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Abstract

Traditionally, the information content of the neural response is quantified using statistics of the responses relative to
stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset
time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be
estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this
question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity,
‘‘what’’, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal’s
psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We
show that stimulus onset time, ‘‘when’’, can be estimated using a linear-nonlinear readout mechanism that requires the
response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout.
However, large nerve cell populations are required to achieve sufficient accuracy.
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Introduction

Considerable empirical as well as theoretical effort has been

devoted to investigating the neural code [1,2,3]. Many studies [4]

have focused on coding external stimulus features according to the

number of spikes fired during a time interval around stimulus

onset [4,5,6,7] or based on spike timing [8,9,10]. Exact spike

timing, such as first spike latency, has also been shown to convey

information about the external stimulus features in several

systems, including vision [10,11,12,13,14], auditory [15], somat-

ic-sensory [9,16], and echolocation [17,18,19]. To estimate

stimulus identity based on the neural responses, all of these

measures require the use of an accurate stimulus onset time

[2,8,9,11,14,16,20]. However, an internal neural representation

of onset time has yet to be characterized, a fact considered by

many to be a major drawback of the above coding strategy

[8,15,16,21]. In addition, stimulus onset time is also used

implicitly by conventional rate-code readouts, e.g., the population

vector [5,22]. For cases in which neural activity represents a

motor command, one may assume that an additional neural

signal, in this case movement onset, encodes stimulus onset.

However, in sensory systems, the onset time of the external

stimulus must be deciphered from the neural responses them-

selves. How can stimulus onset be estimated from the noisy

responses of large nerve cell populations? How accurate must the

estimate of stimulus onset time be to infer stimulus identity?

Based on the framework of colour coding by the archer fish

retinal ganglion cells, we investigate the representation of stimulus

onset time, relying on a recent study showing that the absorption

spectra of archer fish retinal photoreceptors are similar to those of

humans [23]. As such, we combined behavioural and electro-

physiological studies.

The outline of this paper is as follows. We start by establishing a

behavioural psychophysical benchmark of the fish performance.

Next we show that different readout strategies can be applied to

infer stimulus colour from single cell responses, given stimulus

onset time. We then show that stimulus onset time can be

estimated from the population response using a relatively simple

linear-nonlinear readout, and we study the accuracy of using that

readout to estimate onset time. Finally, we investigate the

implications of finite accuracy in onset time estimation on the

ability to infer stimulus identity from single cell responses.

Results

Behavioural accuracy
The utility of the archer fish as a model animal [24,25,26] stems

from its remarkable abilities to shoot a jet of water at insects resting

above the water level and to learn to distinguish between artificial

targets [27,28,29]. Thus, the archer fish can be trained to report its

psychophysical decision by shooting at its chosen target. We tested

two archer fish in a behavioural two-alternative forced-choice task,

during which the fish must discriminate between two coloured

discs, one red and the other green, presented on a computer

monitor. The animal was required to identify which of two black

discs flashed red, as opposed to green, on the background of a

white computer screen (Figure 1A). The location of the red disc

varied randomly between trials. Since the fish ‘‘reported’’ its

selection by shooting a jet of water at the chosen target (see Video

S1 and Figure 1B), its behaviour could be used as a measure for
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the information content about target identity that is supplied to the

brain by the retina.

Colour vision implies the ability to discriminate between

variations in the spectral composition of an object irrespective of

variations in intensity, and thus, the intensities of the two flashed

coloured discs were varied at random in each trial. Since the

intensities of the red and green discs were varied independently of

each other, the fish were equally likely to encounter sessions with

high red and low green lights and vice versa. To reduce the

complexity introduced by fixational eye movements [see e.g.̀, 28],

we used flashed targets with a duration of 66 ms (Figure 1A).

During this time interval, fixational eye movement affects the

responses of only 1% of the photoreceptors participating in the

retinal response to the stimulus (see Materials and Methods). In

addition, since body movement is an order of magnitude slower

than eye movement, it can also be neglected when considering the

retinal response to the dynamics of light intensities on the

photoreceptor layer.

Figure 1C shows the response time histograms and colour

discrimination success rates of the two archer fish. The colour

discrimination success rate is about 90%. The response time

histogram measures the latency period for correct shots between

the presentation of the first flash and the shot. The latency for

many successful shots was less than 1 s, and therefore, in those

cases the psychophysical decision was based solely on the first flash

of the stimulus.

The high success rate obtained in this experiment constitutes a

lower bound on the ability of the archer fish retina to reliably

encode information for this particular task. The small error we

measured may be due to certain properties of central processing,

like drifting attention or the exploration of alternative prey

possibilities to investigate other potential rewards.

Neural response to stimulus colour
To investigate the neural representation of stimulus colour that

enables the high colour discrimination success rate of the archer

fish, we recorded the responses of large populations of archer fish

retinal ganglion cells. Stimuli of the same duration and with the

same spectral properties as those used for the behavioural task

were displayed on a computer monitor. As in the psychophysical

experiments, the stimuli were presented at variable intensities that

matched the parameters of the behavioural experiments. To avoid

phase locking of the retinal dynamics due to perfect periodicity in

the stimulus [30], we presented flashes with random inter-flash

intervals (uniformly distributed from 1.1 s to 2.1 s). In each of

these experiments, we recorded spike trains from 20–50 ganglion

cells using a multi-electrode array [31,32,33] (192 electrodes, see

Materials and Methods).

Figure 2A shows the responses of eight ganglion cells to a

continuous presentation of flash stimuli. Figures 2B–E shows the

typical responses of four different cells, which are representative of

the population, to the stimulus. In general, we found that green

flashes elicited stronger responses than red flashes, with the

response latency to the green flash being shorter than that to the

red flash. In addition, a subgroup of cells that responded only to

the green flashes was identified (Figure 2E). Typically, cells in this

subgroup also exhibited a weak response to the green stimulus.

The lines on the raster plots are ordered according to stimulus

intensity from high intensity at the top to low intensity at the

bottom (Figures 2B–E two top rows). High intensity stimuli

typically resulted in stronger responses and with shorter latencies,

an effect that was stronger for the red stimulus, e.g., examine red

rasters (Figures 2C and D) and see also peri-stimulus time

histograms (PSTHs) for different intensities of red and green

stimuli (Figures 3). From the PSTHs of these cells, it is evident that

stimulus identity, i.e., colour, modulates the scale, shape, and delay

of the neural response (Figures 2B–E bottom row). Hence, these

features can be used to estimate the stimulus colour.

Reading out ‘‘what’’
We examined two readout models for stimulus identity

assuming the onset time of the flash was known. The output of

each of the readout mechanisms was a binary signal indicating red

or green (one for red, two for green). The first readout we studied

was a linear-nonlinear estimator, based on a linear filter in time

(Figures 3F–I), of the neural response followed by a threshold

function to decide between the two alternatives of red and green

(see Material and Methods). The second readout utilized first

spike time, and therefore, it was the most sensitive to response

latency. Figure 4A shows two examples of stimulus colour

reconstruction from the responses of two different single cells

using the linear-nonlinear readout. The error rate in both

examples is less than 10% (compared to the behavioural error

rate of ,10%), despite variations in the intensity of each flash.

The distribution of the linear-nonlinear probability of correct

discrimination across different cells in the population is presented

in Figure 4B.

Figure 4C shows first spike time distribution following stimulus

onset (same cell as that shown in Figure 2C) for the green (green

bars) and the red (red line) stimuli. In this example, first spikes that

occurred no later than approximately 170 ms after stimulus

presentation resulted mainly from the presentation of green

stimuli, whereas the presentation of red stimuli typically resulted in

first spike times that were greater than 170 ms. Thus, stimulus

colour can be estimated using first spike time relative to stimulus

onset. The success rate distribution of a readout based on first

spike latency showed that in both the linear-nonlinear and first

spike latency readouts, ,60% of the cells exhibited close to

chance-level performance (Figure 4D). However, ,5% of the cells

were characterized by an accuracy comparable to the behavioural

accuracy in both readouts (Figures 4B and 4D). Thus, given the

knowledge about onset time, there exists a specialized subgroup of

,5% of the cells that lies at the end of a continuum of less

informative cells. This specialized subgroup can discriminate red

from green with an accuracy comparable to that of the

Authors Summary

In our interaction with the environment we are flooded
with a stream of numerous objects and events. Our brain
needs to understand the nature of these complex and rich
stimuli in order to react. Research has shown ways in
which a ‘what’ stimulus was presented can be encoded by
the neural responses. However, to understand ‘what was
the nature of the stimulus’ the brain needs to know ‘when’
the stimulus was presented. Here, we investigated how the
onset of visual stimulus can be signalled by the retina to
higher brain regions. We used archer fish as a framework
to test the notion that the answer to the question of
‘when’ something has been presented lies within the
larger cell population, whereas the answer to the question
of ‘what’ has been presented may be found at the single-
neuron level. The utility of the archer fish as model animal
stems from its remarkable ability to shoot down insects
settling on the foliage above the water level, and its ability
to distinguish between artificial targets. Thus, the archer
fish can provide the fish equivalent of a monkey or a
human that can report psychophysical decisions.

Coding ‘What’ and ‘When’ in the Archer Fish Retina

PLoS Computational Biology | www.ploscompbiol.org 2 November 2010 | Volume 6 | Issue 11 | e1000977



Figure 1. The archer fish can distinguish between two coloured targets. A. The stimulus sequence entails presenting the archer fish with
two black circular targets. The trial began when one of the two targets was flashed red and the other green for 66 ms, after which the targets turn
black for T = 1 s. The fish’s task was to detect and shoot at the red target, for which it was rewarded with a food pellet (see supplementary movie S1).
The targets continued to flash for 66 ms every T = 1 s with the same colour and intensity until the fish shot a target. The location (right/left) of the red
target and its colour intensity were varied from trial to trial. The fish had a single attempt to shoot at each trial. B. Frame from a video of an archer fish
shooting the left target. This is the correct selection since the left target flashed red (video frame in inset) 0.6 s before the shot. C. Success rates
(mean 6 S.E.M.) of the two fish together with response time histograms (note that the time is measured with respect to the first flash, i.e., from the
moment the fish was provided with colour information). Both fish achieved very high accuracies in detecting the flashing red target. In addition, the
response time histograms, which show that most of the shots were made less than 1 s after the first flash, indicate that the fish can make a decision
on the basis of information from a single flash.
doi:10.1371/journal.pcbi.1000977.g001
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psychophysical accuracy. Although stimulus intensity affected the

neural response (examine rasters in Figures 2B–E), we did not find

that stimulus intensity strongly affected colour discrimination

accuracy based on single cell responses (Figure 4E).

We further investigated whether the specialized subgroup of

best cells for colour discrimination was also distinguished in other

response properties. To this end, with two of the retinas we

performed coloured Gaussian full-field flicker experiments in

Figure 2. Response of the retina to flashed red/green stimuli. A. Normalised firing rate histograms of 8 ganglion cells in response to red and
green flashes. Stimulus was displayed on a computer monitor and was matched to the temporal properties (i.e., 66 ms of coloured flash) and spectral
properties (i.e., random selection of colour and intensity) of the stimulus presented to the fish during the behavioural task. The time and colour of the
flashes are represented by the red or green lines from top to bottom. Note that we did not present the flashes with an exact repeat of the inter-flash
interval so as to avoid strong periodicity in the retinal response and that between the flashes the screen was black as required for behavioural
experiments. B–E. Each column represents a typical response of a single ganglion cell to flashes. Top and middle panels: raster plots in response to
the red and green flashes, respectively. The flashes were sorted according to their relative intensities from low (bottom) to high (top). Response
latencies varied slightly according to flash intensity. Bottom panel: time dependent mean rate of the ganglion cell response to the red and green
stimuli.
doi:10.1371/journal.pcbi.1000977.g002
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Figure 3. The interplay between intensity and cellular response. A. Here we present a PSTH of a ganglion cell, which reports on flash colour
with high (90%) accuracy. The cell responded to red flashes in the intensity range of 0.55–0.65 mW/cm2 and to green flashes in the range of 0.22–
0.32 mW/cm2 with a very similar response profile, although shifted in time. This is an indication that the flash onset signal is important in enabling the
extraction of flash colour identity. B–E. The same as in A for the four cell examples in Figure 2 B–E: the top panels show PSTHs for high green
intensities and low red intensities, whereas the bottom panels show PSTHs for low green intensities and high red intensities. F–I. The temporal filters
(black) and PSTH in response to different colour flash (red and green) that were used to estimate stimulus colour using the linear-nonlinear readout,
based on the responses of the four cells as shown in panels B–E of Figures 2.
doi:10.1371/journal.pcbi.1000977.g003
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which the light intensities for each frame in the red and green

channels were drawn from Gaussian distributions. We calculated

the spike-triggered average of the cells and found that all the cells

in the specialized subgroup were OFF cells. This bias towards

OFF cells may result from two sources. First, it is possible that the

archer retina has a natural bias towards OFF cells as in many

amphibians [34]. Addition source for this bias may result from a

measurement bias towards the OFF cells population in the

extracellular recordings. For example, it was shown that slow ON

cells’ activity in the Salamander retina is hard to capture without

special spike sorting techniques that can record the majority of

cells present in a retinal patch [33,34]. It is interesting to note that

the filters that characterize the white noise response of the cells are

different from the filters used for colour discrimination (data not

shown). We found no other special response characteristics for the

specialized subgroup of cells that performed best in the population.

To what extent is an accurate onset signal critical for the correct

estimation of stimulus colour from the responses of single cells?

This is best illustrated by the following example. The temporal

response profiles of the cell in Figure 3A to low intensity green

stimuli (green line) and high intensity red stimuli (red line) are very

similar in their shape and scale, but they do not coincide; instead,

the high red intensity response is displaced in time by about 70 ms.

Hence, based on the cell response illustrated in Figure 3A, to

discriminate low intensity green stimuli from high intensity red

stimuli, knowledge about stimulus onset time with an accuracy of

less than 70 ms must be used. Additional examples for the cells

presented in Figures 2B–E can be found in Figures 3B–E. Of

special importance is the cell presented in Figure 3C which

produces ,1 spike per flash onset albeit with different latency.

Reading out ‘‘when’’
Completion of the above readouts required that we find a

mechanism that accurately estimates stimulus onset. Errors in

onset estimation have two components. The first component is the

detection error: the estimator may fail to signal the presence of a

stimulus or may give a false alarm in the absence of a stimulus.

The second is the temporal fidelity of the estimation: given a

correct detection, how close in time is the estimated onset from the

actual onset? This latter component can be quantified using the

root mean square (RMS) value of the estimation error and by the

bias that quantifies systematic errors in the onset time estimation.

Examining the neural responses (Figures 2B–E), it seems

plausible that single cell responses may be sufficient to estimate

stimulus onset. Figure 5A shows the accuracy of a linear-nonlinear

readout (see Material and Methods, reading ‘‘when’’) based on

single cell responses (red stars) in terms of the probability of misses

(false negatives) and of the false alarm rate. Successful cells are

those with low false negatives and low false positives. The absence

of such cells in the bottom left corner of the plot indicates that

single cell responses do not encode ‘‘when’’ the stimulus was

presented with sufficient information to account for the psycho-

physical accuracy. This is in contrast to the encoding for ‘‘what’’

stimulus was presented, a task that single best cells perform well.

Thus, the limiting factor in a single cell’s ability to estimate

stimulus onset is its inability to reliably detect the stimulus.

In order for a linear-nonlinear decoder to reliably detect

stimulus onset, information must be pooled from a large

population of nerve cells. We applied the linear-nonlinear readout

to detect stimulus onset from a population of 100 cells selected

randomly (Figure 5B–C). The stimulus (red trace) is represented as

zeros (no flash) and ones (flash). A linear estimation of the stimulus

(blue trace) was generated by minimizing the error between the

stimulus and the estimation, after which it was passed through a

threshold to obtain the decision boundary between the discrete

stimulus values (blue trace, Figure 5C).

For the results presented in Figure 5, the estimated onset time

was defined as follows. The output of the linear part of the

estimator at time t (Figure 5B) is a result of multiplying the linear

filter of length T (in Figures 5B–H we used T = 250 ms, in

Figures 5I–J, T = 125 ms was used) by the neural responses from

time t to time t+T (see Materials and Methods). The estimated

onset time was taken to be the time t at which the linear part of the

estimator first crossed the threshold. To estimate stimulus onset at

time zero, therefore, the linear-nonlinear readout uses the neural

responses up to time T. Onset time was considered correctly

detected when the threshold was crossed 125 ms before or after

the actual stimulus onset time (see onset time distribution for this

example in Figure 5H). Note that the histogram decays before

reaching the boundaries that we chose for defining correct

detection (6125 ms). In the specific example shown in Figure 5B,

the RMS estimation error of the onset time was approximately

20 ms.

The linear-nonlinear readout is a relatively simple readout, and

it is widely assumed that it can be implemented by the central

nervous system. The ability of the linear-nonlinear readout to

detect stimulus onset serves as a proof of concept also for other,

more sophisticated readout mechanisms. Naı̈ve readout, based on

the total spike count of large numbers of neurons, can also be used

for stimulus detection and onset time estimation. But the naı̈ve

readout does not yield estimates of the stimulus onset that are as

accurate as those of the linear-nonlinear readout. For example,

Figure 5D shows readout based on the total spikes fired by all the

cells in the same network followed by a selection of the stimulus

value using a threshold. A central shortcoming of the naı̈ve

readout is that it does not weigh correctly noisy and informative

cells. An additional estimation which is based on an optimal

weighted average of the spike-counts of the all cells is presented in

Figure 5E. As can be seen from the figure, these two naı̈ve (rate-

code) readouts suffer from larger detection errors than the linear-

nonlinear readout, which takes into account the temporal structure

of the onset response (Figure 5C).

Figures 5F and 5G show the two components of the stimulus

onset estimation error (see also blue points on Figure 5A).

Figure 4. Single cells can inform the brain about flash colour given an exact time reference. A. Top and bottom panels represent the
estimation of flash colour from two different cells (both belong to the group presented in Figure 2C). The flash colour and intensity level are depicted
in the middle panel (the true intensities are apparent only on the monitor that was used for the experiments; any other monitor depicts only relative
intensities); the abscissa represents the serial number of the flash. Both cells ‘‘report’’ the correct colour with accuracies comparable to the
behavioural success rate. B. Histogram of success rate in detecting the flash colour of the linear-nonlinear readout of all cells from five experiments
(n = 253). Note that poorly performing cells can have success rates slightly above 50% (chance-level performance) due to random fluctuations. C.
Time to first spike distribution of the cell presented in Figure 2C. There is a clear boundary between the latency to the green flash and the latency to
the red flash. D. Histogram of success rate of the time to first spike readout of all cells (n = 253). (The cell in Figure 2C falls within this group and the
right most bin in Figure 4D.) E. The effect of stimulus intensity on the accuracy of colour discrimination. Errors of cells with success rates above 85%
were combined (n = 17). The relative contribution of an intensity window to the overall false detection was calculated for the two colours. We did not
find a strong effect of stimulus intensity on colour discrimination accuracy based on single cell responses.
doi:10.1371/journal.pcbi.1000977.g004
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Figure 5F depicts detection failure and false alarm rate as functions

of the population size used for the estimation (see Materials and

Methods). For every given population size, the error was

calculated by averaging over 50 randomly chosen groups of cells.

From Figure 5F, the average detection error decreases with the

number of cells to a level of ,5% false negatives and false positives

for ,100 cells. One should keep in mind that roughly 2000

ganglion cells have their receptive fields inside the target (see

Materials and Methods for calculation) and hence, can provide

information about flash onset to the brain. Note also that the linear

non-linear readout performs better than the naı̈ve readout

(Figure 5F dashed curves). For comparison, the detection ability

of the optimal naı̈ve readout is shown (open circles). As can be seen

from the Figure, although the naı̈ve readout detection ability

improves with the increase of the population size, its accuracy is

considerably inferior to that of the linear-nonlinear readout, due to

high false negative rate.

How accurately in time is stimulus onset estimated when the

stimulus is correctly detected? Figure 5G depicts onset time

estimation error as a function of the size of the population used by

the linear-nonlinear readout. Error was divided into bias and

RMS error. The bias represents systematic error, which is stimulus

dependent, and therefore, could not be corrected with a uniform

time shift that may be implemented by a delay line. Most cells

exhibited longer delays in their responses to red stimuli than to

green stimuli. As a result, it is expected that the mean estimation

time of a red stimulus will be larger than the mean estimation time

of a green stimulus. This difference is quantified by the bias that

measures differences in the mean estimation times of red and

green stimuli. Figure 5G (red circles) shows that the linear-

nonlinear readout is biased to systematically overestimate red

stimulus onset time relative to green onset time. This bias decays to

zero with population size, and approximately 100 cells are

required to reduce the bias below 10 ms. The blue circles in

Figure 5G show the decrease in RMS estimation error of the onset

time. Thus, using a population of approximately 100 cells, the

linear-nonlinear readout is capable of predicting onset time with

an accuracy of ,30 ms. Surprisingly, the (optimal) naı̈ve readout

cannot overcome the bias in estimating red stimulus late, even as

more cells are added to the readout (Figure 5G open circles). Thus,

it appears that in order to overcome the inherent bias in estimating

the onset time of a coloured target, the linear-nonlinear readout

utilizes the temporal structure of the neural response.

Figures 6A–B show the accuracy of a combined readout that

estimates both stimulus onset using a population of 100 cells and

stimulus colour using single cell responses. The two stages of the

readout—onset detection and colour discrimination—were com-

bined in a causal way. The onset detector used the neural

responses during a time interval of T = 125 ms (see Figures 5I, J for

onset detection accuracy using this time interval), and the colour

discriminator used only spikes that were fired after that time

interval. Thus, the spikes used for reading out ‘‘when’’ were not

used for reading out ‘‘what’’.

In the combined readout (Figures 6A–B) we re-calculated the

optimized filters for reading out ‘‘what’’, using two approaches. i)

The colour discrimination weights were learnt using the accurate

onset time with a time shift of length of the filter used for the onset

detection (see Material and Methods). ii) The parameters of the

colour discrimination were learnt using the statistics of the neural

responses following the estimated onset time. The results of

Figure 6 were obtained using the first approach, i.e., training the

colour discriminator using the exact time. Using the second

approach, i.e., training the colour discriminator using the

estimated onset time, added more noise to the learning process

and yielded a somewhat inferior readout due to the finite data set

(results not shown).

Figures 6C–F show the PSTHs of the cells presented in

Figures 2B–E with time zero as given by a causal onset detector.

The main difference between PSTHs computed with the estimated

onset signal and PSTHs computed using the actual stimulus onset

time is in the latency of the response. The accuracy of the

combined readout is compared to the accuracy of a readout that

used the exact stimulus onset time (e.g., Figures 4B and 4D). As

can be seen, although performance slightly deteriorates when

stimulus onset time is estimated from the neural responses (most

points are below the red identity line), this deterioration is in many

cases small. Note that in contrast to the common belief, the time to

first spike decoder does not appear to be considerably more

sensitive to errors in onset time estimation than the linear-

nonlinear decoder. The capacity of the first-spike decoder to

perform well in the two stage readout results from the ability of the

linear non-linear onset detector to overcome the bias and to obtain

standard error that is typically smaller than the latency difference

to red and green stimuli of tuned cells.

Discussion

The task confronted by the archer fish retina is far more

demanding in a natural environment, where it must calculate the

visual object’s location and whether the object is in motion, than in

the experimental situation described here. The experiment was

Figure 5. A linear-nonlinear decoder can detect the flash onset. A. Stimulus detection error rates using single cell (red stars) and network
(blue dots) responses. Stimulus onset was estimated from the response of every single cell, using the linear-nonlinear method algorithm. The stimulus
detection ability of every cell is plotted as a star in the plane of false positive and false negative error rates. Note that the false negative rate decreases
with an increasing false positive rate. For every cell, the discrimination threshold was set to minimise the sum of false positive and false negative
errors. False negatives were normalised by the total number of events to be detected; false positives were normalised by the total number of
detected events. B. The linear-nonlinear stimulus onset readout mechanism. The stimulus (red line) is represented as alternating values of zero (black)
and one (coloured flash). The best linear filter (blue) for estimating the stimulus from the retinal response was found (see Materials and Methods and
Warland et al. [38] for details). The linear estimation was transferred through a threshold (non-linearity) to determine when the flash occurred. C.
Comparison between the stimulus (red) and the final estimation (blue) based on the full linear non-linear estimation. D. Comparison between the
stimulus (red) and an estimation based on a naı̈ve average over all cells (blue). The estimation fails to reflect the stimulus properly (,80% increase in
false negatives). E. Comparison between the stimulus (red) and an estimation based on a weighted average over all cells (blue). While this readout
outperforms the naı̈ve average, still it is less successful then the full linear-nonlinear readout. F. Stimulus detection error rates as a function of the
number of cells used in the linear nonlinear readout mechanism (solid line with dots) and naı̈ve mechanism (dashed line with dots). For every
population size, error rates were averaged over 50 randomly selected subgroups. Approximately 100 cells were needed to reduce both false
negatives and false positives to less than 5%. G. Onset time estimation error, as a function of population size. Error was divided into bias and RMS
error for the linear nonlinear readout (sold lines with dots) and naı̈ve readout (dashed line with dots). In the linear nonlinear model, the bias is of
order 10 ms, and it decays with the population size such that it is expected to approach zero as more cells are added. Note the decay of the RMS
estimation error of the onset time to less than 30 ms. In the naı̈ve readout, the error does not improve significantly when we add more cells. H.
Estimated onset times histogram for a network with 85 cells. I and J. The same as in linear nonlinear readout of F and G but with 125 ms filters.
doi:10.1371/journal.pcbi.1000977.g005
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designed to evaluate the difficulties associated with deciphering an

event in continuous time. As such, we used a simplified, two-

alternative forced-choice visual discrimination task. Our work

presents a two-stage readout mechanism capable of estimating

stimulus colour in continuous time (i.e., when the stimulus is

presented and without a cue for or prior knowledge of its onset)

with an accuracy comparable to psychophysical accuracy.

The first readout stage estimates stimulus onset time. We found

that due to the rarity of a stimulus presence event, a population of

approximately 100 cells was required to estimate onset time with

sufficient accuracy. This requirement does not result from the

need to decrease the noise in the estimated time, but rather from

the need to reduce detection failure and false alarm rates. In the

second stage, the estimated onset time calculated in the first stage

is used to extract information about stimulus colour from the rich

temporal structure of single cell responses. We found that

approximately 5% of the cells can be considered colour specialized

cells that encode information at a level of accuracy comparable to

psychophysical accuracy. It was shown that this information can

be extracted using either linear-nonlinear or first spike time

readouts, with similar performance.

Additional readout mechanism
Here we suggested a two stage readout mechanism that

separates the coding for the time of stimulus appearance from

the coding of stimulus identity. This separation may not be

essential, as other readout mechanisms are possible and stimulus

appearance and identity may be decoded from the neural

responses using a single stage readout mechanism. The utility of

separating the coding for ‘‘what’’ from that for ‘‘when’’ is that it

highlights the difficulty in detecting stimulus onset as opposed to

distinguishing its colour, which is easier. We have shown that

stimulus detection may be achieved using a relatively simple

mechanism, a linear-nonlinear readout, albeit based on the

responses of large nerve cell populations. Can response latency

Figure 6. Implementation of a full two-stage decoding algorithm. In the first stage, onset time was estimated from the responses of a
population of 100 cells using 125 ms filters. In the second stage, the estimated onset time was used to discriminate stimulus colour on the basis of a
single cell response in a causal manner, using either the linear-nonlinear algorithm (A) or the first spike time code (B). For every cell, we plotted the
accuracy of stimulus colour discrimination using the estimated onset time against its accuracy when using the exact onset time (ordinate, coloured
star markers in magenta, green, yellow and cyan correspond to cells in Figures 2B, 2C, 2D and 2E, respectively.) C–F. Response of the four cells in
Figure 2 B–E triggered by the estimated onset time from the network response. Time zero coincides with the end of the filter used for onset detection
(125 ms). Thus, neural responses at positive times show the part of the response that can be used for colour discrimination by a causal readout
mechanism.
doi:10.1371/journal.pcbi.1000977.g006
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also serve as a cue for stimulus detection, and if so, how can it be

used without a prior estimate of stimulus onset?

Lacking knowledge about stimulus onset, one cannot determine

absolute spike time latency; rather, one may only use the relative

latencies to estimate the time of stimulus appearance [10,12].

Relative spike time latencies of a single cell are simply the inter

spike intervals (ISIs) of that cell. Figures 7A and B show the ISI

distribution of two single cells for the three cases comprising red

stimulus, green stimulus, and black screen. Calculation of the joint

ISI and stimulus histograms is illustrated in Figure 7C. Every ISI

was linked to a stimulus condition by the time of its second spike. If

there was a green or a red stimulus during the 150 ms preceding

the previous spike, the ISI was assigned to that stimulus.

Otherwise, the ISI was assigned to the black screen stimulus.

We varied the 150-ms time window with no significant change in

the results. This procedure provided us with the ISI distribution

that was conditioned on stimulus colour.

The maximum likelihood estimator chooses the stimulus that

maximizes the likelihood of a response. The algorithm requires

that if we observe a certain ISI, we need to select the stimulus

value with the maximum probability to observe this specific

interval. Thus, examining the responses in Figure 7A, relatively

short ISIs of less than 400 ms and more than 100 ms will be

classified by the maximum likelihood estimator as originating

either from a red or a green stimulus. Given a black screen, false

alarms will result from ISIs in the range of 100–400 ms. In this

case, about 50% of the ISIs in response to a black screen will

generate a false alarm. Since the baseline firing rate of this cell is

about 6 Hz, the maximum likelihood detector will generate a false

alarm about every 300 ms of black screen, on average. Even if the

overlap between the conditional distributions was smaller, for

example only 10% of the ISIs, the maximum likelihood detector

would generate a false alarm every 1.5 s, on average. The high

false alarm rate of the maximum likelihood results in part from the

black screen’s being a common stimulus that is present most of the

time. Moreover, the maximum likelihood ignores prior knowledge

of stimulus distribution: stimulus presence (red or green) is a rare

event (Figure 7D).

The maximum a posteriori estimator takes prior information about

the stimulus into account. Figures 7 E and 7F show the posterior

distribution of instances of stimulus onset for different ISIs.

Essentially, the relative value of every bar in the histogram of the

conditional probability (Figures 7E and 7F) was multiplied by the

ratio of prior probabilities of the stimulus (and normalized by the

marginal probability of the ISI), thereby substantially decreasing

the posterior probability of a rare event. Taking into account prior

knowledge of stimulus occurrence (Figure 7D), the maximum a

posteriori readout will almost always estimate a black screen.

Thus, ignoring prior knowledge about the frequency of a rare

event yields a high degree of false alarms; taking that knowledge

into account, however, results in a high degree of false negatives.

Alternatively, one could expect that using cells with low

spontaneous firing rates—for example, the cell of Figure 7B—will

help to decrease the false alarm rate. However, these cells are also

characterized by a very weak response that is typically at most one

spike per stimulus. Hence, the ISI distribution (Figure 7F) does not

reflect the stimulus response and yields poor detection power. To

overcome the high level of error rates, information about presence

of stimuli needs to be pooled from the responses of a relatively

large population of cells. In addition, one should bear in mind that

a readout that decides according to the relative spike times of a cell

that fires at a baseline level of 10 Hz may yield a different estimate

on an average of ten times a second. Thus, relative latencies do not

seem to solve the problem of stimulus onset detection.

In a recent work, Gollisch and Meister [10] suggested using the

relative timings of the spikes from two different cells to circumvent

the problem of unknown onset. Above we analysed a somewhat

different but similar scenario of the ISIs of a single cell response.

Nevertheless, as in the above example, one expects that an

estimator based on the relative latencies of two retinal ganglion

cells firing at a spontaneous rate of about 10 Hz will result in a

high degree of errors. As above, the difficulty here results from the

fact that stimulus onset is a rare event in time.

Previously, Chase and Young [15] investigated first spike time

latency code in the auditory system of the cat. Using mutual

information, they concluded that estimating an onset signal from a

pseudopopulation (a population that is composed of single cells

that were recorded separately) does not decrease, and on average

slightly increases, the information content embedded in the first

spike time latency of single cells. Nevertheless, it remained unclear

whether this amount of information is sufficient to account for the

psychophysical accuracy of the animal. This issue has been

addressed in our study.

Colour vision in the archer fish
Traditionally, three standard methods are used to demonstrate

colour vision in animals [35]. The first method entails finding an

isoluminance point, i.e., a point where two test monochromatic

lights are perceived to be of equal luminance. Identifying an

isoluminance point in animals, however, is not a trivial task.

The second way to demonstrate colour vision is to vary the

intensity over a considerable range, typically over three to four log

scales [35]. This is the basic paradigm that we used here, albeit in

a limited manner, i.e., testing only red vs. green targets with 1 log

unit intensity variations. The intensity ranges in our experiments

were dictated by the limitations of the computer monitors that

served as targets for the archer fish. In addition, we decided to use

flash coloured targets to avoid the complexity involved in eye

movement effects. Due to the short duration of the flash and the

need to use a flexible display monitor that is later used for

electrophysiology with a multi-electrode array, we limited the

variations in intensity to 10 fold (1 log unit) between the lowest and

highest intensities used in the experiment. Additionally, we

searched for patterns of errors in the psychophysical task. If the

archer fish does not see colour and discriminates based on their

perceived brightness—for example, red may be perceived darker

than a green of the same luminance—then one would expect the

errors to be correlated with the relative intensities of the coloured

stimuli. We did not find such a correlation structure in the

psychophysical data, implying that stimulus intensity is not the

basis for the psychophysical errors (see also Figure 3E for the

distribution of colour discrimination errors based on single cell

responses).

The third approach is the ‘‘gray card’’ experiment developed by

von-Frisch. In this paradigm, the animal has to select a coloured

target embedded in an array of gray destructors [36]. Thus, we

further tested a red trained fish with a red target against grey card

targets, i.e., an ensemble of six gray targets with different

intensities. The success rates were 93% and 95% for two fish

(N = 30 and N = 24, respectively) at a chance level of 16%.

It is interesting to note that in a recent report, Temple et al. [23]

demonstrated that the cone distribution in the archer fish retina

varies across the retina in a way that matches the different visual

environments, i.e., aquatic and areal, confronting the archer fish

visual system. This is an additional indication that archer fish may

possess colour vision.

Although our results support the hypothesis that archer fish

have colour vision, further work is required to fully test this claim.
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Figure 7. ISI based decoder. A and B. The conditional probability of ISIs given the stimulus for cells presented in Figures 2C and 2D. C.
Reconstruction of the joint probability distribution of the stimulus and ISIs was done by first generating the ISI time series and assigning each spike
the ISI with the previous spike. If the spike fell within 216 ms after the flash onset (150 ms+66 ms), it was assigned to the colour of the flash.
Otherwise, it was assigned to black (no flash). The joint probability distribution was generated by scanning all the stimulus-ISI (response) pairs. D.
Stimulus prior distribution. Note that this probability distribution is controlled by the experimentalist and hence is arbitrary and does not reflect
neuronal coding properties. E and F. The posterior distribution of the presence of stimuli given the ISIs for cells presented in Figures 2C–D.
doi:10.1371/journal.pcbi.1000977.g007
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Nevertheless, the aim of the current study was not to investigate

whether archer fish have colour vision, but rather to utilize this

framework to study the problem of estimating stimulus onset from

the neural response.

Materials & Methods

Ethics statement
All experiments with fish were in accordance with Ben-Gurion

University of the Negev regulations and government regulations.

Training the archer fish to shoot at a target presented on
a computer monitor

The experimental setup consisted of a computer monitor (Dell

1708FP flat panel LCD monitor) situated 30 cm above the water

level of a fish tank facing towards the water. A glass plate was fixed

over the screen to protect the monitor. The monitor was

connected to a laptop, and training sessions were generated in a

slide-show manner using the PowerPoint program. The emission

spectra of the red and green monitor channels were characterized

by a narrow band of emission. The training and experimental

procedures were conducted separately for each of the two naive

archer fish (Toxotes chatareus). The training has started by presenting

the fish with a picture of an insect and rewarding a hit with a food

pellet. Experiments were limited to five-day periods, with two days

of rest in between so as to minimize the risk of overfeeding.

The behavioural task was designed to test the ability of the fish

to discriminate between the different colours. In each session, two

circular targets 4.5 cm in diameter situated on a white background

were flashed for 66 ms from black to green or red and back to

black once a second (8-bit colour image) with a randomized

location (see Video S1, Figures 1A and 1B). Since the archer fish

eye moves by less than the diameter of a single photoreceptor

during the 66 ms flash, the contribution of eye movements to

retinal encoding in this task could be neglected. Following Jacobs

et al. [37], red and green disc intensities were selected randomly

and independently at values between 0.07–0.7 mW/cm2. The fish

was trained to shoot at the red disc by rewarding it with food when

it shot the correct (red) target. To determine whether the fish had

indeed hit the target, we examined the pattern of water created by

the water jet from the fish on the glass plate. The place the jet

touched the monitor was indicated by a water droplet on the

monitor corresponding to the centre of the jet. A hit was easy to

detect since the spacing between the discs was very large compared

to the size of the water droplet on the monitor. Each fish required

one to two months of training before reaching its best

performance. The training sessions were filmed with a digital

video camera (Sony Handycam DCR-HC23, 25 frames per

second) for later analysis of fish response time to chromatic

stimulus.

Computer monitor radiometric calibration
The spectral output of the computer monitor was measured

with a Red Tide USB650 CCD spectrometer (Ocean Optics,

Dunedin, Florida, USA). The spectrometer was calibrated to

absolute radiometric units by using a LS-1-CAL calibrated

tungsten halogen lamp (Ocean Optics, Dunedin, Florida, USA).

Electrophysiology of retinal ganglion cells
Archer fish retinas were isolated from the eye in the dark after a

period of 1 h of light adaptation. Experiments were performed at

noontime. Each retina was peeled from the sclera together with

the pigment epithelium and placed in a petri dish with a glass

bottom, with the ganglion cell layer facing down. Retinas were

superfused with oxygenated (97% O2/3% CO2) Ringer’s medium

[28] at room temperature. A 192 fakir-bed-like multi-electrode

array was produced by placing two Cyberkinetics 3D multi-

electrode arrays side by side (Cyberkinetics, Salt Lake City, Utah,

USA). The array was lowered onto the retina from above by

means of a standard mechanical manipulator. Extracellularly

recorded signals were digitized at 10 kSamples/s on four PCs and

stored for off-line analysis. Spike sorting was done by extracting

from each potential waveform amplitude and width, followed by

manual clustering using an in-house written MATLAB program.

Data from five retinas taken from three different animals are

presented (total number of cells used 253). The low yield of cells

from each experiment was due to the fact that the retina is not flat

and therefore only part of the array captures spikes from ganglion

cells.

Stimulus
The stimulus for in vitro retinal preparation was presented on the

same LCD monitor used in the behavioural experiments. To

mimic the visual information flowing to the retina during the

behavioural experiments, we used a full field stimulus. Since the

size of the disc on the retina during the behavioural experiments

was ,600 mm and the ganglion cell receptive field radius is

,100 mm (as measured with a random checkerboard [28]), we

made the approximation that each cell ‘‘sees’’ a full field flash. The

stimulus generated using the LCD computer monitor consisted of

multiple red or green coloured flashes matched to the behavioural

experiments in time sequence (66 ms flash time) and spectral

properties (i.e., random selection of colour and intensity).

Training the linear-nonlinear decoder for colour
discrimination (‘‘what’’)

The linear-nonlinear decoder was based on linear estimation

followed by a threshold function. We started by representing the

stimulus colour of the nth trial S nð Þ with 1 for red and 2 for green.

For the linear estimation, we followed Warland et al. [38] and

represented the response of a neuron with a rate function with

overlapping windows of 25 ms (50% overlap). Let Rn tð Þ be the

number of spikes generated by the neuron at time window t at the

n trial and ŜSlinear nð Þ the linear stimulus estimation. The estimation

of the stimulus was obtained from the ganglion cell responses by

taking the dot product of the response Rn tð Þ with a linear filter.

Specifically we obtained:

ŜSlinear nð Þ~Cz
Xtmax

t~1

Rn tð Þf tð Þ

where f tð Þ is the linear filter at time t before the current time bin,

C is a constant, and tmax is the filter length (time zero refers to

stimulus onset or estimated onset in the combined readout). The

filter f tð Þ was obtained by minimising the square error between

the stimulus and the estimation, i.e., we chose f tð Þ such that
P

n

ŜSlinear nð Þ{S nð Þ
� �2

was minimised. Then we passed ŜSlinear nð Þ

through a nonlinearity ŜS nð Þ~H ŜSlinear nð Þ{Sthreshold

� �
, where

Sthreshold was the threshold. The threshold was selected such that it

minimised the error between the stimulus and ŜS nð Þ using a

standard MATLAB toolbox (MathWorks Inc.). The length of the

filter was 375 ms. The value of the optimal threshold constant, C,

is very close to 1.5.

For the purpose of the combined readout, i.e., when we used the

network signal as a time reference (Figure 6), we re-calculated the
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optimal linear filters for red/green discrimination in two methods.

i) Parallel learning: the accurate onset time with a time shift of

length of the filter used for the onset detection were used. ii) Serial

learning: the parameters of the colour discrimination were learnt

using the statistics of the neural responses following the estimated

onset time. This is done by first learning the onset detector

parameters. Then we apply the onset detector to find the onset

timing stamps on the same training data set. Finally, using these

time stamps we learn the colour discriminator weights

Although the algorithm presented here is only one approach for

finding the linear-nonlinear decoder and it has no guarantee of

optimality, for our purposes it was sufficient as it allowed us to

demonstrate that the information indeed existed in the population.

The data was cross validated by dividing it into two segments and

then learning the decoder parameters on one segment and

evaluating the decoder success on the second.

Training the linear-nonlinear decoder for onset detection
(‘‘when’’)

Following Warland et al. [38] we represented the response of

each neuron with a rate function with overlapping windows of

25 ms (50% overlap). Let Ri tð Þ be the number of spikes generated

by the ith neuron at time window t and u tð Þ the linear stimulus

estimation at the tth time interval. Stimulus estimation was

obtained from the ganglion cell responses by convolving the

response Ri tð Þ with a linear filter. Specifically we get:

u tð Þ~Cz
XN

i~1

Xtmax

t~1

Ri tztð Þfi tð Þ

Where N is the number of cells, fi tð Þ is the linear filter for the ith

cell at time t before the current time bin, C is a constant, and tmax

is the filter length. The filter fi tð Þ was obtained by minimising the

square error between the stimulus and the estimation, i.e., we

chose fi tð Þ such that
PT
t~1

u tð Þ{S tð Þð Þ2 was minimised using a

standard MATLAB toolbox (MathWorks Inc.). Then we passed

u tð Þ through a nonlinearity Sestimated tð Þ~H u tð Þ{uthresholdð Þ,
where uthreshold is the threshold. The threshold was selected again

such that it minimised the error between the stimulus, i.e., we

required that
PT
t~1

DSestimate tð Þ{S tð ÞD was minimal. In this way the

false hit and false detections were treated equally. The data was

cross validated by dividing it into two segments and then learning

the decoder parameters on one segment and evaluating the

decoder success on the second.

Error was calculated as follows: a false positive was defined as a

detected flash that was more than 125 ms from the nearest true

flash. A false negative was defined as a true flash for which there

was not a detected flash less than 125 ms away. The timing errors

were calculated only on the detected flashes. Since we required

that the maximal detected flash be no more than 125 ms away

from the true flash, there was a bound on the timing error.

Two naı̈ve rate code onset detectors were studied. The first was

based on the population rate, i.e., the total spike count in the entire

population during a predefined time interval (Figure 5D). In the

second naı̈ve readout we allowed an optimal selection of the

weight for each cell, i.e., the decision was based on a weighted

average of the spike counts of different cells with optimal weights

(Figure 5E). Hence, the more noisy cells were assigned lower

weights in the decision process. Specifically, for the results

presented in Figure 5 we have used 250 ms. Additional time

intervals were also studied with no significant improvement in the

detection performance.

Time to first spike decoder
The time to first spike decoder was constructed by first

estimating the joint probability of time to first spike and stimulus

identity on a training data set. We then used a maximum

likelihood decoder to estimate the stimulus on a test data set.

Estimating the fraction of photoreceptors affected by eye
movements during flash stimulus

Simple geometrical considerations yield that a target of size

4.5 cm located at a distance of 30 cm from an eye of diameter

4 mm spans roughly 0.60 mm on the retina. Given the

photoreceptor diameter of 6 mm, about 7,000 photoreceptors will

be stimulated by the flash stimulus. The fixational eye movement

oscillation period of the archer fish [28] is approximately 200 ms,

during which the image on the retina shifts at about 6 mm, which

is about one photoreceptor diameter. Hence, during 66 ms of the

flash stimulus, an order of magnitude of only ten photoreceptors

will be affected due to fixational eye movements.

Estimating the number of ganglion cells participating in
encoding flash onset

We used the following parameters: density of 4,500 cells/mm2,

receptive field radius of ,100 mm, and eye radius of 4 mm

[28,39]. We assumed that cells that encode information have their

receptive fields at least partially covering the target, resulting in an

estimate of 1,000–2,000 cells that participate in the encoding

process. This is, of course, a lower boundary since we took into

consideration only receptive field centres.

Supporting Information

Video S1 Archer shoot target. Two successful shots of the archer

fish in a behavioural experiment. In the first (second) shot the red

flash was to the left (right). The fish shoots the target (faint white

jet) and the experimentalist rewards it by placing a food pellet in

the water tank. A clear view of the event sequence during the

experiment can be obtained by viewing the frames one by one.

Found at: doi:10.1371/journal.pcbi.1000977.s001 (6.96 MB

MOV)
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