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Abstract

Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However,
existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal
networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment
dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We
demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a
single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal
neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of
different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system,
relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical
interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has
significant potential to improve the way we observe and understand brain dynamics.
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Introduction

A universal dilemma in understanding the brain is that it is

complex, multiscale, nonlinear in space and time, and we never

have more than partial experimental access to its dynamics. To

better understand its function one not only needs to encompass the

complexity and nonlinearity, but also estimate the unmeasured

variables and parameters of brain dynamics. A parallel compar-

ison can be drawn in weather forecasting [1], although

atmospheric dynamics are arguably less complex and less

nonlinear. Fortunately, the meteorological community has over-

come some of these issues by using model based predictor-

controller frameworks whose development derived from compu-

tational robotics requirements of aerospace programs in 1960s

[2,3]. A predictor-controller system employs a computational

model to observe a dynamical system (e.g. weather), assimilate

data through what may be relatively sparse sensors, and

reconstruct and estimate the remainder of the unmeasured

variables and parameters in light of available data. The result of

future measured system dynamics is compared with the model

predicted outcome, the expected errors within the model are

updated and corrected, and the process repeats iteratively. For this

recursive initial value problem to be meaningful one needs

computational models of high fidelity to the dynamics of the

natural systems, and explicit modeling of the uncertainties within

the model and measurements [3–5].

The most prominent of the model based predictor-controller

strategies is the Kalman filter (KF) [2]. In its original form, the KF

solves a linear system. In situations of mild nonlinearity, the

extended forms of the KF were used where the system equations

could be linearized without losing too much of the qualitative

nature of the system. Such linearization schemes are not suitable

for neuronal systems with nonlinearities of the scale of action

potential spike generation. With the advent of efficient nonlinear

techniques in the 1990s such as the ensemble Kalman filter [6,7]

and the unscented Kalman filter (UKF) [8,9], along with improved

computational models for the dynamics of neuronal systems

(incorporating synaptic inputs, cell types, and dynamic microen-

vironment) [10], the prospects for biophysically based ensemble

filtering from neuronal systems are now strong. The general

framework of the UKF differs from the extended KF in that it

integrates the fundamental nonlinear models directly, along with

iterating the error and noise expectations through these nonlinear

equations. Instead of linearizing the system equations, UKF

performs the prediction and update steps on an ensemble of

potential system states. This ensemble gives a finite sampling

representation of the probability distribution function of the

system state [3,11–15].

Our hypothesis is that seizures arise from a complex nonlinear

interaction between specific excitatory and inhibitory neuronal sub-

types [16]. The dynamics and excitability of such networks are

further complicated by the fact that a variety of metabolic processes

govern the excitability of those neuronal networks (such as

potassium concentration (½K �) gradients and local oxygen availabil-

ity), and these metabolic variables are not directly measurable using

electrical potential measurements. Indeed, it is becoming increas-

ingly apparent that electricity is not enough to describe a wide

variety of neuronal phenomena. Several seizure prediction

algorithms, based only on EEG signals, have achieved reasonable

accuracy when applied to static time-series [17–19]. However,
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many techniques are hindered by high false positive rates, which

render them unsuitable for clinical use. We presume that there are

aspects of the dynamics of seizure onset and pre-seizure states that

are not captured in current models when applied in real-time. In

light of the dynamic nature of epilepsy, an approach that

incorporates the time evolution of the underlying system for seizure

prediction is required. As one cannot see much of an anticipatory

signature in EEG dynamics prior to seizures, the same can be said of

a variety of oscillatory transient phenomena in the nervous system

ranging from up states [20], spinal cord burst firing [21], cortical

oscillatory waves [22], in addition to animal [23] and human [24]

epileptic seizures. All of these phenomena share the properties that

they are episodic, oscillatory, and have apparent refractory periods

following which small stimuli can both start and stop such events.

It has recently been shown that the interrelated dynamics of ½K �
and sodium concentration (½Na�) affect the excitability of neurons,

help determine the occurrence of seizures, and affect the stability

of persistent states of neuronal activity [10,25]. Competition

between intrinsic neuronal ion currents, sodium-potassium pumps,

glia, and diffusion can produce slow and large-amplitude

oscillations in ion concentrations similar to what is observed

physiologically in seizures [26,27].

Brain dynamics emerge from within a system of apparently

unique complexity among the natural systems we observe. Even as

multivariable sensing technology steadily improves, the near infinite

dimensionality of the complex spatial extent of brain networks will

require reconstruction through modeling. Since at present, our

technical capabilities restrict us to only one or two variables at a

restricted number of sites (such as voltage or calcium), computa-

tional models become the ‘‘lens’’ through which we must consider

viewing all brain measurements [28]. In what follows, we will show

the potential power of fusing physiological measurements with

computational models. We will use reconstruction to account for

unmeasured parts of the neuronal system, relating micro-domain

metabolic processes to cellular excitability, and validating cellular

dynamical reconstruction against actual measurements.

Results

As a first example of assimilating neural data we used

intracellular voltage data from a spiking pyramidal cell (PC) from

the Cornu Ammonis region 1 (CA1) of rat hippocampus. Using

only the noisy membrane potential measurement, V , we employed

modified Hodgkin-Huxley equations to reconstruct and track all of

the gating variables of the ion channels: sodium channel activation

and inactivation variables m and h, and potassium channel

activation variable n (Figure 1). Beginning with arbitrary initial

conditions the root mean square (RMS) error between measured

and estimated membrane potential changes with time (Figure 2).

As is clear from the figure the RMS error converges to near zero

within a few hundred milliseconds for the simulations shown in

Figure 1. We also tracked the maximum conductance parameters

of the ion channels (not shown).

Model Inadequacy
Model inadequacy is an issue of intense research in the data

assimilation community – no model does exactly what nature does.

To deal with inadequate models, researchers in areas such as

meteorology have developed various strategies to account for the

inaccuracies in the models for weather forecasting [4,5,29]. In

complex systems such as neuronal networks, the need to account for

model inadequacy is critical. To demonstrate that UKF can track

neuronal dynamics in the face of moderate inadequacy, we

impaired our model by setting the sodium current rate constant

am~0:5 instead of using the actual complex function of V , am(V )
(see equation (2) for the functional form of am(V )), and tracked it as

a parameter (Figure 3). That is, we deleted the relevant function for

Author Summary

To understand a complex system such as the weather or
the brain, one needs an exhaustive detailing of the system
variables and parameters. But such systems are vastly
undersampled from existing technology. The alternative is
to employ realistic computational models of the system
dynamics to reconstruct the unobserved features. This
model based state estimation is referred to as data
assimilation. Modern robotics use data assimilation as
the recursive predictive strategy that underlies the
autonomous control performance of aerospace and
terrestrial applications. We here adapt such data assimila-
tion techniques to a computational model of the interplay
of excitatory and inhibitory neurons during epileptic
seizures. We show that incorporating lower scale meta-
bolic models of potassium dynamics is essential for
accuracy. We apply our strategy using data from simulta-
neous dual intracellular impalements of inhibitory and
excitatory neurons. Our findings are, to our knowledge, the
first validation of such data assimilation in neuronal
dynamics.

Figure 1. Assimilating an intracellular membrane potential recording from CA1 hippocampal pyramidal neurons. In (A) we show
measured (red) and estimated (black) voltage, V . (B–D) Tracked Hodgkin-Huxley gating variables h, n, and m respectively. Spiking in the pyramidal
cell is generated by injecting a small current of 100 picoampere for 1sec. Data provided by Jokubas Ziburkus.
doi:10.1371/journal.pcbi.1000776.g001

Assimilating Seizure Dynamics
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am from the model and allowed UKF to update it as a parameter.

The model with fixed am is by itself unable to spike, but when it is

allowed to float when voltage is assimilated through UKF using the

data from hippocampal pyramidal cells (PCs), it is capable of

tracking the dynamics of the cell reasonably well. The am tracked by

the filter is sufficiently close to its functional form values (within

25%) so that spiking dynamics can be reconstructed (Figure 3C and

3D). This occurs because Kalman filtering constantly estimates the

trade off between model accuracy and measurements, expressed in

the filter gain function [2,3]. This is an excellent demonstration of

the robustness of this framework. Looking at the estimated values of

am it also becomes clear that am in fact should be assigned the

functional form rather than a constant value.

Tracking Neuronal Microenvironment during Seizures
Despite decades of effort neuroscientists lack a unifying

dynamical principle for epilepsy. An incomplete knowledge of

the neural interactions during seizures makes the quest for unifying

principles especially difficult [30]. Here we show that UKF can be

employed to track experimentally inaccessible neuronal dynamics

during seizures. Specifically, we used UKF to assimilate data from

pairs of simultaneously impaled pyramidal cells and oriens-

lacunosum moleculare (OLM) interneurons (INs) in the CA1 area

of the hippocampus [23]. We then used biophysical ionic models

to estimate extra- and intracellular potassium, sodium, and

calcium ion concentrations and various parameters controlling

their dynamics during seizures (Figure 4). In Figure 4A we show an

intracellular recording from a pyramidal cell during seizures, and

plot the estimated extracellular potassium concentration (½K �o) in

Figure 4B. As is clear from the figure the extracellular potassium

concentration oscillates as the cell goes into and out of seizures.

The potassium concentration begins to rise as the cell enters

seizures and peaks with the maximal firing frequency, followed by

decreasing potassium concentration as the firing rate decreases

and the seizure terminates. Higher ½K�o makes the PC more

excitable by raising the reversal potential for Kz currents

(equation 7). The increased Kz reversal potential causes the cell

to burst-fire spontaneously. Whether the increased ½K �o causes the

cells to seize or ½K�o is the result of seizures has been an old

question [31] whose resolution will likely take place from better

understanding of the coupled Kz dynamics. For present purposes,

it is known that increased ½K �o in experiments can support the

generation, and increase the frequency and propagation velocity of

seizures [32,33]. Changes in the concentration of intracellular

sodium ions, ½Na�i, are closely coupled with the changes of ½K �o
(Figure 4C). As shown in panels (4D–F) we reconstructed the

parameters controlling the microenvironment of the cell. These

parameters included the diffusion constant of Kz in the

extracellular space, Kz buffering strength of glia, and Kz

concentration in the reservoir of the perfusing solution in vitro (or in

the vasculature in vivo) during seizures. Note that the ionic

concentration in the distant reservoir is different from the more

rapid dynamics within the smaller connecting extracellular space

near single cell where excitability is determined. We were also able

Figure 2. Convergence of assimilation. Root mean squared error
for measured and estimated V in Figure 1.
doi:10.1371/journal.pcbi.1000776.g002

Figure 3. Robust neuronal dynamics tracking in the face of moderate degree of model inaccuracy. (A) measured (red), and estimated
(black) voltage, V , using crippled model where the critical voltage-dependent sodium rate constant, am, is replaced by a constant. The filter is still
able to successfully estimate the gating variables (only h shown in (B)). am tracked as a parameter is shown in (C), while the actual functional form of
am is shown in (D). Spiking in the experimentally observed cell is generated by injecting a constant current of 100 picoampere. By itself, this model
cannot spike. Fused with data and allowing the parameter am to float, it tracks am within 25% of its proper value. Data provided by Jokubas Ziburkus.
doi:10.1371/journal.pcbi.1000776.g003
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to track other variables and parameters such as extracellular

calcium concentration and ion channel conductances.

In Figure 5, we show an expanded view of a single cell response

during a single seizure from Figure 4. Extracellular potassium

concentration increases several fold above baseline values during

seizures [31]. During a single seizure, ½K �o starts rising from a

baseline value of 3.0mM as the seizure begins and peaks at 7mM

at the middle of the seizure (Figure 5). Interestingly the ½K �o
estimated by UKF matches very closely the measured ½K �o seen in

vitro studies [34].

Considering the slow time scale of seizure evolution (period of

more than 100 seconds in our experiments), we test the

importance of slow variables such as ion concentrations for

seizure tracking. As shown in Figure 6, we found that including the

dynamic intra- and extracellular ion concentrations in the model is

necessary for accurate tracking of seizures. Using Hodgkin-Huxley

type ionic currents with fixed intra- and extracellular ion

concentration of Kz and Naz ions fails to track seizure dynamics

in pyramidal cells (Figure 6C). We used physiologically normal

concentrations of 4mM and 18mM for extracellular Kz and

intracellular Naz respectively for these simulations. The conclu-

sion remains the same when higher ½K�o and ½Na�i are used. A

similar tracking failure is found while tracking the dynamics of

OLM interneurons during seizures (not shown). To further

emphasize the importance of ion concentrations dynamics for

tracking seizures we calculate the Akaike’s information criterion

(AIC) for the two models used in Figure 6, i.e. the model with and

without ion concentration dynamics. AIC is a measure of the

goodness of fit of a model and offers a measure of the information

lost when a given model is used to describe experimental

observations. Loosely speaking, it describes the tradeoff between

Figure 4. Assimilating spontaneous seizure data by whole cell recording from CA1 hippocampal pyramidal neurons. (A) Measured V
(red) from single PCs during spontaneous seizures. Estimated (black) ½K�o (B), ½Na�i (C), Kz diffusion constant (D), glial buffering strength (E), and Kz

concentration in bath solution (F). Data provided by Jokubas Ziburkus. Panel (A) modified from [23] with permission American Physiological Society.
doi:10.1371/journal.pcbi.1000776.g004

Figure 5. Expanded view of third seizure in Figure 4 illustrating
how ½½K ��o changes during a seizure. (A) membrane potential, V , (B)
extracellular potassium concentration, ½K�o .
doi:10.1371/journal.pcbi.1000776.g005
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precision and complexity of the model [35]. We used equation (29)

for the AIC measure. The AIC measure for the model without ion

concentration dynamics is 6:65|105. The model with ion

concentration dynamics on the other hand has AIC value equal

to 4:4765|103, indicating the importance of ion concentration

dynamics for tracking seizures.

Pyramidal cells and interneurons in the hippocampus reside in

different layers with different cell densities. To investigate

whether there exist significant differences in the microenviron-

ment surrounding these two cell types we assimilated membrane

potential data from OLM interneurons in the hippocampus and

reconstructed Kz and Naz ion concentrations inside and outside

the cells. As shown in Figure 7, both the baseline level and peak

½K �o near the interneurons must be very high as compared to that

seen for the pyramidal cells (cf. Figure 4B). This is an important

prediction in light of the recently observed interplay between

pyramidal cells and interneurons during in vitro seizures [23]; in

these experiments pyramidal cells were silent when the interneu-

rons were intensively firing. Following intense firing the

interneurons entered a state of depolarization block simulta-

neously with the emergence of intense epileptiform firing in

pyramidal cells. Such a novel pattern of interleaving neuronal

activity is proposed to be a possible mechanism for the sudden

drop in inhibition during seizures – it may be permissive of

runaway excitatory activity. The mechanism leading to such

interplay, specifically the reasons for differential firing patterns in

pyramidal cells and interneurons are unknown. Our results here

indicate the potential role of the neuronal microenvironment in

producing such interplay. Our findings suggest that the Kz

buffering mechanism in the OLM layer is weaker as compared

with the pyramidal layer, thus causing higher ½K �o in the OLM

layer. The higher ½K �o surrounding the interneurons causes

increased excitability of the cell by raising the reversal potential

for Kz currents (higher than the pyramidal cells, see equation 7).

The higher reversal potential for Kz currents causes the

interneuron to spontaneously burst fire at higher frequency and

eventually drives the interneuron to transition into depolarization

block when firing is peaked. As the INs enter the depolarized

state, the inhibitory synaptic input from the INs to the PCs drops

substantially, releasing PCs to generate the intense excitatory

Figure 6. UKF cannot track seizures without microenvironmen-
tal Kzz and Nazz dynamics in the model. Observed (A) and
estimated (B) membrane potential using the model with ion
concentrations dynamics. In (C) we show estimated membrane
potential using the model without ion concentrations dynamics.
doi:10.1371/journal.pcbi.1000776.g006

Figure 7. Assimilating seizure data from CA1 hippocampal OLM interneurons. Membrane potential measured (red) by whole cell recording
from OLM interneurons during spontaneous seizures (A). In (B–D) we show membrane potential, ½K�o , and ½Na�i of the same cell respectively
estimated (black) by using UKF. As shown in Figure S1, we also tracked the remaining variables for IN. Data provided by Jokubas Ziburkus. Panel (A)
modified from [23] with permission American Physiological Society.
doi:10.1371/journal.pcbi.1000776.g007
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activity of seizures (equation 8, Figure S3). The collapse of

inhibition due to the entrance of INs into a depolarized state also

helps explain the sudden decrease in inhibition at seizure onset in

neocortex described by Trevelyan, et al. [36] as the loss of

inhibitory veto. As shown in Figure S1, we also tracked the

remaining variables for the INs.

Reconstructing Network Interaction
Since the interaction of neurons determines network patterns

of activity, it is within such interactions that we seek unifying

principles for epilepsy. To demonstrate that the UKF framework

can be utilized to study cellular interactions, we reconstructed the

dynamics of one cell type by assimilating the measured data from

another cell type in the network. In Figure 8 we only show the

estimated membrane potentials, but we also reconstructed the

remaining variables and parameters of both cells (Figures S2 and

S3). We first assimilated the membrane potential of the PC to

estimate the dynamics of the same cell and also the dynamics of a

coupled IN (Figure 8A–D). Conversely, we estimate the dynamics

of PC from the simultaneously measured membrane potential

measurements of the IN (Figure 8D–F). As is evident from

Figure 8 the filter framework is successful at reciprocally

reconstructing and tracking the dynamics of these different cells

within this network. In Figure S2, we show intracellular Ca2z

concentration and gating variables of Kz and Naz channels in

PCs for simulation in Figure 8A–D. The variables modeling the

Figure 8. Reconstructing network interaction. Measured (A, red) and estimated (B, black) V for pyramidal cell. (C) Estimated V for interneuron.
We used the membrane potential recorded from the pyramidal cell (shown in A, red) to not only reconstruct the full dynamics of the same pyramidal
cell (only membrane potential shown in B, black) but also reconstructed the dynamics of the interneuron (only membrane potential shown in C,
black). Simultaneously recorded V from the IN is shown in (D, red) for comparison. Estimates for intracellular Ca2z concentration and gating
variables n, h for PC are shown in Figure S2 and the synaptic variables, s, g are shown in Figure S3. Estimated V for IN (E) and PC (F) by assimilating
measured V from IN (shown in (D)). (D–F) are converses of the simulations in (A–C). That is, In (D–F) we used membrane potential recorded from the
interneuron (shown in D, red) to not only reconstruct the full dynamics of the same interneuron (only membrane potential shown in E, black) but also
the coupled pyramidal cell (only membrane potential shown in F, black: compare with actual values shown in A, red). Simultaneous membrane
potential measurements shown in (A,D) were from a pyramidal cell and OLM interneuron in the hippocampus using simultaneous dual whole cell
patch clamp recordings demonstrating the firing interplay between these cells during in vitro seizures. Data provided by Jokubas Ziburkus. Panels
(A,D) are modified from [23] with permission � American Physiological Society.
doi:10.1371/journal.pcbi.1000776.g008
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synaptic inputs for both INs and PCs in Figure 8A–D are shown

in Figure S3. As clear from Figure S3 (D), the variable gi

(equation 8) reaches very high values when the INs lock into

depolarization block, shutting off the inhibitory inputs from INs

to PCs.

Discussion

There has been intense interest in the neuroscience

communities in bringing control-theoretical tools to bear on

neuronal encoding and decoding problems [37–45]. In all of

this work, statistical models (continuous or point process) were

fit to data recorded from neurons, and these empirical models

incorporated into applications. Our use of control theoretic

tools is very different. We built computational models from the

physiological properties of neurons and their networks, as well

as the properties of ion metabolism, without data fitting. Using

these fundamental models of the physics of neuronal systems,

we fuse these models with data – data assimilation – in a manner

commonly applied in meteorology [1,46–50]. We are aware of a

recent laboratory demonstration in fluid mechanics using a

simplified model of fluid dynamics (Boussinesq equations) in a

similar manner as we have performed here [51] (see also [14]).

Other authors have also recently discussed the importance and

power of going beyond statistical empirical models in neuronal

systems, and simulations have begun to explore the feasibility of

carrying this out [52–54]. To our knowledge, our findings are

the first experimental validation that a fundamental biophysical

model of part of the brain can be employed to assimilate

incomplete data and accurately reconstruct its network

dynamics.

Our conjecture is that the parallels with numerical meteorol-

ogy are deep. By the turn of the 20th century, it was apparent

that the lack of periodicities in weather limited forecasts based on

previous state (autoregressive) statistical models, and that

integrating the actual equations of motion of the atmosphere

would be required. Infeasible initially, the turning point came

when integrating such models gave ‘first approximations that

bore a recognizable resemblance to the actual motions’ [55].

Furthermore, the use of simplified dynamical models that

retained the most important of the physical dynamics was a

critical development [1].

Our findings suggest that an analogous use of biophysical

models of neuronal processes using the recursive predictive

strategies employed in meteorological data assimilation is now

feasible. We are presently exploring such application in frame-

works for model-based data assimilation and control of Parkinson’s

disease [15]. Experiments are underway exploring the application

for seizures in the intact brain, and the assimilation of cognitive

rhythms. The potential for such techniques to improve our

understanding of the dynamics of single cells and neuronal

networks is substantial.

Conclusion
In conclusion, we have demonstrated the feasibility for data

assimilation within neuronal networks using detailed biophysical

models. In particular, we demonstrated that estimating the

neuronal microenvironment and neuronal interactions can be

performed by embedding our improving biophysical neuronal

models within a model based state estimation framework. This

approach can provide a more complete understanding of

otherwise incompletely observed neuronal dynamics during

normal and pathological brain function.

Materials and Methods

Model
We used two-compartmental models for the pyramidal cells and

interneurons: a cellular compartment and the surrounding

extracellular microenvironment. The membrane potentials of

both cells were modeled by Hodgkin-Huxley equations containing

sodium, potassium, calcium-gated potassium (after-hyperpolariza-

tion), and leak currents. For the network model, the two cell types

are coupled synaptically and through diffusion of potassium ions in

the extracellular space. A schematic of the model is shown in

Figure 9.
Membrane potential dynamics. The membrane potential

V of the neurons is modeled with the following set of modified

Hodgkin-Huxley equations [10,56]

C
dV

dt
~INazIKzIAHPzIL,

INa~{gNam3h(V{VNa),

IK~{gK n4(V{VK ),

IAHP~{gAHP

½Ca�i
1z½Ca�i

� �
(V{VK ),

IL~{gKL(V{VK ){gNaL(V{VNa){gClL(V{VCl),

dq=dt~aq(1{q){bqq,q~m,n,h:

ð1Þ

where n4 and m3h represent gating variables for potassium, IK ,

and sodium, INa, currents. The leak current, IL, has three

components: Kz leak, IKL, Naz leak, INaL, and chloride leak,

IClL. The after-hyperpolarization current IAHP is only included in

the pyramidal cell to account for its frequency adaptation. The

meaning and values of parameters used in the model are given in

Table 1.

The rate equations for the gating variables are

am~
0:1(Vz30)

1{exp({0:1(Vz30))

bm~4exp {
Vz55

18

� �

an~
0:01(Vz34)

1{exp({0:1(Vz34))

bn~0:125exp {
Vz44

80

� �

ah~0:07exp {
Vz44

20

� �

bh~
1

1zexp({0:1(Vz14))

ð2Þ

Ion concentrations dynamics. The current equations were

augmented with dynamic variables representing the intra- and

extracellular ion concentrations (Kz, Naz, and Ca2z). These ion

concentrations are affected by the neuron’s intrinsic ionic currents

as well as a sodium-potassium pump current. The glial buffering,

diffusion between the nearest neighbor cells, and diffusion into the

environment of the cell (bath solution in slice preparation

and vasculature in vivo) also modulate the potassium concentra-

tion in the microenvironmental extracellular space. The ion

concentrations inside and outside the cell are coupled to the

Assimilating Seizure Dynamics
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membrane voltage equations via the Nernst equation [10,13,25].

Finally, PCs and INs are connected to each other through synaptic

inputs and diffusion of extracellular potassium between the nearest

neighbor neurons.

Given the potassium ion currents Ik~IKzIAHPzIKL, activity

of the pump exchanging Kz and Naz, Ipump, diffusion of

potassium to the microenvironment, Idiff , and glial buffering, Iglia,

the extracellular potassium dynamics, ½K �o, can be represented in

the model as (Figure 9).

d½K �o
dt

~0:3Ik{2bIpump{Idiff {Iglia,

Ipump~Imax
1

1zexp((25{½Na�i)=3)

� �
1

1zexp(8{½K �o)

� �
,

Idiff ~k(½K �o{ko,?),

Iglia~
Gglia

1zexp((18{½K�o)=2:5)

ð3Þ

where the Naz2Kz pump is modeled as a product of a sigmoidal

functions, Imax is the pump strength under normal conditions, and

½Na�i is the intracellular sodium concentration. Each sigmoidal

term saturates for high values of internal sodium and external

potassium respectively. More biophysically realistic models of

pumps, such as those in [57] produce substantially similar results.

ko,? in the diffusion equation is the potassium concentration in the

nearby reservoir. Physiologically, this would correspond to either

the bath solution in a slice preparation, or the vasculature in the

intact brain (noting that ½K�o is kept below the plasma level by

trans-endothelial transport). Both active and passive Kz uptake

into glia is incorporated into a simplified single sigmoidal response

Figure 9. A schematic of the model dynamics. Potassium is released to the extracellular space and is pumped back to the cell by the ATP-
dependent Kz2Naz exchange pump, buffered by glia, and diffuses to the microenvironment where it interacts with capillaries. Sodium entering
the cell through Naz channels is pumped out of the cell by the ATP-dependent pump. Pyramidal cell (PC) and interneuron (IN) from the CA1 region
of the hippocampus are coupled both synaptically and through lateral Kz diffusion. Symbols used are defined in the text.
doi:10.1371/journal.pcbi.1000776.g009

Table 1. Model Parameters.

Parameter Value Description

C 1mF=cm2 Membrane capacitance

gNa 100mS=cm2 Conductance of Sodium Current

gK 30mS=cm2 Conductance of potassium current

gAHP 0:01mS=cm2 Conductance of
afterhyperpolarization current

gKL 0:05mS=cm2 Conductance of potassium leak
current

gNaL 0:0175mS=cm2 Conductance of sodium leak current

gClL 0:05mS=cm2 Conductance of chloride leak current

w 3sec{1 Time constant of gating variables

gCa 0:1mS=cm2 Conductance of calcium current

VCa 120mV Reversal potential of calcium

b 7:0 Ratio of intracellular to
extracellular volume of the cell

Imax 1:125mM/sec Maximum pump strength

Gglia 36mM/sec Maximum strength of glial uptake

k 0:8sec{1 Diffusion constant of extracellular
Kz

½Cl�o 6:0mM Extracellular chloride
concentration

½Cl�i 130:0mM Intracellular chloride concentration

Values and description of various parameters used in the model. All other
parameters that are not given here are described in the ‘‘Materials and
Methods’’ section.
doi:10.1371/journal.pcbi.1000776.t001
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function that depends on extracellular Kz concentration with

Gglia representing the maximum buffering strength. A similar but

more physiological approach was used in [58]. Two factors allow

the glia to provide a nearly insatiable buffer for the extracellular

space. The first is the large size of the glial network. Second, the

glial endfeet surround the pericapillary space, which, through

interaction with arteriole walls, can effect blood flow; this in turn

can increase the buffering capability of the glia [59–61].

We consider a spherical cell with a radius of 7mm. The diffusion

coefficient of ½K �o to the nearby reservoir k, is obtained from Fick’s

law, k~2D/Dx2, where D~250|10{6cm2/sec is the Kz

diffusion constant in neocortex [62], and Dx&25mm for brain

reflects the average distance between capillaries [63]. The factor

0.3mM:cm2/mcoul in equation (3) converts ionic current to

concentration rate of change and is calculated using bA/FV
[10], where A, V and F represent cell area, volume and Faraday

constant respectively. ko,? is equal to 3mM in physiological

conditions, and the intra- to extracellular volume ratio b~7 [64].

To complete the description of Kz dynamics, we make the

assumption that the flow of Naz into the cell is compensated by

flow of Kz out of the cell to maintain bulk electroneutrality. Thus

the internal potassium concentration (½K �i) can be approximated

by [10]

½K �i~140mMz(18mM{½Na�i) ð4Þ

where 140mM and 18mM respectively are the normal resting

concentrations of Kz and Naz inside the cell.

The intracellular and extracellular Naz concentrations (½Na�i,
½Na�o) are also updated in the model as [10]

d½Na�i
dt

~0:3
INa

b
{3Ipump,

½Na�o~144mM{b(½Na�i{18mM)

ð5Þ

where 144mM is the normal resting extracellular Naz concen-

tration. Ipump in equations (3) and (5) are multiplied by factor 2 and

3 respectively due to the fact that the Kz{Naz pump has an

electrogenic 2:3 ratio.

The intracellular Ca2z concentration, ½Ca�i, is modeled with

the following rate equation [65]

d½Ca�i
dt

~{
0:002gCa(V{VCa)

1zexp({(Vz25)=2:5)

� �
{½Ca�i=80: ð6Þ

The reversal potentials for Kz, Naz and Cl{ are updated

based on the instantaneous ion concentrations using the Nernst

equations

Vk~26:64 ln
½K�o
½K �i

� �
,

VNa~26:64 ln
½Na�o
½Na�i

� �
,

VCl~26:64 ln
½Cl�i
½Cl�o

� �
:

ð7Þ

Equation (7) binds the ion concentrations dynamics to the

Hodgkin-Huxley equations (1, 2).

Coupled cells model. The pyramidal cells and OLM

interneurons are coupled both synaptically and through

extracellular Kz diffusion as shown in Figure 9. The following

synaptic currents are added to the membrane potential equations

[25]

Ip=i
syn~{aip=pisi=pxi=p(Vp=i{Vip=pi),

xp=i~exp({gp=i=v)

dgp=i

dt
~cp=i(V

p=i{Vb){~ccgp=i

cp=i~
0:4 if {30vVp=i

v{10

0 otherwise

(
:

ð8Þ

Where the superscripts p and i represent pyramidal cell and

interneuron respectively. Vp and Vi is the membrane potential of

the PCs and INs respectively. The variable x takes into account the

firing interplay between pyramidal cells and interneurons [25].

Ziburkus, et al. [23] observed during in vitro seizures that

pyramidal cells were silent when the interneurons were burst

firing, followed by high frequency firing in pyramidal cells when

interneurons were locked into a depolarized state called depolar-

ization block. The variable x in equation (8) causes the synaptic

input to drop to zero when the cells go to depolarization block.

Various parameters used in equation (8) are: Vip~{80, Vpi~0,

Vb~{50, ~cc~0:4, and v~5:0. Synaptic strengths aip, api are

mimicked according to GABAA and AMPA inputs and values of

0.84 and 0.17, respectively, are used for the simulations. The

variable sp gives the temporal evolution of the synaptic input from

the pyramidal cell to the interneuron and si is the synaptic input

from the interneuron to the pyramidal cell. sp and si evolve as

tp=i

dsp=i

dt
~As(Vp=i)(1{sp=i){sp=i

s(Vp=i)~
1

1zexp({(Vp=iz20)=3)

ð9Þ

The parameters tp~4 and ti~8 are the time constants for the

excitatory and inhibitory synapses respectively and A~20.

In the case of coupled pyramidal cells and interneurons, the rate

equation for ½K�o is updated by adding the following lateral

diffusion term (Ilateral )

Ilateral~

D

Dx2
1

(½K �io{½K �
p
o) for pyramidal cell

D

Dx2
1

(½K �po{½K �
i
o) for interneuron

8>><
>>: ð10Þ

where Dx1~50mm is the separation between the interneurons and

pyramidal cells.

Unscented Kalman Filter
To estimate and track the dynamics of the neuronal networks,

we applied a nonlinear ensemble version of the Kalman filter, the

unscented Kalman filter (UKF) [8,9]. The UKF uses known

nonlinear dynamical equations and observation functions along

with noisy, partially observed data to continuously update a

Gaussian approximation for the neuronal state and its uncertainty.

At each integration step, perturbed system states that are

consistent with the current state uncertainty, sigma points, are
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chosen. The UKF consists of integrating the system from the sigma

points, estimating mean state values, and then updating the

covariance matrix that approximates the state uncertainty. The

Kalman gain matrix updates the new most likely state of the

system based on the estimated measurements and the actual

partially measured state. The estimated states (filtered states) are

used to estimate the experimentally inaccessible parameters and

variables by synchronizing the model equations to the estimated

states. To estimate the system parameters from data, we

introduced the unknown parameters as extra state variables with

trivial dynamics. The UKF with random initial conditions for the

parameters will converge to an optimal set of parameters, or in the

case of varying parameters, will track them along with the state

variables [11–13].

Given a function F (x,t) describing the dynamics of the system

(equations 1–10 in our case), and an observation function W (x,t)
contaminated by uncertainty characterized in the covariance

matrix R, for a D-dimensional state vector with mean �xx the UKF

generates the 2D sigma points x(1), …, x(2D) so that their sample

mean and sample covariance are �xx and Pxx. The sigma points are

the 2D rows of the matrix

x(i)~�xx+(
ffiffiffiffiffiffiffiffiffiffiffi
DPxx
p

)T
i ð11Þ

The index (i) on the left-hand side corresponds to the ith row

taken from the matrix in the parenthesis on right-hand side. The

square root sign denotes the matrix square root and T indicates

transpose of the matrix. Sigma points can be envisioned as sample

points at the boundaries of a covariance ellipsoid. In what follows,

superscript tilde (~: ) represents the a priori values of variables and

parameter, i.e. the values at a given time-step k when observation

up to time-step k{1 are available, while hat ( :̂ ) represents the a

posteriori quantities, i.e. the values at time-step k when observations

up to time-step k are available.

Applying one step of the dynamics F to the sigma points and

calling the results ~XX (i)~F (x(i),t), and denoting the observations of

the new states by ~YY (i)~W ( ~XX (i),t), we define the means

~xx~
1

2D

X2D

i~1

~XX (i),

~yy~
1

2D

X2D

i~1

~YY (i),

ð12Þ

where ~xx and ~yy are the a priori state and measurement estimates,

respectively. Now define the a priori covariances

~PPxx~
1

2D

X2D

i~1

( ~XX (i){~xx)( ~XX (i){~xx)T ,

~PPxy~
1

2D

X2D

i~1

( ~XX (i){~xx)( ~YY (i){~yy)T ,

~PPyy~
1

2D

X2D

i~1

( ~YY (i){~yy)( ~YY (i){~yy)T ,

ð13Þ

of the ensemble members. The Kalman filter estimates of the new

state and uncertainty are given by the a posteriori quantities

x̂x~~xxzK(y{~yy) ð14Þ

and

P̂Pxx~~PPxx{K ~PPxy, ð15Þ

where K~~PPxy(~PPyy){1 is the Kalman gain matrix and y is the

actual observation [3,8,9,11–13]. Thus x̂x and P̂Pxx are the updated

estimated state x and covariance P for the next step. The a posteriori

estimate of the observation ŷy is recovered by ŷy~W (x̂x). Thus by

augmenting the observed state variables with unobserved state

variables and system parameters, UKF can estimate and track

both unobserved variables and system parameters.

Implementation of the UKF. In our simulations, the state x
is the D~Nzm dimensional vector consisting of the N variable

values (equations 1–10) describing the dynamics of neurons and

the m parameter values to be tracked. The one-step dynamics

function F (x) is the system of differential equations (equations 1–

10). State vector x for a single PC is given as

x~

V

h

m

n

½K �o
½Na�i
½Ca�i

parameter1

parameter2

:::

:::

parameterm

2
666666666666666666666664

3
777777777777777777777775

ð16Þ

Where parameter1, parameter2, …. parameterm are the

parameters that we want to track. For example, we tracked

three parameters in Figure 4, replacing parameter1, parameter2,

…. parameterm by k, Gglia, and ko,? respectively in equation (16).

For coupled PC and IN, the state vector x included variables V , h,

m, n, ½K�o, ½Na�i, and ½Ca�i for IN along with four synaptic

variables, gp, gi, sp, and si in order to represent the synaptic

interactions between the two cells. The observation function

W (x,t) returned the first component of the vector x (membrane

potential, V ) at given time t. We observed the membrane potential

of the cell and treated the rest of the variables as unobserved. For

most of our simulations we used an integration time-step

dt = 0.01ms while the membrane potential of the neuron was

measured each 0.1ms.

An iteration of the filter is performed in the following three steps

(see [3,8,9] for more details).

Initialization: The filter is initialized as follows

x̂x0~E(xo)

P̂Pxx
0 ~E½(x0{x̂x0)(x0{x̂x0)T �

ð17Þ

where x0 are the initial values of the state variables, and E
represent expectation.

Prediction: The following equations are used to propagate the

state estimate and covariance from time-step (k21) to k. First

create a set of sigma points by applying equation (11) to system state

equation (16)
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x(i)
k{1~x̂xk{1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP̂Pxx

k{1

q� �T

i

, i~1,2,3::::::::2D ð18Þ

The sigma points are transformed into vectors ~XX (i)
k by using the

nonlinear system of equations F (1–10)

~XX (i)
k ~F(x

(i)
k{1,tk) ð19Þ

The average of vectors ~XX (i)
k gives the a priori state estimate at time

k.

~xxk~
1

2D

X2D

i~1

~XX (i)
k ð20Þ

The a priori error covariance is given as

~PPxx
k ~

1

2D

X2D

i~1

( ~XX (i)
k {~xxk)( ~XX (i)

k {~xxk)TzQk{1 ð21Þ

where Qk{1 represents the process noise.

Measurement Update: We implemented the measurement update

as follows. Given the current guess for the mean, ~xxk, and

covariance, ~PPxx
k of xk, we choose new sigma points

x(i)
k ~~xxk+

ffiffiffiffiffiffiffiffiffiffiffi
D~PPxx

k

q� �T

i

, i~1,2,3::::::::2D ð22Þ

This step can be omitted by using the sigma points from equation

(18) to enhance the computational efficiency at the cost of

performance [3]. The observation function W is used to transform

the sigma points into predicted measurements, ~YY (i)
k vector.

~YY (i)
k ~W (x(i)

k ,tk) ð23Þ

The average of ~YY (i)
k is the predicted measurement at time-step k:

~yyk~
1

2D

X2D

i~1

~YY (i)
k ð24Þ

Equations (23 and 24) are used to estimate the covariance of

predicted measurement

~PPyy
k ~

1

2D

X2D

i~1

( ~YY (i)
k {~yyk)( ~YY (i)

k {~yyk)TzRk ð25Þ

where Rk takes into account the measurement noise.

Next, we estimate the cross covariance between ~xxk and ~yyk

~PPxy
k ~

1

2D

X2D

i~1

( ~XX (i)
k {~xxk)( ~YY (i)

k {~yyk)T ð26Þ

Finally, the measurement at the time-step k is used to update the

state vector and its covariance

x̂xk~~xxkzKk(yk{~yyk)

P̂Pxx
k ~~PPxx

k {Kk
~PPxy

k

ð27Þ

where

Kk~~PPxy(~PPyy){1 ð28Þ

The a posteriori observation ŷyk is recovered by ŷyk~W (x̂xk,tk).

We calculate the AIC measure for the two models used in

Figure 6 using the following equations [35]

AIC~2fzN½ln(RSS=N)�

RSS~
XN

i~1

(yi{x̂xi)
2

ð29Þ

Where f is the total number of parameters in the model, N is the

total number of data samples (N~150000 for examples in

Figure 6), and RSS is the residual sum of squares. The model that

includes ion concentration dynamics has four extra parameters, b,

Imax, k, and Gglia. Therefore, we take f = 0 and 4 for the models

without and with ion concentrations dynamics respectively.

All simulations were carried out using MATLAB on 2|4 multi-

core Mac Pro computer. The MATLAB code for the results is

archived at ModelDB (http://senselab.med.yale.edu/modeldb/

default.asp) and can also be provided by the authors upon request.

Supporting Information

Figure S1 Estimates of remaining variables for the INs shown in

Figure 7. (A) intracellular Ca2+ concentration (arbitrary units), (B)

K+ channel gating variable, n, and (C) Na+ channel gating variable,

h.

Found at: doi:10.1371/journal.pcbi.1000776.s001 (0.40 MB TIF)

Figure S2 Estimates of remaining variables for the PCs shown in

Figure 8A, B. intracellular Ca2+ concentration (arbitrary units) (A)

and gating variables, n (B), h (C).

Found at: doi:10.1371/journal.pcbi.1000776.s002 (0.30 MB TIF)

Figure S3 Estimates of synaptic variables for PCs and INs

shown in Figure 8A–D. Synaptic variables, sp (A), gp (B), si (C), and

gi (D). As is clear from (D), gi reaches high values when the INs

lock into depolarization block, causing xi to approach zero thus

shutting off the synaptic inputs from INs to PCs. When not in

depolarization block, such as when fast spiking, giR0 and xiR0,

not affecting synaptic currents.

Found at: doi:10.1371/journal.pcbi.1000776.s003 (0.21 MB TIF)
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