or analytically,

given a generative model of the system, both under Gaussian

assumptions. We note that for non-Gaussian systems WE remains

well-defined even if it is more challenging to calculate. The section

‘WE for Markovian Gaussian systems’ presents the results of

various simulations, designed to illustrate the in-practice applica-

bility of WE and to explore its properties. We compute WE for some

canonical networks, optimize connectivity under simple dynamics,

and examine the numerical stability of the measure. We also

compare WE with a version of WDM modified to apply to

continuous systems, showing quantitative congruence in most

cases. The section ‘Extension to multiple lags and to MVAR pð Þ
processes’ describes some additional simulation results, showing

how WE can measure integrated information over arbitrary time-

steps (lags). In the section ‘Auto-regressive W (WAR)’ we describe

WAR and explain its derivation in terms of relations among

conditional entropy, covariance, and linear regression prediction

error. We demonstrate the utility of WAR by calculating integrated

information for representative systems animated by exponentially

distributed (i.e., non-Gaussian) dynamics.

Author Summary

A key feature of the human brain is its ability to represent
a vast amount of information, and to integrate this
information in order to produce specific and selective
behaviour, as well as a stream of unified conscious scenes.
Attempts have been made to quantify so-called ‘integrat-
ed information’ by formalizing in mathematics the extent
to which a system as a whole generates more information
than the sum of its parts. However, so far, the resulting
measures have turned out to be inapplicable to real neural
systems. In this paper we introduce two new measures
that can be applied to both realistic neural models and to
time-series data garnered from a broad range of neuro-
imaging and electrophysiological methods. Our work
provides new opportunities for examining the role of
integrated information in cognition and consciousness,
and indeed in the function of any complex biological
system. However, our results also pose challenges for
theories that ascribe a direct physical meaning to any
version of integrated information so far described.
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Notation, conventions and preliminaries
We use bold upper-case letters to denote multivariate random

variables, and corresponding bold lower-case letters to denote

actualizations of random variables. Matrices are denoted by

upper-case letters. The n-dimensional identity matrix is denoted

by In and the n-dimensional square matrix of zeros by On. The

transpose operator is denoted by ‘T’, and the determinant by ‘det’.

Our convention for logarithms is to take them to the natural base

e, and to denote them by ‘log’.

Let X~ X 1, . . . ,X n
� �T

be a random variable that takes values

in the space VX . Then we denote the probability density function

by PX , the mean by �xx and the n|n matrix of covariances,

cov X i,X jð Þ, by S Xð Þ. Let Y~ Y 1,Y 2, . . . ,Y m
� �T

be a second

random variable. Then we denote the n|m matrix of cross-

covariances, cov X i,Y jð Þ, by S X ,Yð Þ. The following quantity will

be useful:

S XjYð Þ~ : S Xð Þ{S X ,Yð ÞS Yð Þ{1S X ,Yð ÞT : ð0:1Þ

We call this the partial covariance of X given Y , and it is well-defined

when S Yð Þ is invertible. If X and Y are both multivariate Gaussian

variables then the partial covariance S X jYð Þ is precisely the

covariance matrix of the conditional variable X jY~y, for any y:

Xj Y~yð Þ*N my,S X jYð Þ
h i

, ð0:2Þ

where my~�xxzS X ,Yð ÞS Yð Þ{1 y{�yyð Þ.
Entropy H characterizes uncertainty, and is given by

H Xð Þ~ : {
X

x[VX

PX xð ÞlogPX xð Þ , ð0:3Þ

if X is a discrete random variable, or

H Xð Þ~ : {

ð
Rn

PX xð ÞlogPX xð Þdnx ð0:4Þ

if X is a continuous random variable. (Note, strictly, Eq. (0.4) is the

differential entropy, since entropy itself is infinite for continuous

variables. However, considering continuous variables as continu-

ous limits of discrete variable approximations, entropy differences

and hence information remain well-defined in the continuous limit

and may be consistently measured using Eq. (0.4) [16]. Moreover,

this equation assumes that X has a density with respect to the

Lebesgue measure dnx; this assumption is upheld whenever we

discuss continuous random variables.)

We write H X jY~yð Þ for the conditional entropy of X given

that Y~y, and H X jYð Þ for the expected conditional entropy of X
given Y , i.e.,

H X jYð Þ~ :
X

y[VY

H XjY~yð ÞPY yð Þ , ð0:5Þ

if Y is discrete; for continuous Y replace the summation by

integration. The mutual information I X ; Yð Þ between X and Y is

the average information, or reduction in uncertainty (entropy),

about X , knowing the outcome of Y :

I X ; Yð Þ~H Xð Þ{H X jYð Þ : ð0:6Þ

Mutual information can also be written in the useful form

I X ; Yð Þ~H Xð ÞzH Yð Þ{H X ,Yð Þ , ð0:7Þ

from which it follows that mutual information is symmetric in X
and Y [16]. If X and Y are both Gaussian,

H Xð Þ~ 1

2
log detS Xð Þ½ �z 1

2
nlog 2peð Þ , ð0:8Þ

H XjY~yð Þ~ 1

2
log detS X jYð Þ½ �z 1

2
nlog 2peð Þ , Vy[Rm, ð0:9Þ

I X; Yð Þ~ 1

2
log

detS Xð Þ
detS X jYð Þ

� �
: ð0:10Þ

All these quantities are straightforward to compute empirically

from the empirical covariance matrices S Xð Þ and S X ,Yð Þ, and

the expression (0.1).

The Kullback-Leibler (KL) divergence DKL PX jjPYð Þ is a (non-

symmetric) measure of the difference between two probability

distributions PX and PY (well-defined when the variables take

values in the same space, VX~VY ). It is given by

DKL PX jjPYð Þ~ :
X

x[VX

PX xð Þlog
PX xð Þ
PY xð Þ

� �
, ð0:11Þ

if the variables are discrete, or

DKL PX jjPYð Þ~ :

ð
Rn

PX xð Þlog
PX xð Þ
PY xð Þ

� �
dnx , ð0:12Þ

if the variables are continuous.

We examine integrated information generated by systems of

interconnected dynamical elements. We use the letter X to denote

such a system, and the number of elements in the system is

denoted by Xj j. A partition P~ M1, . . . ,Mr
� �

divides the

elements of X into non-overlapping, non-trivial sub-systems,

X~M1|M2| � � �|Mr. The state of X at time t is a Xj j-
dimensional random vector denoted by X t, with entries corre-

sponding to states of individual elements of X . Time is discretized,

so t takes integer values. We denote the set of possible states of X
by SX , and the size of this set by SXj j. Analogous notation is used

for the states of sub-systems of X .

A stationary system is one for which the probability density

function for X t does not change with time t. For such systems

S Xð Þ denotes the stationary covariance matrix, and Ct Xð Þ the

auto-covariance matrix with time-lag t:

Ct Xð Þ~ : S X t{t,X tð Þ : ð0:13Þ

The previous measure, WDM

In this section we review, following Ref. [11], the most recent

version of W within integrated information theory, using our

current notation. This measure, which we call WDM (‘W-discrete/

Markovian’), was defined for discrete, Markovian systems, i.e.

systems with (i) a discrete set of possible states, and (ii) dynamics for

which the current state depends only on the state at the previous

time-step. After laying out the formal description of WDM, we

Practical Measures of Integrated Information
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briefly discuss these limitations, which motivate our new measures

WE and WAR.

Let X be a discrete, Markovian system. WDM compares the

information generated by the whole system to information

generated by its parts, when the system transitions to a particular

state X1~x from a preceding state X0 characterized by the

maximum entropy distribution for the system. This is performed

by use of KL divergence to compare (i) the conditional probability

distribution for the preceding state of the whole given the current

state; (ii) the joint distribution for the preceding states of parts

given their respective current states.

The effective information, QDM X ; x,P½ �, generated by X being in

state x, with respect to the partition P~ M1, . . . ,Mr
� �

, is given

by

QDM X ; x,P½ �~ : DKL PX0jX1~x jj P
r

k~1
P

Mk
0
jMk

1
~mk

� 	
: ð0:14Þ

Here mk is the state of the kth sub-system of the partition when X

has state x.

To specify the probability distributions in (0.14), one must use

Bayes’ rule. For the distribution of the whole system the formula is

PX0jX1~x x’ð Þ~
PX1 jX0~x’ xð ÞPX0

x’ð Þ
PX1

xð Þ : ð0:15Þ

Here PX0
x’ð Þ is the maximum entropy distribution, so

PX0
x’ð Þ~ 1

SXj j , ð0:16Þ

for all possible initial states x’[SX . PX1jX0~x’ is the conditional

probability density for the state at time t~1 given that the state at

time t~0 is x’. Given a generative model of the system, this

distribution can be derived analytically by examining the

transitions allowed by the model. In the absence of a generative

model the distribution can be obtained by empirical measurement

of the equivalent distribution PXt jXt{1
~x’. Note that in neither

case is perturbation of the system required, although in the latter

case the system must visit all possible states multiple times to allow

reasonable estimation of PXt jXt{1
~x’. Finally, the denominator

PX1
xð Þ is computed from

PX1
xð Þ~

X
j[SX

PX1jX0~j xð ÞPX0
jð Þ : ð0:17Þ

For a part M the analogous Bayes’ rule formula is

PM0jM1~m m’ð Þ~
PM1jM0~m’ mð ÞPM0

m’ð Þ
PM1

mð Þ : ð0:18Þ

Here PM0
is the maximum entropy distribution on SM . To

compute the conditional probability distribution PM1jM0~m’ for

the state at time 1 given the state at time 0 it is necessary to

average over states external M. Let N denote the complement of

M within X , so X t~ M t,N tð ÞT. Then we have

PM1jM0~m’,N0~n’ mð Þ~
X
n[SN

PX1jX0~ m’,n’ð Þ m,nð Þ , ð0:19Þ

PM1jM0~m’ mð Þ~
X

n’[SN

PM1jM0~m’,N0~n’ mð ÞPN0
n’ð Þ: ð0:20Þ

(Note that in Ref. [11] QDM is instead computed using a perturbed

version of the sub-system M, for which the joint distribution of the

noise in all the afferent connections (‘wires’) to M is taken to be

maximum entropy. Here we instead assign the maximum entropy

distribution to states external to the sub-system. By doing so, we

eliminate the step of perturbing sub-systems, and need only

perturb the whole system once, namely to impose the maximum

entropy distribution as the initial state of the whole system. This

choice enables simpler notation and description and does not

affect the qualitative behavior of the measure [11].) Finally,

PM1
mð Þ is given by

PM1
mð Þ~

X
m[SM

PM1 jM0~m mð ÞPM0
mð Þ: ð0:21Þ

Given the probability distributions PX0jX1~x and P
Mk

0
jMk

1
~mk ,

k~1, . . . ,r, the effective information is computed using the

formula (0.11) for the KL divergence.

The integrated information is defined as the effective information

with respect to the minimum information partition (MIP). The

MIP, PMIP xð Þ, is defined as the partition that minimizes the

effective information when it is normalized by

KM M1, . . . ,Mr
� �� �

~ : r{1ð Þ:mink H Mk
0

� �
 �
: ð0:22Þ

Normalization is necessary because sub-systems that are almost as

large as the whole system typically generate almost as much

information as the whole system. Therefore, without normaliza-

tion, most systems would have a highly imbalanced MIP, (e.g.,

one element versus the remainder of the system) and a trivially

small value for integrated information. The normalization KM

ensures that integrated information is specified using a partition

defined using a weighted minimization of the effective informa-

tion, with a bias towards partitions into sub-systems of roughly

equal size. We will discuss the importance of normalization

further in the section ‘WE for Markovian Gaussian systems’. Thus,

PMIP xð Þ is given by

PMIP xð Þ~ : argP min
QDM X ; x,P½ �

KM Pð Þ

� 

: ð0:23Þ

Given the MIP, the integrated information WDM X ; xð Þ generated

by the system X entering state x is simply the non-normalized

effective information with respect to the MIP,

WDM X ; x½ �~ : QDM X ; x,PMIP xð Þ

 �

: ð0:24Þ

Importantly, the value of WDM X ; x½ � is furnished by the non-

normalized effective information because it is supposed to

represent a physically meaningful property of the system in the

corresponding ‘integrated information theory’ [14].

For a state-independent alternative to WDM, one can replace the

effective information with its expectation with respect to the

current state x, and define the expected integrated information, �WWDM, as

the expected effective information across the partition that

minimizes the normalized expected effective information [11].

The expected effective information, �QQDM, is given by [11]

Practical Measures of Integrated Information
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�QQDM X ; M1, . . . ,Mr
� �
 �

:
Xr

k~1

H Mk
0 jMk

1

� �
{H X0jX1ð Þ , ð0:25Þ

or equivalently

�QQDM X ; M1, . . . ,Mr
� �
 �

:I X0; X1ð Þ{
Xr

k~1

I Mk
0 ; Mk

1

� �
: ð0:26Þ

Note that the second expression (0.26), but not the first (0.25),

requires that X0 have the maximum entropy distribution [11]. To

derive (0.26) from (0.25), one uses that the maximum entropy

distribution is uniform, so that

H X0ð Þ~
X

k

H Mk
0

� �
: ð0:27Þ

This ensures that one can add H X0ð Þ to the second term on the

RHS of (0.25) and subtract
P

k H Mk
0

� �
from the first term, and

then use Eq. (0.6) to obtain the expression (0.26).

We emphasize that WDM was defined only for systems that are

both discrete and Markovian. The measure can not be applied to

continuous systems (except those with a compact i.e. closed and

bounded set of states) because there is no uniquely defined

maximum entropy distribution for a continuous random variable

defined on the real number line [16]. (In fact, the measure is also

not applicable to discrete systems with an infinite set of states.)

WDM can only be applied to Markovian systems because for a non-

Markovian system it is not clear how to impose the maximum

entropy distribution as an initial condition, implying that the

conditional probability distribution PX1jX0~x’ cannot be uniquely

specified by any generative model. For instance three alternatives

are (i) to make all past states independent and maximum entropy;

(ii) to set all past states to zero except the most recent; (iii) to just set

one past state to maximum entropy and obtain the distribution for

other past states from the generative model. There is no

immediately apparent way to choose among these alternatives.

Taken together, these limitations are important because complex

(e.g. neural) systems are typically non-Markovian, and neural

signals are often recorded as continuous variables. In ‘Methods’ we

describe an extension to WDM that renders it well-defined for

stationary continuous, but still Markovian, systems by choosing a

maximum entropy distribution based on the stationary variances

of the states of individual elements. This enables us to compare

WDM with our new measure WE for some example cases.

The new measure, WE

The general case. In this section we introduce a new

measure of integrated information, WE, constructed analogously to

WDM, but with modifications to broaden its applicability, both in

theory and in practice. WE is designed for stochastic stationary

systems, for which it provides a single time- and state-independent

value (given a timescale of measurement, discussed below). The

measure is particularly easy to apply to stationary Gaussian

systems, either from time-series data or from a generative model.

The key modification is that rather than measuring information

generated by transitions from a hypothetical maximum entropy

past state, WE instead utilizes the actual distribution of the past

state; hence the name WE, ‘W-empirical’. This ensures that the

measure does not suffer from the in-principle restrictions that

pertain to WDM, and can be applied to both discrete and

continuous systems with either Markovian or non-Markovian

dynamics. (More specifically, WE will be well-defined as long as the

states X t of the system are either discrete or have continuous

probability densities with respect to a Lebesgue measure dnx.) A

second difference is that, in order to be state-independent, WE is

based on the average information generated by the current state

about the past state, as opposed to information generated by a

particular current state. Finally, WE is defined so as to enable a

choice of timescale (indicated by t) over which integrated

information is measured. Thus WE X ; t½ � is the integrated

information generated by the current state of the system about

the state t time-steps in the past.

We now define WE for a stochastic system with stationary

dynamics. As for WDM, WE is defined via ‘effective information’.

For the new measure we define the effective information generated

by the current state X t about the state t time-steps ago, with

respect to bipartition B~ M1,M2
� �

, to be the mutual information

generated by the whole system minus the sum of the mutual

information generated by the parts within the bipartition. Thus

Q X ; t,B½ �~ : I X t{t; X tð Þ{
X2

k~1

I Mk
t{t; Mk

t

� �
: ð0:28Þ

The integrated information WE X ; t½ � is then the non-normalized

effective information with respect to the minimum information

bipartition (MIB),

WE X ; t½ �~ : Q X ; t,BMIB X ; tð Þ

 �

, ð0:29Þ

where

BMIB X ; tð Þ~ : argB min
Q X ; t,B½ �

K Bð Þ

� 

, ð0:30Þ

and

K M1,M2
� �� �

~ : min H M1
t

� �
,H M2

t

� �
 �
: ð0:31Þ

WE can either be computed analytically from a generative

model, or estimated numerically from time-series data. In either

case, one must first obtain estimates of the probability distributions

for the states X t{t and X t, and their joint distribution P X t{t,X tð ÞT ,

as well as the corresponding distributions for all sub-systems.

Then, given these distributions, the corresponding entropies can

be computed using Eq. (0.3), for a system with discrete states, or

Eq. (0.4) for a system with continuous states. Having obtained

these entropies, Eq. (0.7) can be used to obtain the mutual

information I X t{t; X tð Þ between the past and current state of the

system, and likewise for all sub-systems. Given these quantities, WE

can then be obtained directly from Eqs. (0.28)–(0.31).

For numerical computation, the required probability distribu-

tions can in principle be obtained directly from data, although in

practice it may be difficult to obtain sufficient data to enable

accurate estimation of all the relevant entropies. As we explain in

the section ‘Computing WE empirically under Gaussian assump-

tions’, this difficulty can be readily overcome if states are Gaussian

distributed.

For analytic computation of WE given a generative model, we

note that the probability distributions for X t{t and X t individually

are both simply equal to the stationary distribution for the state of

the system. Obtaining the joint distribution for X t{t and X t
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together will depend on the details of the generative model. Once

again the situation is much easier in practice for Gaussian systems,

in which case only the covariance matrix of each probability

distribution is needed (see equation (0.8)). As we show in the

section ‘Computing WE analytically for a Gaussian system’,

these matrices can be derived easily from a generative model

expressed as a generalized connectivity matrix, assuming Gaussian

dynamics.

A few further remarks about WE are worth making. First, that WE

remains well-defined as a time-dependent quantity for non-

stationary stochastic systems; we focus on the stationary case for

simplicity, and because of our interest in empirical measurement of

WE via sampling from time-series data. Second, unlike WDM, WE is

not defined for deterministic systems. This is because it does not

incorporate a perturbation through which to introduce probabilities

into a deterministic system. Third, we restrict attention to

bipartitions for computational efficiency. This is standard practice

for computing WDM [11,14]. Extension to general partitions is trivial,

albeit computationally expensive. Finally, since mutual information

is symmetric in its two arguments (0.7), effective information as given

by (0.28) can alternatively be read in terms of information generated

by the past state X t{t about the current state X t.

Our definition (0.28) for the effective information, Q, is based on

the expression (0.26) for the expected effective information, �QQDM in

the construction of WDM. A viable alternative would be to instead

use

~QQ X ; t, M1,M2
� �
 �

~ :
X2

k~1

H Mk
t{tjMk

t

� �
{H X t{tjX tð Þ , ð0:32Þ

the analogue of (0.25). This quantity has previously been defined

in Ref. [22] as ‘stochastic interaction. It is the average KL

divergence between (i) the past of the whole given the present of

the whole, and (ii) the product of this for parts [11]. Replacing Q

with ~QQ in the definition of WE leads to a second measure ~WWE. In

general, ~QQ will not be exactly equal to Q. (Equality of their

analogues for WDM relies on the past state being maximum

entropy, see section ‘The previous measure, WDM’.) However, we

show in Table 1 that ~WWE behaves very similarly to WE for the

examples we consider in this paper. We choose to focus on WE

because it explicitly operationalizes the concept of ‘information

generated by the whole minus the sum of information generated

by the parts’ (0.28).

In summary, we have defined a new measure of integrated

information WE that is broadly well-defined, and which is easy to

measure under Gaussian dynamics, either from time-series data or

given a generative model (see below). In contrast, the previous

measure WDM is only defined for discrete, Markovian systems. As a

consequence, WE but not WDM is applicable to realistic continuous

non-Markovian stochastic models of neural systems.

Computing WE empirically under Gaussian assump-
tions. Under Gaussian assumptions, equation (0.10) furnishes an

expression for WE simply in terms of covariance matrices, enabling

straightforward empirical computation. The effective information

is given by

Q X ; t, M1,M2
� �
 �

~
1

2
log

detS Xð Þ
detS Xt{tjXtð Þ

� 

{

X2

k~1

1

2
log

detS Mk
� �

detS Mk
t{tjMk

t

� �
( )

,

ð0:33Þ

and the normalization factor K by

K M1,M2
� �� �

~
1

2
log mink 2peð Þ Mk

�� ��
detS Mk

� �� 

: ð0:34Þ

In practice, the procedure for computing WE is as follows. First one

obtains empirically the covariance matrices S Xð Þ, S X t{t,X tð Þ
and analogues for all sub-systems. Then one uses Eq. (0.1) to

obtain the partial covariance S X t{tjX tð Þ and its sub-system

analogues. Given these quantities, equations (0.33) and (0.34)

furnish estimates for the effective information and normalized

effective information with respect to any given bipartition. These

estimates allow identification of the MIB and WE, via equations

(0.29) and (0.30).

Computing WE analytically for a Gaussian system. In

this section we describe analytical computation of WE for Gaussian

systems, assuming that the generative model is known. We first

recognize that a generative model for a Gaussian stationary system

is always equivalent to an MVAR pð Þ (multivariate auto-regressive)

process [18]

X t~A1
:X t{1zA2

:X t{2z � � �zAp
:X t{pzEt , ð0:35Þ

where the Ai, i~1, . . . ,p, can be understood as generalized

connectivity matrices acting at different time-lags, and Et is a

stationary multivariate Gaussian ‘white noise’ source with zero

mean and vanishing auto-covariance function, Ct Eð Þ~0, t=0.

(Technically, there also exists the case p~?, but we do not

consider this here, because in practical application there will always

be an optimal range of finite p for model fitting.) Below, we show

how to calculate WE for an MVAR(1) system at timescale t~1.

Extension to the general p, general t case is given in the ‘Methods’

section. Consider the generative model

X t~A:X t{1zEt: ð0:36Þ

Taking the covariance of both sides of (0.36) gives

S Xð Þ~AS Xð ÞATzS Eð Þ : ð0:37Þ

Noticing that this equation is the discrete-time Lyapunov equation,

S Xð Þ can be computed numerically, given A, for example, in

Matlab via use of the ‘dlyap’ command. To compute the partial

covariance S X t{1jX tð Þ we need the single time-step auto-

covariance matrix

C1 Xð Þ:S X t{1,X tð Þ~SX t{1 AX t{1zEtð ÞTT~S Xð ÞAT: ð0:38Þ

We can then use equation (0.1) to obtain the partial covariance as

S X t{1jX tð Þ~S Xð Þ{C1 Xð ÞS Xð Þ{1C1 Xð ÞT : ð0:39Þ

Having values for S Xð Þ and S X t{1jX tð Þ allows calculation of the

first term in the RHS of (0.33). Calculation of the second term, and

of the normalization factor, requires consideration of sub-systems.

For a sub-system M, we consider the bipartition M,Nf g, and the

block decomposition of vectors and matrices according to

X t~ M t,N tð ÞT. The matrices S Xð Þ and C1 Xð Þ can then be

written in the form
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S Xð Þ~
S Xð ÞMM S Xð ÞMN

S Xð ÞNM S Xð ÞNN

 !
,

C1 Xð Þ~
C1 Xð ÞMM C1 Xð ÞMN

C1 Xð ÞNM C1 Xð ÞNN

 !
,

ð0:40Þ

and we can use that

S Mð Þ~S Xð Þ , C1 Mð Þ~C1 Xð ÞMM : ð0:41Þ

Then, again from (0.1), the partial covariance is given by

S Mt{1jMtð Þ~S Xð ÞMM{

C1 Xð ÞMM S Xð ÞMM


 �{1
C1 Xð ÞTMM :

ð0:42Þ

Equations (0.37)–(0.42) together furnish the covariance matrices

needed to compute the effective information and normalized

effective information from the formulae (0.33) and (0.34) valid for

Gaussian systems. Finally, the MIB and WE are obtained from Eqs.

(0.29) and (0.30).

WE for Markovian Gaussian systems
Canonical examples. We present results from computing

WE, for timescale t~1, for some example Markovian Gaussian

systems. Results are given for analytical computation given the

generative model, and for numerical computation given simulated

time-series data. The example systems are characterized by the

MVAR(1) dynamics

X t~A:X t{1zEt , ð0:43Þ

where X t contains 8 variables, A is the connectivity matrix, and

each component of Et is an independent Gaussian random

variable of mean 0 and variance 1. We considered seven systems,

with connectivity as shown in Fig. 1(a)–(g); we refer to these

systems ‘1(a)’, ‘1(b)’, and so on. The corresponding values of WE

are given in Fig. 1(h) and Table 1. For analytic computation, we

performed the procedure described in the section ‘Computing WE

analytically for a Gaussian system’. For simulated measurements,

we first obtained time-series data from equation (0.43), and then

computed WE using the recipe described in the section ‘Computing

WE empirically under Gaussian assumptions’. To examine

numerical stability of simulation measurements, we performed

10 trials for each network with 3000 post-equilibrium data points

and a separate set of 10 trials with 10,000 post-equilibrium data

points.

For all systems, except 1(g) (which we discuss below), the

analytically derived (true) value of WE lay within &1 standard

deviation of the mean value obtained via the simulations, both for

3000 and 10,000 data points (see Fig. 1(h) and Table 1). This

correspondence confirms the consistency of the numerical and

analytical approaches described above.

The values of integrated information mostly correspond with

expectations. For example, a ring of reciprocal connections (1(c))

integrates approximately twice as much information as a ring of

unidirectional connections (1(b)), which itself integrates approxi-

mately twice as much information as a (non-closed) chain of

unidirectional connections (1(a)). Also as expected, the homoge-

nous system 1(d) has a low WE value. Perhaps in contrast to

expectations, adding sparse long-range ‘short-cut’ connections to a

reciprocal ring (1(e)–1(g)), in the style of a so-called ‘small world’

network [23,24,25], does not increase WE (compare with network

1(c)).

For values of WE to be meaningful it is essential that they are

stable with respect to numerical computation. To assess numerical

stability, we calculated the coefficient of variation (the standard

deviation divided by mean) across each set of 10 trials. For all

networks other than 1(g), and for trial sets of both 3,000 and

10,000 data points, the coefficient of variation was less than 0.11,

confirming that empirical calculation of WE from time-series data

is stable for these networks.

Network 1(g) exhibited instability when measuring WE from

simulation. As shown in Fig. 1(h), the corresponding values of WE

fell close to one of two values, one of which was the true

Table 1. Integrated information computed in various ways for the networks shown in Figs. 1 and 2.

Network (i) WE
iið Þ WE

3000 datað Þ
iiið Þ WE

10, 000 datað Þ (iv) ~WWE (v) �WWDM
við Þ WAR

3000 datað Þ
1(a) 0.0323 0:037+0:004 10ð Þ 0:034+0:003 10ð Þ 0.0323 0.0323 0:038+0:002 9ð Þ

0:031 1ð Þ
1(b) 0.0645 0:063+0:004 10ð Þ 0:063+0:003 10ð Þ 0.0645 0.0645 0:061+0:005 10ð Þ
1(c) 0.1283 0:122+0:008 10ð Þ 0:124+0:003 10ð Þ 0.1387 0.1313 0:125+0:004 10ð Þ
1(d) 0.0795 0:072+0:006 10ð Þ 0:075+0:004 10ð Þ 0.0894 0.0755 0:073+0:006 10ð Þ
1(e) 0.1285 0:136+0:012 10ð Þ 0:129+0:002 10ð Þ 0.1376 0.1303 0:135+0:013 10ð Þ
1(f) 0.1294 0:132+0:008 10ð Þ 0:133+0:004 10ð Þ 0.1383 0.1307 0:131+0:012 10ð Þ
1(g) 0.1266 0:128+0:010 6ð Þ

0:093+0:005 4ð Þ
0:098+0:004 6ð Þ
0:129+0:006 4ð Þ

0.1362 0.1288 0:129+0:013 7ð Þ
0:101+0:009 3ð Þ

2(a) 0.2502 0:244+0:010 10ð Þ 0:246+0:004 9ð Þ
0:125 1ð Þ

0.2652 0.1254 0:245+0:009 9ð Þ
0:128 1ð Þ

2(b) 0.2965 0:291+0:013 10ð Þ 0:2902+0:004 10ð Þ 0.3012 0.2647 0:287+0:010 7ð Þ
0:142+0:005 3ð Þ

Methods of computation are (i) WE computed analytically; (ii) WE computed numerically from 10 trials of 3000 data points each; (iii) WE computed numerically from 10
trials of 10,000 data points each; (iv) ~WWE computed analytically; (v) (extended) �WWDM computed analytically, and (vi) WAR computed numerically from 10 trials of 3000
data points each, with the noise exponentially distributed. For numerical computation, means and standard deviations are given; the number of trials resulting in each
value is given in parentheses. In all cases t~1.
doi:10.1371/journal.pcbi.1001052.t001
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(analytically derived) value. For simulations of 3,000 data points 6/

10 trials produced WE estimates close to the true value; for 10,000

data points 4/10 trials provided such estimates. This instability

arises from the use of normalized effective information (Q) in

identifying the MIB, but non-normalized Q in specifying the

corresponding value of WE. Given finite data, estimates of Q
cannot be guaranteed to be accurate. As a result, inter-trial

variation in measuring WE from data can arise when (i) there are

two (or more) partitions with similar values of normalized Q close

to the true minimum (used to identify the MIB), and (ii) these

partitions have substantially different values for non-normalized Q.

The latter condition will typically hold when partitions with similar

normalized Q have significantly different sub-system sizes (see the

section ‘The previous measure, WDM’). Network 1(g) illustrates this

difficulty. For this network, the true MIB is the bipartition

1,6,7,8f g, 2,3,4,5f gf g, for which the normalized Q is 0.0213.

Figure 1. Integrated information in Markovian Gaussian systems. (a)–(g) Connectivity diagrams for seven systems as specified by the
corresponding connectivity matrices A. Arrow widths reflect connection strengths: for (a)–(c) and (e)–(g), all connection strengths are 0.25; for system
(d) each connection strength is 1/14, thus the total afferent connection to each element is 0.5. (h) Integrated information, as measured by WE (t~1)
for each of the systems (a)–(g), via simulated data (bars) and analytically via the generative model (asterisks). For simulated data, 10 trials were
performed, with each trial generating 3000 data points. Bars show mean values; error bars show plus/minus one standard deviation. For system 1(g),
sizes of sub-systems in the MIB varied across trials, falling into two distinct groups which are shown separately (the top bar reflects a group of 6 trials;
the bottom bar, 4 trials).
doi:10.1371/journal.pcbi.1001052.g001
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However, there is an uneven bipartition, 1,2,3,4,5f g, 6,7,8f gf g for

which the normalized Q is 0.0218, i.e., very similar to the value of

Q for the true MIB. However, the non-normalized Q for the MIB

(i.e. WE) is 0.1266, whereas the value for the uneven bipartition is

0.0966. Fig. 1(h) and Table 1 show that empirical measurements of

WE cluster around these two values.

One may consider that this problem of instability could be

avoided by using non-normalized Q to identify the MIB. However,

as discussed in the section ‘The previous measure, WDM’, in this

case WE would always be trivially small because, for any non-trivial

system X , a bipartition of the form 1f g, 2,3, . . . , Xj jf gf g would

generate almost as much information as the whole system. A

second solution would be to specify WE in terms of normalized Q.

However, in this case the meaning of WE would be substantially

altered inasmuch as it could no longer be considered a measure of

the quantity of information generated (or integrated) by a system.

Optimization of networks for generating high WE. To

examine whether network structures other than reciprocally

connected rings could generate high levels of WE, we performed

numerical optimizations using a genetic algorithm (GA).

Specifically, we used WE (t~1) as an objective function for

evolving populations of networks with dynamics governed by

MVAR(1) processes (see Eq. (0.43)). We performed two sets of

optimizations under different constraints on the connectivity

matrix A. In the first set, all connection strengths were fixed

(‘fixed’ condition; two afferents per element each with strength

0.25). In the second set, connection strengths were allowed to vary

(‘vary’ condition; total afferent to each element equal to 0.5, all

afferents to a given element equal and positive). Each condition

consisted of 20 separate GAs, each with 30 randomly initialized

networks in the population; (in the ‘vary’ condition networks were

initialized with elements having on average 2 afferent

connections). Each GA ran for 200 generations, allowing fitness

to asymptote. Within each generation, the fitness of each network

was determined by analytical computation of WE; networks were

then ranked by fitness and a new population was formed by rank-

based selection and mutation. In the ‘fixed’ condition, each

network was mutated by rearranging 2 connections; in the ‘vary’

condition each network was mutated by (with equal probability)

adding, removing, or swapping 2 connections, followed by

renormalization of total afference to each element to 0.5.

The results of the optimizations are shown in Fig. 2 and Table 1.

Network 2(a) is the fittest (highest WE) across all 20 GAs in the

‘fixed’ condition; this network topology was discovered by 6 out of

the 20 GAs in this condition. The network has WE~0:2502,

approximately twice the value of the reciprocal ring networks

shown in Fig. 1. Network 2(b) is the fittest across all 20 GAs in the

‘vary’ condition, exhibiting WE~0:2965, i.e., substantially higher

again. This particular topology was discovered by only 2/20 GAs,

perhaps due to the larger search-space in this condition. It is

noteworthy that both of these ‘fittest’ networks show highly

heterogeneous connectivity patterns, consistent with the intuition

that integrated information is characterized by the coexistence of

differentiated and integrated dynamics.

The observation that the fittest network found in each condition

was only reached by a minority of GAs suggests that the WE

landscape across MVAR(1) systems has local maxima and may

exhibit ruggedness and discontinuities. To characterize this

landscape, we first plotted the distribution of fitness values across

all networks in the final populations from GAs that yielded the

(fittest) networks 2(a) and 2(b). Figs. 3(a,b) show that in both cases

the modal value of WE was substantially less than the maximum

value, indicating a lack of convergence suggestive of local maxima

and/or ruggedness [26]. We next examined the sensitivity of WE to

single mutations. Figs. 3(c) and 3(d) show the percentage decrease

in WE following 200 separate mutations of networks 2(a) and 2(b)

respectively (the corresponding mutation type was used in each

case, i.e., ‘fixed’ for 2(a) and ‘vary’ for 2(b)). For network 2(a), post-

mutation fitness decreases cluster in the range 10–20%, with a few

instances of &60%. For network 2(b), more than 20% of

mutations resulted in a fitness decrease of 50% or more. Together,

these observations show that the value of WE generated by a

network is highly sensitive to small changes in topology and

connection strength, further pointing to the ruggedness of the WE

landscape.

The instability arising from using normalized effective informa-

tion to find the MIB, (see ‘Canonical examples’), suggests that

there may be discontinuities, as well as ruggedness, in the WE

Figure 2. Networks optimized for high integrated information. (a) Optimal network for 2 afferents of 0.25 to each node. This has WE~0:2502.
(b) Optimal network for total afferent of 0.5 to each node, and all connections to a given node equal. This has WE~0:2965.
doi:10.1371/journal.pcbi.1001052.g002
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landscape. We were able to confirm the existence of such

discontinuities by incrementally perturbing a specific connection

in the example network 2(a). The MIB for this network is the

bipartition 1,4,5,6f g, 2,3,7,8f gf g, for which the normalized

effective information is 0.0421. However, there is an uneven

bipartition, 1,2,3,5,7,8f g, 4,6f gf g with the very similar normal-

ized effective information of 0.0424. We incrementally weakened

the connection between the two sub-systems in this uneven

bipartition, finding that there is a discontinuous change in WE at

the point at which the uneven bipartition becomes the MIB (see

Fig. 3(e)).

Comparison with WDM, ~WWE, and full table of MVAR(1)
results. It is instructive to compare results obtained using WE

with those obtained from the version of �WWDM extended to apply to

stationary continuous (but still Markovian) systems (see sections

‘The previous measure, WDM’ and ‘Methods’). Table 1 shows

(extended) �WWDM values for the various networks discussed above,

as well as the corresponding WE values. For networks 1(a) and 1(b)

the two measures are exactly equivalent, which is explained by the

stationary and maximum entropy distributions coinciding. For the

remaining networks, (except network 2(a), discussed below), the

two measures remain very similar, confirming WE as a valid and

useful measure of integrated information.

The network 2(a) has a value for WE that is approximately

double that of the corresponding �WWDM. This discrepancy can also

be attributed to the instability arising from normalization.

Specifically, the difference between the stationary and maximum

entropy distributions in this case is sufficient to lead to two

different MIBs, with constituent sub-systems of different sizes. In

fact, use of �WWDM leads to the MIB 1,2,3,5,7,8f g, 4,6f gf g of the

perturbed version of this network discussed in ‘Optimization of

networks for generating high WE’.

We also compared results obtained using WE with those

obtained using ~WWE, the measure constructed using the alternative

expression (0.32) for the effective information (Table 1). We found

that the two measures behave in qualitatively the same way across

all examples.

Extension to multiple lags and to MVAR pð Þ processes
The analyses in the previous section were concerned with

integrated information measured across a single time-step for

MVAR(1) processes. However, WE is well-defined for general

MVAR pð Þ processes and can measure integrated information

over any number of time-steps (lags). Here we illustrate this

property using three simple examples in which WE was computed

analytically, via the method outlined in ‘Computing WE analyt-

ically for a Gaussian system’ and ‘Methods’. Fig. 4(a) shows WE

measured for various values of t, (where t specifies the lag), for the

network 1(c). Fig. 4(b) shows the same analysis conducted for

network 2(b). Note that both of these networks are animated by

MVAR(1) processes, which explains why WE peaks at t~1 in both

cases, (in other words, for these networks, most of the integrated

information generated about past states by the current state is

generated about the most recent past state (i.e. t~1)).

Fig. 4(c) shows WE as a function of t for the MVAR(3) process

X t~A1
:X t{1zA2

:X t{2zA3
:X t{3zEt , ð0:44Þ

where A1, A2 and A3 are respectively the connectivity matrices of

networks 1(c), 2(b) and 2(a), each divided by 2. Note that this

generalized connectivity matrix was chosen purely to provide an

example of an MVAR(3) process. For this system, WE peaks at

t~2, indicating that most information is integrated about the state

two time-steps previous to the current state. These examples verify

Figure 3. Examination of the WE landscape with respect to network connectivity. (a) Histogram of WE for the 30 networks in the final
population of a GA that yielded optimal network 2(a). (b) Histogram of WE for the 30 networks in the final population of a GA that yielded optimal
network 2(b). (c) Histogram of percentage decrease in WE following single mutations of network 2(a) (200 evaluations). (d) Histogram of percentage
decrease in WE following single mutations of network 2(b) (200 evaluations). (e) Discontinuity in WE as connection strength from element 6 to
element 1 continuously changes (network 2(a); (all other connections fixed at 0.25)).
doi:10.1371/journal.pcbi.1001052.g003
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that WE can be applied at arbitrary lags to MVAR pð Þ processes,

and that it does detect integrated information at time-scales

corresponding to a system’s underlying generative mechanism.

Auto-regressive W (WAR)
We have presented a measure of integrated information, WE,

that is practical to measure from time-series data under Gaussian

assumptions. However, in the case of stationary, non-Gaussian

distributed time-series, WE can no longer be obtained directly from

empirical covariance matrices, and the required entropies must be

obtained via estimation of the corresponding probability distribu-

tions. For non-trivial systems accurate entropy estimation may

typically require the collection of more data than is practical.

We now describe how, even for the non-Gaussian case, the

recipe used to calculate WE under Gaussian assumptions can

nonetheless lead to a meaningful quantity reflecting integrated

information. We call this quantity WAR (‘auto-regressive W’). By

construction, WAR is equivalent to WE for Gaussian systems,

however, for non-Gaussian systems it may differ. In all cases,

because it is based on empirical covariance matrices, it remains

easy to measure in practice. The motivation for considering WAR

as a useful measure of integrated information rests on relations

between conditional entropy, partial covariance and linear

regression prediction error, explained below [17].

First we rehearse the concept of linear regression. Let X and Y
be two multivariate random variables. Then the linear regression

of X on Y is the expression

X~azA:YzE , ð0:45Þ

where A is termed the regression matrix, a is a vector of constants,

and E is the prediction error (or ‘residual’) [27,28,29,17]. The

residual is a random vector uncorrelated with Y . This represen-

tation is unique given the distributions of X and Y , with A and a
given by

A~S X,Yð ÞS Yð Þ{1 , ð0:46Þ

a~�xx{A:�yy : ð0:47Þ

The residual has zero mean and, importantly, its covariance

matrix is precisely the partial covariance of X given Y [17], thus

S Eð Þ~S XjYð Þ : ð0:48Þ

Note that this identity holds for any X and Y , Gaussian or

otherwise. For the case that X and Y are Gaussian, we can use Eq.

(0.9) to obtain, for all y,

H X jY~yð Þ~ 1

2
log detS Eð Þ½ �z 1

2
nlog 2peð Þ , ð0:49Þ

where n is the dimension of X . This relation between conditional

entropy and linear regression prediction error implies that, for

Gaussian systems, WE can be re-expressed in terms of linear

regression prediction errors. Thus, the formula (0.33) for effective

information can be re-written as

Q X ; t, M1,M2
� �
 �

~
1

2
log

detS Xð Þ
detS EX

� �
( )

{

X2

k~1

1

2
log

detS Mk
� �

detS EMk
� �

8<
:

9=
; ,

ð0:50Þ

where EMk
, k~1,2, and EX are the residuals in the regressions

Mk
t{t~AMk :Mk

t zEMk

t , ð0:51Þ

X t{t~AX :X tzEX
t : ð0:52Þ

For a non-Gaussian system, although Eq. (0.50) does not hold, its

RHS nonetheless constitutes a quantity that is easy to measure

empirically. This quantity forms the basis of the alternative

measure WAR, which we now define. Let X be a stationary, not

necessarily Gaussian, system, and let QAR X ; t, M1,M2
� �
 �

be the

RHS of Eq. (0.50), i.e.

QAR X ; t, M1,M2
� �
 �

~ :
1

2
log

detS Xð Þ
detS EX

� �
( )

{

X2

k~1

1

2
log

detS Mk
� �

detS EMk
� �

8<
:

9=
; ,

ð0:53Þ

where EMk
, k~1,2, and EX are the residuals in the regressions

(0.51) and (0.52). Then WAR is simply QAR for the bipartition that

minimizes QAR divided by the normalization factor

Figure 4. Integrated information, WE measured for states multiple time-steps in the past, i.e. for varying t. (a) Network 1(c). (b) Network
2(b). (c) Example MVAR(3) process, see Eq. (0.44).
doi:10.1371/journal.pcbi.1001052.g004
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L M1,M2
� �� �

~ :
1

2
log mink 2peð Þ Mk

�� ��
detS Mk

� �� 

: ð0:54Þ

Thus,

WAR X ; t½ �~ : QAR X ; t,Bmin tð Þ

 �

, ð0:55Þ

Bmin tð Þ~ : argB min
QAR X ; t,B½ �

L Bð Þ

� 

: ð0:56Þ

For Gaussian systems, WE and WAR are exactly equal. For non-

Gaussian systems the two measures differ, because the relation

(0.49) between conditional entropy and linear regression prediction

error no longer holds. However the equivalence (0.48) between

partial covariance and prediction error does still hold. Hence, for

any stationary system, the recipe for computing WE under Gaussian

assumptions (as laid out in ‘Computing WE empirically under

Gaussian assumptions’) yields precisely WAR. Notably, this recipe

implies that it is not necessary to explicitly carry out the linear

regressions; rather, the equivalence (0.48) shows that WAR can be

calculated using empirical covariance matrices.

WAR is meaningful as a measure of integrated information

because of its formulation in terms of linear regression prediction

error. WAR compares the whole system to the sum of its parts in

terms of the log-ratio of the variance of the past state to the

variance of the residual of a linear regression of the past on the

present. In other words, WAR can be understood as a measure of

the extent to which the present global state of the system predicts the

past global state of the system, as compared to predictions based on

the most informative decomposition of the system into its

component parts. When Gaussian conditions are satisfied, the

interpretation of WAR in terms of (backwards) prediction becomes

exactly equivalent to the interpretation of WE in terms of Shannon

information. Note that in fact, by the symmetry of mutual

information (0.7), (0.28), WAR could also be expressed in terms of

entirely analogous linear regressions in which the present is used to

predict the future. Understood this way, WAR provides an

interesting complement to complexity measures based on Granger

causality, such as causal density [5], which are also based on linear

regression models [30,5,18] (see ‘Comparison with causal density

and neural complexity’).

To demonstrate the use of WAR as distinct from WE, we re-

animated the networks 1(a)–1(g), 2(a) and 2(b) with non-Gaussian

dynamics. Specifically, we replaced the Gaussian noise sources Et

in Eq. (0.43) with independent random variables drawn from

exponential distributions with mean (and variance) 1. This

selection was motivated by the observation that aggregate

assemblies of Poissonian spiking neurons typically follow an

exponential distribution [31]. Fig. 5 shows representative examples

of single-element empirical stationary distributions resulting from

this modified dynamics; all show a large deviation from the

Gaussian. For each network we computed WAR empirically from

10 trials of 3000 data points each. The results, shown in Table 1,

suggest that in each case WAR for the non-Gaussian dynamics is

approximately equal to WE (~WAR) for the Gaussian dynamics.

This finding provides support for WAR as a useful alternative to

WE, applicable to non-Gaussian dynamics.

Discussion

In this paper we have presented two new measures of integrated

information, WE and WAR. As with a previous measure, WDM, our

measures quantify the information generated by a system over and

above that which can be accounted for by its parts acting

independently [11]. However, whereas WDM is defined only for

discrete Markovian systems, and is therefore difficult to measure in

practice, our quantities are well defined much more generally, and

are easily applicable to stationary time-series data. Our key

innovations are (i) to treat information in terms of reduction in

uncertainty from the empirical as opposed to the maximum entropy

distribution (WE), and (ii) to interpret integrated information in

terms of predictive ability of the present of a system with respect to

its past (WAR). Simulations showed that our measures conform to

intuitions regarding conjoined dynamical integration and segrega-

tion; where comparisons could be made, in most cases our measures

quantitatively aligned with WDM. By showing how to measure

integrated information from time-series data and for non-trivial

non-Markovian systems, our results provide new opportunities for

examining the role of integrated information in complex biological

systems of all kinds, and carry implications for integrated

information theories of consciousness. In the following discussion,

we use the symbol W to refer to integrated information

independently of its method of measurement.

Empirical and maximum entropy distributions
As mentioned, many of the restrictions in applicability of WDM

arise from the use of the maximum entropy distribution to

measure information. The maximum entropy distribution is

maximally agnostic with respect to the behavior of a system, and

represents, in some sense, its potential, or ‘capacity’ (see

‘Integrated information as a measure of consciousness’ and

Figure 5. Stationary distributions for elements in networks animated with exponentially distributed noise. Each panel shows an
empirical probability distribution as a histogram taken from 3000 data points from element 1 in (a) network 1(b), (b) network 1(d), and (c) network
2(b).
doi:10.1371/journal.pcbi.1001052.g005
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‘Comparison with causal density and neural complexity’).

However, since the maximum entropy distribution typically does

not arise spontaneously, it must be introduced as the distribution

of a hypothetical initial state [11]. To compute WDM one therefore

has to characterize evolution from all possible initial states of the

system. However, for most practical purposes, especially in

biology, it is only possible to experimentally examine systems in

the context of their ongoing evolution as a sequence of states.

Unless the system is Markovian, evolution from a state with history

is not the same as evolution from a hypothetical initial state,

implying that WDM cannot be applied to non-Markovian systems

(with the exception of idealized simulated systems for which a

separate generative model can be written down for evolution from

the initial state). Equally important, but easier to appreciate, is that

it is not possible to apply WDM to continuous systems (except those

with a compact, i.e. closed and bounded, set of states) because

there is no uniquely defined maximum entropy distribution for a

continuous random variable defined on the real number line [16].

Our new measure WE eliminates the need to consider the

maximum entropy distribution by being based instead on the

information generated by the current state of the system about the

actual state of the system some number of time-steps in the past.

This approach lifts the conditions that the system be discrete and

Markovian. (Note however that WDM but not WE is applicable to

deterministic systems, by virtue of introducing probabilities via the

maximum entropy initial state.)

In principle, use of the empirical distribution de-emphasizes the

notion of ‘capacity’ because the generation of information is

measured with respect to what the system has done rather than what

it could do. However, over large samples and for ergodic systems, this

distinction becomes increasingly blurred. In practice, computing WE

via sampling from time-series requires the data to be stationary. We

recognize that not all complex biological systems generate stationary

dynamics (see, e.g., Ref. [32]). However, stationarity is a common

pre-requisite for statistical analysis of time-series data [33], and

neural data can often be brought into this form, for example by

detrending, taking first-differences and/or binning observations into

short time windows [34]. Furthermore, neural dynamics are often

characterized as a series of ‘metastable’ states [35,36,37], each of

which may be locally stationary. Stationarity can also depend on the

spatiotemporal granularity of observation. Dynamics that appear

non-stationary at one time scale may exhibit stationarity when

sampled over different time scales, underlining the principle that

data acquisition should be guided by the constraints of subsequent

analysis methods.

Use of the empirical, rather than maximum entropy distribution

also changes the means by which W is computed. To compute WDM,

one requires the conditional probability distributions for the past

state given the present state, but with an a priori maximum entropy

distribution on the past state. Because of the maximum entropy

condition (which represents ‘perturbation’ of the system), these

distributions cannot be obtained empirically, but they can be

obtained by applying Bayes’ rule given a forward dynamical model

estimated from the data (i.e. conditional probability distributions for

the present state, given the past state). By contrast, computation of

WE does not require Bayes’ rule because, in the absence of

(maximum entropy) perturbation, one can obtain the full joint

distribution for the past and present directly from the data.

Practical applicability and Gaussian dynamics
WE is particularly easy to apply to data under Gaussian

assumptions. This is because the relevant entropies can be

estimated directly from empirical covariance matrices. It is also

possible to compute WE analytically from a generative model for a

Gaussian system, (i.e., to any desired level of accuracy, without

explicitly simulating or observing its dynamics); in that case, one

obtains the necessary covariance matrices analytically. This means

that WE can be evaluated in practice for a broad range of

biological systems.

While Gaussian dynamics are common in biology (and the

assumption of Gaussianity even more so), many systems depart

from this assumption. For example, the spiking activity of

populations of neurons typically exhibit exponentially distributed

dynamics. For the non-Gaussian case, one can still in principle

calculate WE by obtaining the necessary entropies directly from

data. However, in practice, accurately obtaining all of the

underlying probability distributions may typically require the

collection of more data than is practical. To overcome this, we

introduced the second measure WAR. This is constructed

analogously to WE, but with information replaced by the reduction

in the generalized covariance of the past state under prediction via

linear regression on the current state. WAR is interpreted as

measuring how well the present state of a system predicts some

previous state, but only to the extent that predictions based on the

whole outstrip predictions based on parts independently. WAR and

WE are equivalent for Gaussian systems, but otherwise differ;

(recall however that WAR can be obtained for any system by using

the recipe for computing WE for a Gaussian system). In our

examples, WAR was in fact insensitive to a change from Gaussian

noise to exponentially distributed noise, supporting its use as an

alternative to WE.

Normalization and instability
All versions of W require a normalization step. Specifically, W is

determined by the non-normalized effective information (Q) across a

minimum information bipartition (MIB) which is specified as the

bipartition which minimizes the normalized Q (the informational

‘weakest link’). Normalization enforces a bias towards bipartitions

consisting of sub-systems of roughly equal size. Without normal-

ization, MIBs would typically divide systems into single elements

versus the remainder of the system, leading to trivially small values

of W. On the other hand, it remains important to determine the

value of W using the non-normalized Q in order to allow W to be

interpreted as a quantity of information.

The use of normalization, as just described, leads to instabilities.

Our simulations have shown that WE can be (i) discontinuous

under a continuous perturbation of dynamics, and (ii) highly

sensitive to the accuracy of entropy estimation from finite data. In

our examples, these instabilities arose precisely when there were

multiple partitions with similar values of normalized Q close to the

true minimum and these partitions had substantially different

values of non-normalized Q. This instability does not arise for all

systems, and indeed for most of our examples WE is numerically

stable. Nonetheless, the embedding of normalization within the

definition of W challenges ascription of physical meaning to any

measured value of W. This is because the value of W is in all cases

dependent to some arbitrary degree on the normalization process

involved in determining the MIB.

Integrated information as a measure of consciousness
Previous measures of integrated information (WC and WDM)

were formulated in the context of a theory of consciousness, the

‘integrated information theory of consciousness’ (IITC). According

to the IITC, consciousness is integrated information, and has the

status of a fundamental property of the universe, equivalent to

mass, charge, and the like [14]. On this theory a low value of

integrated information would correspond to a low conscious ‘level’

(e.g., coma, general anesthesia, deep dreamless sleep) and a high
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value to normal conscious wakefulness. If one subscribes to the

theory using WDM, then one must interpret consciousness

(integrated information) as a function of state transitions [11];

accordingly, one cannot ask about the conscious level of a system

per se. By contrast, if one applies WE or WAR to a stationary system

then they are state-independent and so, subscribing to the IITC

with these measures involves viewing integrated information as a

property of the system’s dynamics. This in turn would imply that

(i) conscious level is constant during each stationary epoch in brain

activity, and (ii) conscious level changes when functional

connectivity changes, modifying the stationary statistics. This view

recalls William James’ notion of consciousness as a process [19]

and is consistent with a large amount of empirical evidence

showing correlations between conscious level and plausibly

stationary epochs of brain activity. For example, normal conscious

wakefulness is characterized by low-amplitude high-frequency

oscillations in the cortical EEG [38], whereas epileptic absence

seizures are characterized instead by increased synchrony in

thalamocortical systems [39]. As mentioned in the section

‘Empirical and maximum entropy distributions’, neural dynamics

may be metastable [35,36,37], with locally stationary periods

corresponding to a conscious state with a particular level and

content. Our results now make it possible to measure the

integrated information corresponding to these various states and

to compare these values with other indices of consciousness, both

subjective (e.g., verbal reports, confidence ratings, etc.) and

objective (e.g., EEG synchrony, widespread brain activity, etc.)

[40]. Importantly, it is now possible to quantitatively compare

integrated information with other measures of neural dynamics

that operationalize in different ways the notion that consciousness

conjoins dynamical integration and differentiation, such as ‘causal

density’ [41] and ‘neural complexity’ [8] (see ‘Comparison with

causal density and neural complexity’).

An important feature of the IITC as previously expressed is that

consciousness qua W is best considered as a capacity (equivalently a

potential, or disposition), and not as an ‘object’ or a process [14].

The original WC operationalized the notion of capacity by

subjecting a system to all possible perturbations and examining

its responses. The recent WDM measures information as a

reduction in entropy from the maximum entropy distribution,

which can be taken to correspond to the capacity of a system.

However, because WDM is specified by state transitions it is not a

‘pure’ measure of capacity; rather, it is a measure of capacity

modulated by a system’s dynamics. By measuring W with reference

to the stationary distribution, our measures depart from the notion

of consciousness as a capacity. The stationary distribution

characterizes the capacity of a system only to the extent that it is

realized in the system’s behaviour. WE and WAR can therefore be

construed as measures of a process modulated by capacity,

aligning more closely with the Jamesian intuition.

The notion that W exists as a ‘fundamental property’ deserves

comment. As described in the section ‘Normalization and

instability’, our results challenge the ascription of physical meaning

to W, in virtue of its exquisite sensitivity to the normalization

process involved in specifying the MIB: this challenge pertains

equally to the notion of W as a ‘fundamental quantity’. A further

challenge to the ascription of physical meaning to W is the fact that

it is not invariant under a change of coordinates, since this leads to

a different set of sub-systems over which to minimize the effective

information. An interesting question for future work is to examine

whether, under certain conditions, the set of coordinates that

maximizes W could be taken to define ‘natural’ coordinates, or

macroscopic variables, for the system. In any case, it does not seem

necessary to consider W as a strict physical quantity in order to

measure the integrated information corresponding to a system’s

state transitions or stationary dynamics, nor to relate these

measurements to conscious level and content. In other words,

one can depart from the IITC by interpreting W as accounting for

particular aspects of consciousness without the further step of

claiming identity [9].

Integrated information in other neurocognitive
processes

Although W was originally developed in the context of a theory

of consciousness, it is plausible that integrated information, and

(more generally) conjoined functional integration and differentia-

tion, play key roles in other cognitive and neural processes.

Previous formulations (WDM, WC) are poorly suited to investigating

these roles, not only because of practical inapplicability, but also

because they characterize integrated information in terms of

capacity rather than process. Whereas consciousness under some

theories may be considered as a capacity (see above), neurocog-

nitive properties in general are best considered as processes.

Having a measure of W that is framed in terms of process, and that

is easy to apply in practice, therefore permits the framing of

testable hypotheses, and the specification of synthetic models,

aimed at examining the role of integrated information in

neurocognitive processes broadly construed. For example, multi-

modal binding and perceptual categorization [20], and action

selection (decision making) [21] plausibly involve integrated

information and could be profitably analyzed using our methods.

Already, related measures of dynamical complexity (neural

complexity and causal density, see below) have been correlated

with the ability of simulated agents to deploy flexible behavior,

suggesting a role for such dynamics in sensorimotor coordination

in rich environments [6,41]. Our results now allow integrated

information to be applied in similar situations, facilitating

comparative analyses.

Comparison with causal density and neural complexity
W is one among a family of recent measures that aim to

characterize, in different ways, the coexistence of integration and

differentiation in a system’s dynamics. Two alternative measures

are ‘causal density’ [41] and ‘neural complexity’ [42]. Here, we

briefly summarize the similarities and differences among these

measures, in order to set W into a broader context.

Causal density, like WAR and WE (but in contrast to WDM and

WC), is a measure of process rather than capacity. In virtue of

being based on ‘Granger causality’, it also shares with W a

sensitivity to causal interactions within a system. A key difference,

however, is that causal density is based on all causal interactions,

and not just those across a particular partition; thus causal density

avoids the normalization problems described above (‘Normaliza-

tion and instability’). Briefly, Granger causality is a statistical

measure of causal influence which asserts that a variable X 1

‘Granger causes’ another variable X 2 if information in the past of

X 1 helps predict the future of X 2, above and beyond information

already in the past of X 2 (and, optionally, in the past of a set of

conditioning variables X 3...N ) [30,43]. Causal density is then the

(weighted) fraction of causal interactions among all elements that

are statistically significant. High causal density indicates that

elements within a system are both globally coordinated in their

activity (to be useful for predicting each others’ activity) and at the

same time dynamically distinct (so that different elements

contribute in different ways to these predictions). Granger

causality (and causal density) is typically calculated using linear

auto-regressive models, which brings about an interesting

comparison with WAR. In a loose sense, integrated information,
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as measured by WAR or WE, can be thought of as a variety of

‘causal density’, that quantifies the strength of the weakest

bidirectional causal link between any two halves of the system.

Forthcoming work will investigate further the links between WAR

and causal density.

Neural complexity is calculated as the sum of the average

mutual information across all bipartitions of a system [42]. Unlike

W and causal density, it does not reflect causal interactions within a

system, however, like causal density, it is a measure of process

rather than capacity. Neural complexity is maximal in a system

that is globally integrated at the level of large subsystems, while

exhibiting a high degree of segregation between smaller subsys-

tems. (Note: The original papers describing neural complexity

contained an error in calculating the covariance matrix from a

generative model, which has been subsequently corrected in [44].

However, it appears that this error may still affect extant

calculations of WC.) A recent result [17] showing an equivalence

between Granger causality and ‘transfer entropy’ (a time-directed

version of mutual information) allows causal density to be related

directly to neural complexity. Specifically, one can define a

‘bipartition causal density’ as a weighted average Granger

causality (transfer entropy) across all bipartitions of a system (this

definition also requires extension of Granger causality to

multivariate variables) [18]. This measure furnishes a ‘time-

directed’ version of neural complexity based on transfer entropy

rather than mutual information.

These relations together suggest common foundations for

measures of coexisting integration and differentiation. However,

further work is needed to fully establish their theoretical

interdependencies and their empirical convergences and diver-

gences.

Comparison with other measures
Characterizing complexity is a diverse field, and there are other

measures that capture complex properties other than conjoined

differentiation and integration. For example, ‘thermodynamic

depth’ [45] can be interpreted as a measure of how hard it is to put

a system together, and is based on the joint entropy of all past

states, given the current state. W by contrast considers only one

past state. An interesting further modification to W could involve

information between the present and the whole past trajectory of

the system. Another measure of statistical interdependence,

‘informational coherence’, considers the optimal predictive state

for each time-series, and then measures mutual information

between these [46]. In related work by Ay et al., the whole system

is compared to the sum of individual elements [22,47,48], and the

analysis goes beyond examination of conditional entropies to a

more thorough mathematical treatment in terms of information

geometry. While it is beyond the present scope to examine the

formal correspondences among these measures, other related

measures, and the measures described above, the growing interest

in quantitative measures of complexity further emphasizes the

need to formulate theoretically principled measures that are also

simple to apply in practice.

Limitations and extensions
Although our measures represent substantial improvements in

practical applicability of measures of integrated information,

several limitations remain. Most prominently, the normalization

procedure leads to instabilities in the measurement process and

undercuts ascription of physical meaning to W. Addressing this

problem stands as a key theoretical challenge. We have only

considered application of our measures to stationary dynamics.

Future work may extend consideration to non-stationary (but still

continuous and non-Markovian) processes, potentially capturing

important non-stationary aspects of neural dynamics. In addition,

our measures are applicable only to stochastic systems. While

extension to closed deterministic systems may be of some value,

most complex biological systems have stochastic components,

especially when considered in interaction with a (stochastic)

environment [49,50]. Finally, our measures share with previous

measures the computational challenge posed by the combinatorial

explosion in partitions of a system as the number of elements

increases. Possibly, imposing priors on the search for the minimum

information partition may mitigate this challenge.

We have only considered a first-order, linear approximation for

computing entropies/information from data. While this is useful

for drawing comparison with Granger causality and causal density,

there now exist more advanced approximation techniques that

could be used in future work, for example additive regression [51]

or kernel regression [52]. Regarding estimation of entropy and

mutual information without employing a regression model, we

have only considered this via the intermediate step of density

estimation. Again, future work could investigate the applicability

of more advanced techniques [53,54] that avoid this step.

As well as addressing the above challenges, future work will (i)

empirically examine integrated information for time-series data

acquired from neuroimaging and other biological datasets, in

order to test intuitions regarding consciousness and other

neurocognitive processes; (ii) investigate in models how integrated

information is modulated by input and output relations of a system

embedded in, and interacting with, a surrounding environment,

and (iii) determine theoretically the relations between integrated

information and alternative measures of dynamical complexity

and metastability.

Methods

Text S1 in ‘Supporting Information’ contains software enabling

calculation of WE and WAR, as well as functions which allow

regeneration of some of the simulations we describe.

Extension and computation of WDM for an MVAR(1)
process

To extend WDM to stationary continuous Markovian systems,

we have to address the problem that there is no well-defined

maximum entropy distribution for such systems. We do this by

replacing the ‘maximum entropy distribution’ with the distribution

for which the state of each element is independent of the states of

all other elements, is Gaussian distributed, and has mean and

variance equal to those of its corresponding stationary distribution.

Thus, we take X0*N �xx,SD Xð Þ
� �

, where

SD Xð Þij~
S Xð Þij , i~j ,

0 , i=j :

�
ð0:57Þ

Having defined a distribution for the initial state X0, we explain

how to compute the expected integrated information, �WWDM, for

MVAR(1) processes (0.36). The computation proceeds analytical-

ly, given the generative model, which is specified by the

connectivity matrix A and the covariance matrix of the noise,

V~ : S Eð Þ. Alternatively, an estimate of �WWDM from time-series

data can be obtained by using estimates of A and V. The linear-

regression formulae (0.46) and (0.48) yield the estimates

ÂA~ŜS X t,X t{1ð ÞŜS Xð Þ{1 , ð0:58Þ
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V̂V~ŜS X tjX t{1ð Þ, ð0:59Þ

where the symbol V̂V denotes empirical quantities.

Given A and V, (or their estimates ÂA and V̂V), the covariance

matrix S Xð Þ can be obtained via the discrete-time Lyapunov

equation (0.37),

S Xð Þ~AS Xð ÞATzV , ð0:60Þ

and SD from Eq. (0.57).

To compute the conditional probability PX0jX1~x we first use

the MVAR(1) dynamics (0.36) to obtain the distribution of

X1jX0~x’ as

X1j X0~x’ð Þ*N Ax’,Vð Þ : ð0:61Þ

Then we use Bayes’ rule (0.15) to obtain

PX0jX1~x x’ð Þ!PX1jX0~x’ xð Þ:PX0
x’ð Þ ð0:62Þ

!exp {
1

2
x{Ax’ð ÞTV{1 x{Ax’ð Þzx’T SD

� �{1
x’

h i� 

: ð0:63Þ

From the term quadratic in x’ we can obtain the inverse of the

covariance matrix of (the Gaussian distributed) conditional

variable X0jX1~x as

S X0jX1~xð Þ{1
~ATV{1Az SD

� �{1
, ð0:64Þ

and hence express the conditional entropy H X0jX1~xð Þ in terms

of the connectivity and stationary covariance matrices:

H X0jX1~xð Þ~1

2
jX jlog 2peð Þ{1

2
log det ATV{1Az SD

� �{1
h in o

:

ð0:65Þ

For a given a sub-system M, we have to consider the bipartition

X~ M,Nf g, and the block decomposition of vectors and matrices

according to X t~ M t,N tð ÞT so that

SD~
SD

M 0

0 SD
N

 !
, A~

AMM AMN

ANM ANN

� 	
, ð0:66Þ

and similarly for V and Et. To obtain the distribution for the

conditional random variable M1jM0~m’, we express M1 in

terms of M0 as

M1~AMM M0zAMN N0zEM1 , ð0:67Þ

and note that N0*N 0,SD
N

� �
. Hence

M1j M0~m’ð Þ*N AMM m’,VMMzAMN SD
NAT

MN

� �
: ð0:68Þ

From Bayes’ rule, we can then calculate the inverse of the

covariance matrix of (the Gaussian distributed) conditional

variable M0jM1~m as

S M0jM1~mð Þ{1
~AT

MM VMMzAMNS
D
NAT

MN

� �{1
AMM

z SD
MM

� �{1
,

ð0:69Þ

and hence

H M0jM1~mð Þ~ 1

2
jMjlog 2peð Þ{

1

2
log det AT

MM VMMzAMNS
D
NAT

MN

� �{1
AMMz SD

MM

� �{1
h in o

:

ð0:70Þ

The entropy formulae (0.65) and (0.70) furnish the sufficient

quantities for computing �WWDM as described in the section ‘The

previous measure, WDM’, using the expression (0.25) for the

expected effective information. For present purposes, as with WE,

we restrict attention to bipartitions only.

Analytical computation of WE for a general Gaussian case
Here we show how to compute WE analytically, for a general

stationary Gaussian system, for any timescale t. Importantly, the

generative model for such a system X is always equivalent to an

MVAR pð Þ process [18]:

X t~A1
:X t{1zA2

:X t{2z � � �zAp
:X t{pzEt , ð0:71Þ

where the Ai, i~1, . . . ,p, can be thought of as generalized

connectivity matrices acting at different time-lags, and Et is a

stationary multivariate Gaussian ‘white noise’ source with zero

mean and vanishing auto-covariance function, Ct Eð Þ~0, t=0.

(We ignore the case p~? corresponding to an MA(1), i.e. moving

average, process.) This system is stationary if and only if the roots

of the equation

det IjX j{
Xp

i~1

ziAi

 !
~0 ð0:72Þ

lie outside the unit circle [33].

The method outlined in ‘Computing WE analytically for a

Gaussian system’ for computing WE with t~1 for an MVAR(1)

process is easy to extend to the more general MVAR pð Þ, any t,

case given by equation (0.71). Suppose we wish to compute WE for

any value of t up to t~q, where qwp. We first use the fact [33]

that the MVAR pð Þ process is equivalent to the MVAR(1) process

Jt~F :Jt{1zV t , ð0:73Þ

involving the block quantities Jt~ : X t,X t{1, . . . ,X t{q

� �T
,

V t~ : Et,0,0, . . . ,0ð ÞT and

F~:

A1 A2 A3 � � � Ap OjX j � � � OjX j OjX j

IjX j OjX j OjX j � � � OjX j OjX j � � � OjX j OjX j

OjX j IjX j OjX j � � � OjX j OjX j � � � OjX j OjX j

..

. ..
. ..

.
� � � ..

. ..
.

� � � ..
. ..

.

OjX j OjX j OjX j � � � OjX j OjX j � � � IjX j OjX j

0
BBBBBBB@

1
CCCCCCCA
:

ð0:74Þ

The stationary covariance matrix S Jð Þ for this process can be

obtained from the Lyapunov equation, by analogy with S Xð Þ for
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the MVAR(1) case (0.37):

S Jð Þ~FS Jð ÞFTzS Vð Þ, ð0:75Þ

where S Vð Þ~diag S Eð Þ,OjX j,OjX j, . . . ,OjX j

 �

. Then the station-

ary covariance S Xð Þ and auto-covariance Ct Xð Þ are obtained

respectively as the 1,1ð Þ and tz1,1ð Þ component blocks of S Jð Þ.
We can then proceed as for the MVAR(1), t~1 case:

S X t{tjX tð Þ~S Xð Þ{Ct Xð ÞS Xð Þ{1Ct Xð ÞT , ð0:76Þ

S Xð Þ~
S Xð ÞMM S Xð ÞMN

S Xð ÞNM S Xð ÞNN

 !
,

Ct Xð Þ~
Ct Xð ÞMM Ct Xð ÞMN

Ct Xð ÞNM Ct Xð ÞNN

 !
,

ð0:77Þ

S Mð Þ~S Xð ÞMM , Ct Mð Þ~Ct Xð ÞMM , ð0:78Þ

S Mt{tjMtð Þ~

S Xð ÞMM{Ct Xð ÞMM S Xð ÞMM


 �{1
Ct Xð ÞTMM :

ð0:79Þ

The above expressions furnish the quantities needed to compute

WE from equations (0.29), (0.30), (0.33) and (0.34).

Supporting Information

Text S1 Toolbox for computing integrated information as WE or

WAR. ‘phiemvarp.m’ computes WE from an MVAR(p) generative

model. ‘ARphidata.m’ computes WAR ( =WE if Gaussian), from

stationary time-series data. ‘statdata.m’ creates time-series data

from an MVAR(p) generative model. ‘A2b.mat’ contains the

connectivity matrix for the optimal network, Fig. 2(b). ‘time-

reverse.m’ is an m-file for time-reversing the data (required to run

ARphidata.m).

Found at: doi:10.1371/journal.pcbi.1001052.s001 (0.01 MB ZIP)
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