
Education

Analyzing ChIP-chip Data Using Bioconductor
Joern Toedling*, Wolfgang Huber

EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

Introduction

ChIP-chip, chromatin immunoprecipitation combined with

DNA microarrays, is a widely used assay for DNA–protein

binding and chromatin plasticity, which are of fundamental

interest for the understanding of gene regulation.

The interpretation of ChIP-chip data poses two computational

challenges: first, what can be termed primary statistical analysis,

which includes quality assessment, data normalization and

transformation, and the calling of regions of interest; second,

integrative bioinformatic analysis, which interprets the data in the

context of existing genome annotation and of related experimental

results obtained, for example, from other ChIP-chip or (m)RNA

abundance microarray experiments.

Both tasks rely heavily on visualization, which helps to explore

the data as well as to present the analysis results. For the primary

statistical analysis, some standardization is possible and desirable:

commonly used experimental designs and microarray platforms

allow the development of relatively standard workflows and

statistical procedures. Most software available for ChIP-chip data

analysis can be employed in such standardized approaches [1–6].

Yet even for primary analysis steps, it may be beneficial to adapt

them to specific experiments, and hence it is desirable that

software offers flexibility in the choice of algorithms for

normalization, visualization, and identification of enriched

regions.

For the second task, integrative bioinformatic analysis, the

datasets, questions, and applicable methods are diverse, and a

degree of flexibility is needed that often can only be achieved in a

programmable environment. In such an environment, users are

not limited to predefined functions, such as the ones made

available as ‘‘buttons’’ in a GUI, but can supply custom functions

that are designed toward the analysis at hand.

Bioconductor [7] is an open source and open development

software project for the analysis and comprehension of genomic

data, and it offers tools that cover a broad range of computational

methods, visualizations, and experimental data types, and is

designed to allow the construction of scalable, reproducible, and

interoperable workflows. A consequence of the wide range of

functionality of Bioconductor and its concurrency with research

progress in biology and computational statistics is that using its

tools can be daunting for a new user. Various books provide a

good general introduction to R and Bioconductor (e.g., [8–10]),

and most Bioconductor packages are accompanied by extensive

documentation. This tutorial covers basic ChIP-chip data analysis

with Bioconductor. Among the packages used are Ringo [5],

biomaRt [11], and topGO [12].

We wrote this document in the Sweave [13] format, which

combines explanatory text and the actual R source code used in

this analysis [14]. Thus, the analysis can be reproduced by the

reader. An R package ccTutorial that contains the data, the text,

and code presented here, and supplementary text and code, is

available from the Bioconductor Web site.

. library(‘‘Ringo’’)

. library(‘‘biomaRt’’)

. library(‘‘topGO’’)

. library(‘‘ccTutorial’’)

Terminology. Reporters are the DNA sequences fixed to the

microarray; they are designed to specifically hybridize with

corresponding genomic fragments from the immunoprecipitate.

A reporter has a unique identifier and a unique sequence, and it

can appear in one or multiple features on the array surface [15].

The sample is the aliquot of immunoprecipitated or input DNA that

is hybridized to the microarray. We shall call a genomic region

apparently enriched by ChIP a ChIP-enriched region.

The data. We consider a ChIP-chip dataset on a post-

translational modification of histone protein H3, namely tri-

methylation of its Lysine residue 4, in short H3K4me3. H3K4me3

has been associated with active transcription (e.g., [16,17]). Here,

enrichment for H3K4me3 was investigated in Mus musculus brain

and heart cells. The microarray platform is a set of four arrays

manufactured by NimbleGen containing 390 k reporters each.

The reporters were designed to tile 32,482 selected regions of the

Mus musculus genome (assembly mm5) with one base every 100 bp,

with a different set of promoters represented on each of the four

arrays ([18], Methods: Condensed array ChIP-chip). We obtained

the data from the GEO repository [19] (accession GSE7688).

Importing the Data into R

For each microarray, the scanner output consists of two files,

one holding the Cy3 intensities (the untreated input sample), the

other one the Cy5 intensities, coming from the immunoprecipi-

tated sample. These files are tab-delimited text files in Nimble-
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Gen’s pair format. Since the reporters are distributed over four

arrays, we have 16 files (4 microarrays62 dyes62 tissues).

. pairDir ,- system.file(‘‘PairData’’,pack-

age=‘‘ccTutorial’’)

. list.files(pairDir, pattern=‘‘pair$’’)

[1] ‘‘47101_532.pair’’ ‘‘47101_635.pair’’ ‘‘48153_532.
pair’’ ‘‘48153_635.pair’’

[5] ‘‘48158_532.pair’’ ‘‘48158_635.pair’’ ‘‘48170_532.
pair’’ ‘‘48170_635.pair’’

[9] ‘‘48175_532.pair’’ ‘‘48175_635.pair’’ ‘‘48180_532.
pair’’ ‘‘48180_635.pair’’

[13] ‘‘48182_532.pair’’ ‘‘48182_635.pair’’ ‘‘49728_
532.pair’’ ‘‘49728_635.pair’’

One text file per array describes the samples, including which

two pair files belong to which sample. Another file, spot-
types.text, describes the reporter categories on the arrays.

We read in the raw reporter intensities and obtain four objects

of class RGList, a class defined in package limma [20], one object

per array type.

. RGs ,- lapply(sprintf(‘‘files_array%d.

txt’’,1:4),

+ readNimblegen, ‘‘spottypes.txt’’, path=

pairDir)

See Text S1 for an extended description of the data import.

Quality Assessment

In this step, we check the arrays for obvious artifacts and

inconsistencies between array subsets.

First, we look at the spatial distribution of the intensities on each

array. See Text S1 for the figure and the source code. We do not see

any artifacts such as scratches, bright spots, or scanning-induced

patterns that would render parts of the readouts useless.

On all arrays in our set, the Cy3 channel holds the intensities

from the untreated input sample, and the Cy5 channel holds the

immunoprecipitate from brain and heart, respectively. This

experiment setup is reflected in the reporter intensity correlation

per channel (see Text S1). The correlation between the intensities

of the input samples is higher than between the ChIP samples

(0.877 versus 0.734).

The Bioconductor package arrayQualityMetrics offers an extensive

set of visualizations and metrics for assessing microarray data

quality. Applied to this dataset, arrayQualityMetrics also indicates

that the data are of good quality.

Mapping Reporters to the Genome

A mapping of reporters to genomic coordinates is usually

provided by the array manufacturer. Often, however, remapping

the reporter sequences to the genome may be required. Here, the

microarray had been designed on an outdated assembly of the

mouse genome (mm5, May 2004). We remapped the reporter

sequences to the current assembly (mm9, July 2007).

We used Exonerate [21] for the remapping, requiring 97% sequence

similarity for a match. See Text S1 for details and the scripts used.

In Ringo, the mapping of reporters to the genome is stored in a

probeAnno class object. Text S1 contains details on its construction.

. data(‘‘probeAnno’’)

. allChrs ,- chromosomeNames(probeAnno)

Genome Annotation

We want to relate ChIP-enriched regions to annotated genome

elements, such as potential regulatory regions and transcripts. Using

the Bioconductor package biomaRt [11], we obtain an up-to-date

annotation of the mouse genome from the Ensembl database [22].

The source code for creating the annotation table mm9genes is

given in Text S1. The table holds the coordinates, Ensembl gene

identifiers, MGI symbols, and description of all genes annotated

for the mm9 mouse assembly.

. data(‘‘mm9genes’’)

. mm9genes[sample(nrow(mm9genes), 4),

+ c(‘‘name’’, ‘‘chr’’, ‘‘strand’’, ‘‘start’’,

‘‘end’’, ‘‘symbol’’)]

See Table 1.

Moreover, we used biomaRt to retrieve the Gene Ontology (GO)

[23] annotation for all genes in the table. Find the source code and

further details in Text S1.

. data(‘‘mm9.gene2GO’’)

For all genes, we stored which reporters, if any, are mapped

inside the gene or in its 5 kb upstream region.

. data(‘‘mm9.g2p’’)

For later use, we determine which genes have a sufficient

number—arbitrarily we say five—of reporters mapped to their

upstream region or inside and which genes also have one or more

GO terms annotated to them.

. arrayGenes ,- names(mm9.g2p) [listLen(mm9.

g2p).=5]

. arrayGenesWithGO ,- intersect(arrayGenes,

names(mm9.gene2GO))

Preprocessing

For each sample, we compute the log ratios log2(Cy5/Cy3) for

all reporters. To adjust for systematic dye and labeling biases, we

Table 1. An excerpt of object ‘mm9genes’.

Name Chr Strand Start End Symbol

ENSMUSG00000057903 14 1 51044196 51045125 Olfr739

ENSMUSG00000039615 17 21 25967581 25970306 Stub1

ENSMUSG00000068823 3 1 102824530 102862108 Csde1

ENSMUSG00000006241 9 1 21731915 21740316 2510048L02Rik

doi:10.1371/journal.pcbi.1000227.t001
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compute Tukey’s biweight mean across each sample’s log2 ratios

and subtract it from the individual log2 ratios. Each of the four

microarray types contains a unique set of reporters. Thus, we

preprocess the arrays separately by type and combine the results

into one object holding the preprocessed readouts for all reporters.

. MAs ,- lapply(RGs, function(thisRG)

+ preprocess(thisRG[thisRG$genes$Status= =

‘‘Probe’’,],

+ method=‘‘nimblegen’’, returnMAList=TRUE))

. MA ,- do.call(rbind, MAs)

. X ,- asExprSet(MA)

. sampleNames(X) ,- paste(X$Cy5, X$Tissue,

sep=‘‘.’’)

The result is an object of class ExpressionSet, the Bioconductor

class for storing preprocessed microarray data. Note that first

creating a MAList for each array type, combining them with

rbind, and then converting the result into an ExpressionSet is only

necessary if the reporters are distributed over more than one

microarray type. For data of one microarray type only, you can

call preprocess with argument ‘returnMAList=FALSE’ and

directly obtain the result as an ExpressionSet.

The above procedure is the standard method suggested by

NimbleGen for ChIP-chip. The appropriate choice of normaliza-

tion method generally depends on the data at hand, and the need

for normalization is inversely related to the quality of the data. Ringo

and Bioconductor offer many alternative and more sophisticated

normalization methods, e.g., using the genomic DNA hybridization

as reference [24]. However, due to the smaller dynamic range of the

data in the input channel, such additional effort seems less

worthwhile than, say, for transcription microarrays.

Visualizing Intensities along the Chromosome

We visualize the preprocessed H3K4me3 ChIP-chip reporter

levels around the start of the Actc1 gene, which encodes the cardiac

actin protein.

. chipAlongChrom(X, chrom=‘‘2’’, xlim=c

(113.8725e6,113.8835e6), ylim=c(23,5),

+ probeAnno=probeAnno, gff=mm9genes, palet-

teName=‘Set2’)

The degree of H3K4me3 enrichment over the reporters

mapped to this region seems stronger in heart cells than in brain

cells (see Figure 1). However, the signal is highly variable, and

individual reporters give different readouts from reporters

matching genomic positions only 100 bp away, even though the

DNA fragments after sonication are hundreds of base pairs long.

See Text S1 for the corresponding intensities around the start of

the brain-specific gene Crpm1 [25].

When multiple replicates are available, it is instructive to compare

these visualizations to assess the agreement between replicates.

Smoothing of Reporter Intensities

The signal variance arises from systematic and stochastic noise.

Individual reporters measure the same amount of DNA with

different efficiency due to reporter sequence characteristics [26],

such as GC content, secondary structure, and cross-hybridization.

To ameliorate these reporter effects as well as the stochastic noise,

we perform a smoothing over of individual reporter intensities

before looking for ChIP-enriched regions. We slide a window of

900 bp width along the chromosome and replace the intensity at

genomic position x0 by the median over the intensities of those

reporters mapped inside the window centered at x0. Factors to take

into account when choosing the width of the sliding window are

the size distribution of DNA fragments after sonication and the

spacing between reporter matches on the genome.

. smoothX ,- computeRunningMedians(X, pro-

beAnno=probeAnno,

+ modColumn=‘‘Tissue’’, allChr=allChrs,

winHalfSize=450, min.probes=5)

. sampleNames(smoothX) ,- paste(sampleNa-

mes(X), ‘‘smoothed’’,sep=‘‘.’’)

Compare the smoothed reporter intensities with the original

ones around the start of the gene Actc1.

. chipAlongChrom(X, chrom=‘‘2’’, xlim=

c(113.8725e6,113.8835e6), ylim=c(23,5),

+ probeAnno=probeAnno, gff=mm9genes, pa-

letteName=‘Set2’)

. chipAlongChrom(smoothX, chrom=‘‘2’’,

xlim=c(113.8725e6,113.8835e6), ilwd=4,

+ probeAnno=probeAnno, paletteName=‘Dark2’,

add=TRUE)

See the result in Figure 2. After smoothing, the reporters give a

more concise picture that there is H3K4me3 enrichment inside

and upstream of Actc1 in heart but not in brain cells.

Figure 1. Normalized reporter intensities for H3K4me3 ChIP around the TSS of the Actc1 gene in M. musculus brain and heart cells.
The ticks below the genomic coordinate axis on top indicate genomic positions matched by reporters on the microarray. The blue arrows on the
bottom mark the Actc1 gene, with the arrow direction indicating that the gene is located on the Crick strand.
doi:10.1371/journal.pcbi.1000227.g001
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Finding ChIP-Enriched Regions

We would like to determine a discrete set of regions that appear

antibody-enriched, together with a quantitative score of our

confidence in that and a measure of their enrichment strength.

Which approach is best for this purpose depends on the

microarray design, on the biological question, and on the

subsequent use of the regions, e.g., in a follow-up experiment or

computational analysis. Below, we describe one possible approach,

but, before that, we discuss two more conceptual aspects.

In the literature, a computed confidence score is often mixed up

with the term ‘‘p-value’’. Speaking of a p-value is meaningful only

if there is a defined null hypothesis and a probability interpreta-

tion; these complications are not necessary if the goal is simply to

find and rank regions in some way that can be reasonably

calibrated.

Furthermore, it is helpful to distinguish between our confidence

in an enrichment being present, and the strength of the

enrichment. Although stronger enrichments tend to result in

stronger signals and hence less ambiguous calls, our certainty

about an enrichment should also be affected by reporter coverage,

sequence, cross-hybridization, etc.

Let us now consider the following simple approach: for an

enriched region, require that the smoothed reporter levels all

exceed a certain threshold y0, that the region contains at least nmin

reporter match positions, and that each of these is less than dmax

basepairs apart from the nearest other affected position in the

region.

The minimum number of reporters rule (nmin) might seem

redundant with the smoothing median computation (since a

smoothed reporter intensity is already the median of all the

reporter intensities in the window), but it plays its role in reporter

sparse regions, where a window may only contain one or a few

reporters. One wants to avoid making calls supported by only few

reporters.

The dmax rule prevents us from calling disconnected regions.

Setting the enrichment threshold. The optimal approach

for setting the enrichment threshold y0 would be to tune it by

considering sets of positive and negative control regions. As such

control regions are often not available, as with the current data, we

choose a mixture modeling approach.

The distribution of the smoothed reporter levels y can be

modeled as a mixture of two underlying distributions. One is the

null distribution L0 of reporter levels in non-enriched regions; the

other is the alternative distribution Lalt of the levels in enriched

regions.

The challenge is to estimate the null distribution L0. In Ringo, an

estimate L̂L0 is derived based on the empirical distribution of

smoothed reporter levels, as visualized in Figure 3.

. myPanelHistogram ,- function(x,…){

+ panel.histogram(x, col=brewer.pal(8,

‘‘Dark2’’)[panel.number()],…)

+ panel.abline(v=y0[panel.number()],

col=‘‘red’’)

+ }

. h = histogram(
,
y | z,

+ data = data.frame(

+ y = as.vector(exprs(smoothX)),

+ z = rep(X$Tissue,each=nrow(smoothX))),

+ layout = c(1,2),nint = 50,

+ xlab = ‘‘smoothed reporter level [log2]’’,

+ panel = myPanelHistogram)

. print(h)

The histograms motivate the following assumptions on the two

mixture components L0 and Lalt: the null distribution L0 has most

of its mass close to its mode m0, which is close to y = 0, and it is

Figure 2. Normalized and smoothed reporter intensities for H3K4me3 ChIP around the TSS of the Actc1 gene in M. musculus brain
and heart cells.
doi:10.1371/journal.pcbi.1000227.g002

Figure 3. Histograms of reporter intensities after smoothing of
reporter levels, measured in M. musculus heart and brain cells.
The red vertical lines are the cutoff values suggested by the algorithm
described in the text.
doi:10.1371/journal.pcbi.1000227.g003
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symmetric about m0; the alternative distribution Lalt is more

spread out and has almost all of its mass to the right of m0.

Based on these assumptions, we can estimate L0 as follows. The

mode m0 can be found by the midpoint of the shorth of those y that

fall into the interval [21,1] (on a log2scale). The distribution L0 is

then estimated from the empirical distribution of m02|y2m0|, i.e.,

by reflecting y,m0 onto y.m0. From the estimated null

distribution, an enrichment threshold y0 can be determined, for

example the 99.9% quantile.

. y0 ,- apply(exprs(smoothX), 2, upperBound-

Null, prob=0.99)

The values y0 estimated in this way are indicated by red vertical

lines in the histograms in Figure 3. Antibodies vary in their

efficiency to bind to their target epitope, and the noise level in the

data depends on the sample DNA. Thus, y0 should be computed

separately for each antibody and cell type, as the null and

alternative distributions, L0 and Lalt, may vary.

This algorithm has been used in previous studies [27]. A critical

parameter in algorithms for the detection of ChIP-enriched

regions is the fraction of reporters on the array that are expected to

show enrichment. For the detection of in-vivo TF binding sites, it

is reasonable to assume that this fraction is small, and most

published algorithms rely on this assumption. However, the

assumption does not necessarily hold for ChIP against histone

modifications. The algorithm presented works as long as there is a

discernible population of non-enriched reporter levels, even if the

fraction of enriched levels is quite large.

Another aspect of ChIP-chip data is the serial correlation

between reporters, and there are approaches that aim to model

such correlations [28,29].

ChIP-enriched regions. We are now ready to identify

H3K4me3 ChIP-enriched regions in the data. We set nmin = 5 and

dmax = 450.

. chersX ,- findChersOnSmoothed(smoothX,

+ probeAnno = probeAnno,

+ thresholds = y0,

+ allChr = allChrs,

+ distCutOff = 450,

+ minProbesInRow = 5,

+ cellType = X$Tissue)

We relate found ChIP-enriched regions to gene coordinates

retrieved from the Ensembl database (see above). An enriched

region is regarded as related to a gene if its center position is located

less than 5 kb upstream of a gene’s start coordinate or between a

gene’s start and end coordinates.

. chersX ,- relateChers(chersX, mm9genes,

upstream=5000)

One characteristic of enriched regions that can be used for

ranking them is the area under the curve score, that is, the sum of the

smoothed reporter levels, each minus the threshold. Alternatively,

one can rank them by the highest smoothed reporter level in the

enriched region.

. chersXD ,- as.data.frame(chersX)

. head(chersXD[

+ order(chersXD$maxLevel, decreasing=TRUE),

+ c(‘‘chr’’, ‘‘start’’, ‘‘end’’, ‘‘cellType’’,

‘‘features’’, ‘‘maxLevel’’, ‘‘score’’)])

See Table 2.

We visualize the intensities around the region with the highest

smoothed level.

. plot(chersX[[which.max(chersXD$maxLe-

vel)]], smoothX, probeAnno=probeAnno,

+ gff=mm9genes, paletteName=‘‘Dark2’’,

ylim=c(21,6))

Figure 4 displays this region, which covers the gene Tcfe3.

Comparing ChIP-Enrichment between the Tissues

There are several ways to compare the H3K4me3 enrichment

between the two tissues. How many ChIP-enriched regions do we

find in each tissue?

. table(chersXD$cellType)

brain heart

11852 10391

Brain cells show a higher number of H3K4me3-enriched

regions than heart cells. Which genes show tissue-specific

association to H3K4me3 ChIP-enriched regions?

. brainGenes ,- getFeats(chersX[sapply

(chersX, cellType)= =‘‘brain’’])

. heartGenes ,- getFeats(chersX[sapply

(chersX, cellType)= =‘‘heart’’])

. brainOnlyGenes ,- setdiff(brainGenes,

heartGenes)

. heartOnlyGenes ,- setdiff(heartGenes,

brainGenes)

Table 2. The six ChIP-enriched regions with the highest smoothed reporter levels.

Chr Start End Cell Type Features Max. Level Score

X 7338726 7343630 Heart ENSMUSG00000000134 5.56 83.6

X 98834348 98838572 Heart ENSMUSG00000034160 5.45 93.1

17 10508374 10511376 Heart ENSMUSG00000062078 5.44 76.3

X 148236854 148239554 Heart ENSMUSG00000025261 5.40 80.3

15 10414592 10416734 Heart ENSMUSG00000022248 ENSMUSG00000022247 5.39 53.2

17 35972156 35975830 Heart ENSMUSG00000061607 ENSMUSG00000001525 5.37 62.1

doi:10.1371/journal.pcbi.1000227.t002
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We use the Bioconductor package topGO [12] to investigate

whether tissue-specific H3K4me3-enriched genes can be summa-

rized by certain biological themes. topGO employs the Fisher test to

assess whether among a list of genes, the fraction annotated with a

certain GO term is significantly higher than expected by chance,

considering all genes that are represented on the microarrays and

have GO annotation. We set a p-value cutoff of 0.001, and the

evaluation starts from the most specific GO nodes in a bottom-up

approach. Genes that are used for evaluating a node are not used

for evaluating any of its ancestor nodes [12, elim algorithm].

. sigGOTable ,- function(selGenes, GOgenes=

arrayGenesWithGO,

+ gene2GO=mm9.gene2GO[arrayGenesWithGO],

ontology=‘‘BP’’,maxP=0.001)

+ {

+ inGenes ,- factor(as.integer(GOgenes%

in%selGenes))

+ names(inGenes) ,- GOgenes

+ GOdata ,- new(‘‘topGOdata’’, ontology=

ontology, allGenes=inGenes,

+ annot=annFUN.gene2GO, gene2GO=gene2GO)

+ myTestStat ,- new(‘‘elimCount’’, testSta-

tistic=GOFisherTest,

+ name=‘‘Fishertest’’, cutOff=maxP)

+ mySigGroups ,- getSigGroups(GOdata, my-

TestStat)

+ sTab ,- GenTable(GOdata, mySigGroups,

topNodes=length(usedGO(GOdata)))

+ names(sTab)[length(sTab)] ,- ‘‘p.value’’

+ sTab ,- subset(sTab, as.numeric(p.value)

, maxP)

+ sTab$Term ,- sapply(mget(sTab$GO.ID, env

=GOTERM), Term)

+ return(sTab)

+ }

. brainRes ,- sigGOTable(brainOnlyGenes)

. print(brainRes)

See the result GO terms in Table 3. We perform the same

analysis for genes showing heart-specific relation to H3K4me3

enrichment.

. heartRes ,- sigGOTable(heartOnlyGenes)

. print(heartRes)

See the result in Table 4. Genes that show H3K4me3 in brain

but not in heart cells are significantly often involved in neuron-

specific biological processes. Genes marked by H3K4me3

specifically in heart cells show known cardiomyocyte functions,

amongst others.

This analysis could be repeated for the cellular component and

molecular function ontologies of the GO. Besides GO, other

databases that collect gene lists can be used for this kind of gene

set enrichment analysis. For, example, the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [30] is also available in Biocon-

ductor.

In Text S1, we present an additional way for comparing

H3K4me3 enrichment between the two tissues, an enriched-

region–wise comparison considering the actual overlap of the

enriched regions.

ChIP Results and Expression Microarray Data

We compare the H3K4me3 ChIP-chip results with the

expression microarray data, which Barrera et al. [18] provide

for the same M. musculus tissues they analyzed with ChIP-chip.

. data(‘‘barreraExpressionX’’)

Figure 4. This genomic region is the H3K4me3 ChIP-enriched region with the highest smoothed reporter level.
doi:10.1371/journal.pcbi.1000227.g004

Table 3. GO terms that are significantly over-represented among genes showing H3K4me3 enrichment specifically in brain cells.

GO ID Term Annotated Significant Expected p-Value

GO:0007268 Synaptic transmission 137 44 24.75 4.1e-05

GO:0007610 Behavior 180 54 32.52 4.9e-05

GO:0007409 Axonogenesis 119 38 21.50 0.00016

GO:0006887 Exocytosis 40 17 7.23 0.00027

GO:0007420 Brain development 136 40 24.57 0.00072

doi:10.1371/journal.pcbi.1000227.t003
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The data were generated using the Mouse_430_2 oligonucle-

otide microarray platform from Affymetrix and preprocessed using

Affymetrix’s MAS5 method. Using biomaRt, we created a mapping

of Ensembl gene identifiers to the probe set identifiers on that

microarray platform (see Text S1 for the source code).

. data(‘‘arrayGenesToProbeSets’’)

We obtain the expression values for genes related to H3K4me3-

enriched regions in heart or brain cells.

. bX ,- exprs(barreraExpressionX)

. allH3K4me3Genes ,- union(brainGenes,

heartGenes)

. allH3K4ProbeSets ,- unlist(arrayGenesTo-

ProbeSets[allH3K4me3Genes])

. noH3K4ProbeSets ,- setdiff(rownames(bX),

allH3K4ProbeSets)

. brainH3K4ExclProbeSets ,- unlist(array-

GenesToProbeSets[brainOnlyGenes])

. heartH3K4ExclProbeSets ,- unlist(array-

GenesToProbeSets[heartOnlyGenes])

. brainIdx ,- barreraExpressionX$Tis-

sue= =‘‘Brain’’

. brainExpression ,- list(

+ H3K4me3BrainNoHeartNo = bX[noH3K4Probe-

Sets, brainIdx],

+ H3K4me3BrainYes = bX[allH3K4ProbeSets,

brainIdx],

+ H3K4me3BrainYesHeartNo = bX[brainH3-

K4ExclProbeSets, brainIdx],

+ H3K4me3BrainNoHeartYes = bX[heartH3-

K4ExclProbeSets, brainIdx]

+ )

We use boxplots to compare the brain expression levels of genes

with and without H3K4me3-enriched regions in brain/heart

cells.

. boxplot(brainExpression, col=c(‘‘#666666’’,

‘‘#999966’’, ‘‘#669966’’, ‘‘#996666’’),
+ names=NA, varwidth=TRUE, log=‘‘y’’,

+ ylab=‘geneexpressionlevelinbraincells’)

. mtext(side=1, at=1:length(brainExpres-

sion), padj=1, font=2,

+ text=rep(‘‘H3K4me3’’,4), line=1)

. mtext(side=1, at=c(0.2,1:length(brainEx-

pression)), padj=1, font=2,

+ text=c(‘‘brain/heart’’, ‘‘2/2’’, ‘‘+/
+’’, ‘‘+/2’’, ‘‘2/+’’), line=2)

See the boxplots in Figure 5. Genes related to H3K4me3 ChIP-

enriched regions show higher expression levels than those that are

not, as we can assess using the Wilcoxon rank sum test.

. with(brainExpression,

+ wilcox.test(H3K4me3BrainYesHeartNo,

H3K4me3BrainNoHeartNo,

+ alternative=‘‘greater’’))

Wilcoxon rank sum test with continuity correction

data: H3K4me3BrainYesHeartNoandH3K4me3BrainNo-
HeartNo

W = 88159233, p-value , 2.2e-16

alternative hypothesis: true location shift is
greater than 0

Discussion

The analysis of the ChIP-chip and transcription data of Barrera

et al. [18] showed that genes that are expressed in specific tissues

are marked by tissue-specific H3K4me3 modification. This finding

agrees with previous reports that H3K4me3 is a marker of active

gene transcription [16].

We have shown how to use the freely available tools R and

Bioconductor for the analysis of ChIP-chip data. We demonstrated

ways to assess data quality, to visualize the data, and to find ChIP-

enriched regions.

As with any high-throughput technology, there are aspects of

ChIP-chip experiments that need close attention, such as

specificity and sensitivity of the antibodies, and potential cross-

hybridization of the microarray reporters. Good experiments will

contain appropriate controls, in the presence of which the software

can be used to monitor and assess these issues.

In addition to the ones introduced here, there are other

Bioconductor packages that provide further functionality, e.g.,

ACME [31], oligo, and tilingArray [24]. For analyses that go beyond

pairwise comparisons of samples and use more complex (multi-

)factorial experimental designs or retrospective studies of collec-

tions of tissues from patients, the package limma [20] offers a

powerful statistical modeling interface and facilitates computation

of appropriate reporter-wise statistics.

We also demonstrated a few conceivable follow-up investiga-

tions. Bioconductor allows for easy integration of ChIP-chip results

with other resources, such as annotated genome elements, gene

expression data, or DNA–protein interaction networks.

Table 4. GO terms that are significantly over-represented among genes showing H3K4me3 enrichment specifically in heart cells.

GO ID Term Annotated Significant Expected p-Value

GO:0006936 Muscle contraction 56 13 2.97 4.7e-06

GO:0002526 Acute inflammatory response 17 6 0.90 0.00016

GO:0009887 Organ morphogenesis 339 34 17.95 0.00019

GO:0008016 Regulation of heart contraction 32 8 1.69 0.00019

GO:0030878 Thyroid gland development 7 4 0.37 0.00024

GO:0007512 Adult heart development 8 4 0.42 0.00046

GO:0055003 Cardiac myofibril assembly 4 3 0.21 0.00057

GO:0007507 Heart development 148 21 7.84 0.00090

doi:10.1371/journal.pcbi.1000227.t004
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Software Versions

This tutorial was generated using the following package

versions:

N R version 2.8.0 Under development (unstable) (2008-09-13

r46541), x86_64-unknown-linux-gnu

N Locale: LC_CTYPE = en_US.ISO-8859-1;LC_NUMER-
IC = C;LC_TIME = en_US.ISO-8859-1;LC_COLLATE = e-
n_US.ISO-8859-1;LC_MONETARY = C;LC_MESSAGES = e-
n_US.ISO-8859-1;LC_PAPER = en_US.ISO-8859-
1;LC_NAME = C;LC_ADDRES8859-1;LC_IDENTIFICA-
TION=C

N Base packages: base, datasets, graphics, grDevices, methods,

splines, stats, tools, utils

N Other packages: affy 1.19.4, affyio 1.9.1, annotate 1.19.2,

AnnotationDbi 1.3.9, Biobase 2.1.7, biomaRt 1.15.1, ccTutor-

ial 0.9.5, codetools 0.2-1, DBI 0.2-4, digest 0.3.1, fortunes 1.3-

5, genefilter 1.21.3, geneplotter 1.19.5, GO.db 2.2.3, graph

1.19.5, lattice 0.17-15, limma 2.15.11, preprocessCore 1.3.4,

RColorBrewer 1.0-2, RCurl 0.9-4, Ringo 1.5.13, RSQLite

0.7-0, SparseM 0.78, survival 2.34-1, topGO 1.9.0, vsn 3.7.6,

weaver 1.7.0, xtable 1.5-3

N Loaded via a namespace (and not attached): cluster 1.11.11,

grid 2.8.0, KernSmooth 2.22-22, XML 1.96-0

Supporting Information

Text S1 Analyzing ChIP-chip data using Bioconductor. This

document contains supplementary text, source code, and figures.

Found at: doi:10.1371/journal.pcbi.1000227.s001 (5.11 MB PDF)
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