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Abstract: The cortex is a complex system, characterized
by its dynamics and architecture, which underlie many
functions such as action, perception, learning, language,
and cognition. Its structural architecture has been studied
for more than a hundred years; however, its dynamics
have been addressed much less thoroughly. In this paper,
we review and integrate, in a unifying framework, a
variety of computational approaches that have been used
to characterize the dynamics of the cortex, as evidenced
at different levels of measurement. Computational models
at different space–time scales help us understand the
fundamental mechanisms that underpin neural processes
and relate these processes to neuroscience data. Model-
ing at the single neuron level is necessary because this is
the level at which information is exchanged between the
computing elements of the brain; the neurons. Meso-
scopic models tell us how neural elements interact to
yield emergent behavior at the level of microcolumns and
cortical columns. Macroscopic models can inform us
about whole brain dynamics and interactions between
large-scale neural systems such as cortical regions, the
thalamus, and brain stem. Each level of description relates
uniquely to neuroscience data, from single-unit record-
ings, through local field potentials to functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG),
and magnetoencephalogram (MEG). Models of the cortex
can establish which types of large-scale neuronal net-
works can perform computations and characterize their
emergent properties. Mean-field and related formulations
of dynamics also play an essential and complementary
role as forward models that can be inverted given
empirical data. This makes dynamic models critical in
integrating theory and experiments. We argue that
elaborating principled and informed models is a prereq-
uisite for grounding empirical neuroscience in a cogent
theoretical framework, commensurate with the achieve-
ments in the physical sciences.

Introduction

The brain appears to adhere to two fundamental principles of

functional organization, functional integration and functional

specialization, where the integration within and among specialized

areas is mediated by connections among them. The distinction

relates to that between localisationism and connectionism that

dominated thinking about cortical function in the nineteenth

century. Since the early anatomic theories of Gall, the identifica-

tion of a particular brain region with a specific function has

become a central theme in neuroscience. In this paper, we address

how distributed and specialized neuronal responses are realized in

terms of microscopic brain dynamics; we do this by showing how

neuronal systems, with many degrees of freedom, can be reduced

to lower dimensional systems that exhibit adaptive behaviors.

It is commonly accepted that the information processing

underlying brain functions, like sensory, motor, and cognitive

functions, is carried out by large groups of interconnected neurons

[1–4]. Neurons are the cells responsible for encoding, transmitting,

and integrating signals originating inside or outside the nervous

system. The transmission of information within and between

neurons involves changes in the so-called resting membrane

potential, the electrical potential of the neurons at rest, when

compared to the extracellular space. The inputs one neuron receives

at the synapses from other neurons cause transient changes in its

resting membrane potential, called postsynaptic potentials. These

changes in potential are mediated by the flux of ions between the

intracellular and extracellular space. The flux of ions is made

possible through ion channels present in the membrane. The ion

channels open or close depending on the membrane potential and

on substances released by the neurons, namely neurotransmitters,

which bind to receptors on the cell’s membrane and hyperpolarize or

depolarize the cell. When the postsynaptic potential reaches a

threshold, the neuron produces an impulse. The impulses or spikes,

called action potentials, are characterized by a certain amplitude and

duration and are the units of information transmission at the

interneuronal level. Information is thought to be encoded in terms of

the frequency of the action potentials, called spiking or firing rate

(i.e., rate coding), as well as in the timing of action potentials (i.e.,

temporal coding).
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One way to investigate the biological basis of information

processing in the brain is to study the response of neurons to

stimulation. This can be done in experimental animals using

implanted electrodes to record the rates and timing of action

potentials. However, this invasive approach is generally not

possible in humans. To study brain function in humans,

techniques allowing the indirect study of neuronal activity have

been developed. An example is functional magnetic resonance

imaging (fMRI), measuring regional changes in metabolism and

blood flow associated with changes in brain activity. This

approach to measuring regional differences in brain activity is

possible because at a macroscopic level the cortex is organized into

spatially segregated regions known to have functionally specialized

roles. A technique such as fMRI allows the mapping of brain

regions associated with a particular task or task component.

Understanding the fundamental principles underlying higher

brain functions requires the integration of different levels of

experimental investigation in cognitive neuroscience (from single

neurons, neuroanatomy, neurophysiology, and neuroimaging, to

neuropsychology and behavior) via a unifying theoretical frame-

work that captures the neural dynamics inherent in the elaboration

of cognitive processes. In this paper, we review and integrate a

variety of computational approaches that have been used to

characterize the dynamics of the cortex, as evidenced at different

levels of measurement.

The paper is structured as follows. The central theme of this

review is that the activity in populations of neurons can be

understood by reducing the degrees of freedom from many to few,

hence resolving an otherwise intractable computational problem.

The most striking achievement in this regard is the reduction of a

large population of spiking neurons to a distribution function

describing their probabilistic evolution—that is, a function that

captures the likely distribution of neuronal states at a given time.

In turn, this can be further reduced to a single variable describing

the mean firing rate. This reduction is covered first, in the next

section. In the section entitled Neural Modes and Masses, we

return to the full probability distribution function and show how it

can be represented by a set of scalars that parameterize it

parsimoniously. These parameters are equivalent to the moments

of the distribution. In many instances, a few—possibly even one

(equivalent to the center of mass)—are sufficient to summarize

activity. These are known as Neural Mass Models. These models

capture the dynamics of a neuronal population. Naturally, it is

useful to understand how neuronal activity unfolds on the spatially

continuous cortical sheet. This can be addressed with neural field

models; involving differential operators with both temporal and

spatial terms. That is, neuronal activity depends on its current state

as well as spatial gradients, which allow its spread horizontally

across the cortical surface. These models are covered in the Neural

Field Models section. In Numerical Simulations: Ensemble

Activity from Neuronal to Whole Brain Scale, we provide

numerical simulations of neuronal ensemble dynamics across a

hierarchy of spatial and temporal scales. At the microscopic scale,

we simulate an entire array of spiking neurons in response to a

sensory-evoked synaptic current. By comparing the response to

that of a mesoscopic neural mass model, we show what is gained

and what is lost by abstracting to a more tractable set of evolution

equations. The spread of activity across the cortical surface, in a

neural field model, is also illustrated. Finally, in the section entitled

Cognitive and Clinical Applications, we illustrate applications of

neural ensemble modeling in health and disease; namely, decision-

making, auditory scene analysis, and absence seizures.

A summary of the notation for all the main dynamical variables

and physiological parameters is given in Table 1.

Mean-Field Models

This section provides an overview of mean-field models of

neuronal dynamics and their derivation from models of spiking

neurons. These models have a long history spanning a half-century

(e.g., [5]) and are formulated using concepts from statistical

physics. In this section, we try to clarify some key concepts and

show how they relate to each other. Models are essential for

neuroscience, in the sense that the most interesting questions

pertain to neuronal mechanisms and processes that are not directly

observable. This means that questions about neuronal function are

generally addressed by inference on models or their parameters,

where the model links neuronal processes that are hidden from our

direct observation. Broadly speaking, models are used to generate

data, to study emergent behaviors, or they can be used as forward

or observation models, which are inverted given empirical data.

This inversion allows one to select the best model (given some

data) and make probabilistic comments about the parameters of

that model. Mean-field models are suited to data which reflect the

behavior of a population of neurons, such as the electroenceph-

alogram (EEG), magnetoencephalogram (MEG), and fMRI. The

most prevalent models of neuronal populations or ensembles are

based upon something called the mean-field approximation. The

mean-field approximation is used extensively in statistical physics

and is essentially a technique that finesses an otherwise

computationally or analytically intractable problem. An exemplary

approach, owing to Boltzmann and Maxwell, is the approximation

of the motion of molecules in a gas by mean-field terms such as

temperature and pressure.

Ensemble density models. Ensemble models attempt to

model the dynamics of large (theoretically infinite) populations of

neurons. Any single neuron could have a number of attributes; for

example, post-synaptic membrane depolarization, V, capacitive

current, I, or the time since the last action potential, T. Each

attribute induces a dimension in the phase space of a neuron; in our

example the phase space would be three dimensional and the state of

each neuron would correspond to a point n = {V,I,T} MR3 or particle

in phase space. Imagine a very large number of neurons that

populate phase space with a density p(n,t). As the state of each neuron

evolves, the points will flow through phase space, and the ensemble

density p(n,t) will evolve until it reaches some steady state or

equilibrium. p(n,t) is a scalar function returning the probability

density at each point in phase space. It is the evolution of the density

per se that is characterized in ensemble density methods. These

models are particularly attractive because the density dynamics

conform to a simple equation: the Fokker-Planck equation

_pp~{+: f {D+ð Þp: Lp

Lt
~tr {

L fpð Þ
Lv

z
L
Lv

D
Lp

Lv

� �� �
: ð1Þ

This equation comprises a flow and a dispersion term; these terms

embed the assumptions about the dynamics (phase flow, f(n,t)) and

random fluctuations (dispersion, D(n,t)) that constitute our model at

the neuronal level. This level of description is usually framed as a

(stochastic) differential equation (Langevin equation) that describes

how the states evolve as functions of each other and some random

fluctuations with

dv~f vð Þdtzsdv, ð2Þ

where, D = Ks2 and v is a standard Wiener process; i.e.,

w(t)2w(t+Dt),N(0, Dt). Even if the dynamics of each neuron are

complicated, or indeed chaotic, the density dynamics remain simple,

linear, and deterministic. In fact, we can write the density dynamics
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Table 1. List of notation and symbols.

Quantity Symbol SI Unit

Neural membrane potential V V

Neural membrane capacitive current I A

Time elapsed since most recent action potential T s

Neural membrane capacitance C F

Neural membrane resistance R v

Neural membrane time constant t = RC s

Neural leak or resting potential VL V

Neural firing threshold h V

Neural action potential spike d

Neural refractory period Tref s

Neural reset (post-firing) membrane potential Vreset V

Synaptic efficacy of cell j onto cell i Jij A s21

Neural membrane phase space state vector n varies

Neural ensemble probability density p(n,t) varies

Neural ensemble dynamics (flow) f(n,t) varies

Neural ensemble random fluctuations (dispersion) D(n,t) varies

Neural ensemble jacobian Q varies

Neural ensemble average synaptic efficacy ÆJæJ A s21

Neural ensemble mean firing rate Q(t) s21

Neural ensemble infinitesimal depolarization e = dV(t) V

Neural ensemble mean membrane potential (drift) m = ṁn V

Neural ensemble mean capacitive current ma~ _mmv A

Neural ensemble membrane potential variance (diffusion) s2 (V)2

Neural ensemble probability density flux F varies

Neural population transfer function w(n,s) s21

Neural population probability basis functions (modes) g(n) varies

Neural mass synaptic gain time constant k s21

Neural mass synaptic response coefficient c dimensionless

Neural field local membrane potential in population a Va(r,t) V

Neural field local firing rate in population a Qa(r,t) s21

Mean number of synapses on neuron a from neurons b Nab

Mean time-integrated strength of the response of Va per incoming spike from neurons b sab m V s

Average rate of incoming spikes (pulse density) between populations a and b wab s21

Discrete time delay between populations a and b tab s

Coupling strength between neural populations a and b nab = Nabsab V s

Mean decay rate of the soma response to a delta-function synaptic input aab s21

Mean rise rate of the soma response to a delta-function synaptic input bab s21

Firing threshold for channels of type a ha V

Characteristic range of axons, including dendritic arborization r, rab m

Characteristic action potential propagation velocity c, cab m s21

Temporal damping coefficient in the absence of pulse regeneration ca = ca/ra s21

Steady state sigmoid slope in population a ra (V s)21

Macroscopic observable y(k,v) = MQ

Spatiotemporal measurement matrix M

Autonomous (uncoupled) growth/decay rate of neural mass f s21

The first column gives a brief description of the parameter, with its symbol listed in the second. The unit of each quantity is given in the third column.
doi:10.1371/journal.pcbi.1000092.t001
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in terms of a linear operator or Jacobian Q

_pp~Qp

Q~+: D+{fð Þ:
ð3Þ

In summary, for any model of neuronal dynamics, specified as a

stochastic differential equation, there is a deterministic linear

equation that can be integrated to generate ensemble dynamics. In

what follows, we will explain in detail the arguments that take us

from the spiking behavior of individual neurons to the mean-field

dynamics described by the Fokker-Planck equation. We will

consider the relationship between density dynamics and neural

mass models and how these can be extended to cover

spatiotemporal dynamics in the brain.

From spiking neurons to mean-field models. The

functional specialization of the brain emerges from the collective

network dynamics of cortical circuits. The computational units of

these circuits are spiking neurons, which transform a large set of

inputs, received from different neurons, into an output spike train

that constitutes the output signal of the neuron. This means that

the spatiotemporal spike patterns produced by neural circuits

convey information among neurons; this is the microscopic level

on which the brain’s representations and computations rest [6].

We assume that the nonstationary temporal evolution of the

spiking dynamics can be captured by one-compartment, point-like

models of neurons, such as the leaky integrate-and-fire (LIF) model

[7] used below. Other models relevant for systems neuroscience

can be found in [4,8,9]. In the LIF model, each neuron i can be

fully described in terms of a single internal variable, namely the

depolarization Vi(t) of the neural membrane. The basic circuit of a

LIF model consists of a capacitor, C, in parallel with a resistor, R,

driven by a synaptic current (excitatory or inhibitory postsynaptic

potential, EPSP or IPSP, respectively). When the voltage across

the capacitor reaches a threshold h, the circuit is shunted (reset)

and a d pulse (spike) is generated and transmitted to other neurons.

The subthreshold membrane potential of each neuron evolves

according to a simple RC circuit, with a time constant t = RC given

by the following equation:

t
dVi tð Þ

dt
~{ Vi tð Þ{VL½ �zRIi tð Þ, ð4Þ

where Ii(t) is the total synaptic current flow into the cell i and VL is

the leak or resting potential of the cell in the absence of external

afferent inputs. In order to simplify the analysis, we neglect the

dynamics of the afferent neurons (see [10] for extensions

considering detailed synaptic dynamics such as AMPA, NMDA,

and GABA). The total synaptic current coming into the cell i is

therefore given by the sum of the contributions of d-spikes

produced at presynaptic neurons. Let us assume that N neurons

synapse onto cell i and that Jij is the efficacy of synapse j, then the

total synaptic afferent current is given by

RIi tð Þ~t
XN

j~1

Jij

X
k

d t{t
kð Þ

j

� �
, ð5Þ

where t
kð Þ

j is the emission time of the kth spike from the jth presynaptic

neuron. The subthreshold dynamical Equation 4, given the input

current (from Equation 5), can be integrated, and yields

Vi tð Þ~VLz
XN

j~1

Jij

ðt
0

e{s=t
X

k

d t{s{t
kð Þ

j

� �
ds,

~VLz
XN

j~1

Jije
{ t{t

kð Þ
jð Þ=t

X
k

H t{t
kð Þ

j

� �
,

ð6; 7Þ

if the neuron i is initially (t = 0) at the resting potential (Vi(0) = VL). In

Equation 7, H(t) is the Heaviside function (H(t) = 1 if t.0, and

H(t) = 0 if t,0). Thus, the incoming presynaptic d-pulse from other

neurons is basically low-pass filtered to produce an EPSP or IPSP in

the post-synaptic cell. Nevertheless, the integrate-and-fire (IF) model

is not only defined by the subthreshold dynamics but includes a reset

after each spike generation, which makes the whole dynamics highly

nonlinear. In what follows, we present a theoretical framework

which is capable of dealing with this.

The population density approach. Realistic neuronal

networks comprise a large number of neurons (e.g., a cortical

column has O(104)2O(108) neurons) which are massively

interconnected (on average, a neuron makes contact with O(104)

other neurons). The underlying dynamics of such networks can be

described explicitly by the set of coupled differential equations

(Equation 4) above. Direct simulations of these equations yield a

complex spatiotemporal pattern, covering the individual trajectory

of the internal state of each neuron in the network. This type of direct

simulation is computationally expensive, making it very difficult to

analyze how the underlying connectivity relates to various dynamics.

In fact, most key features of brain operation seem to emerge from the

interplay of the components; rather than being generated by each

component individually. One way to overcome these difficulties is by

adopting the population density approach, using the Fokker-Planck

formalism (e.g., [11]). As noted above, the Fokker-Planck equation

summarizes the flow and dispersion of states over phase space in a

way that is a natural summary of population dynamics in genetics

(e.g., [12]) and neurobiology (e.g., [13,14]).

In what follows, we derive the Fokker-Planck equation for

neuronal dynamics that are specified in terms of spiking neurons.

This derivation is a little dense but illustrates the approximating

assumptions and level of detail that can be captured by density

dynamics. The approach we focus on was introduced by [15] (see

also [16,17]). In this approach, individual IF neurons are grouped

together into populations of statistically similar neurons. A

statistical description of each population is given by a probability

density function that expresses the distribution of neuronal states

(i.e., membrane potential) over the population. In general, neurons

with the same state V(t) at a given time t have a different history

because of random fluctuations in the input current I(t). The main

source of randomness is from fluctuations in recurrent currents

(resulting from ‘‘quenched’’ randomness in the connectivity and

transmission delays) and fluctuations in the external currents. The

key assumption in the population density approach is that the

afferent input currents impinging on neurons in one population

are uncorrelated. Thus, neurons sharing the same state V(t) in a

population are indistinguishable. Consequently, the dynamics are

described by the evolution of the probability density function:

p u,tð Þdu~Prob V tð Þ[ u,uzdu½ �f g, ð8Þ

which expresses the population density, which is the fraction of

neurons at time t that have a membrane potential V(t) in the

interval [u,u+du]. The evolution of the population density is given
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by the Chapman-Kolmogorov equation

p u,tzdtð Þ~
ðz?

{?
p u{e,tð Þr e u{ejð Þde, ð9Þ

where r(e|u) = Prob{V(t+dt) = u+e|V(t) = u} is the conditional prob-

ability that generates an infinitesimal change e = V(t+dt)2V(t) in the

infinitesimal interval dt. The Chapman-Kolmogorov equation can

be written in a differential form by performing a Taylor expansion

in p(u9,t) r(e|u9) around u9 = u; i.e.,

p u0,tð Þr e u0jð Þ~
X?
k~0

{eð Þk

k!

Lk

Lu0k
p u0,tð Þr e u0jð Þ½ � u0~uj : ð10Þ

In the derivation of the last equation, we have assumed that p(u9,t)

and r(e| u9) are infinitely many times differentiable in u. Inserting

this expansion in Equation 9, and replacing the time derivative in

u9 by the equivalent time derivative in u, we obtain

p u,tzdtð Þ~p u,tð Þ
ðz?

{?
r e ujð Þde{

L
Lu

p u,tð Þ
ðz?

{?
er e ujð Þde

� �� �

z
1

2

L2

Lu2
p u,tð Þ

ðz?

{?
e2r e ujð Þde

� �� �
z . . . ,

~
X?
k~0

{1ð Þk

k!

Lk

Luk
p u,tð ÞSekTu

� �
,

ð11; 12Þ

where Æ…æu denotes the average with respect to r(e| u) at a given u.

Finally, taking the limit for dt R 0, we obtain:

Lp u,tð Þ
Lt

~
X?
k~1

{1ð Þk

k!

Lk

Luk
p u,tð Þ lim

dt?0

1

dt
SekTu

� �
: ð13Þ

Equation 13 is known as the Kramers-Moyal expansion of the

original integral Chapman-Kolmogorov equation (Equation 9). It

expresses the time evolution of the population density in

differential form.

The diffusion approximation. The temporal evolution of

the population density as given by Equation 13 requires the

moments Æekæu due to the afferent current during the interval dt.

These moments can be calculated by the mean-field

approximation. In this approximation, the currents impinging on

each neuron in a population have the same statistics, because as

we mentioned above, the history of these currents is uncorrelated.

The mean-field approximation entails replacing the time-averaged

discharge rate of individual cells with a common time-dependent

population activity (ensemble average). This assumes ergodicity for

all neurons in the population. The mean-field technique allows us

to discard the index denoting the identity of any single neuron and

express the infinitesimal change, dV(t), in the membrane potential

of all neurons as:

dV tð Þ~SJTJNQ tð Þdt{
V tð Þ{VL

t
dt, ð14Þ

where N is the number of neurons, and Q(t) is the mean population

firing rate. This is determined by the proportion of active neurons

by counting the number of spikes nspikes(t,t+dt) in a small time

interval dt and dividing by N and by dt [18]; i.e.,

Q tð Þ~ lim
dt?0

nspikes t,tzdtð Þ
Ndt

: ð15Þ

In Equation 14, ÆJæJ denotes the average of the synaptic weights

in the population. The moments of the infinitesimal depolariza-

tion, e = dV(t), can now be calculated easily from Equation 14. The

first two moments in the Kramers-Moyal expansion are called drift

and diffusion coefficients, respectively, and they are given by:

M 1ð Þ~ lim
dt?0

1

dt
SeTu~SJTJNQ tð Þ{ u{VL

t
~

m tð Þ
t

{
u{VL

t
, ð16Þ

M 2ð Þ~ lim
dt?0

1

dt
Se2Tu~SJ2TJNQ tð Þ~ s tð Þ2

t
: ð17Þ

In general, keeping only the leading term linear in dt, it is easy to

prove that for k.1,

SekTu~SJkTJNQ tð ÞdtzO dt2
	 


, ð18Þ

and hence,

M kð Þ~ lim
dt?0

1

dt
SekTu~SJkTJNQ tð Þ: ð19Þ

The diffusion approximation arises when we neglect high-order

(k.2) terms. The diffusion approximation is exact in the limit of

infinitely large networks, i.e., N R ‘, if the synaptic efficacies scale

appropriately with network size, such that J R 0 but NJ2 R const.

In other words, the diffusion approximation is appropriate, if the

minimal kick step, J, is very small but the overall firing rate is very

large. In this case, all moments higher than two become negligible,

in relation to the drift (m) and diffusion (s2) coefficients.

The diffusion approximation allows us to omit all higher orders

k.2 in the Kramers-Moyal expansion. The resulting differential

equation describing the temporal evolution of the population

density is called the Fokker-Planck equation, and reads

Lp u,tð Þ
Lt

~
1

2t
s2 tð Þ L

2p u,tð Þ
Lu2

z
L
Lu

u{VL{m tð Þ
t

� �
p u,tð Þ

� �
: ð20Þ

In the particular case that the drift is linear and the diffusion

coefficient, s2(t), is given by a constant, the Fokker-Planck

equation describes a well-known stochastic process called the

Ornstein-Uhlenbeck process [19]. Thus, under the diffusion

approximation, the Fokker-Planck equation (Equation 20) ex-

presses an Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck

process describes the temporal evolution of the membrane

potential V(t) when the input afferent currents are given by

RI tð Þ~m tð Þzs
ffiffiffi
t
p

v tð Þ, ð21Þ

where v(t) is a white noise process. Under the diffusion

approximation, Equation 21 can also be interpreted (by means

of the Central Limit Theorem), as the case in which the sum of

many Poisson processes (Equation 5) becomes a normal random

variable with mean m(t) and variance s2.
The mean-field model. The simulation of a network of IF

neurons allows one to study the dynamical behavior of the
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neuronal spiking rates. Alternatively, the integration of the non-

stationary solutions of the Fokker-Planck equation (Equation 20)

also describes the dynamical behavior of the network, and this

would allow the explicit simulation of neuronal and cortical

activity (single cells, EEG, fMRI) and behavior (e.g., performance

and reaction time). However, these simulations are

computationally expensive and their results probabilistic, which

makes them unsuitable for systematic explorations of parameter

space. However, the stationary solutions of the Fokker-Planck

equation (Equation 20) represent the stationary solutions of the

original IF neuronal system. This allows one to construct

bifurcation diagrams to understand the nonlinear mechanisms

underlying equilibrium dynamics. This is an essential role of the

mean-field approximation: to simplify analyses through the

stationary solutions of the Fokker-Planck equation for a

population density under the diffusion approximation (Ornstein-

Uhlenbeck process) in a self-consistent form. In what follows, we

consider stationary solutions for ensemble dynamics.

The Fokker-Planck equation describing the Ornstein-Uhlen-

beck process, with m = ÆJæJ NQ(t) and s2 = ÆJ2æJ NQ(t), can be

rewritten as a continuity equation:

Lp u,tð Þ
Lt

~{
LF u,tð Þ

Lu
, ð22Þ

where F is the flux of probability defined as follows:

F u,tð Þ~{
u{VL{m

t
p u,tð Þ{ s2

2t

Lp u,tð Þ
Lu

: ð23Þ

The stationary solution should satisfy the following boundary

condition:

p h,tð Þ~0, ð24Þ

and

Lp h,tð Þ
Lu

~{
2Qt

s2
, ð25Þ

which expresses the fact that the probability current at threshold

gives, by a self-consistent arguments, the average firing rate, Q, of

the population. Furthermore, at uR24 the probability density

vanishes fast enough to be integrable; i.e.,

lim
u?{?

p u,tð Þ~0, ð26Þ

and

lim
u?{?

up u,tð Þ~0: ð27Þ

In addition, the probability mass leaving the threshold at time t has

to be re-injected at the reset potential at time t+tref (where tref is the

refractory period of the neurons), which can be accommodated by

rewriting Equation 22 as follows:

Lp u,tð Þ
Lt

~{
L
Lu

F u,tð ÞzQ t{tref

	 

H u{Vresetð Þ

� �
, ð28Þ

where H(.) is the Heaviside function. The solution of Equation 28

satisfying the boundary conditions (Equations 24–27) is:

ps uð Þ~ 2Qt

s
exp {

u{VL{m

s2

� �

ðh{VL{m

s

u{VL{m

s

H x{
Vreset{VL{m

s

� �
ex2

dx:

ð29Þ

Taking into account the fraction of neurons, Qtref, in the refractory

period and the normalization of the mass probability,

ðh

{?
ps uð ÞduzQtref ~1: ð30Þ

Finally, substituting Equation 29 into Equation 30, and solving for

Q, we obtain the population transfer function, w, of Ricciardi [13]:

Q~ tref zt
ffiffiffi
p
p ðh{VL{m

s

Vreset{VL{m

s

ex2

1zerf xð Þf gdx

2
664

3
775

{1

~w m,sð Þ, ð31Þ

where erf xð Þ~2=
ffiffiffi
p
p Ð x

0
e{y2

dy.

The stationary dynamics of each population can be described by

the population transfer function, which provides the average

population rate as a function of the average input current. This

can be generalized easily for more than one population. The network

is partitioned into populations of neurons whose input currents share

the same statistical properties and fire spikes independently at the

same rate. The set of stationary, self-reproducing rates, Qi, for

different populations, i, in the network can be found by solving a set

of coupled self-consistency equations, given by:

Qi~w mi,sið Þ ð32Þ

To solve the equations defined by Equation 32 for all i, we

integrate the differential equation below, describing the approx-

imate dynamics of the system, which has fixed-point solutions

corresponding to Equation 32:

tx
dQx

dt
~{Qxzw mx,sxð Þ: ð33Þ

This enables a posteriori selection of parameters, which induce

the emergent behavior that we are looking for. One can then

perform full nonstationary simulations using these parameters in

the full IF scheme to generate true dynamics. The mean-field

approach ensures that these dynamics will converge to a stationary

attractor that is consistent with the steady-state dynamics we

require [10,20]. In our case, the derived transfer function, w,

corresponds consistently to the assumptions of the simple LIF

model described in the From Spiking-Neurons to Mean-Field

Models section. Further extension for more complex and realistic

models are possible. For example, an extended mean-field

framework, which is consistent with the IF and realistic synaptic

equations that considers both the fast and slow glutamatergic

excitatory synaptic dynamics (AMPA and NMDA) and the

dynamics of GABA inhibitory synapses, can be found in [10].

Before turning to neural mass models, we consider some
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applications of mean-field modeling that will be reprised in the last

section.

Competition and cooperation. How are different cortical

representations integrated to form a coherent stream of

perception, cognition, and action? The brain is characterized by

a massive recurrent connectivity between cortical areas, which

suggests that integration of partial representations might be

mediated by cross talk via interareal connections. Based on this

view [21], and neurophysiological evidence [22], it has been

hypothesized that each cortical area represents a set of alternative

hypotheses, encoded in the activities of cell assemblies.

Representations of conflicting hypotheses compete with each

other; however, each area represents only a part of the

environment or internal state. In order to arrive at a coherent

global representation, different cortical areas bias each others’

internal representations by communicating their current states to

other areas, thereby favoring certain sets of local hypotheses over

others. By recurrently biasing each others’ competitive internal

dynamics, the neocortical system arrives at a global representation

in which each area’s state is maximally consistent with those of the

other areas. This view has been referred to as the biased-

competition hypothesis. In addition to this competition-centered

view, a cooperation-centered picture of brain dynamics, where

global representations find their neural correlate in assemblies of

coactivated neurons, has been formulated [21,23]. Coactivation is

achieved by increased connectivity among the members of each

assembly. Reverberatory communication between the members of

the assembly then leads to persistent activation to engender

temporally extended representations.

The mean-field approach has been applied to biased-competi-

tion and cooperation networks and has been used to model single

neuronal responses, fMRI activation patterns, psychophysical

measurements, effects of pharmacological agents, and effects of

local cortical lesions [6,24–33]. In the section entitled Cognitive

and Clinical Applications, we present one of these examples, in the

context of decision-making.

Neural Modes and Masses

The Fokker-Planck equation, (Equation 1), is a rather beautiful

and simple expression that prescribes the evolution of ensemble

dynamics, given any initial conditions and equations of motion

that embed our neuronal model. However, it does not specify how

to encode or parameterize the density itself. There are several

approaches to this. These include binning the phase space and

using a discrete approximation to a continuous density. However,

this can lead to a vast number of differential equations, especially if

there are multiple states for each population. One solution to this

is to reduce the number of states (i.e., dimension of the phase

space) to render the integration of the Fokker-Planck more

tractable. One elegant example of this reduction can be found in

[34]. Here, population dynamics are described by a set of one-

dimensional partial differential equations in terms of the

distributions of the refractory density (where the refractory state

is defined by the time elapsed since the last action potential). This

furnishes realistic simulations of the population activity of

hippocampal pyramidal neurons, based on something known as

the refractory density equation and a single-neuron threshold

model. The threshold model is a conductance-based model with

adaptation-providing currents.

An alternative approach to dimension reduction is to approx-

imate the ensemble densities with a linear superposition of

probabilistic modes or basis functions g(n) that cover phase space.

In this section, we overview this modal approach to ensemble

dynamics, initially in the general setting and then in the specific

case, where the dynamics can be captured by the activity of a

single node.

Moments and modes of density dynamics. Instead of

characterising the density dynamics explicitly, one can summarize

it in terms of coefficients parameterising the expression of modes:

p~
X

i

mig vð Þ~gm: ð34Þ

where m = g2p, g2 being the generalized inverse of the matrix

encoding the basis set of modes.

A useful choice for the basis functions are the eigenfunctions

(i.e., eigen vectors) of the Fokker-Planck operator, Q [17], where

Qg = gl)g2Qg = l and l is a leading-diagonal matrix of

eigenvalues. Because the Fokker-Planck operator conserves

probability mass, all its real eigenvalues are zero or negative. In

the absence of mean-field effects, the biorthogonality of the

eigenfunctions effectively uncouples the dynamics of the modes

they represent

_pp~Qp[,

g{ _pp~g{Qgm,[

_mmi~limi:

ð35Þ

The last expression means that, following perturbation, each

mode decays exponentially, to disclose the equilibrium mode, g0,

that has a zero eigenvalue. Because the eigenvalues are complex

(due to the fact that the Jacobian is not symmetric), the decay is

oscillatory in nature, with a frequency that is proportional to the

imaginary part of the eigenvalue and a rate constant proportional

to the real part. The key thing about this parameterisation is that

most modes will decay or dissipate very quickly. This means we

only have to consider a small number of modes, whose temporal

evaluation can be evaluated simply with

_mm~lm,[

_mm tð Þ~exp tlð Þm 0ð Þ,[

p v,tð Þ&gexp tg{Qgð Þg{r 0ð Þ:

ð36Þ

See [35] for an example of this approach, in which the ensuing

nonlinear differential equations were used in a forward model of

observed data. In summary, we can formulate the ensemble

dynamics of any neuronal system, given its equations of motion,

using the equation above. This specifies how the coefficients of

probability modes would evolve from any initial state or following

a perturbation to the neuronal states. It furnishes a set of coupled

differential equations that can be integrated to form predictions of

real data or to generate emergent behaviors. We have introduced

parameterisation in terms of probability modes because it provides

a graceful link to neural mass models.

Neural mass models. Neural mass models can be regarded

as a special case of ensemble density models, where we summarize

our description of the ensemble density with a single number.

Early examples can be found in the work of [5,36,37]. The term

mass action model was coined by [38] as an alternative to density

dynamics. These models can be motivated as a description in

terms of the expected values of neuronal states, m, under the

assumption that the equilibrium density has a point mass (i.e., a

delta function). This is one perspective on why these simple mean-
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field models are called neural mass models. In short, we replace

the full ensemble density with a mass at a particular point and then

summarize the density dynamics by the location of that mass.

What we are left with is a set of nonlinear differential equations

describing the evolution of this mode. But what have we thrown

away? In the full nonlinear Fokker-Planck formulation, different

phase functions or probability density moments could couple to

each other; both within and between populations or ensembles.

For example, this means that the average depolarisation in one

ensemble could be affected by the dispersion or variance of

depolarisation in another. In neural mass models, we ignore this

possibility because we can only couple the expectations or first

moments. There are several devices that are used to compensate

for this simplification. Perhaps the most ubiquitous is the use of a

sigmoid function, z(mn), relating expected depolarisation to

expected firing rate [38]. This implicitly encodes variability in

the postsynaptic depolarisation, relative to the potential at which

the neuron would fire. A common form for neural mass equations

of motion posits a second order differential equation for expected

voltage, or, equivalently, two coupled first order equations,

m = {mn,mi} where

1

c2

L2

Lt2
z

2

c

L
Lt

z1

 !
mv~z mvð Þ,

_mmv~ma,

_mma~k2z mvð Þ{2cma{c2mv,

z mvð Þ~
2k

1zexp {rmvð Þ{k:

ð37Þ

Here ma can be regarded as capacitive current. The constant c
controls the rise time of voltage, in response to inputs (see also the

Neural Field Models section). These differential equations can be

expressed as a convolution of inputs, z(mn), to give the expected

depolarization, mn; i.e., the convolution of the input signal with an

impulse response kernel W(t)

mv tð Þ~
ð

W t{t0ð Þz mv tð Þ½ �dt0,

W tð Þ~c2texp {ctð Þ:
ð38Þ

The input is commonly construed to be a firing rate (or pulse

density) and is a sigmoid function, z, of mean voltage of the same

or another ensemble. The coupling constant, k, scales the

amplitude of this mean-field effect. This form of neural mass

model has been used extensively to model electrophysiological

recordings (e.g., [39–41]) and has been used recently as the basis of

a generative model for event-related potentials that can be

inverted using real data [42].

In summary, neural mass models are special cases of ensemble

density models that are furnished by ignoring all but the

expectation or mean of the ensemble density. This affords a

considerable simplification of the dynamics and allows one to focus

on the behavior of a large number of ensembles, without having to

worry about an explosion in the number of dimensions or

differential equations one has to integrate. The final sort of model

we will consider is the generalisation of neural mass models that

allow for states that are functionals of position on the cortical

sheet. These are referred to as neural field models and are

discussed in the following sections.

Neural Field Models

The density dynamics and neural mass models above covered

state the attributes of point processes, such as EEG sources,

neurons, or neuronal compartments. An important extension of

these models speaks to the fact that neuronal dynamics play out on

a spatially extended cortical sheet. In other words, states like the

depolarisation of an excitatory ensemble in the granular layer of

cortex can be regarded as a continuum or field, which is a function

of space, x, and time, m(t)Rm(x,t). This allows one to formulate the

dynamics of the expected field in terms of partial differential

equations in space and time. These are essentially wave equations

that accommodate lateral interactions. Although we consider

neural field models last, they were among the first mean-field

models of neuronal dynamics [43,44]. Key forms for neural field

equations were proposed and analysed by [45–47]. These models

were generalized by [48,49] who, critically, considered delays in

the propagation of spikes over space. The introduction of

propagation delays leads to dynamics that are very reminiscent

of those observed empirically.

Typically, neural field models can be construed as a

spatiotemporal convolution (c.f., Equation 38) that can be written

in terms of a Green’s function; e.g.,

mv x,tð Þ~
ð

W x{x0,t{t0ð Þz mv x0,t0ð Þ½ �dx0dt0,

W x{x0,t{t0ð Þ~d t{t0{
x{x0j j

c

� � exp
{ x{x0j j

g

� �
2g

,

ð39Þ

where |x2x9| is the distance between the spatial locations x and

x9, c is the characteristic speed of spike propagation, and g reflects

the spatial decay of lateral interactions. The corresponding second

order equations of motion are a neural wave equation (see [48,49]

and below)

1

g2

L
L2

z
2

g
L
Lt

z1{r2+2

� �
mv~ 1z

1

g
L
Lt

� �
z mvð Þ, ð40Þ

where g= c/r and h2 is the Laplacian. The formal similarity with

the neural mass model in (37) is self-evident. These sorts of models

have been extremely useful in modeling spatiotemporally extended

dynamics (e.g., [50–53]). The generic form of neural field

dynamics can be written as (see also [53]):

_mm~f mð Þza

ð
C

W x{x0j jð Þz m x0,Tcð Þ½ �dx0zh, ð41Þ

where m = m(x,t) is the neural field, capturing the neural mass

activity at time t and position x. f(m) captures the local dynamics of

the neural field, and Tc = t2|x2x9|/c is the time delay due to

signal propagation. h is a constant threshold value and C is the

spatial domain of the neural field, where x M C= [0,L]. The kernel

W(|x2x9|) denotes the connectivity function, which is transla-

tionally invariant in space, i.e., the probability that two neural

masses are connected depends only on the distance between them.

If we neglect the local dynamics f(m), _mm~0, and use an exponential

kernel as in Equation 39, we recover Equations 39 and 40. This

approximation is valid when the axonal delays contribute mostly

to the dynamics, for instance in large-scale networks, when the

local dynamics are much faster than the network dynamics. It is

easy to show that most realistic connectivity kernels provide a

neural wave equation like Equation 40; this is due to the fact that

PLoS Computational Biology | www.ploscompbiol.org 8 August 2008 | Volume 4 | Issue 8 | e1000092



the connectivity must remain integrable. As above, the parameter c

is the propagation velocity of action potentials traveling down an

axon. If f(m) = 2f m, then the constant f.0MR represents the

growth rate of the neural mass. a.0 is a scaling constant. Under

instantaneous interactions, cR‘, single population models with

locally excitatory and laterally inhibitory connectivity can support

global periodic stationary patterns in one dimension as well as

single or multiple localized solutions (bumps and multi-bumps)

[47]. This class of models are also sometimes referred to as

continuous attractor neural networks (CANN). When the firing

rate, z, is a Heaviside step function, [45] was able to construct an

explicit one-bump solution of the form

m xð Þ~
ða
0

W x{x0j jð Þdx0, m 0ð Þ~h~m að Þ, ð42Þ

where the value a corresponds to the width of the bump. Amari

also identified criteria to determine if only one bump, multiple

bumps, or periodic solutions exist and if they are stable. This

simple mathematical model can be extended naturally to

accommodate multiple populations and cortical sheets, spike

frequency adaptation, neuromodulation, slow ionic currents, and

more sophisticated forms of synaptic and dendritic processing as

described in the review articles [4,54,55]. Spatially localized bump

solutions are equivalent to persistent activity and have been linked

to working memory in prefrontal cortex [56,57]. During

behavioral tasks, this persistent elevated neuronal firing can last

for tens of seconds after the stimulus is no longer present. Such

persistent activity appears to maintain a representation of the

stimulus until the response task is completed. Local recurrent

circuitry has received the most attention, but other theoretical

mechanisms for the maintenance of persistent activity, including

local recurrent synaptic feedback and intrinsic cellular bistability

[58,59], have been put forward. The latter will be captured by

specific choices of the local dynamics, f(m), in Equation 41; for

instance, [60] choose a cubic-shaped function of the firing rate,

which, under appropriate parameters, allows for intrinsic bist-

ability. Single bump solutions have been used for neural modeling

of the head-direction system [61–64], place cells [65–68],

movement initiation [69], and feature selectivity in visual cortex,

where bump formation is related to the tuning of a particular

neuron’s response [70]. Here the neural fields maintain the firing

of its neurons to represent any location along a continuous

physical dimension such as head direction, spatial location, or

spatial view. The mathematical analysis of the neural field models

is typically performed with linear stability theory, weakly nonlinear

perturbation analysis, and numerical simulations. With more than

one population, nonstationary (traveling) patterns are also possible.

In two dimensions, many other interesting patterns can occur,

such as spiral waves [71], target waves, and doubly periodic

patterns. These latter patterns take the form of stripes and

checkerboard-like patterns, and have been linked to drug-induced

visual hallucinations [72]. For smooth sigmoidal firing rates, no

closed-form spatially localized solutions are known, though much

insight into the form of multibump solutions has been obtained

using techniques first developed for the study of fourth-order

pattern forming systems [73]. Moreover, in systems with mixed

(excitatory and inhibitory) connectivity or excitatory systems with

adaptive currents, solitary traveling pulses are also possible. The

bifurcation structure of traveling waves in neural fields can be

analysed using a so-called Evans function and has recently been

explored in great detail [74].

Much experimental evidence, supporting the existence of neural

fields, has been accumulated (see [53] for a summary). Most of

these results are furnished by slice studies of pharmacologically

treated tissue, taken from the cortex [75–77], hippocampus [78],

and thalamus [79]. In brain slices, these waves can take the form of

synchronous discharges, as seen during epileptic seizures [80], and

spreading excitation associated with sensory processing [81]. For

traveling waves, the propagation speed depends on the threshold,

h, which has been established indirectly in real neural tissue (rat

cortical slices bathed in the GABA-A blocker picrotoxin) by [82].

These experiments exploit the fact that (i) cortical neurons have

long apical dendrites and are easily polarized by an electric field,

and (ii) that epileptiform bursts can be initiated by stimulation. A

positive (negative) electric field applied across the slice increased

(decreased) the speed of wave propagation, consistent with the

theoretical predictions of neural field theory, assuming that a

positive (negative) electric field reduces (increases) the threshold, h,

in Equation 42.

Recent developments in neural field models. More and

more physiological constraints have been incorporated into neural

field models of the type discussed here (see Equations 39 and 40).

These include features such as separate excitatory and inhibitory

neural populations (pyramidal cells and interneurons), nonlinear

neural responses, synaptic, dendritic, cell-body, and axonal

dynamics, and corticothalamic feedback [38,43,44,48,50,83–87].

A key feature of recent models is that they use parameters that are

of functional significance for EEG generation and other aspects of

brain function; for example, synaptic time constants, amount of

neurotransmitter release or reuptake, and the speed of signal

propagation along dendrites. Inferences can also be made about

the parameters of the nonlinear IF response at the cell body, and

about speeds, ranges, and time delays of subsequent axonal

propagation, both within the cortex and on extracortical paths

(e.g., via the thalamus). It is also possible to estimate quantities that

parametrize volume conduction in tissues overlying the cortex,

which affect EEG measurements [88], or hemodynamic responses

that determine the blood oxygen level–dependent (BOLD) signals

[89]. Each of these parameters is constrained by physiological and

anatomical measurements, or, in a few cases, by other types of

modeling. A key aim in modeling is to strike a balance between

having too few parameters to be realistic, and too many for the

data to be able to constrain them effectively.

Recent work in this area has resulted in numerous quantitatively

verified predictions about brain electrical activity, including EEG

time series [86,87,90], spectra [50,86,87,90,91], coherence and

correlations, evoked response potentials (ERPs) [87], and seizure

dynamics [86,90,92]. Inversion of these models has also furnished

estimates of underlying physiological parameters and their

variations across the brain, in different states of arousal and

pathophysiology [86,93,94].

There are several interesting aspects to these modeling

initiatives, which generalize the variants discussed in earlier

sections: (i) synaptic and dendritic dynamics and summation of

synaptic inputs to determine potentials at the cell body (soma), (ii)

generation of pulses at the axonal hillock, and (iii) propagation of

pulses within and between neural populations. We now look more

closely at these key issues.

Synaptodendritic dynamics and the soma potential.

Assume that the brain contains multiple populations of neurons,

indexed by the subscript a, which labels simultaneously the

structure in which a given population lies (e.g., a particular

nucleus) and the type of neuron (e.g., interneuron, pyramidal cell).

Then the spatially continuous soma potential, Va, is the sum of

contributions, Vab, arriving as a result of activity at each type of
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(mainly) dendritic synapse b, where b indexes both the incoming

neural population and the neurotransmitter type of the receptor.

(Note that Va is linearly related to the current reaching the soma,

and to m in earlier sections.) Thus we write

Va r,tð Þ~
X

b

Vab r,tð Þ, ð43Þ

where r = (x,y) denotes the spatial coordinates, t the time. The

summation is assumed to be linear, and all potentials are measured

relative to the resting potential [95]. For moderate perturbations

relative to a steady state, the value of the resting potential can be

subsumed into the values of other parameters [95]. As above, the

cortex is approximated as a 2-D sheet and r is assumed to be the

actual position in the case of the cortex; other structures, such as

the thalamus, are linked to the cortex via a primary topographic

map. This map links points in a one-to-one manner between

structures; i.e., we assign the same value of r to such points. Hence,

in structures other than the cortex, this dimensional map

coordinate, r, denotes a rescaled physical dimension (i.e. the

physical coordinate multiplied by the ratio of the cortical scale to

the structure’s scale), a point that should be remembered when

interpreting values of spatial parameters in these structures.

The subpotentials, Vab, respond in different ways to incoming

spikes, depending on their synaptic dynamics (ion-channel kinetics,

diffusion in the synaptic cleft, etc.), and on subsequent signal

dispersion in the dendrites. The resulting soma response to a delta-

function input at the synapse can be approximated via the

differential equation [50].

Dab r,tð ÞVab r,tð Þ~nabwab r,t{tabð Þ,

Dab r,tð Þ~ 1

aab r,tð Þbab r,tð Þ
d2

dt2

z
1

aab r,tð Þz
1

bab r,tð Þ

� �
d

dt
z1,

nab~Nabsab,

ð44; 45; 46Þ

where nab is a coupling strength, Nab is the mean number of

synapses on neuron a from neurons b, sab is the mean time-

integrated strength of the response of V per incoming spike, and

hab is the average rate of incoming spikes (allowing for the

possibility of a discrete time delay, tab, between populations b and a

in addition to any delays due to spreading within populations).

The parameter aab is the mean decay rate of the soma response to

a delta-function synaptic input, while bab is the mean rise rate: this

biexponential form has been found to be a good approximation

[8,50,96,97]. If the aab and bab are independent of b (which is not

generally the case), then the subscript b on Dab can be omitted and

Va itself satisfies Equation 44 with the right side of Equation 44

replaced by the sum of Pab over b. This approximation is also valid

if a and b are interpreted as effective values, averaged over

subpopulations.

Pulse generation. In cells with voltage-gated ion channels,

action potentials are produced at the axonal hillock when the soma

potential exceeds some threshold ha. When averaged over a

population of neurons, with normal response characteristics, a

reasonable approximation for the firing rate, Q, is

Qa r,tð Þ~QamaxSa Va r,tð Þ½ �, ð47Þ

where Qamax is the maximum firing rate and Sa is a monotonic

increasing sigmoidal function that approaches zero as VaR2‘

and unity as VaR‘. A commonly used approximation is

Sa Va r,tð Þ½ �~ 1

1zexp { Va r,tð Þ{ha r,tð Þf g=~ssa r,tð Þ½ � , ð48Þ

where ha is the firing threshold for channels of type a and

sa~~ssap
� ffiffiffi

3
p

is the standard deviation of the threshold over the

population.

Axonal propagation. Spatiotemporal propagation of pulses

within and between populations determines the values of wab. If we

indicate the firing rate Qa for the cell type a by a subscript, then wab

can be expressed in terms of the firing rate at other locations and

earlier times. If we assume linear propagation, signals propagate as

described by the neural field equation (Equation 40).

1

c2
ab

L2

Lt2
z

2

cab

L
Lt

z1{r2
ab+

2

" #
wab r,tð Þ~Qb r,tð Þ, ð49Þ

where, as per Equation 40, rab is the characteristic range of axons,

including dendritic arborization, cab is the characteristic velocity of

signals in these axons, and cab = cab / rab is the resulting temporal

damping coefficient in the absence of pulse regeneration. Note

that, in comparision to the use of the terms mn and z(mn) in

Equation 40, the present wave-equation is formalized in

relationship to population-specific pulse densities, wab, and firing

rates, Qa,b. By employing population-specific fields and parameters,

it allows each population to generate a family of outgoing fields

that propagate to different populations in different ways.

Equation 49 is also satisfied if wab is replaced by the free

propagator C
0ð Þ

ab r{r0,t{t0ð Þ and the right side is replaced by a

source of the form d(r2r9)d(t2t9). In Fourier space, this gives

C
0ð Þ

ab k,vð Þ~ 1

k2zq2
0ab

	 

r2

ab

,

q2
0abr2

ab~ 1{iv=cabð Þ2,

ð50; 51Þ

where k = (kx,ky) is the wave vector and v is the angular

frequency. Critically, the neural field Equation 49 enables very

diffuse (i.e., not topographically specific) connections between

populations to be handled straightforwardly, simply by increasing

rab while reducing cab, thereby allowing influences to propagate

long distances with little damping.

Parameters and modulations. The above equations contain

a number of parameters encoding physiology and anatomy (e.g.,

coupling strengths, firing thresholds, time delays, velocities, etc.). In

general, these can vary in space, due to differences among brain

regions, and in time, due to effects like habituation, facilitation, and

adaptation. In brief, time-dependent effects can be included in

neural field models by adding dynamical equations for the evolution

of the parameters. Typically, these take a form in which parameter

changes are driven by firing rates or voltages, with appropriate time

constants. The simplest such formulation is [95]

x r,tð Þ~x 0ð Þzx 1ð ÞH tð Þ6 y r,tð Þ{y 0ð Þ
h i

, ð52Þ

where x is the evolving parameter, y is the quantity that drives the

evolution, x(0) and y(0) are steady state values, and x(1) is a constant

that describes the strength of feedback. The symbol ˜ indicates a

convolution of the driver with the temporal response function H(t),
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which incorporates the time constants of the dynamics. If we use the

normalized form

H tð Þ~gntn{1exp {gtð Þ, ð53Þ

then we find the differential equivalent of Equation 53:

1

g

d

dt
z1

� �n

x r,tð Þ{x 0ð Þ
h i

~x 1ð Þ y r,tð Þ{y 0ð Þ
h i

: ð54Þ

Steady states and dynamics. Here, we first discuss how to

find the steady states of neural field models. Important phenomena

have been studied by linearizing these models around their steady

state solutions. Hence, we discuss linear properties of such models,

including how to make predictions of observable quantities from

them; including transfer functions, spectra, and correlation and

coherence functions. In doing this, we assume for simplicity that all

the model parameters are constant in time and space, although it is

possible to relax this assumption at some cost in complexity.

Linear predictions from neural field models have accounted

successfully for a range of experimental phenomena, as mentioned

above. Nonlinear dynamics of such models have also been

discussed in the literature, resulting in successful predictions of

epileptic dynamics, for example [86,92], but are not considered

here (but see the Cognitive and Clinical Applications section).

Steady states and global dynamics. Previous work has shown that

many properties of neuronal dynamics can be obtained by

regarding activity changes as perturbations of a steady state

[86]. Spatially uniform steady states can be obtained by solving the

preceding equations with all time and space derivatives set to zero,

assuming that the parameters are spatially constant. The spatially

uniform steady states are thus the solutions of the set of equations

Qa~Sa

X
b

nabQb

 !
, ð55Þ

which are generally transcendental in form.

Linear equations for activity. Of the relevant equations above, all but

Equation 48 are linear in Q. Equation 48 can be linearized by

replacing the sigmoid, Sa, by its slope, ra, at the steady state value

of Va; we also approximate this quantity as constant. If we Fourier

transform the resulting set of linear equations, we find for the

fluctuating parts

Qa k,vð Þ~raVa k,vð Þ,

Va k,vð Þ~
X

b

Vab k,vð Þ,

Vab k,vð Þ~Lab vð Þnabeivtab wab k,vð Þ,

Lab vð Þ~ 1{iv=aabð Þ{1
1{iv=babð Þ{1

,

wab k,vð Þ~C
0ð Þ

ab k,vð ÞQb k,vð Þ,

ð56; 57; 58; 59; 60Þ

where C
0ð Þ

ab is given by Equation 50 and we have assumed that all

the parameters of the equations (but not the fields of activity) are

constant on the timescales of interest. Note that we have assumed

the system to be unbounded in order to employ a continuous

Fourier transform here. The case of bounded systems with discrete

spatial eigenmodes can be treated analogously.

For any given spatial wavenumber, k, and temporal frequency,

v, Equations 56–60 can be rearranged to obtain

Qa k,vð Þ~
X

b

Jab vð ÞC 0ð Þ
ab k,vð ÞQb k,vð Þ,

Jab vð Þ~Lab vð ÞGabeivtab ,

ð61; 62Þ

where the gains are defined by Gab = ranab.

If there are N9 neural populations and J9 stimulus sources, and

we assume that there is no feedback of stimuli on themselves, or of

the brain on stimuli, then we can write Equation 61 as

X
b

Aab k,vð ÞQb k,vð Þ~
X

j

Baj k,vð ÞNj k,vð Þ,

Aab k,vð Þ~dab{Bab k,vð Þ,

Bab k,vð Þ~Jab vð ÞC 0ð Þ
ab k,vð Þ,

ð63; 64; 65Þ

where the sum on the left of Equation 63 extends only over popula-

tions in the brain, while the sum on the right covers only stimulus

sources, denoted by j. Qj is written as Nj to make the distinction

between population firing rates and incoming stimulus rates

absolutely clear. We can now write Equation 63 in matrix form as

AQ~BN, ð66Þ

where A is an N96N9 matrix, Q is an N9-element column vector, B is

an N96J9 matrix, and N is a J9-element column vector. We can

simply invert Equation 66 to find Q in terms of the stimuli N:

Q~TN, ð67Þ

where T = A21B is the N96J9 transfer matrix of the system. The

element Taj is the response of Qa to a change in Nj at the same

frequency and wave vector.

Observables. A measurable scalar quantity y, such as an EEG

scalp voltage or voltage difference, can generally be approximated

by a linear function of the firing rates, Qa. For example, a scalp

potential may involve contributions from several populations, with

various weights (that may include filtering by volume conduction

effects). In this case, at given v,

y k,vð Þ~MQ~MTN , ð68Þ

where M is an N9-element row vector of complex-valued

measurement coefficients that encode spatiotemporal filtering

characteristics, phase shifts, etc. For example, the coefficients of

the matrix M can be chosen such that y(k,v) = wab(k,v). Further

classes of measurement functions are those relating the neural

activity to, for example, local field potentials, multiunit activity, the

blood oxygen level–dependent (BOLD) response that forms the basis

of functional magnetic resonance imaging (fMRI), the metabolic

responses underlying positron emission tomography (PET), or single-

photon emission computed tomography (SPECT). In what follows,

we will implicitly absorb M into T for simplicity.

Dispersion and stability. The dispersion relation of linear waves in

the system is given by

detA k,vð Þ~0, ð69Þ

and the system is stable at a particular real k if all the frequency
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roots of this equation have negative imaginary parts. If the steady

state is stable for all k, spectra and other properties of the linear

perturbations can be self-consistently defined; otherwise a fully

nonlinear analysis is needed.

Spectra. The power spectral density of y at k and v is

P k,vð Þ~ y k,vð Þj j2~ TNj j2: ð70Þ

The frequency and wavenumber spectra are then

P vð Þ~
ð

d2k

2pð Þ2
P k,vð Þ,

P kð Þ~
ð

dv

2p
P k,vð Þ:

ð71; 72Þ

A position-dependent frequency cross-spectrum can be calculated

from Equation 70:

P r,r0,vð Þ~Sy r,vð Þy1
r0,vð ÞT, ð73Þ

where the angle brackets denote an average over multiple trials

and/or over the phase of the exogenous stimuli that drive the

system. The spectrum at a particular point, r, is P(r,r9,v).

Correlation and coherence functions. In steady state, the two-point

correlation function can be obtained from Equation 73 via the

Wiener-Khinchtine theorem, giving

C r,r0,Tð Þ~
ð

dv

2p
e{ivT P r,r0,vð Þ: ð74Þ

In the case where the system is statistically uniform, Equation 74

depends only on the separation R = r92r, giving

C R,Tð Þ~
ð

dv

2p

ð
d2k

2pð Þ2
eik:R{ivT y k,vð Þj j2, ð75Þ

where

y r,tð Þ~
ð

dv

2p

ð
d2k

2pð Þ2
eik:r{ivtT k,vð ÞN k,vð Þ ð76Þ

has been used and the arguments of T and N have been shown for

emphasis. At R = 0, Equation 74 becomes the Fourier transform of

the local power spectrum. In terms of the above expressions, the

normalized correlation function and the coherence function,

which are both used widely in the literature, are

r r,r0,Tð Þ~ C r,r0,Tð Þ
C r,r0,Tð ÞC r,r0,Tð Þ½ �1=2

,

g r,r0,vð Þ~ P r,r0,vð Þ
P b,f,r,r0,vð ÞP r,r0,vð Þ½ �1=2

,

ð77; 78Þ

respectively.

Time series and evoked potentials. The time series of y at a given

point can be obtained via the transfer function, by first calculating

the Fourier form of the stimuli that generate it; these can be

background noise sources, discrete impulses, or sinusoidal drives,

for example. In the case of an impulsive stimulus, the resulting

ERP is obtained by setting

N k,vð Þ~1: ð79Þ

Similarly, for a spatially uniform sinusoidal drive, the resulting

steady state evoked potential (SSEP) is obtained by using

N k,vð Þ~p d v{v0ð Þeiwzd vzv0ð Þe{iw
� �

, ð80Þ

where v0 is the drive frequency and w is its phase.

Case of one long-range population. An important case, in many

applications, is the situation where spatial spreading of activity is

dominated by the axons of one population, typically because they

have the longest range, are most numerous, or have the highest

axonal velocity. In this case, one can ignore the k dependence in

the other propagators, and it becomes possible to express the

transfer function with elements of the form

Taj~
Aaj vð Þ

k2zq2
ab vð Þ

, ð81Þ

where q2
ab is typically a complicated expression depending on the

various Jab(v).

Heterogeneous connectivity in neural fields. The brain’s

network dynamics depend on the connectivity within individual

areas, as well as generic and specific patterns of connectivity

among cortical and subcortical areas [4,9,98]. Intrinsic or

intracortical fibers are confined to cortical gray matter in which

the cortical neurons reside; these intrinsic connections define the

local connectivity within an area. Intracortical fibers are mostly

unmyelinated and extend laterally up to 1 cm (in the human brain)

with excitatory and inhibitory connections. Their distribution is

mostly invariant under spatial translations (homogeneous) [84,99],

which fits the assumptions on the connectivity function in neural

fields so far. On the other hand, the corticocortical (extrinsic) fiber

system contains fibers which leave the gray matter and connect

distant areas (up to 20 cm [84]). This fiber system is myelinated,

which increases the transmission speed by an order of magnitude,

and is not invariant under spatial translations (heterogeneous); in

fact it is patchy [99]. Due to finite transmission speeds, time delays

of interareal communication can reach 50–100 ms [84], which is

not negligible. Several studies have focused on spatially continuous

neural fields, which describe the temporal change of neural activity

on local scales, typically within a brain area (see [4,54,55] for

reviews), assuming homogeneous connectivity and time delays. As

discussed in the previous section, early attempts include neural

field theories which approximate the large-scale components of the

connectivity matrix as translationally invariant and decaying over

space [45,48,50]. These approaches have been successful in

capturing key phenomena of large-scale brain dynamics, including

characteristic EEG power spectra [45,50], epilepsy [92], and

MEG activity during sensorimotor coordination [49]. Here we

review extensions of these efforts and address network stability

under variation of (i) intracortical (intrinsic) connectivity, (ii)

transmission speed, and (iii) length of corticocortical (extrinsic)

fibers. All three anatomical attributes undergo characteristic

changes during the development of the human brain and its

function, as well changing in the aged and diseased brain (see [9]

for an overview). As a first step, we can split the connectivity

function, W, into two parts, the homogeneous connectivity,

Whom(|x2y|), which depends only on the distance, and the

heterogeneous connectivity, Whet(x,y), which captures the effects of
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the extrinsic fiber system (for an alternative approach with

applications to visual gamma phenomena, see [100–102]). We

can then rewrite the neural field equation as follows:

_mm~{fmza

ð
C

Whom x{yj jð Þz m y,Tchomð Þ½ �dy

z

ð
C

Whet x,yð Þz m y,Tcð Þ½ �dy,

ð82Þ

where Tc = t2|x2y| /c and c is the propagation speed through the

heterogeneous corticocortical or extrinsic connections. These

fibers are myelinated and hence to be distinguished from the

typically unmyelinated (hence slower) intracortical fibers. The

latter intrinsic fibers have a transmission speed of chom and a

transmission delay Tchom~t{ x{yj j
�

chom. If Whet describes the

connectivity of n areas, then it can always be written as a sum of

two-point connections via

Whet x,yð Þ~
Xn

i,j~1

nijd x{xið Þd y{xj

	 

, i=j, ð83Þ

where nij M R again represents the coupling strength between areas

at xi and xj. The fixed point solution is given by m0(x) with

_mm0 xð Þ~0. To gain insight into the linear stability of this

equilibrium solution m0(x), we perform a mode expansion of

m(x,t) into a set of spatial basis functions {Qk(x)} such that

m x,tð Þ~m0 xð Þz
ð?

{?
dkjk tð Þwk xð Þ, ð84Þ

where jk(t) is the time-dependent amplitude related to the spatial

basis function Qk(x). The adjoint set of spatial biorthogonal basis

functions is denoted by w{
k xð Þ

n o
. It will be generally true (except

in degenerate cases) that only one spatial pattern will become

unstable first. For simplicity, we consider the stationary solution

m0(x) = 0 to be the rest state and consider its deviations m(x,t) =

jk9(t)Qk9 (x)+c.c., where c.c. denotes the complex conjugate. Then

the linear stability of each temporal mode is given by

Ltzfð Þjk tð Þ~~aa

ð
C

dy

ð
C

dxWhomQ{
k xð ÞQk yð Þjk Tchomð Þ

z
Xn

i,j~1

~nnijQ
{
k xið ÞQk xj

	 

jk t{d=cð Þ,

ð85Þ

where d = |xi2xj|.0. Also, ~aa~a LS=Lmð Þ and ~nnij~nij LS=Lmð Þ (but

for simplicity, we drop the tilde in ~nnij from now on).

Let us pause for a moment and reflect upon the significance of

Equation 85. Equation 85 describes the rate of (temporal) change,

htjk(t), of its corresponding spatial neural activation pattern, Qk(x).

This pattern will change as a function of its own spatial

configuration, Qk(x), the connections (Whom and nij), and, last but

not least, the transmission times of information exchange, Tchom

and d/c. If the rate of change, htjk(t), is positive, then the particular

pattern Qk(x) is unstable, otherwise it is stable. In other words,

Equation 85 identifies quantitatively how a particular neural

activation is impacted by its local and global connectivity in a

biologically realistic environment, including signal exchange with

finite and varying (intracortical versus corticocortical) transmission

speeds. Every treatment of the interplay of anatomical connectivity

(local and global connections) and functional connectivity (network

dynamics) will have to be represented in the form of Equation 85

or a variation thereof. In this sense, we have here achieved our

goal stated in the introduction of this section.

To illustrate the effects of interplay between anatomical and

functional connectivity, we discuss a simple example following

[103,104]. We assume that there exists only a single corticocortical

fiber with terminals at locations x1 and x2, that is n = 2. Then we

have an architecture as shown in Figure 1. Our objective is to

identify the stability boundaries of the rest state activity, here the

equilibrium solution m0(x) = 0.

We will consider eigenfunctions of the form Qk(x) = eikx.

Changing the variables such that z = y2x and assuming a solution

of the form jk(t) = elt, l M C, the stability condition can then be

determined by the following characteristic equation:

lzf~~aa

ð
C

Whom zj jð Þe{l zj j=chom

eikzdzz

1

2
n12eikdzn21e{ikd
	 


e{ld=c,

ð86Þ

Linear stability of Equation 86 is obtained if Re[l],0 and is lost,

according to [105], at Re[l] = 0, that is l = iv. Figure 2 shows various

connectivity kernels, Whom, that are often found in the literature.

Qubbaj and Jirsa [104] discussed the properties of the

characteristic Equation 86 in detail, considering separately the

special cases of symmetric and asymmetric connectivity, W. The

characteristic equation defines the critical boundary in the

parameter space of n12, n21, c, chom, at which the resting activity,

m0(x) = 0, becomes unstable. Recall that c and chom are the

conduction velocities along extrinsic and intrinsic axons, respec-

tively. The general result of [104] can be represented as a critical

surface separating stable from unstable regimes as shown in

Figure 3. Here the critical transmission delay, t = d/c, through the

heterogeneous fiber is plotted as a function of the real and

imaginary part of the eigenvalue of the connectivity, W. Essentially

a heterogeneous fiber with symmetric weights, n21 = n12 = n, has

only real eigenvalues, whereas asymmetries result in imaginary

components. We find that for positive values of n greater than a

critical value, the system becomes unstable through a non-

oscillatory instability for all values of c, chom, (bold line in Figure 3).

Within the cylindrical component of the surface, the equilibrium

of the system remains always stable for all values of c, chom, and

hence a time delay shows no effect. In the other regimes of the

critical surface, the system typically destabilizes via an oscillatory

instability, v?0, and is sensitive to time delays. The surface shown

in Figure 3 represents the lower bound of stability with c/chom = 1.

Increases of the ratio, c/chom, equivalent to increases of degree of

myelination, result in a larger enclosed volume by this surface, i.e.,

increase of stability. The largest stability region is that for a purely

inhibitory kernel followed by that of a local inhibitory and lateral

excitatory kernel. The next largest involves a local excitatory and

lateral inhibitory kernel. The smallest stability region is obtained

for a purely excitatory kernel.

A surprising result is that all changes of the extrinsic pathways

have the same qualitative effect on the stability of the network,

independent of the local intrinsic architecture. This is not trivial,

since despite the fact that extrinsic pathways are always excitatory

the net effect on the network dynamics could have been inhibitory, if

the local architecture is dominated by inhibition. Hence qualitatively

different results on the total stability could have been expected. Such

is not the case, as we have shown here. Obviously the local

architecture has quantitative effects on the overall network stability,

but not qualitatively differentiated effects. Purely inhibitory local
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architectures are most stable, purely excitatory architectures are the

least stable. The biologically realistic and interesting architectures,

with mixed excitatory and inhibitory contributions, play an

intermediate role. When the stability of the network’s fixed point

solution is lost, this loss may occur through an oscillatory instability

or a nonoscillatory solution. The loss of stability for the

nonoscillatory solution is never affected by the transmission speeds,

a direct physical consequence of its zero frequency allowing time for

all parts of the system to evolve in unison. The only route to a non-

oscillatory instability is through the increase of the heterogeneous

connection strength. For oscillatory instabilities, the situation is

completely different. An increase of heterogeneous transmission

speeds always causes a stabilization of the global network state.

These results are summarized in Figure 4.

Numerical Simulations: Ensemble Activity from
Neuronal to Whole Brain Scales

This section illustrates neuronal ensemble activity at micro-

scopic, mesoscopic, and macroscopic spatial scales through

numeric simulations. Our objective is to highlight some of the

key notions of ensemble dynamics and to illustrate relationships

between dynamics at different spatial scales.

Ensemble dynamics at the microscopic scale. To

illustrate ensemble dynamics from first principles, we directly

simulate a network of coupled neurons which obey deterministic

evolution rules and receive both stochastic and deterministic

inputs. The system is constructed to embody, at a microscopic

level, the response of the olfactory bulb to sensory inputs, as

Figure 1. Anatomical connectivity, W = Whom+Whet, comprising homogeneous and heterogeneous connections. The intracortical
connections are illustrated as densely connected fibers in the upper sheet and define the homogeneous connectivity Whom. A single fiber connects
the two distant regimes (A) and (B) and contributes to the heterogeneous connectivity, Whet, whereas regime (C) has only homogeneous connections.
doi:10.1371/journal.pcbi.1000092.g001

Figure 2. Typical homogeneous connectivity kernels, Whom(z), used for local architectures plotted as a function of spatial distance z.
Purely excitatory connectivity is plotted in (A); purely inhibitory in (B); center-on, surround-off in (C); and center-off, surround-on in (D). The
connectivity kernel in (C) is the most widely used in computational neuroscience.
doi:10.1371/journal.pcbi.1000092.g002
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originally formulated by Freeman [38,106–108]. Specifically, in

the absence of a sensory input, neurons fire sporadically due to

background stochastic inputs. The presence of additional synaptic

currents due to a sensory input (e.g., inhaled odor) evokes a

bifurcation onto a limit cycle or chaotic attractor. Note that in this

section we simulate dynamics at the scale of coupled individual

neurons. We can derive directly the predicted ensemble mean

response by simply summing over all neurons. We compare this

with an explicit model of neural mass dynamics at the mesoscopic

scale in the subsequent section.

Microscopic evolution equations. Each neuron is modeled

as a planar reduction of the Hodgkin-Huxley model [109,110],

namely,

dVi tð Þ
dt

~
X
ion

fion Vi tð Þ½ �zI , ð87Þ

where fion introduces conductance-determined transmembrane

currents through voltage-dependent channels, ion = {Na+,K+} and

I are synaptic currents. The planar reduction has slow potassium

channel kinetics but fast sodium channels, whose states vary

directly with transmembrane potential [111]. Synaptic currents

are modeled, for the present purposes, to arise from three sources,

I~
X

j

Hc Vj t{tj

	 
� �
zInoisezIsensory: ð88Þ

The first term represents recurrent feedback from neurons

within the ensemble due to their own firing. The coupling term,

Hc, incorporates both the nature of the (all-to-all) within-ensemble

coupling and the EPSP with parametric strength c. For the present

purposes, the EPSP consists of a brief steady current whenever the

presynaptic neuron is depolarized. The external currents, Inoise,

introduce stochastic inputs (e.g., from brain stem inputs) and are

modeled as a constant flow with a superimposed Poisson train of

discrete pulses. The final term, Isensory, models sensory input,

consisting of a constant synaptic current to a subset of neurons,

whenever the sensory stimulus is present. Hence this system

permits an exploration of the relative impact of the flow

(deterministic) and diffusive (stochastic) effects as embodied at

the ensemble level by the Fokker-Planck equation (Equation 20) at

the neuronal network level. The Nernst potentials, conductances,

and background current are set so that, in the absence of noise and

sensory inputs, each neuron rests just below a saddle-node

bifurcation to a limit cycle [109]. This implies that neurons are

spontaneously at rest (quiescent) but depolarize with a small

perturbation. If the perturbation is due to a stochastic train, then

the neuron fires randomly at an average rate proportional to the

stochastic inputs. However, following a small increase in the

constant flow term, due to a sensory input, Isensory, the quiescent

state becomes unstable and the neuron evolves on a (noise-

modulated) limit cycle. Figure 5 shows a stochastically driven

neuron (A) compared to a noise-modulated periodic neuron (B). In

the former case, the activity is dominated by the stochastic terms.

In the latter case, the limit cycle dynamics dominate, although the

stochastic inputs modulate the depolarization amplitude.

Microscopic dynamics. Figure 6 shows the results of

simulating an ensemble of 250 neurons with a sensory input to

all neurons between t = 1,000 ms to t = 3,000 ms. Figure 6A shows

a raster plot of the neural spike timing whilst Figure 6B shows the

simulated local field potential from the ensemble ( = total current

flow across all neurons). As constructed, the effect of the input is to

effect a bifurcation in each neuron from stochastic to limit cycle

dynamics. The secondary effect of the appearance of limit cycle

dynamics is to suppress the impact of the spatially uncorrelated

stochastic inputs. Hence the neurons show an evolution towards

phase locking, which was not present prior to the stimulus. As

evident in Figure 6B, the increased firing synchrony leads in turn

to a marked increase in the simulated local field potentials as

individual neurons begin to contribute concurrent ion currents.

Once the stimulus ends, there is a brief quiescent phase because all

Figure 3. Minimal stable regions for the equilibrium state of a neural field as a function of its connectivity and time delay t = d/c. The
critical surface, at which the equilibrium state undergoes an instability, is plotted as a function of the real and imaginary part of the eigenvalue of its
connectivity, W. Regimes below the surface indicate stability, above instability. The vertical axis shows the time delay via transmission along the
heterogeneous fiber.
doi:10.1371/journal.pcbi.1000092.g003
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of the neurons have just fired and require a short train of stochastic

inputs before they commence firing again. Interestingly, there is

evidence of damped mean-field oscillations in the ensemble

following stimulus termination, abating after some further 800 ms.

To underscore the observation that the mean synaptic currents

evidence an emergent phenomenon, and not merely the super-

position of a bursting neuron, the time series of a single neuron is

provided in Figure 6C. Clearly no burst is evident at this scale.

The impact of the stimulus input on the density of the ensemble is

shown in Figure 7, which shows the spike-timing difference of all

neurons in the ensemble with respect to a randomly chosen seed-

neuron. The mean spike-timing difference is 0 ms throughout the

simulation. This is because the system has complete symmetry, so

that all neurons fire, on average, symmetrically before or after any

other neuron. However, as evident in Figure 7A, the variance in

relative spike-timing decreases dramatically during the stimulus

interval. Of note is that the ensemble variance does not simply step

down with the onset of the stimulus, but rather dynamically

diminishes throughout the presence of the stimulus. When this

occurs, the mean-field term continues to increase in amplitude.

Figure 7B shows the evolution of the kurtosis (normalized so that a

Gaussian distribution has a kurtosis of zero). Prior to the stimulus,

and reflecting the weak network coupling, the ensemble has a

mesokurtotic (broad) distribution. It increases markedly following the

stimulus onset, implying a dynamical evolution towards a leptokur-

totic (peaked) distribution. That is, although the parameter values are

static, the ensemble mean, variance, and kurtosis evolve dynamically

in an inter-related fashion. Hence this system exhibits time-

dependent interdependence between its first, second, and fourth

moments. This is the sort of coupling (between moments of the

ensemble density) that neural mass models do not capture.

It is important to note that the spatiotemporal structure of the

noise remains constant throughout the simulation, as does the

intra-ensemble coupling. Hence the appearance of phase locking is

an emergent feature of the dynamics and has not been imposed. A

dynamic contraction of the ensemble cloud occurs whether the

pre-existing noise continues unchanged during the stimulus

input—hence increasing the firing rate of each neuron—or

Figure 4. Summary of the stability changes of a neural field with mixed (local/global) connectivity. (Top) The relative size of stability
area for different connectivity kernels. (Bottom) Illustration of change of stability as a function of various factors. Gradient within the arrows indicates
the increase of the parameter indicated by each arrow. The direction of the arrow refers to the effect of the related factor on the stability change. The
bold line separating stable and unstable regions indicates the course of the critical surface as the time delay changes.
doi:10.1371/journal.pcbi.1000092.g004
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Figure 5. Planar spiking neuron. (A) Stochastically perturbed fixed point. (B) Limit cycle attractor.
doi:10.1371/journal.pcbi.1000092.g005

PLoS Computational Biology | www.ploscompbiol.org 17 August 2008 | Volume 4 | Issue 8 | e1000092



Figure 6. Results of simulating an ensemble of 250 neurons with sensory evoked synaptic currents to all neurons between t = 1,000 ms
and t = 3,000 ms. (A) Raster plot. (B) Mean synaptic currents. (C) Time series of a single neuron. The effect of the input is to effect a bifurcation in each
neuron from stochastic to limit cycle dynamics (phase locking), suppressing the impact of the spatially uncorrelated stochastic inputs. As evident in (A),
the increased firing synchrony leads in turn to a marked increase in the simulated local field potentials. The mean synaptic currents evidence an emergent
phenomenon, and not merely the superposition of a bursting neuron, as can be seen in (C): clearly no burst is evident at this scale.
doi:10.1371/journal.pcbi.1000092.g006
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Figure 7. Contraction of spike-timing differences due to synaptic inputs. A seed neuron is chosen at random and the interneuron spike
difference for all other neurons is plotted each time it spikes. (A) Solid and dashed lines show 61 and 61.5 standard deviations of the ensemble spike
timing. (B) The normalized fourth moment (excess kurtosis) derived from a moving frame.
doi:10.1371/journal.pcbi.1000092.g007
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diminishes so that, in the absence of coupling, firing rates are kept

the same on average. In the latter case (as in Figure 5), there is

simply a change from stochastic to periodic firing. The ensemble

cloud is visualized directly in Figure 8. The upper row shows the

first return map for the ensemble over five consecutive time steps.

For each neuron, this is defined as the inter-spike delay at time

t = T plotted against the inter-spike delay for the subsequent spike

at t = T+1. Six such first return state-space values are plotted for all

neurons. To control for changes in spike rate, these plots are

normalized to the average firing rate. Values for the seed neuron

used in Figure 7 are plotted in red. The left column shows the

ensemble state, prior to the stimulus current. The right column

shows the intra-stimulus activity. The contraction of the ensemble

is seen clearly. In addition, the first return map confirms that

individual neurons have stochastic dynamics prior to the stimulus,

which change to periodic (i.e., a fixed point in the first return map)

during the stimulus. The lower row of Figure 7 shows

corresponding probability distributions of the inter-neuron spike-

timing differences. This reiterates that not only does the

distribution contract, but as the mean-field dynamics become

strongly nonlinear, the ensemble kurtosis increases markedly from

sub- to super-Gaussian.

Neural mass dynamics at the mesoscopic scale. Whilst

such simulations are illustrative, they are computationally

intensive; even when limited to just 250 neurons at ,5 s of

integration time. As discussed in The Mean-Field Model section, it

is possible to study a reduced model representing only the mean

ensemble dynamics. This is essentially achieved by generalizing

parameter values (such as ion channel thresholds) from individual

point values to population likelihood values. Freeman [38]

additionally introduced synaptic effects through convolving the

inputs with a suitable response kernel as presented in Equation 37.

For the simple illustration here, we do not introduce synaptic

filtering.

Figure 8. Contraction of spike-timing differences due to synaptic inputs. The left column shows the ensemble state, prior to the stimulus
current. The right column shows the intrastimulus activity. Top row: First return map for the cloud interspike delay over five consecutive time steps,
before (A) and following (B) synaptic input. The plots are normalized to the average firing rate to control for changes in spike rate. Values for the seed
neuron used in Figure 7 are plotted in red. Lower row (C,D): the corresponding spike timing histograms. The ensemble kurtosis increases markedly
from sub- to super-Gaussian.
doi:10.1371/journal.pcbi.1000092.g008
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Mesoscopic evolution equations. For the present purpose,

we simulate a single mass with both excitatory and inhibitory

neurons [52,112]. Expected mean states of the ensemble excitatory

neurons me = ÆVeæ are, as above, based upon Morris Lecar planar

dynamics, with slow potassium channel dynamics. Inhibitory

neurons, mi, respond passively to input from excitatory neurons

and feedback to induce additional outward (rectifying) currents in

excitatory cells. In the microscopic system considered above,

interneuron coupling was via a direct pulse during presynaptic

depolarization. At the mesoscopic scale, neuronal coupling is via

neural firing pulse densities, za, which capture the expected

neuronal firing rate, given the mean neuronal transmembrane

potential z(ma) for a = e,i. Assuming a Gaussian distribution of

individual neuronal firing thresholds, one obtains a symmetric

sigmoid-shaped function for za as per The Mean-Field Model

section. The dynamics are thus of the form

dme tð Þ
dt

~
X
ion

fion me tð Þ½ �zneeG zeð ÞznieG zið Þ

znneInoiseznseIsensory,

ð89Þ

dmi tð Þ
dt

~neiG zeð ÞznniInoise, ð90Þ

where the function G represents the coupling between mean firing

rates and induced synaptic currents. By targeting either Na+ or

Ca++ currents and including (postsynaptic) voltage-dependent

effects, this function can incorporate, to a first-order

approximation, a variable proportion of AMPA or NMDA-like

kinetics [52]. The coefficients nab represent the synaptic density

between excitatory (e) and inhibitory (i) populations or from the

stochastic/noise (n) or sensory (s) inputs. Note that both

populations receive stochastic inputs but only the excitatory

population receives the sensory input Isensory. The functions fion are

the same as for the microscopic system including the slow

potassium channel—although they are now parameterized by

population-wide estimates.

Mesoscopic dynamics. Figure 9 shows the response of a

single neural mass to sensory evoked synaptic currents with the

same temporal timing as for the microscopic system. Prior to the

stimulus, the system is in a stable fixed point regimen. The

stochastic inputs act as perturbations around this point, giving the

time series a noisy appearance, consistent with the prestimulus

microscopic ensemble activity. However, the mechanisms are

quite distinct: Individual neurons within the microscopic ensemble

fired stochastically, but at uncorrelated times. Hence, at the level

of the ensemble, such individual events contribute in a piecemeal

fashion. That is, although individual neurons exhibit nonlinear

dynamics, the ensemble mean dynamics are (linearly) stable to the

stochastic inputs until the background current is increased. In the

mesoscopic case, the system as a whole is stable to small

perturbations prior to the stimulus current. The temporally

uncorrelated stochastic inputs are effectively filtered by the

response properties of the system around this fixed point to yield

the simulated activity.

In the mesoscopic neural mass, the fixed point state is rendered

unstable by the stimulus current and large amplitude oscillations

occur. These cease following stimulus termination. This accords

with the appearance of stimulus-evoked nonlinear oscillations in

the ensemble-averaged response of the microscopic system. In

both models, such oscillations abate following stimulus termina-

tion. Hence, at a first pass, this neural mass model captures the

mean-field response of the microscopic ensemble to a simulated

sensory stimulus.

What is lost in the neural mass model? In this model, activity

transits quickly from a noise-perturbed fixed point to large

amplitude nonlinear oscillations. A brief, rapid periodic transient

is evident at the stimulus onset (1,000 ms). The system

subsequently remains in the same dynamic state until the stimulus

termination. This hence fails to capture some of the cardinal

properties of the microscopic ensemble, namely the coupling

between the first and second moments (mean and variance). As

discussed above, this process underscores the dynamical growth in

the mean-field oscillations and the interdependent contraction of

the interneuron spike timing variance shown in Figures 6 and 7.

Because of this process the system is far more synchronized than

prior to the stimulus. This synchronization leads to the damped

mean-field oscillations evident in the ensemble system after the

stimulus termination (3,200 msR4,500 ms), because there is a

more coherent ensemble-wide response. What is gained in the

neural mass model? The addition of a third dimension (i.e., the

inhibitory mean activity) to the dynamics enables the expression of

chaotic dynamics [52,112]. Hence the flow terms in the neural

mass model contribute to the expression of aperiodic dynamics in

addition to the stochastic inputs. This is not possible in the (planar)

single neural dynamics of the microscopic system because chaotic

dynamics require at least three degrees of freedom. Thus the

dimension reduction afforded by the neural mass approximation

allows the introduction of more complex intrinsic dynamics,

permitting dynamical chaos. Whilst additional dimensions could

be added to the microscopic neurons, this would add to an already

significant computational burden. The massive reduction in the

computational load of the neural mass approximation also allows

extension of the spatial scale of the model by an array of neural

masses, coupled to form a small patch of cortical tissue. Such a

mesoscopic system can be endowed with additional structure, such

as hierarchical [108], scale-free [113], multiscale [114], or small

world [115] properties. For the present purposes, we couple a

single input neural mass, as modeled above, hierarchically to a

sheet with internal hyperbolic (i.e., scale-free) coupling. Intersys-

tem coupling is purely excitatory-to-excitatory. Within the sheet,

the coupling drops in proportion to spatial separation and is hence

scale-free:

dmj
e

dt
~F mj

e,mj
i ,Inoise

� �
z
X
k=j

CsheetG zk
e

	 

xj{xkj j z

CsensG zsens
e

	 

xj{xsensj j , ð91Þ

where F incorporates all intrasystem dynamics as per Equation 89

and the indices numerate either the sensory node {sens} or the

nodes within the sheet {sheet}. As above, synaptic currents are

induced by the pulse density of the presynaptic neurons, rather

than directly via individual presynaptic depolarization. The

sensory node receives the only direct stimulus-induced currents,

dmsens
e

dt
~F msens

e ,msens
i ,Inoise,Isens

	 

z

X
k=sens

CsheetG zk
e

	 

xsens{xkj j : ð92Þ

The hierarchical nature of the system is embodied by the

targeted nature of the sensory inputs and the separate parame-

terization of parameters that couple masses to or within the sheet,

Csens and Csheet, respectively. It would also be possible to increase

the degree of forward and backward asymmetry by incorporating

purely AMPA-like kinetics for the former and NMDA-like kinetics

for the latter, as has been proposed as a mechanism for perceptual

inference [116,117]. Figure 10 shows the response of the system
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when Csens.Csheet. Figure 10A shows the individual mean synaptic

currents of all nonsensory nodes. Figure 10B shows the total

synaptic currents averaged across the nonsensory sheet. Several

features can be noted. For a start, despite use of the same

parameters, the coupling of neural masses into an array or sheet

leads to the appearance of spontaneous prestimulus activity.

Stimulus-evoked activity from the sensory node reorganizes this

activity from spatially incoherent to synchronized. Thus the array-

averaged synaptic currents increase during the stimulus period.

Hence the dynamics at this scale mirror those within the

microscopic ensemble, which each node in this simulation is

constructed to represent. However, at least in this simulation, the

array does not exhibit a dynamic growth in the system-wide

currents during the stimulus period. Presumably, if this did

occur within the individual mesoscopic nodes, then the array-

wide current may also grow dynamically. That is, one would

anticipate coupling between moments across ensembles, as

discussed in [38].

Figure 11 shows the simulated activity following an increase in

the intrasheet coupling such that Csens<Csheet. All other parameters

are unchanged. Spontaneous prestimulus activity is clearly more

coherent; consistent with a stronger internally determined

dynamical state. The injection of the externally evoked sensory

currents into this prior activity actually has a slightly desynchro-

nizing effect, as evident as a decrease in the array-wide average

response (Figure 11B). That is, the temporal mismatch between

the within-sheet dynamics and the externally induced activity leads

to more spatially complex dynamics (an increase in the spatial

entropy and hence the information content of the system).

If the stochastic inputs, Inoise, are decreased below a threshold,

then the spontaneous activity in the nonsensory array diminishes.

The feedback effect of this quiescent activity is to suppress the

stimulus-evoked activity in the sensory node. Hence there is a top-

down mechanism for the complete suppression of sensory-evoked

activity. Presumably, more subtle feedback effects may be possible

if more forward versus backward receptor detail was modeled. In

summary, these mesoscopic simulations impress a view of sensory-

evoked effects as a reorganization of ongoing activity. Depending

upon the ratio of internal to sensory-related coupling, this

reorganization may lead to an increase or a decrease in the

information content of the system dynamics.

Neural field dynamics at the whole-brain scale. We now

provide brief illustrations of sensory evoked and nonlinear activity

as modeled by macroscopic field equations. As discussed in the

section entitled Recent Developments in Neural Field Models,

these incorporate synaptic filtering and axonal conduction delays,

in addition to the population-wide conversion of membrane

potentials into firing densities [50]. Significantly, they also permit

the incorporation of subcortical systems, such as the thalamus

[91]. Recent developments (see the Heterogeneous Connectivity in

Neural Fields section) now allow elucidation of the impact of

biologically relevant connection heterogeneities on the stability

and conduction of cortical activity. The equations, their

derivation, and relevant references are provided in the Recent

Developments in Neural Field Models section.

Macroscopic dynamics. Two crucial differences occur

when moving to the macroscopic scale of the corticothalamic

field model. Firstly, sensory inputs are modeled as entering the

Figure 9. Mesoscopic neural mass model with sensory evoked synaptic currents from t = 1,000 ms to t = 3,000 ms. Prior to the
stimulus, the system is in a stable fixed point regimen. The stochastic inputs act as perturbations around this point. Although individual neurons
exhibit nonlinear dynamics, the ensemble mean dynamics are (linearly) stable to the stochastic inputs until the background current is increased. Then
the fixed point state is rendered unstable by the stimulus current and large amplitude oscillations occur. These cease following stimulus termination.
doi:10.1371/journal.pcbi.1000092.g009
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Figure 10. Coupled mesoscopic neural masses with sensory evoked synaptic currents into single sensory node from t = 1,000 ms to
t = 3,000 ms Csens.Csheet. (A) Individual mean synaptic currents of all nonsensory nodes. (B) Total synaptic currents averaged across the nonsensory
sheet. Stimulus-evoked activity from the sensory node reorganizes this activity from spatially incoherent to synchronized.
doi:10.1371/journal.pcbi.1000092.g010
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Figure 11. Coupled mesoscopic neural masses with sensory evoked synaptic currents into single sensory node from t = 1,000 ms to
t = 3,000 ms Csens<Csheet. All other parameters as in Figure 10. (A) Individual mean synaptic currents of all nonsensory nodes. (B) Total synaptic
currents averaged across the nonsensory sheet. The injection of the externally evoked sensory currents into the prior activity actually has a slightly
desynchronizing effect.
doi:10.1371/journal.pcbi.1000092.g011
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specific nuclei of the thalamus rather than directly into a cortical

sensory node. The ensuing evoked corticothalamic activity can

then be studied in a biologically informed framework. Second,

while prestimulus activity is modeled as a noise-perturbed steady

state, the system is not destabilized by sensory inputs. Instead,

inputs evoke damped oscillations in the corticothalamic loop [87].

Figure 12 illustrates an example of sensory-evoked activity

(Aquino et. al., unpublished data). Evoked afferent pulse

densities are shown because they reflect more accurately the

expected synaptic currents, through their action on postsynaptic

neurons. The smooth spatiotemporal dispersion of the evoked

cortical response and its time delayed corticothalamic volley are

evident.

Summary of numerical simulations. These simulations

give insight into the rich neural ensemble dynamics at different

spatial scales that arise spontaneously, are evoked by sensory

inputs, or follow changes in state parameters. The intention is to

demonstrate concrete examples of ensemble dynamics under

varying influences of flow and dispersion. The resulting dynamics

can be seen to emerge from the interplay of stochastic dispersion

and flow-determined ensemble contraction. The view of stimulus-

evoked synaptic currents as evoking a bifurcation in neural

ensemble activity derives largely from the formative work of

Freeman, following detailed physiological studies of the olfactory

bulb. One of the key outstanding problems is to reconcile the

apparent discrepancy between proposals involving a key role of

nonlinear dynamics (see also [118]) and the apparent success of

mean-field models to predict measured evoked responses, without

recourse to nonlinear dynamics. One approach is to construct a

multiscale hierarchy, with self-consistent evolution equations at

each scale and to couple the emergent dynamics from fine scales

into the activity at coarser scales [114]. Although this permits

small scale nonlinear activity to coincide with and influence

stochastic macroscopic activity, it requires a somewhat elaborate

framework. An alternative approach is to recursively enslave

micro- and mesoscopic activity to predicted macroscopic field

oscillations by driving them with the predicted mean-field synaptic

currents. A problem here concerns the resulting emergence of

sustained oscillations within mesoscopic activity and the possible

causal inconsistency that this may entail.

The nature and strength of neuronal connectivity varies

markedly when considered across the heirarchy of spatial

scales. At the microscopic scale, connectivity is dense,

concentrated equally in vertical and horizontal directions and,

more or less isotropic when considered across different cortical

regions. At mesoscopic scales, connectivity has a patchy,

colmunar-dominated structure. At macroscopic scales, connec-

tivity is sparser, can be considered exclusively horizontal, and

is predominantly excitatory in nature. It is also characterized

by heterogenous connections (large fiber tracts) which fulfill

functionally defined roles. These rules are reflected in the

abstractions and refinements of the models which address the

different scales.

Cognitive and Clinical Applications

In this section, we present three distinct applications of neural

ensemble modeling. We first illustrate a computational example,

Figure 12. The spatiotemporal evolution of the evoked response of excitatory pulse densities m(r,t) in an example of sensory-
evoked activity (Aquino et. al., unpublished data). The smooth spatiotemporal dispersion of the evoked cortical response and its time delayed
corticothalamic volley are evident.
doi:10.1371/journal.pcbi.1000092.g012
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namely decision-making, as implemented in a mean-field model.

We then illustrate healthy and pathological activity in neural field

models. The healthy example is of the well-known psychophysical

phenomenon of auditory streaming—the balance of segmentation

versus integration in auditory perception. We then illustrate

examples of spatiotemporal dynamics occurring in corticothalamic

loops during Absence seizures.

Spiking dynamics underlying decision-

making. Decision-making is a key brain function of intelligent

behavior. A number of neurophysiological experiments on

decision-making reveal the neural mechanisms underlying

perceptual comparison, by characterising the neuronal correlates

of behavior [119–121]. In particular, [119–124] have studied the

neural mechanisms underlying perceptual comparison by

measuring single-neuron responses in monkeys trained to

compare two mechanical vibrations applied sequentially to the

tip of a finger; the subjects have to report which of the two stimuli

has the higher frequency. They found neurons in the ventral

premotor cortex (VPC) whose firing rate depended only on the

difference between the two applied frequencies, the sign of that

difference being the determining factor for correct task

performance [121]. These neurons reflect the implementation of

the perceptual comparison process and may underlie the process

of decision-making.

Figure 13 shows a biophysically realistic computational model

for a probabilistic decision-making network that compares two

mechanical vibrations applied sequentially (f1 and f2). The model

implements a dynamical competition between neurons: The

model enables a formal description of the transients (nonstation-

ary) and probabilistic character of behavior (performance) by the

explicit use, at the microscopic level, of spiking and synaptic

dynamics of one-compartment IF neuron models. The network

contains excitatory pyramidal cells and inhibitory interneurons.

The excitatory recurrent postsynaptic currents (EPSCs) are

mediated by AMPA (fast) and NMDA-glutamate (slow) receptors,

whereas external EPSCs imposed on the network are driven by

AMPA receptors only. Inhibitory postsynaptic currents (IPSCs) to

both excitatory and inhibitory neurons are mediated by GABA

receptors. Neurons are clustered into populations. There are two

subtypes of excitatory population: namely, specific and nonselec-

tive. Specific populations encode the result of the comparison

process in the two-interval vibrotactile discrimination task, i.e., if

f1.f2 or f1,f2. The neurons in the two specific populations

additionally receive external inputs encoding stimulus specific

information. They are assumed to originate from the somatosen-

sory area S2 and from the PFC, encoding the frequency of both

stimuli f1 (stored) and f2 (present) to be compared during the

comparison period, i.e., when the second stimuli is applied (see

[125] for details).

The attractors of the network of IF neurons can be studied

exhaustively by using the associated reduced mean-field equations.

The set of stationary, self-reproducing rates, ni, for the different

populations, i, can be found by solving a set of coupled self-

consistency equations. This enables a posteriori selection of

parameter regions that contain desired behaviors. In the present

case, the essential requirement is that, for the stationary

conditions, different attractors are stable. The attractors of interest

for our task correspond to the activation (high spiking rates) or

inactivation (low spiking rates) of the neurons in the specific

populations f1.f2 and f1,f2. The activation of the specific

population f1.f2 (f1,f2) and the simultaneous lack of activation

of the complementary population f1,f2 (f1.f2), corresponds to an

encoding single state associated with a motor response reporting

the categorical decision f1.f2 (f1,f2). The lack of activation of

both specific populations (spontaneous state) would correspond to

an encoding state that cannot lead to a behavioral decision; i.e.,

there is no answer, or a motor response is generated randomly.

The same happens if both specific populations are activated to the

same degree (pair state). Because responses in animals are

probabilistic in nature, the operating point of the network should

Figure 13. Decision-making neuronal network. Minimal neurodynamical model for a probabilistic decision-making network that performs the
comparison of two mechanical vibrations applied sequentially (f1 and f2). The model implements a dynamical competition between different
neurons. The network contains excitatory pyramidal cells and inhibitory interneurons. The neurons are fully connected (with synaptic strengths as
specified in the text). Neurons are clustered into populations. There are two different types of population: excitatory and inhibitory. There are two
subtypes of excitatory population, namely: specific and nonselective. Specific populations encode the result of the comparison process in the two-
interval vibrotactile discrimination task, i.e., if f1.f2 or f1,f2. The recurrent arrows indicate recurrent connections between the different neurons in a
population.
doi:10.1371/journal.pcbi.1000092.g013
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be such that both categorical decisions, i.e., both states, are

bistable. In addition, we have also shown that the model predicts a

behavior consistent with Weber’s law if, and only if, the

spontaneous state is also a stable state, i.e., when the dynamical

operating point of the network is in a regime of multistability. In

this way, Weber’s law informs the operating point of the network.

Figure 14 shows numerical simulations corresponding to the

response of VPC neurons during the comparison period (to be

contrasted with the experimental results shown in Figure 2 of [121]).

This figure shows the average firing rate as a function of f1 and f2,

obtained with the spiking simulations (diamond points correspond to

the average values over 200 trials, and the error bars to the standard

deviation). The lines correspond to the mean-field calculations. Black

indicates f1,f2 (f2 = f1+8 Hz) and gray indicates f1.f2

(f2 = f128 Hz). The average firing rate of the population f1,f2

depends only on the sign of f22f1 and magnitude of the difference,

|f22f1|; confirming again that Weber’s law cannot be encoded in

the firing rate, but only in the probability with which that firing rate

can be reached (that depends on the sign and magnitude of the

difference between f1 and f2).

Auditory streaming. One of the applications of neural fields

in cognitive processing is found in auditory scene analysis [126],

particularly auditory streaming. Intuitively, auditory streaming or

stream segregation is like listening to bass and soprano vocalists

singing simultaneously. Although the two voices overlap in time,

they clearly form two distinct percepts. In the laboratory, a similar

effect can be created using sequences of tones. In a typical

streaming experiment, two sequences are created using sets of high

and low tones. Sequences vary in presentation rate and the

frequency difference between the tones. The basic finding (see e.g.,

[127,128]) is: (i) when the frequency separation is relatively small

and/or the rate is relatively slow, listeners perceive a single

integrated melody (or stream) and can accurately report the

ordering of the tones, and (ii) when the frequency separation is

relatively large and/or the rate relatively fast, people clearly

perceive two segregated auditory streams, one with a higher pitch

than the other. Essentially, there is a frequency–time boundary

(known as the Fission Boundary, FB) beneath which all sequences

are heard as integrated, regardless of instructions. There is a

frequency–time boundary (known as the Temporal Coherence

Boundary, TCB) above which all sequences are heard as

segregated, regardless of instructions. In between these two

boundaries exists a bistable region in which a sequence can be

heard as either integrated or segregated depending upon

instructions. Hysteresis phenomena are observed when traversing

the bistable regime from either the FB or TCB. Many other

auditory phenomena of a related nature are discussed in [128].

To capture the perceptual integration and segregation processes

in the human brain, while accommodating contemporary brain

theories [1,2,4], the authors of [126] proposed a tonotopically

organized neural field for peripheral processing with projections to

the higher areas that are responsible for cognitive integration. The

neural field is tonotopically organized such that the frequency of

the acoustic stimulus maps onto a location in neural space. The

second nontonotopically organized system may either be repre-

sented by a neural field or a subnetwork. Its function is the

classification of the peripheral spatiotemporal neural field

dynamics. This classification process is not just a measurement

Figure 14. Average firing rate of a neuron as a function of f1 and f2, obtained with the spiking simulations of the response of VPC
neurons during the comparison period (to be contrasted with the experimental results shown in Figure 2 of [121]). Diamond points
correspond to the average values over 200 trials, and the error bars to the standard deviation. The lines correspond to the mean-field calculations: the
black line indicates f1,f2 (f2 = f1+8 Hz) and the red dashed line f1.f2 (f2 = f128 Hz). The average firing rate of the population f1,f2 depends only
on the sign of f22f1 and magnitude of the difference, |f22f1|.
doi:10.1371/journal.pcbi.1000092.g014
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(in which case the application of a simple measure to the neural

field would suffice) but is itself a dynamic process. In fact,

bistability and hysteresis turn out to be properties of the

classification process rather than properties of the neural field

dynamics. The dynamics of the neural field m(x,t) are given by the

wave Equation 39, which has been extended to accommodate

auditory inputs s(x,t) as follows:
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where, as a reminder, c = c/r, c is the speed of spike propagation,

and r parameterizes the spatial decay of lateral interactions. The

external input or stimulus to the neural sheet is s(x,t): R2RR,

which contains all the spatiotemporal characteristics of the

auditory input stream. Periodic boundary conditions,

m(0,t) = m(L,t), t$0, are used.

The second network is not tonotopically organized, hence its

spatial dimension is of no relevance, when we consider only the

competition of two streams. In fact, the ability to show multistable

pattern formation is the only relevant property of the network and

can be realized in multiple network architectures as discussed in

previous sections. A simple multistable subsystem with its scalar

state variable y(t) is given by the equation

_yy~ey{y3{I0zI tð Þ, ð94Þ

where e is a constant that captures all linear contributions. I0

contains all constant contributions given rise to the rest state

activity. The functional I(t) is specified as

I tð Þ~
ðL
0

h m x,tð Þð Þdx h nð Þ~
0, nƒV

n, nwV,

8><
>: ð95Þ

where V is a neural activity threshold. Equations 93, 94, and 95

define the dynamics of a stream classification model in one of its

simplest forms. Figure 15 illustrates the architecture of the

model.

To understand van Noorden’s results, we parametrize a

sequence of consecutive tones by their frequency difference, Df,

and their interonset interval, IOI. As the neural field evolves, it is

integrated across space and time yielding the time-dependent, but

scalar, activity, I(t), driving the second system. I(t) represents the

relevant information from the neural field, m, as a spatiotemporally

integrated activity measure, which depends on the amount of

dispersion over space and time. The greater the dispersion, the

greater will be the value of I(t) at a given time point. Figure 16

shows the contour lines of neural field activity over space x and

time t for the bistable situation.

The final state reached by the second system defined in

Equation 94 with activity y will depend on I(t) and its own

intrinsic dynamics. The curve of the flow is shifted up or down

depending on I(t), creating either one positive or one negative

fixed point. For an intermediate value of I(t), there is a bistable

regime in which y can assume either one of the fixed points. The

negative fixed point is identified with perceiving one stream and

the positive fixed point with perceiving two streams. The time

series for y are shown in Figure 17 for several different initial

conditions of the activity y. After a transient the activity becomes

stationary, displaying three possible scenarios (see Figure 17 from

top to bottom): one stream only, or the bistable situation, in

which either one integrated stream or two separate streams may

be perceived, or finally two streams only. For each choice of Df

and IOI, the model Equations 93 and 94 are solved numerically

and their stationary states determined. The results are plotted in

the 2-D parameter space in Figure 18. TCB and the FB are

reproduced in a manner that corresponds nicely to van

Noorden’s (1975) results including a bistable region [127]. Note

that the exact experimental numerical values at which the

boundaries occur vary from subject to subject and depend on the

experimental methods employed [128].

We will briefly illustrate another phenomenon. When two

interleaved rising and falling tone sequences, as shown in

Figure 19, are presented, human subjects report them to be either

crossing or bouncing perceptually [128,129]. This phenomenon is

known as the crossing scales phenomenon. The implementation

within the neural field model of [126] is straightforward and

illustrated in Figure 19.

Modeling seizures. Experimental and theoretical arguments

propose that the onset of a seizure reflects a bifurcation in cortical

activity from damped stochastic activity—where peaks in the

power spectrum reflect damped linear resonances—to high

amplitude nonlinear oscillations arising from activity on a limit

cycle or chaotic attractor [86,130–134]. Figure 20 presents an

example of a bifurcation arising from a 3 Hz oscillatory instability

in the corticothalamic neural field model of the Recent

Developments in Neural Field Models section. Stochastic activity

either side of the seizure can be seen, reflecting the response

properties of the stable steady state mode. The large amplitude

oscillations arise from a transient change in a corticothalamic state

parameter from t = 5 s to t = 20 s. A more systematic analysis of

the bifurcations in this neural field model was undertaken in [92].

It was argued that the study of these bifurcations provides a

Figure 15. Cortical architecture of the model. The neural field is
illustrated by the rectangular box showing the neural activity m(x,t)
composed of inhibitory and excitatory neurons. The input s(x,t) is
provided at locations xi via the Gaussian localization function
e{ x{xið Þ2=di with width

ffiffiffiffi
di

p
. The explicit model parameters used in

the simulations are given in [126].
doi:10.1371/journal.pcbi.1000092.g015
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parsimonious explanation of the unique time course, symmetry,

onset, and offset of both Absence and tonic clonic seizures,

capturing their similarities and the differences. Further analysis of

the 3 Hz (Absence) bifurcation in a reduced model argues that

interactions between the reticular and specific nuclei of the

thalamus contribute importantly to the Absence seizure waveform

[135]. In the present simulation, the 3 Hz seizure has inherently

aperiodic dynamics, as shown in the right panel of Figure 20.

Figure 16. Bistable regime of auditory streaming. The stimulus sequences (top) and its resulting neural field dynamics (bottom).
doi:10.1371/journal.pcbi.1000092.g016
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Neural field formulations, through their implicit treatment of

horizontal synaptic coupling, also lend themselves naturally to

studying the spatial propagation of seizure activity, a clinically

important phenomenon. An analysis of the frequency and

amplitude properties of spatially extended 3 Hz seizures (Knock

et. al., unpublished data) is presented in Figure 21, comparing data

recorded from a young male with Absence epilepsy (left panels) to

a simulated seizure in the corticothalamic model (right panels).

The top row shows the temporal dynamics of the dominant

frequency across a spatially extended array of (real and simulated)

electrodes. The observed data (left) shows that the seizure onsets

(almost) simultaneously across the scalp, although frontal elec-

trodes lead fractionally. However, onset frequencies range from

2.7 Hz at frontal electrodes to 4 Hz over temporal regions. There

follows a pattern of frequency convergence so that within 2 s of

seizure onset, all cortical regions express a common frequency of

3 Hz, slowing progressively to 2.5 Hz. The seizure simulated in

the corticothalamic model (right) shows a similar pattern. Peak

onset frequencies in this model predominantly reflect corticotha-

lamic conduction time lags, which have been parameterized to

reflect the varying separation of cortex and thalamus. Subsequent

frequency convergence in this model arises from corticortical

coupling (there is no intrathalamic coupling in this simulation).

The lower panels show the temporal evolution of the amplitude

envelope of activity within the dominant mode. The principal

feature of interest in the observed data (left) is the increasing

modulation of the amplitude envelope as one moves from frontal

electrodes, which have the strongest power, to parietal electrodes,

where the onset power is weaker. These differing degrees of

amplitude modulation are also present in the simulated seizure

(right). Importantly, all parameters of the model are constant

during the seizure. Hence the amplitude modulation is due to

coupling between nonlinear modes at different spatial locations.

Whereas frequency locking is not surprising in a model with

spatial coupling, the amplitude modulation is a novel, emergent

property of the nonlinear dynamics.

Discussion

In conclusion, we have seen that statistical descriptions of

neuronal ensembles can be formulated in terms of a Fokker-

Planck equation, a functional differential equation prescribing the

evolution of a probability density on some phase space. The high

dimensionality and complexity of these Fokker-Planck formalisms

can be finessed with a mean-field approximation to give

nonlinear Fokker-Planck equations, describing the evolution of

separable ensembles that are coupled by mean-field effects. By

parameterizing the densities in terms of basis functions or

probability modes, these partial differential equations can be

reduced to coupled differential equations describing their

evolution. In the simplest case, we can use a single mode that

can be regarded as encoding the location of a probability mass,

Figure 17. Percept formation. For multiple initial conditions, the
time series of y(t) are plotted for the three regimes, one stream only
(top), bistable (middle), and two streams only (bottom).
doi:10.1371/journal.pcbi.1000092.g017

Figure 18. van Noorden’s bifurcation diagram. Computational
simulations yield the van Noorden’s bifurcation diagram as a function of
the frequency difference Df and the IOI. The parameter space is
partitioned into three regimes, one region with the percept one stream,
another region with the percept two streams and a region in between
which permits both.
doi:10.1371/journal.pcbi.1000092.g018
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hence neural mass models. Neural mass models can be

generalized to neural field models by making the expectations

a function of space, thereby furnishing wave equations that

describe the spatiotemporal evolution of expected neuronal states

over the cortical surface. We have tried to show the conceptual

and mathematical links among the ensuing levels of description

and how these models can be used to characterize key dynamical

mechanisms in the brain.

Figure 19. Crossing scales phenomenon. The input tone sequences used to form a percept of crossover are shown in (A). The resulting contours
of neural field activity are plotted in (B), together with the final time series of y(t) shown in (C). In this particular case, the classification system y(t) does
traverse from the positive (two streams) to the negative (one stream) fixed point and back. This trajectory is identified with the percept of crossover.
In the case of the bouncing percept, the time series of y(t) will not cross the x-axis as shown in (D).
doi:10.1371/journal.pcbi.1000092.g019
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Figure 20. Simulated nonlinear oscillations arising from 3 Hz modal instability in a corticothalamic neural field model. (A) Stochastic
activity either side of the seizure can be seen, reflecting the response properties of the stable steady state mode. The large amplitude oscillations
arise from a transient change in a corticothalamic state parameter from t = 5 s to t = 20 s. (B) Shows more detail of the aperiodic oscillations.
doi:10.1371/journal.pcbi.1000092.g020
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