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Abstract

Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner.
To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell
interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria
required for normal and pathological immune system responses and suggests that alterations in the cytokine production
rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that
pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration
levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of
psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it
explains how interactions between immune cell populations can lead to disease phenotypes.
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Introduction

Inflammation is an organism’s protective response to injury,

pathogens or irritants and represents a complex multicomponent

process that mobilizes immune cells to remove pathogens and

restore tissue homeostasis. Healthy inflammatory reaction only

lasts for a relatively short period of time, in contrast to pathological

conditions where inflammation can persist over period of months

or years. Chronic inflammation can be harmful and is attributed

to the loss of balanced interactions between immune cells. Such

interactions occur either via relatively small soluble proteins

known as cytokines and chemokines, or through direct cellular

interactions between ligands and their receptors expressed on the

cellular surface [1]. Pathologies related to the immune system lead

to a number of human diseases including psoriasis [2], arthritis [3],

cancer [4], atherosclerosis [5], diabetes [6], inflammatory bowel

disease [7], and asthma [8]. Even though each inflammation-

mediated disease carries a set of unique features, a common trait

between many inflammation-associated diseases is the chronic

elevations of cytokine concentrations in the affected area.

Skin is a preferred system for studying inflammatory conditions,

as tissue can be both easily observed and sampled. Due to its easy

accessibility it can be viewed as the ‘‘window’’ to the human

immune system. Skin is composed of mainly two layers containing

different cell types: keratinocytes are the major cell type forming

the outer epidermis, whereas fibroblasts are the major component

of the underlying dermis. In addition, various immune cells such as

dendritic cell, T cells, neutrophils or natural killer cells reside in

the skin and increase in number under inflammatory conditions

[9–11]. Perturbations in the local immune system are found to be

essential factors mediating skin disease [2]. Psoriasis is a chronic

inflammatory skin disorder in which keratinocytes proliferate at an

unusually rapid rate. The disease affects about 0.6–4.8% of the

population [12] and is characterized by red, scaly patches that

reveal fine silvery scales. Psoriasis usually develops on the knees,

elbows and scalp, but can appear anywhere on the body [13–14].

Psoriasis serves as a good model for studies of inflammatory

mechanisms and it is an attractive disease for proof-of-principle

studies of new anti-inflammatory therapeutic strategies [15]. A

schematic view of the role of the immune system in normal and

inflamed skin is provided in Figure 1.

A major histological feature of lesional psoriatic skin is the

thickened epidermis which is due to hyperproliferation and

abnormal differentiation of keratinocytes (Figure 2A and 2B).

The increase in number of keratinocytes is about four-fold

compared to normal skin [16]. The transition from normal to
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diseased skin has been shown to be dependent on immune cell

infiltration into the dermis and epidermis (Figure 1) [2,15].

Keratinocytes and immune cells interact via the release of soluble

mediators such as cytokines and chemokines, as well as through

cell-cell interactions mediated by surface-expressed ligands and

receptors.

A widely held view is that psoriasis occurs as a result of

unbalanced interactions between cells of the immune system, their

mediators and keratinocytes [15]. Genetic studies have allowed the

identification of a substantial number of loci harboring polymor-

phisms influencing the susceptibility to or protection from

psoriasis. These studies are diverse and range from typing of

serological variants of HLA-Cw6, to whole-genome linkage or

association (GWAS) studies [17]. Although genetics studies

validate the notion that key cytokine pathways are involved in

the genetic susceptibility to psoriasis, they do not offer an

explanation on how and why genetic variations in the cytokine

mediated pathways lead to chronic inflammation. It is also unclear

why in psoriasis some areas in skin are chronically inflamed, while

others show no symptoms despite carrying the same disease-

associated alleles. It is important to note that answering similar

questions may be crucial in other inflammation-associated human

conditions.

It has been suggested that chronic inflammation occurs as a

result of a modified regulation in key immune cell populations via

cytokine-mediated interactions. For example, T cells are reported

Figure 1. The schematic diagram for major cell populations involved in skin inflammation. A. Normal human skin contains a number of
immune cells, including dendritic cells and macrophages that operate as sentinels. They are receptive to invading pathogens or other forms of
physical, chemical or genetic damage. Upon activation, certain sub-populations of dendritic cells and macrophages attract and initiate numerous
effector systems of the innate and adaptive immune systems. Locally activated immune system is characterised by inflamed tissue due to the
increased cytokine concentrations. False activation of the immune system can lead to a number of pathologies, for example, psoriasis. B. Psoriasis is
initiated by a number of factors such physical trauma, infection and drugs. The initial phase of developing psoriatic lesions is characterized by
production of a large amount of IFN-c by plasmacytoid dendritic cells (pDC). IFN-c activates dermal myeloid dendritic cells (mDC) and initiates their
migration to the local lymph node. In the lymph node mDCs induce proliferation and priming of antigen-specific T cells. mDC remaining in the
dermis produce iNOS, IL-12, IL-23, and TNF-a proinflammatory cytokines. These cytokines initiate a chain of immune system reactions. The
interactions between dendritic cells, lymphocytes and keratinocytes, create an area of persistent inflammation that can remain for a significant period
of time. Human skin under inflammatory conditions contains increased numbers of immune cell populations and elevated levels of cytokines. The
elevated concentrations of cytokines can remain for significant periods of time. While the same cells and elevated cytokine concentrations are
observed in healthy skin, the major characteristic of pathology is the multifold increase of cell numbers and persistent maintenance of high cytokine
concentrations. In response to inflammatory conditions keratinocytes undergo hyperproliferation and aberrant differentiation.
doi:10.1371/journal.pcbi.1001024.g001

Author Summary

A functional immune system requires complex interactions
among diverse cell types, mediated by a variety of
cytokines. These interactions include phenomena such as
positive and negative feedback loops that can be experi-
mentally characterized by dose-dependent cytokine pro-
duction measurements. However, any experimental ap-
proach is not only limited with regard to the number of cell-
cell interactions that can be studied at a given time, but also
does not have the capacity to assess or predict the overall
immune response which is the result of complex interde-
pendent immune cell interactions. Therefore, experimental
data need to be viewed from a theoretical perspective
allowing the quantitative modeling of immune cell
interactions. Here, we propose a strategy for a quantitative
description of multiple interactions between immune cell
populations based on their cytokine production profiles.
The model predicts that the modified feedback loop
interactions can result in the appearance of alternative
steady-states causing the switch-like immune system effect
that is experimentally observed in pathologic phenotypes.
Overall, the quantitative description of immune cell
interactions via cytokine signaling reported here offers
new insights into understanding and predicting normal and
pathological immune system responses.

A Systems Model for Skin Inflammation
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to be regulated by dendritic cells via feedback control mechanisms

[18], whereas Th17 cytokine mediated CCL20 expression in

keratinocytes is implicated in psoriasis pathogenesis [19]. IL-21

has been shown to induce IL-17 through a self-amplifying loop

[20]. IFN-c and IL-17 secreted by activated CD4+ cells have been

reported to up-regulate IL-6, IL-8, and CXCL10 production by

benign prostatic hyperplasia cells [21], suggesting a positive

feedback loop that amplifies inflammation in prostatic conditions.

In another study, an example of the negative feedback loop in the

NF-kb-dependent cytokine pathway is reported to elevate the

expression of proinflammatory cytokines [22]. Negative feedback

control of the autoimmune response has been reported to occur

through antigen-induced differentiation of IL-10-secreting Th1

cells [23]. Altogether, the above studies suggest that it is essential

to investigate how immune cell populations switch from a healthy

to a pathologic inflammatory response as a result of modified

feedback interactions. Modified feedback loop interactions be-

tween immune cells in inflammation require the development of

new computational strategies to describe how alterations in

feedback loops relate to pathology.

A number of computational studies have offered insights into

immune system signaling in the context of human disease. A

model for a cell-cell interaction network has demonstrated that

the loss of responsiveness in feedback signaling pathways is

necessary and sufficient to induce leukemic transformation [24].

Immune system responses were evaluated for the tumor-immune

system interactions by a mathematical model for melanoma

invasion into healthy tissue [25]. It is reported that small

metastatic lesions distal to the primary tumor mass can be held to

a minimal size via the immune interaction with the larger

primary tumor. A computational model has been used to

determine the steady-state basal plasma glucose and insulin

concentrations determined by their interaction in a feedback loop

[26] and became one of the most well-recognized approaches for

evaluating diabetes. Mathematical models developed to describe

the dynamics of T cell homeostasis and proliferation were applied

to provide insights into the CD4+ memory T cell depletion

dynamics in HIV [27]. Other applications of translational systems

biology in inflammation have been recently summarized in a

comprehensive review [28].

These and other studies [29–34] have demonstrated that

mathematical modeling can offer new insights into various aspects

of inflammation by linking various experimental observations into

an integrative model. However, the basic principles that

distinguish healthy from pathologic inflammatory responses have

not been elucidated or clearly explained yet. While it has been

suggested that cytokine receptor polymorphisms can modify

cytokine production by a small amount, there is currently no

clear understanding of how such - seemingly insignificant -

alterations can lead to disease. Experimental and computational

studies need to lead to a framework that links genetic mutations to

the (small) modifications of feedback loop interactions between

immune cells which, in turn, may lead to pathology.

In order to address some of the outstanding questions and

increase our understanding of how immune cell interactions

contribute to normal or inflamed skin phenotypes, we developed a

quantitative model that captures cytokine-dependent production

profiles of cytokines in immune cell populations. The model

represents the immune cell interactions as coupled cytokine

concentration levels in human tissue by quantifying the underlying

feedback loops. The approach allows the application of general

concepts in dynamic systems modeling, such as stable homeostatic

solution, feedback loops, bistability or oscillations, and thereby,

uncovers the causes of chronic inflammation. Moreover, the

methodology has the power to differentiate inflammatory disease

phenotypes according to mechanisms of immune system imbal-

ance. In this study we consider possible scenarios of cell population

interactions and we show how even small changes in cytokine

production rates by a single cell population can significantly affect

systems properties due to altered feedback interactions and cause

immune system-mediated pathology. The model also allows for

discrimination between a healthy inflammatory response and

chronic inflammation. Due to shared cytokine pathways between

psoriasis and other chronic inflammatory diseases, the principles

introduced in this study might be applicable to a wider range of

immune system disorders.

Results

Experimental characterization of inflammation in human
skin

Given the importance of cytokine-mediated interactions be-

tween immune cells, cytokine genes, gene products and their

receptors have been subjected to genetic and immunological

analysis. Cytokines form a group of candidate susceptibility genes

in psoriasis [35]. For example, polymorphisms of the INF-c and

IL-10 genes were shown to be associated with different levels of

cytokine production in patients with psoriasis [35]. Psoriasis is

associated with over-expression of T-helper cell type 1 (Th1)

cytokines, IFN-c and TNF-a in the involved skin and relative

underexpression of T-helper cell type 2 (Th2) cytokines,

interleukin IL-4 and IL-10 [36]. Currently, the analysis of

cytokine-mediated inflammatory conditions is performed on the

bases of genetic association or case-control studies (GWAS) in

combination with cytokine or expression production measure-

ments. Frequently used causative indicators of disease occurrence

are (i) disease-associated single nucleotide polymorphisms (SNPs)

in cytokines and (ii) differentially expressed cytokine levels.

To evaluate the genetic association approaches and altered

cytokine levels observed in psoriasis, we examined the degree of

genetic association in polymorphisms located in the vicinity of key

psoriasis cytokines. We re-analyzed the genetic association data

Figure 2. Comparison of normal and inflamed skin samples. Histology of psoriatic plaque (B) is compared with normal skin (A). Psoriatic
plaque (B) is characterized by a hyperproliferative epidermal layer that contains a fourfold larger number of epidermal cells. C. Association
significance for psoriasis is shown for the key inflammatory cytokines in the whole genome-wide context. It can be observed that the major cytokines
IL22, INFc, IL1, IL17A and IL6 cytokines do not meet the significance threshold. Genome-wide association of each SNP is plotted as the 2log10 (P)
dependence on the genomic location (in Mbp) using the coordinates of the NCBI Build 36.1 (March 2006). The association of the SNPs located within
the 2 Mbp window centered at the selected inflammatory cytokines is shown in color for individual cytokines. D. The comparison of IL-22
concentration in healthy and psoriatic skin samples [37]. Although the genetic variant of IL-22 cytokine does not meet the association significance
threshold (C), it is clearly present at higher concentrations in psoriatic skin samples. E. Opposite to the IL-22 example, the 2 Mbp region located at the
IL-10 cytokine gene contains one of the 5% most significant SNP associated with psoriasis (C). However, the production of IL-10 does not significantly
differ in healthy and inflamed skin [37]. The comparison of the association significance SNPs in the IL-22 and IL-10 cytokines and the actual cytokine
concentrations in the skin shows that the GWAS and cytokine production/expression comparison between controls and cases may lead to conflicting
conclusions.
doi:10.1371/journal.pcbi.1001024.g002
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obtained from GWAS for psoriasis [17]. In the Manhattan plot

(Figure 2C), associations are highlighted corresponding to SNPs

located in the genomic vicinity of a number of genes for key

inflammatory cytokines crucial in psoriasis The Figure shows that

none of the polymorphisms near the major cytokines IL-22, INF-c,

IL-1, IL-17A and IL-6 reached the significance association levels

(p{value~10{7) determined by the GWAS [17]. Since all these

cytokines are shown to participate in the mechanism that mediates

psoriasis [15], this result suggests that genotyping experiments do

not represent an infallible method for identifying key pathology-

associated cytokines.

To further assess the predictive capabilities of genome-wide

screens for marker identification in inflammatory conditions, the

differences in the IL-10 and IL-22 production levels between

psoriatic and healthy skin samples were compared using

experimental data from the literature [37]. We found that IL-10

is significantly associated with psoriasis GWAS [17] whereas IL-22

is not (Figure 2C). A comparison of the IL-22 concentration in the

normal and psoriatic skin shows a significant elevation of IL-22

levels in disease [37] (Figure 2D), despite of the lack of significant

IL-22 SNP in GWAS [17] (Figure 2C). The IL-10 cytokine shows

the opposite effect to IL-22, as the SNP observed in the vicinity of

the IL-10 gene shows a clear genomic association with psoriasis

[17] (Figure 2C). At the same time, the IL-10 production by

lymphocytes does not change significantly between cases and

controls [37] (Figure 2E). Therefore, IL-10 and IL-22 cytokines

are examples to demonstrate that either presence or absence of a

SNP in a cytokine does not always translate to modified cytokine

levels in pathological tissue. More specifically, the IL-10 cytokine

example illustrates the case where a significantly associated SNP

found in the cytokine does not result in altered cytokine levels,

while the IL-22 example shows difference between cases and

controls production levels in the absence of any significance in the

genome wide scan.

The above examples suggest that although GWAS and cytokine

production/expression comparison allow identification of poten-

tial cytokine candidates, they may lead to conflicting conclusions

and do not establish a specific cytokine function. Moreover, one

can argue that even in situations when both genetic significance

and cytokine production/expression differences between cases and

controls are present, the mechanisms of molecular interaction

between immune cell populations in normal and pathologic

interactions cannot be ascertained. It is also unclear how

statistically significant differences for cytokines in genotype or

expression data of disease and control cases contribute to

unbalanced interactions between the immune cell populations.

Therefore, the need exists for the development of additional

methodologies complementary to genome-wide association studies

and expression level comparison that would provide further

insights into how the immune system operates.

Interpretation of the cytokine production differences in
the context of inflammatory disease

Genetic or expression level comparison studies are frequently

complemented by cytokine concentration profiles, whereby the

amounts of various cytokines produced by a specific cell

population under normal and diseased conditions are measured

by Luminex or Elisa assays. These techniques provide a closer

insight into cellular interactions in disease, as individual SNPs or

altered cytokine expression levels may not always translate into

changes in cytokine production levels. In the previous section we

showed that SNPs in cytokine genes may not always result in the

modification of cytokine production profile.

In this section we demonstrate that up- or down-regulation of

cytokine production levels in disease is due to the interactions

between immune cells. Experimental measurements of cytokine

production profiles in individual cell populations are usually

performed in a physiological ‘‘cocktail’’ of other cytokines. Here

we demonstrate that a random choice of the cytokine concentra-

tions in such a physiological cocktail creates grounds for

misconceiving the role of a particular cytokine in disease, as

illustrated below.

Measurement of a particular cytokine concentration largely

depends on the levels of other cytokines also present in the

medium. We consider the dose-response curve for IL-17

production in bone marrow derived macrophages as a function

of IL-23 concentration shown on Figure 3A, as adopted from [38].

Both IL-17 and IL-23 are major inflammatory cytokines, as

identified by linkage analysis and functional characterization in a

number of inflammatory conditions [13,39–41]. The data show

that IL-17 production has a complex dependence on extracellular

IL-23 concentration. For example, the blue dotted line in

Figure 3A indicates that for IL-23 concentration of 0.25 ng/ml,

IL-17 provides a 120 pg/ml readout, while 10 ng/ml of IL-23

produces ,180 pg/ml of IL-17. Therefore, variability in the IL-23

concentration within the physiological range is likely to cause

significantly a different IL-17 production profile. The dotted green

and red lines in Figure 3A indicate how the background

concentration of IL-23 in the experimental medium can lead to

either ‘‘upregulation’’ (Figure 3B) or ‘‘downregulation’’ effects in

IL-17 production in disease even in the absence of any changes in

bone marrow derived macrophage cytokine production properties

(Figure 3C). This example illustrates that cytokine production

profiles in immune cell populations cannot define the disease

unambiguously and may lead to misinterpretation of cytokine

production differences in control and disease samples (Figure 3).

It is essential to note that the overall cytokine production

dependence in tissue combines both the cytokine production by a

specific cell population as well as other cytokine-dependent effects,

such as proliferation and apoptosis. Regulation through prolifer-

ation and apoptosis changes the number of cells in skin and

therefore also modulates the dose-response profiles. For example,

Figure 3D (adopted from [42]), shows the proliferation-apoptosis

cycle of a T cell population with increasing IL-2 concentrations.

Larger T cell pools produce greater amounts of cytokines and

chemokines, therefore the total amount of cytokine production is

by the cell numbers in Il-2 dependent manner.

Definition of the homeostatic cytokine concentration
Cytokine production in a cell population is complemented by a

number of mechanisms that counterbalance cytokine production

in tissues. Extracellular concentrations of cytokines are affected by

diffusion, cleavage by metalloproteases and cytokine binding

followed by uptake. The dose-dependence of cytokine B on

cytokine A concentration represents a dose-dependent curve of

homeostatic balance. It is mediated by immune cell populations

and balanced by the cytokine removal mechanisms described

above. According to the dose-response curve, any given extracel-

lular concentration of cytokine A in tissue translates to a specific

extracellular concentration of cytokine B, under conditions of

equilibrium. However, it is also possible that additional cytokine A

or B production by other cell populations can also occur in tissue,

resulting in cytokine A and B concentrations that do not fit the line

of homeostatic equilibrium for the immune cell population

considered (Figure 4A). After such perturbation, the immune

system returns to homeostasis, defined as the dose-dependent line

of cytokine B production in a cytokine A-dependent manner and

A Systems Model for Skin Inflammation
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modulated by the cytokine removal mechanisms. As shown in

Figure 4A, there is an infinite number of homeostatic cytokine A

and B concentrations that the system can adopt as it returns to

equilibrium.

Owing to the infinite combination of cytokine A and B

concentrations in homeostasis mentioned above (Figure 4A), at

least two interdependent cell populations need to be considered to

establish the conditions required for a specific homeostatic

equilibrium. One immune cell population produces cytokine B

in a cytokine A-dependent manner as previously described

(Figure 4B) and the other cell population produces cytokine A in

a cytokine B dose-dependent manner, where the cytokine B is

chosen to have an inhibitory effect to the second cell population

(Figure 4C). Both dose-dependent cytokine production curves

represent the lines of homeostatic equilibrium for two ‘‘opposite’’

cell populations. The intersection of the two dose-dependent

cytokine production profiles represents the point of synergistic

balance, where both cell populations reach a homeostatic

equilibrium. Such mutual dependence of cytokine concentration

via the immune cell populations creates the classical problem of

two interdependent variables that has been extensively studied in

life sciences, but insufficiently recognized in immunology to-date.

Such system-level effects can be associated with the presence of

numerous interdependent cytokine pairs, whereby the interde-

pendence can arise from either direct cell-to-cell interactions or

larger number of interacting cell populations. Therefore, under-

standing of the immune cell interactions is enhanced by studying

the experimental data through a quantitative description of

cytokine production by cell populations in a cytokine-dependent

manner.

Physiologically relevant consideration of two cell populations

jointly (Figure 4D), suggests that the intersection of the dose-

dependent curves occurs at a specific point, as shown in Figure 4E.

This intersection defines the cytokine A and B concentrations

unambiguously, as this is the only point where both cell

populations reach homeostasis in equilibrium. Therefore, homeo-

static cytokine concentrations can be defined as the extracellular

cytokine concentrations where the immune system remains in

equilibrium in the absence of normal or pathologic inflammatory

response. From a systems perspective, the inflammatory response

can be defined as the system response to the temporally perturbed

shift from equilibrium with the ensuing return to homeostasis.

Cytokine homeostasis in the absence of inflammatory
pathology

In order to model the performance of the immune system under

normal homeostatic conditions, we analyzed dynamic system

responses shown in Figure 5. The phase diagram (Figure 5A)

depicts two overlapping cytokine dose-response curves for two cell

populations (red, blue curves) intersect at one point (violet circle).

Figure 3. The dose-dependent production of IL-17 cytokine as a function of extracellular IL-23 concentration. Cytokine production
rates by immune cell populations are measured at physiological, but often random background cytokine concentrations. This example illustrates that
arbitrary choice of the background cytokine cocktail conditions (in this case IL-23) may lead to different IL-17 production results. A. IL-17 production
by bone-derived marrow fibroblasts depends on IL-23 concentration, both important pro-inflammatory cytokines (concentration profiles adopted
from [38]). Three random choices of background IL-23 concentration within the physiological range are indicated by dotted lines together with the
relevant IL-17 concentrations. The possibility of conflicting IL-17 roles in disease is demonstrated by a comparison of higher (B) and lower (C) IL-17
production rates in the same cell population which is not attributed to either statistically significant SNPs in IL-17 or IL-23 genes or statistically
significant alteration of cytokine expression levels. Instead, randomly chosen concentrations of physiologically important cytokines result in such
dramatically different conclusions for the roles of pro- or anti-inflammatory cytokines. D. The graph adopted from [42] shows the T-cell proliferation
rate as a function of the IL-2 concentration. This example suggests that the dose-dependent cytokine production by an immune cell population in
skin can be due to the intrinsic cytokine-dependent properties of immune cells, but it is also modulated by dependence on proliferative and
apoptotic phenomena on external cytokine concentrations in a dose-dependent manner.
doi:10.1371/journal.pcbi.1001024.g003
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The dotted lines represent predicted homeostatic concentrations

for cytokines A and B. The red and blue dose-response curves are

defined as null clines or lines of equilibrium. Vector fields are also

shown to represent the cytokine concentration dynamics at the

non-equilibrium levels (Figure 5A).

It is noted that the cytokine dose-dependent relationships shown

on Figure 4 are schematic and intended for illustrative purposes

only, while Figure 5 describes the predictions of the mathematical

model. According to the model, the dependence of cytokine A on

cytokine B concentration (blue curve) represents a classical dose-

Figure 4. Dose-dependent cytokine production defines the homeostatic cytokine concentration. A. Cytokine B production by a cell
population as a function of cytokine A concentration defines a continuous line of ‘‘homeostasis’’ for a given immune cell population, where for each
concentration of cytokine A corresponds concentration of cytokine B produced by the specified cells. However, other immune cells in the tissue can
also produce either or both cytokines A and B so that the combination of the A and B cytokine concentrations in tissue is no longer on the
‘‘homeostasis’’ line. Under normal conditions, the system has to return to a point of homeostasis on the ‘‘homeostatic’’ line. The point of homeostasis
can be unambiguously defined by the superimposition of two interacting cell populations: one population produces cytokine B and has receptors to
cytokine A (B) and another produces cytokine B in cytokine A-dependent manner (C). Simultaneous consideration of two interdependent cell
populations (D) with the superimposition of the cytokine-cytokine dose-dependent curves (E) shows that the point of crossing is the only point
where the homeostasis is achieved both ‘‘opposite’’ cell populations.
doi:10.1371/journal.pcbi.1001024.g004

Figure 5. Systems model predictions for immune sub-system response containing two interdependent immune cell populations. A.
Phase diagram shows simulated lines (red and blue) of homeostasis for two cell populations. The intersection of the cytokine dose-dependent curves
defines the stable steady-state solution that represents the homeostatic concentrations for cytokines A and B as indicated by the violet dotted lines.
The green lines describe the trajectories of A and B cytokine alterations from any non-homeostatic combinations of A and B concentrations.
Arrowheads indicate the directions of the cytokine concentration alterations towards the homeostatic point of equilibrium from any nonequilibrium
combination of cytokine concentrations, as predicted by the systems model. B. When an immune system in homeostasis is exposed to external or
internal temporal cytokine application, it responds by generating a cytokine impulse. The response of interdependent cell population to small
external perturbation can be introduced by other immune cells. The green lines show the trajectories of cytokine concentration divergence from
homeostasis in response to small and transient external cytokine A impulses. Trajectories 1 and 3 occur in response to smallest and largest cytokine A
applications, respectively. C. The largest external perturbation leading to trajectory 3 on (B). D. The immune sub-system cytokine A and B spikes,
generated in response to the external cytokine A spike on (C). The comparison of the impulse applied and the response generated shows clearly that
a relatively small application of cytokine A can generate an impulse nearly two orders of magnitude larger compare to the applied spike. Such model
prediction suggests that (i) an immune system can amplify inflammatory signals and (ii) even a healthy system can experience a significant, but
transitory, elevation of cytokine concentrations above homeostatic levels.
doi:10.1371/journal.pcbi.1001024.g005

A Systems Model for Skin Inflammation

PLoS Computational Biology | www.ploscompbiol.org 8 December 2010 | Volume 6 | Issue 12 | e1001024



dependent activation of one cytokine by another, while the reverse

dependence of the cytokine B production as a function of cytokine

A concentration (red line) reveals a significant nonlinearity.

Mechanistically, such dependence can occur when the model

parameters are set such that the cytokine production is nonlinearly

related to the cytokine concentration-dependent uptake (please

refer to the Materials and Methods section for the detailed

description of the model and the underlying parameter values). At

the same time, the highly nonlinear relationship between cytokine

A and B concentrations (red curve) corresponds to the experi-

mentally observed IL-17 production as a function of IL-23

concentration (Figure 3A) in bone-derived marrow fibroblasts

[38]. The dose-dependent curve of IL-17 production as a function

of IL-23 (Figure 3A) is ‘‘rotated’’ by 90u and superimposed on the

dose-dependent curve for IL-23 production as a function of IL-17

concentration (Figure 5). While we believe that the proposed

framework of immune cell interactions analysis is generic and

applicable to various pairs of immune cell populations or pairs of

cytokines, we note that cytokines IL-17 and IL-23 are good

candidates to showcase the systems model presented in this

manuscript.

The quantitative representation of immune cell interactions

offers a number of mechanistic insights into the immune system

responses, specifically in the activation dynamics in response to

external application of cytokine A, applied at the state of

homeostatic equilibrium (Figure 5B). Three cytokine dynamic

profiles annotated as 1, 2 and 3 show the interconnected cell

population responses to the temporal application of external

cytokine A in increasing amplitude. In all three cases, both

cytokine concentrations increase temporally and converge back

into the same point of homeostasis. External perturbations of the

highest amplitude that induced response 3 on Figure 5B applied to

the system of two interacting cell populations are shown on

Figure 5C. The temporal cytokine A and B dynamics in response

to the small and temporal external perturbation by other immune

cell populations (Figure 5C) or infection is presented on Figure 5D.

This graph is a temporal projection of trajectory 3 from Figure 5B

and clearly illustrates that a small external perturbation applied for

a small duration induces cytokine A and B impulses of significantly

higher amplitude and somewhat longer duration. The cytokine

concentrations released into the extracellular space dramatically

diminish in concentration as cytokine diffuses in all possible

directions. Our model predicts that a normal immune system is

very sensitive and capable of amplifying very small cytokine

impulses followed by a return to the original level of homeostasis.

Additional steady-state levels of homeostasis causes
inflammatory disease

Inflammation-mediated skin conditions are characterized by

chronically high cytokine concentrations maintained over extend-

ed periods of time. We employed our mathematical model to

explore potential factors that can turn normal immune system

responses into pathology.

To explore the ability of the model to predict pathologic

immune responses, we varied parameter values (Table 1) of the

governing equations in the model without changing the structure

of equations used, to ensure that we simulate the same cell

populations that could originally produce a normal immune

response. The alteration of model parameter values reflects the

influence of internal and environmental factors to the immune cell

populations.

Figure 6A shows the nullclines that represent the dose-

dependent cytokine production rates for two interacting cell

populations. Since the underlying equations have not been

modified and parameters have only been altered in a minor

fashion, the shapes of the dose-dependent cytokine production

profiles are similar to the ones predicted for a healthy immune

system, shown on Figure 5A. However, slight modifications in the

Table 1. Parameter values employed in the systems model for the immune cell interactions.

Parameter Value Figure N0_ Dynamic properties of the immune system

a1 0:251 Figure 5 Stable Homeostasis

a1 0:236 Figure 6 Trigger switch

a1 0:2295 Figure 7, 8, 9 Oscillations

a2 0:34 Figure 5 Stable Homeostasis

a2 0:3 Figure 6 Trigger switch

a2 0:29 Figure 7, 8, 9 Oscillations

a3 0:12 Figure 5 Stable Homeostasis

a3 0:07 Figure 6 Trigger switch

a3 0:12 Figure 7, 8, 9 Oscillations

a4 0:03 Figure 5 Stable Homeostasis

a4 0:03 Figure 6 Trigger switch

a4 0:057 Figure 7, 8, 9 Oscillations

d 0:5

D 0:005

ck 0:25 Figure 5 Stable Homeostasis

ck 0:05 Figure 6 Trigger switch

ck 0:05 Figure 7, 8, 9 Oscillations

MP 0:024

kMP 0:6

doi:10.1371/journal.pcbi.1001024.t001
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Figure 6. The systems model predicts the cytokine trigger dynamics. Internal or external factors can change the cytokine production profiles
and thereby modify the immune cell interaction parameters via feedback loops. A. The nullcline diagram shows the possibility for two interacting
immune cell populations to have multiple levels homeostasis as indicated by the intersections of the red and blue cytokine dose-response curves.
The two filled circles represent stable solutions, whereas the hollow circle indicates the unstable solution. The green lines describe how the system
converges into the stable homeostatic from any non-homeostatic combination of cytokine concentrations. B. The mathematical model predicts that
an immune sub-system can switch between the states of stable low and high cytokine concentrations. The trajectory 1 shows the transition from the
lower to higher homeostatic points in response to the external cytokine A impulse, whereas the transition from the higher to the lower homeostatic
point occurs after the application of the external cytokine B as indicated by the trajectory 2. The time course of cytokine alterations during the
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immune cell interaction parameters (that can be caused by genetic

polymorphisms, environmental factors or a combination of the

two) cause the nullclines to intersect at three different points

(marked by violet circles and annotated as H1-H3): two

intersections occur in the area of the low cytokine concentrations,

and the third is observed at the region of significantly higher

cytokine concentrations. Numerical simulations reveal that only

two of the three solutions are stable (H1 and H3, shown as filled

violet circles on Figure 6A), whereas the intermediate one is

unstable (H2 indicated as a hollow violet circle). This suggests that

two interacting immune cell populations can create more than one

homeostatic level of cytokine concentration in extracellular space.

The described result implies that even minor alterations in

cytokine production profiles (presumably initiated by a combina-

tion of genetic polymorphisms and environmental factors) can lead

to pathological inflammation resulting from modification of

feedback loop parameters. The model predicts that causative

SNPs that contribute to the alteration of feedback loops via small

modifications of cytokine profiles do not need to be identical across

all disease phenotypes. The model relates SNPs to pathologic

levels of cytokine concentration in tissue and predicts that both

statistically significant and insignificant genetic polymorphisms

from different immune cell populations can lead to the appearance

of additional pathologic cytokine levels and describes how. This

offers an explanation of why only some areas of skin can be

inflamed in psoriasis while others exhibit symptomless phenotype,

while all cells across the whole body carry the same genetic

polymorphisms. The systems analysis indicates that genetic

polymorphisms can operate in combination with external

conditions and either lead to inflammation, or exhibit symptomless

phenotype depending on the environmental stimulus. However,

one can argue that feedback loop modifications between immune

cell populations originates from genetic variants, which do not

need to be the same in all disease states and can lead to the

emergence of pathology with or without environmental factors.

The directed green lines on Figure 6A represent the vector field

and show the dynamic cytokine trajectories that converge into one

of the stable homeostatic solutions from any combination of

cytokine concentrations. In this case, interacting cell populations

can maintain two distinct homeostatic cytokine levels, one in the

area with low and with high cytokine concentrations. The systems

model predicts that under a certain combination of parameters,

interacting cell populations are capable of operating as a switch

that can shift between two distinct homeostatic levels of cytokine

concentrations. The appearance of additional stable homeostatic

solutions suggests that the immune system can remain in a state of

elevated cytokine concentrations for a significant period of time.

The existence of two stable solutions creates a different scenario

than in the case where interactions between immune cells had only

one single stable homeostatic solution. More specifically, in

healthy immune system temporal elevation of cytokine concen-

trations are always followed by an imminent return to homeostatic

concentrations. In this pathologic scenario, the alterations of

cytokine concentrations can cause the immune system to return to

either of two stable homeostatic levels; the state of low cytokine

concentration or the pathologic one of high cytokine concentra-

tions, where the immune system can remain for a significant

duration. The possibility to switch between two stable cytokine

concentration levels provides the trigger-like properties to the

system of at least two immune cell populations.

Next, we analyzed the dynamics of cytokine alterations at the

transition between the two stable homeostatic levels. Figure 6B

shows the variations of cytokine as the system switches from the

homeostatic point of low cytokine concentrations (H1) to the

homeostasis point with high cytokine concentration (point H3,

green trajectory 1) and back (green trajectory 2). Under the

assumptions underlying the present model, the transition from H1

to H3 occurs upon external impulse of cytokine A (Figure 6C). The

cytokine A and B alteration dynamics during the transition from

H1 to H3 is shown on Figure 6D. The model predicts that the

transition from H3 to H1 can be induced by application of

external cytokine B (Figure 6E). The transition from chronically

high cytokine concentrations to the low level is shown schemat-

ically on Figure 6F. The model predicts that cytokine B is capable

of generating a significant spike before shifting to H1. The model

predictions address the fundamental question of how lesional and

perilesional skin phenotypes can simultaneously coexist in

inflammatory condition affected patients. The trigger-like cytokine

behavior emerging from the interactions between the cell

populations can keep the skin either in the inflamed condition

causing a lesion, or remain at the lower cytokine concentration

steady-state level observed in perilesional skin samples.

The loss of homeostatic stability induces a different
disease phenotype

Psoriasis is characterized by a variety of clinical phenotypes.

After establishing the mechanism of chronic inflammation in the

form of additional stable homeostatic level as described previously,

we employed the systems model for immune cell interactions to

elucidate whether it can uncover the causes of variety of clinical

phenotypes observed in clinical practice. Similarly to the previous

case, we tested combinations of parameters within physiological

limits without changing the structure of the governing equations.

Under certain combination of parameters (Table 1), a stable

solution H3 (Figure 6A) can become unstable (Figure 7A), and

form a limit cycle that represents simultaneous oscillatory

alterations of both cytokines. Stable oscillations of cytokine

concentrations cause unbalanced proliferation and differentiation

of keratinocytes, the main cell type constituting dermis and

epidermis, and are thus pathologic for skin. At the same time, the

oscillatory type of pathology is different from the cytokine-trigger

mode described in the previous section. Trigger-like inflammation

causes clearly defined areas of lesion, whereas oscillations are more

likely to cause a phenotype with gradual transition between

inflamed and non-inflamed areas of skin.

Variation of cytokine oscillation-driven pathology is shown on

Figure 7B. The chosen combination of model parameters allows

only one unstable solution H3 with the limit cycle in the area of

high cytokine concentrations. The absence of stable homeostatic

solutions leads to the most severe disease phenotypes, which are

least susceptible to potential treatment.

In order to analyze the dynamic properties of immune cell

interactions in relation to the type of pathology (Figure 7A) when

cells either maintain the stable homeostasis or experience stable

oscillations, we studied how the system responds to the

applications of external cytokine concentrations. The present

model predicts that the external cytokine A application can either

switch the system from the homeostasis H1 to oscillatory mode

around unstable solution H3 (trajectory 1 on Figure 7C) or

generate an impulse and the system returns to homeostasis H1

transition from the low to high concentration states in response to the external cytokine A impulse (C) is shown on (D). The cytokine concentration
dynamics during the switch from the higher to the lower homeostasis states in response to the external impulse of cytokine B (E) is shown on (F).
doi:10.1371/journal.pcbi.1001024.g006
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(trajectory 2 on Figure 7C) as in the case of healthy immune

reaction. The difference between healthy and pathologic responses

is due to the amplitude of applied external perturbation of cytokine

A (Figure 8). Small impulses shift the system out of homeostasis H1

into the oscillatory mode. The spike of higher amplitude leads to

generation of a sizable response, before returning to homeostasis

level H1. Our model predicts that small perturbations of either

cytokine A or cytokine B is sufficient returning the system from

oscillatory mode to the normal level of homeostasis (Figure 7D and

Figure 9).

Discussion

We propose a new systems biology model that captures crucial

properties of immune cell interactions and predicts the conditions

under which normal and pathological inflammatory responses are

elicited. The model integrates individual characteristics of immune

cell populations and allows the definition of homeostasis as specific

cytokine concentrations estimated by the intersection of the

immune cell population cytokine dose-response curves. The model

predictions provide novel insights into the mechanism of elevated

levels of inflammatory cytokines in disease [2,15,43]. While it is

well known that (i) genetic variants change the susceptibility to

disease [44] and (ii) the same disease phenotype can be elicited by

different types of inflammation [15], the relationship between

genetic variants and pathologic inflammation remains unclear.

The present study reports a generic framework to explain why and

how small alterations to cytokine production profiles (arising from

genetic variants which can be different across cases and not always

statistically significant) leads to the modification of feedback loop

interactions between immune cells and the appearance of

pathologic inflammatory levels.

This study suggests that cytokine concentrations can deviate

from homeostatic levels even in the absence of any pathology, as

long as such deviations are temporal and always return to

homeostatic level in equilibrium. Normal immune response

Figure 7. Oscillatory cytokine concentration dynamics. Internal or external factors can alter the cytokine production profiles and thereby
modify the immune cell interaction parameters via feedback loops. Such modification can lead not only to the shift or appearance of new levels of
homeostasis, but also to the loss of homeostatic stability with the appearance of limit cycles. A. The nullcline diagram shows the multiple
homeostasis solutions as indicated by the intersections of the red and blue cytokine dose-response curves. The filled circle represents a stable
solution, whereas the hollow circles demonstrate unstable solutions. One of the unstable solutions forms a limit cycle which represents the possibility
for cytokine concentrations to oscillate. The green lines show how the system converges either into the stable homeostatic point or stable
oscillations from any other combination of non-homeostatic cytokine concentrations. B. The nullcline diagram describes the case of one unstable
solution that forms a limit cycle. C. External perturbations of variable amplitude can shift the system from the stable low cytokine concentration state
into the mode of stable oscillations in the higher concentration range, as indicated by trajectory 1. Interestingly, higher amplitude perturbations,
applied externally, cause the interdependent cell populations generate large spikes and followed by return to the homeostasis point bypassing the
oscillatory mode (trajectory 2). D. An external impulse of small magnitude applied during the oscillatory regime is able to return the system into the
basal level of homeostasis.
doi:10.1371/journal.pcbi.1001024.g007
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initiates temporal increase of key cytokines concentrations for a

time span sufficient to execute the effector system and eliminate

the cause of inflammatory reaction. Pathology occurs if the

inflammatory response is not temporal and cytokine concentra-

tions fail to return to the original levels. According to the model

predictions, homeostatic cytokine concentrations can only be

estimated from the interactions of interdependent cell populations.

Homeostasis is therefore a systems effect and occurs at the crossing

of the dose-dependent cytokine productions curves from at least

two immune cell populations (Figures 4D and 4E). The analysis of

model properties allows unravelling of mechanisms that cause

stable chronic inflammation. According to the model, normal

immune system can be described as a system with one stable

homeostatic level defined by the cytokine feedback loop

parameters of immune cell interactions. External perturbations

applied to the healthy immune system induce a temporal cytokine

concentration increase, followed by a return to the stable

homeostasis (Figure 5).

Alterations in the feedback loop parameters [18–23,45] can turn

the immune system pathologic by inducing bistable behavior with

discrete steady-states or loss of stability in homeostasis. The

present study follows earlier modeling analyses of different types of

inflammation [28–29,32,42,46–53]. Similarly to previous studies,

the framework reported here predicts that inflammatory response

is a highly dynamic process that can be represented mathemat-

ically by incorporating experimentally derived feedback loop

interactions between immune cell interactions. The presented

model proposes new generic principles that can distinguish healthy

and pathologic inflammation. Moreover, it offers a rational

foundation to establish the relationship between causative genetic

variants, alterations in the cytokine production profiles and

modifications in the feedback loop interactions between immune

cells, ultimately leading to the appearance of inflammatory

pathology. The model also possesses a predictive capacity to

distinguish between different types of inflammation that can arise

from the same immune system. Overall, the application of systems

modeling theory to simulate the immune cell regulation effects in

psoriasis through altered properties of feedback loops can outline

the key factors that distinguish normal immune system response

from pathology.

The quantitative model for immune cell interactions in this

study offers a mechanistic distinction between healthy inflamma-

tory reaction and pathological inflammation. Internal and

environmental factors can alter cellular interactions in the form

of modified cytokine production curves. In order to investigate

how such alterations can translate into various pathologies, the

derived model was subjected to exhaustive evaluation of the

underlying parameters of cytokine production and degradation

rates without any modifications in the model structure. Such an

assumption reflects the physiological situation where the interact-

ing immune cell population pairs remain the same, but the

parameters of the interactions can vary due to genetic mutations.

Figure 8. Temporal evolution of cytokine concentrations in response to applied perturbation. Variable magnitude impulses of cytokine
A (A) and (D) applied to the interacting cell populations can shift the cells from the basal homeostasis point into the mode of stable oscillations (B)
and (C) or generate a large spike and return into the homeostasis (E) and (F). The larger perturbation (D) causes the immune cell population system to
generate a single impulse instead of undergoing stable oscillations. In both cases the magnitude of the perturbation is significantly smaller compare
to the response generated by the interacting immune cells.
doi:10.1371/journal.pcbi.1001024.g008
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The model predicts that the autoimmune mediated pathology

occurs in those cases where the modified feedback interactions

between immune cells lead to the appearance of additional levels

of homeostasis (Figure 6). As a result, the immune system can start

operating as a cytokine trigger and maintains either low or high

cytokine concentrations levels. A different type of pathology can

occur when the alterations of the cytokine-mediated feedback

interactions between immune cells lead to the loss of stability of the

homeostatic level. Variability in the interactions between immune

cell populations can result in the appearance of oscillations

(Figures 7, 8 and 9). The model therefore predicts that the same

immune cell populations are not capable of mediating a normal

immune reaction or operate as a biological trigger, instead, the

immune system undergoes periodic temporal alterations. Stable

oscillations of cytokine levels are also pathologic. The oscillations-

based type of pathology is different from the trigger-type immune

system pathology.

The healthy homeostatic and pathologic model predictions have

been obtained through exhaustive screening of possible parameter

values. The summary of representative sets of parameters chosen

approximately in the middle range of the corresponding dynamic

behavior is found in Table 1. While the listed parameter values

may not be the only possible combinations of healthy and

pathologic immune cell interactions for the described scenarios,

they cover all possible types of dynamic behavior that the present

model can achieve. One can choose different combinations of

constants for the model so that it would oscillate or operate as a

trigger, however there are no possible combinations of parameters

where three or more stable homeostatic levels can exist, as it has

been shown for example in multisite phosphorylation systems [54].

The combinations of parameter values are closely related to the

model application on actual cytokines and, as noted earlier, two

potential candidates for the proposed model are IL-17 and IL-23.

Other cytokines that have been shown to be essential in skin

inflammation include IL-22, oncostatin M, TNF-a, IL-1a [55], IL-

6, IL-12, interferon-a and interferon-c [15]. The difficulty of

analyzing real cytokines rather than the immune cell interactions

via hypothetical cytokines can be attributed to the fact that the

majority of experimental investigations report static comparisons

between experimental groups without considering either dose-

dependent curves or dynamic information. While such compar-

isons are important, this model suggests that they may be

insufficient for deeper understanding of mechanisms in inflamma-

tion. Further experimental investigations directed toward the dose-

dependent cytokine production profiles would be required for

estimation of the model parameters. It is essential to note that

parameter values will be different in individual immune cell

population pairs in a given tissue and that pathologic parameter

alterations will depend on the combination of the causative genetic

mutations found in specific cytokines.

Figure 10 summarizes the model-based description of normal

and pathologic immune system performance in human skin.

Under normal conditions, cytokine production mediated interac-

tions between immune cells lead to one stable homeostatic level in

tissue (Figure 10A). Combinations of the internal and external

factors can change the interactions between immune cells, in such

Figure 9. Model predictions for the transition from the oscillatory regime into the homeostatic level. Small external impulses of
cytokines A (A) and cytokine B (D) applied for a temporal period of time can switch the immune system from generating stable oscillations back into
the level of homeostasis. The dynamics of cytokine concentrations during the transition from the oscillatory mode back into homeostasis after the
cytokine A and cytokine B perturbations are shown on (B–C) and (E–F), respectively.
doi:10.1371/journal.pcbi.1001024.g009
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a way that additional stable or unstable homeostasis levels appear.

Chronically increased cytokine concentrations are more likely to

be observed in clearly defined inflamed lesions (Figure 10B). In

those cases, the immune system is able to switch and remain at the

elevated cytokine concentration state. Oscillating cytokine con-

centrations are likely to cause a different inflammation phenotype

with diffused borders between inflamed and non-inflamed regions

(Figure 10C). The model predicts that the immune system’s ability

to mediate either normal or pathologic inflammatory responses is

a systemic effect which emerges from the imbalance of immune

cell interactions, rather than an attributed feature of a favorite cell

population or a genetic polymorphism.

According to the proposed model, pathology occurs as a

result of one or a combination of SNPs in cytokine or any other

genes with the net effect of altered type of homeostatic level via

the modification of parameters in the feedback loop interactions

between immune cells. The description of the homeostatic

mechanism from the systems perspective explains why SNPs in

some cytokines (e.g. in IL-22), can have very low statistical

association with psoriasis, but can contribute to pathology in a

number of cases (Figure 2). The proposed mechanistic

description of inflammation suggests that different combinations

of SNPs (some or all of which can have very low association with

the disease) can cause similar cytokine production curve

alterations.

The proposed quantitative model for immune system explains

how normal and pathologic inflammatory immune reactions can

be mediated by the same immune cell populations. Current

research in immuno-genetics mainly focuses on the search of

polymorphisms highlighting candidate genes responsible for

pathological inflammation. This work proposes that the altered

feedback loop parameters (potentially arising from genetic

polymorphisms) in the interactions between immune cell popula-

tions participate in the maintenance of inflamed lesions. The

system model predictions for the possible coexistence of multiple

homeostatic levels explains how inflammatory disease affected

individuals can simultaneously have both non-inflamed and

inflamed areas of skin while carrying the same genotype with

disease-associated SNPs. The proposed approach, therefore, offers

a mechanistic explanation for why ‘‘causative’’ SNPs mediate

inflammatory lesions at some regions of skin while they do not do

so at others.

Figure 10. Systems biology description of inflammation in human skin. (A) Under normal conditions the homeostasis (defined by the dose-
dependent cytokine production curve intersection) is reached at one steady-state point at low cytokine concentration levels. Combinations of SNPs
and modified cytokine expression levels observed in disease can cause more than one stable (B) or unstable (C) homeostasis. In case of additional
stable cytokine level (B), the interacting immune cell populations represent a trigger that can switch and remain in the state of either low or high
cytokine concentration levels. When the combination of genetic alterations causes an additional homeostasis point which is unstable with a limit
cycle, the cytokine levels can oscillate both locally and spatiotemporally. In such case, the inflammatory cytokines are more likely to be distributed
more unevenly across the site of inflammation causing a skin inflammation phenotype of heterogeneous nature (C).
doi:10.1371/journal.pcbi.1001024.g010
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Therapeutic applications of systems model for immune
cell interactions

The systems model described in this work is relatively generic

and applicable to analysis of a range of inflammatory conditions.

The mathematical model allows the prediction of mechanisms in

inflammatory disease and the formulation of requirements for

therapeutic interventions. The model-guided screening of thera-

peutic agents can be performed on the bases of eliminating the

second possible level of stable or unstable homeostasis or lowering

existing cytokine concentrations.

The model describes different pathology phenotypes which are

due to the appearance of additional stable or unstable levels of

homeostasis, the loss of stability of the basal level of homeostasis or

due to the shift of homeostasis to the levels of higher cytokine

concentrations. The last case is probably the most frequent and

‘‘simple’’ scenario of inflammatory pathology that occurs when the

cytokine production curves intersect at higher cytokine concen-

tration levels. For example, different homeostatic concentrations of

a cytokine A shown on Figure 11A occur as a result of altered

cytokine production profiles by immune cell populations. Accord-

ing to the proposed methodology, the search for pharmaceutical

interventions can be based on identifications of direct or indirect

way to restore the original dose-response profile of immune cell

population. The interdependence between cytokines via an

immune cell population can be utilized by indirect target

identification strategies for novel interventions, by using already

available therapeutic agents. One possibility is the injections of a

cytokine B know to reduce the levels of a different cytokine A

(Figure 11B).

The proposed mathematical approach offers new exciting

therapeutic opportunities for various inflammatory conditions.

One interesting example where the ideas proposed in this study

have already been utilized in a similar fashion is the type II

diabetes. There are two ways of estimating insulin resistance in

Figure 11. Therapeutic applications of systems model for immune cell interactions. The systems model for cytokine-mediated immune
cell population interactions offers new strategies for development of pharmaceutical interventions. A. The altered cytokine production profiles lead
to the modification of feedback parameters between immune cell populations. Modified feedback changes the level of steady-state homeostatic for
individual cytokines. The lower and higher homeostatic concentrations for the cytokine A, indicated by violet and green circles, take place for two
dose-dependent cytokine profiles from normal and pathologic immune cell populations. In this case, potential therapeutic strategies may focus on
identification such compounds that will rescue the original cytokine production profile. B. The interdependence of cytokines via cell populations
suggests new strategies for indirect therapeutic interventions by cytokine injections. In this example, injections of cytokine B are likely to decrease
the levels of cytokine A. C. The graph, adopted from [26], is an example of the computational homeostatic model that model determines the steady-
state basal plasma glucose and insulin concentrations by their interaction in a feedback loop. Comparison of a patient’s fasting values with the
model’s predictions allows a quantitative assessment of the contributions of insulin resistance and deficient b-cell function in type II diabetes. D. In
analogy with the homeostatic model assessment in type II diabetes [26] (C), the proposed model for immune cell interactions contains predictive
potential for quantitative determination of inflammation-related pathologies.
doi:10.1371/journal.pcbi.1001024.g011
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diabetes: the glucose clamp test [56] and the homeostasis model

assessment [26]. The homeostasis model assessment system seeks

values of resistance to the hypoglycemic effect of insulin and b-cell

function from the measures of plasma insulin versus glucose, in

comparison with a standard group of healthy young adults. The

homeostasis model assessment approach takes into the consider-

ation the interactions between glucose and insulin via the

specialized cell populations (Figure 11C) and thereby increases

diagnostic power in diabetes [26]. We propose that the model for

quantitative inflammation assessment will offer advanced diagnos-

tic tools for inflammatory conditions, as opposed to diagnostic

methods based on readouts of a single biomarker (Figure 11D).

The model suggests the necessary criterion for the properties of

required treatment. A large number of currently available

pharmaceutical agents offer a temporal relieve from the

inflammation induced symptoms. In the context of systems

representation of the disease, the drug action can be viewed as a

temporal switch from higher to lower cytokine concentration

steady state (Figure 12A). Any physiological alterations are likely to

switch the system back into the level of pathological inflammation.

The major criterion for the new treatments would require them to

eliminate the second pathologic steady-state level (Figure 12B).

Systems model suggests new avenues for data
interpretation

Systems modeling of inflammatory responses initiated by

interdependent immune cell populations can offer new avenues

for inflammatory disease-associated data interpretation. In a vast

number of cases, the comparison between cytokine production or

expression levels is performed statically, by calculating the medians

between readouts obtained from cases and controls (Figure 13A).

Such representation does not capture the regulatory alterations in

cytokine expression or production during either normal or

pathological events. As a result, there can be a significant variability

in the experimental readouts. However, if data are viewed from a

systems perspective, the possibility of dynamic alterations would

explain the observed variability in both cases (Figure 13B) and

controls (Figure 13C). The combination of the immune cell

interactions in the form of a dynamic model with the measured

cytokine production or expression levels in heath and disease can

offer more explanation for the experimentally observed data points.

Future perspective
One of the major difficulties in research of inflammatory

pathologies is the lack of unambiguous definition of disease. The

systems model suggests that inflammatory skin disease is unlikely to

be mediated by one gene or by a specific cell population. Instead,

local inflammation of the immune system in the skin arises from

systems-level effects emerging from the interactions between cell

populations via cytokines, chemokines and cell surface expressed

ligands. Interdependent cytokine production by cell populations

creates a network of immune cells with a number of emergent

properties such as integration of signals across the immune system,

generation of distinct outputs depending on combinations of

internal and external conditions. Of particular interest is the

immune system ability to form discreet steady-states and switch

between them. This study analyzes the effects arising from the

interaction of two cell populations only. While the mathematical

model covers the range of large number of possibilities, one needs to

acknowledge that more sophisticated effects can arise from larger

Figure 12. Systems interpretation of pharmacological agent effects on inflamed tissue. The majority of currently available
pharmacological agents allow temporal elimination of inflammatory symptoms. In the context of the proposed systems model, this effect can be
considered as a switch from the inflamed to perilesional steady-state (A). While such compounds or antibodies offer temporal relieve from
inflammatory symptoms, they do not represent effective means of cure. The new pharmacological agents can be developed and selected on the
action that leads to the disappearance of the additional inflammatory level (B).
doi:10.1371/journal.pcbi.1001024.g012
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number of interacting cell populations via cytokines. Current study

does not include a specific dose-dependent or time course data for

cytokine dynamics. While inflammation-associated pathologies are

likely to develop according the described principles, a specific subset

of cytokines and immune cell populations is needed to be identified

for each specific inflammatory condition.

Materials and Methods

Genome-wide association study analysis
The high quality genotypes for 438,670 markers of the 1359

psoriasis cases and 1400 controls from the genome-wide

association scan performed by the Collaborative Association

Study of Psoriasis [17], were used for association analysis. The

dataset used for the analyses described in this manuscript were

obtained from the database of Genotypes and Phenotypes (dbGaP)

found at http://www.ncbi.nlm.nih.gov/gap through dbGaP

accession number phs000019.v1.p1. Single marker case – control

association analysis was performed by executing the –assoc option

of the PLINK package (v1.06) developed by Shaun Purcell

(http://pngu.mgh.harvard.edu/purcell/plink/) [57]. This option

calculates the statistical significance as measured in odd ratios, P or

x2 values of the minor allele frequency differences between

psoriatic cases and healthy controls.

Inflammatory cytokine significance evaluation in the
whole genome-wide context

Genome-wide association of each SNP is showed in a

Manhattan plot as the 2log10 (P) dependence on the genomic

location using the coordinates of the NCBI Build 36.1 (March

2006). The association of the SNPs located within the 2 Mbp

window centered at the selected inflammatory cytokines is shown

in color for individual cytokines (Figure 2C).

Integrative systems biology model for immune cell
interactions

Figure 4 provides a schematic framework of the two interacting

cell populations. We investigate the interactions between immune

cell population and the interaction-dependent properties of the

immune system in homeostasis through a mathematical model that

captures the extracellular cytokine concentrations. All possibilities

of immune cell interactions are cdescribed in Supplementary Text

S1. Given that cytokine production by immune cell populations

can be represented as a function of another cytokine in a dose-

dependent manner, inflammation can be defined quantitatively by

considering cytokines as interdependent variables, where the

specific inter-dependence of cytokines can be established exper-

imentally through studying immune cell populations. The

interdependence of cytokines A and B can be represented by a

system of coupled ordinary differential equations:

d Cytokine Að Þ
dt

~f1 Cytokine A,Cytokine Bð Þ,

d Cytokine Bð Þ
dt

~f2 Cytokine A,Cytokine Bð Þ:
ð1Þ

The same principle can be applied to larger numbers of cytokines

and chemokines produced by immune cell populations:

d Cytokine A1ð Þ
dt

~f1 Cytokine A1,Cytokine A2,:::Cytokine Anð Þ,

d Cytokine A2ð Þ
dt

~f2 Cytokine A1,Cytokine A2,:::,Cytokine Anð Þ,

:

d Cytokine Anð Þ
dt

~fn Cytokine A1,Cytokine A2,:::,Cytokine Anð Þ,

ð2Þ

where n is the total number of considered cytokines.

In order to elucidate what distinguishes normal and patholog-

ical immune system performance, two cytokines interconnected

via dose-dependent effects of corresponding cell populations are

considered. Effects that occur in the multidimensional space of cell

interactions via cytokines can be projected to two dimensions and

we show below that alterations in an immune sub-system with two

interacting cell immune cell populations have the potential to

describe several different inflammatory phenotypes. We develop a

systems model for cytokine, chemokine and surface ligand-

mediated immune cell interactions that can unravel the mecha-

nism of inflammation and provide mechanistic explanation for the

inflammation in human skin. The model contains two cell

populations interconnected via activatory and inhibitory cytokine

production. The dose-dependent cytokine production is comple-

mented by cytokine removal via diffusion, cleavage by metallo-

proteases and trapping mechanisms.

In the most general case, the speed of cytokine concentration C

dynamics in tissue can be represented as follows:

V :
dC

dt
~S:N1

:vp{SE
:N2

:vE{SC
:pC

: C{Cb
� �

{V :
vMP

max
:C

KMPzC
zI0,

ð3Þ

where C is the cytokine concentration, V is an elementary tissue

volume, S is a surface area of a cell that produces a cytokine, N1 is

the number of cells that produce a cytokine in volume V , vp is the

rate of cytokine production
Mol

sec :sm2

� �
, nE is the rate of cytokine

uptake via endocytosis,
Mol

sec :sm2

� �
, SE is a surface area of cells

that express the cytokine receptor, N2 is the number of cells

capable of endocytosis of the cytokine receptor in volume V , SC is

the capillary surface area in the volume V, pC is the capillary

permeability to the cytokine,
sm

sec

� �
, Cb is the cytokine

concentration in blood, vMP
max~kMP

: MP½ � is the maximum

cytokine degradation rate by proteases
Mol

l: sec

� �
, MP½ � is the

concentration of proteases, kMP is the rate constant sec{1
� �

, I0 is

the basal cytokine secretion rate by an immune cell population

Mol

sec

� �
. KMP is the Michaelis constant.

Figure 13. The dynamics dimension for the data interpretation. A. The comparison of cytokine production levels between may not provide
statistically significant differences between health and pathology. More importantly, the widely used approach does not offer insights into the
mechanism of the observed differences. B. The representation of an immune system as a system of interdependent cells interconnected by the cytokine
production and degradation mechanisms provides new possibilities of data interpretation. Experimentally observed readout variability can be
interpreted as time course points during an immune response. C. The time course perspective shows the possibility of oscillatory cytokine dynamics.
doi:10.1371/journal.pcbi.1001024.g013

ð2Þ
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In order to develop the mathematical model capturing the

interactions in immune cells via cytokines we defined a number of

following immune cell subpopulation groups according to the

classification shown on Figure 4: i) cells produce cytokine B in a

dose-dependent manner from cytokine A (Figure 4B), ii) the

production of cytokine A is inhibited by a cytokine B (Figure 4C).

One can also consider a variety of other cases of the bell-shape or

reverse bell-shape dependence on cytokine concentration or even

more complex cases. We analyze the cytokine system properties

under the framework of outlined assumptions and any specific

cytokine-dependent cytokine production profiles can be developed

as an extension of the model described below.

The rate of cytokine A production by a cell population when it

interacts with another population that produces inhibitory

cytokine B is given by:

vA~aA
: CA

KAzCA

: KB

KBzCB

ð4Þ

where aA is a normalization coefficient, CA is the cytokine A

concentration, KA is the dissociation constant for the cytokine A

interaction with the cytokine A receptor, CB is the cytokine B

concentration, KB is the dissociation constant for the cytokine B

interaction with the cytokine B receptor.

The rate of the cytokine B production by a cell population when

it interacts with another population that produces activatory

cytokine A is given by:

vB~aB
: CB

KBzCB

: CA

KAzCA

, ð5Þ

where aB (sec{1) is a normalization coefficient.

Cytokine production by a given cell populations can be

modulated by several activatory or inhibitory cytokines. In this

general case the cytokine production is given by:

v~a:P
i,j

Ci
A

Ki
AzCi

A

: K
j
B

K
j
BzC

j
B

: ð6Þ

where a is a normalization coefficient, i and j are the numbers of

activatory and inhibitory cytokines, respectively. Ci
A is the

concentration of the ith activatory cytokine and C
j
B is the

concentration of the jth inhibitory cytokine. Ki
A is the dissociation

constant for the cytokine Ai interaction with the cytokine Ai

receptor. K
j
B is the dissociation constant for the cytokine Bj

interaction with the cytokine Bj receptor.

Cytokine production is complemented by mechanisms of

cytokine elimination. Various routes of cytokine removal from

extracellular space include cleavage by metalloproteases, diffusion,

cytokine trapping, binding to the cytokine receptor and uptake.

Cytokine removal by diffusion and cleavage by metalloproteases

are nonspecific and do not play an active role in the regulation of

the extracellular cytokine concentrations, whereas the cytokine

binding to the receptor followed by either release or uptake can

have significant implications on the cytokine concentration

dynamics. Thus, we next develop governing equations for the

cytokine-cytokine receptor interactions.

Cytokine binding to the receptor initiates intracellular signaling

events. Under the conditions of dynamic equilibrium, in the

absence of endocytosis, the number of cytokines bound to the

soluble receptors would equal to the number of cytokines released.

However, due to the cytokine-cytokine receptor complexes uptake

certain amount of cytokine is internalized via endocytosis

mechanism and degraded. The cytokine uptake decreases

the cytokine concentration in the extracellular space in the

cytokine concentration-dependent manner. The rate of cytokine

uptake
Mol

sm2

� �
by a cell population is proportional to the number

of receptors bound to the cytokine, multiplied by the total number

of receptors on the cumulative cell surface:

vE~aE
:SE

:R
Cell :CA

KAzCA

: ð7Þ

where aE (sec{1) is a normalization coefficient, CA is the

concentration of cytokine A, KA is the dissociation constant for

the cytokine A interaction with the cytokine A receptor. SE is the

cell surface area, RCell is the number of receptors expressed on a

cell surface.

The total number of receptors can be divided into two fractions:

receptors that are present on the surface and the subpopulation in

the vesicles after the uptake event took place. In steady-state, the

rate of receptor synthesis equals to the rate of receptor degradation

by proteosomes; these rates are not considered in the present

analysis. The conservation law applied to the two receptor

populations at any given time point is given by:

RinzRCell~R0: ð8Þ

where R0 is the total number of receptors to a specific cytokine C,

RCell is the number of receptors on the cell surface, Rin is the

number of internalized receptors.

The dynamics of the receptors present on the cell surface is

given by:

dRCell

dt
~{b1

:RCell : C

KzC
{b2

:RCell : K

KzC
zb3

:Rin: ð9Þ

where b1 and b2 are the coefficients that describe the rate of

cytokine bound and cytokine free receptor internalization,

respectively. b3 reflects the rate of receptor recovery from

proteosomes, K is the dissociation constant for the cytokine C

interaction with the cytokine C receptor, RCell is the number of

receptors on the cell surface, Rin is the number of internalized

receptors.

In the steady-state, the number of receptors on the cell surface

as a function of extracellular cytokine concentration is given by:

RCell~
R0

b1

b3

: C

KzC
z

b2

b3

: K

KzC
z1

: ð10Þ

The combination of equations (10) and (7) allows obtaining the

rate of cytokine uptake as a function of cytokine concentration:

vE~aE
:SE

: R0
:C

b1

b3

: C

KzC
z

b2

b3

: K

KzC
z1

� �
: KzCð Þ

: ð11Þ

The full model for the immune cell interactions is given by:
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V :
dCA

dt
~SA

:Na1
:aA

: KB

KBzCB

: CA

KAzCA

{SAE
:NA2

:aE
: RA0

:CA

b1

b3

: CA

KAzCA

z
b2

b3

: KA

KAzCA

z1

� �
: KAzCAð Þ

{SC
:pAC

: CA{Cb
A

� �
{V :

vMP
max

:CA

KMPzCA

zIA,

V :
dCB

dt
~SB

:NB1
:aB

: CB

KBzCB

: CA

KAzCA

{SBE
:NB2

:aE
: RB0

:CB

b1

b3

: CB

KBzCB

z
b2

b3

: KB

KBzCB

z1

� �
: KBzCBð Þ

{SC
:pBC

: CB{Cb
B

� �
{V :

vMP
max

:CB

KMPzCB

zIB:

ð12Þ

Relationship between parameters in original and
normalized model equations

The relationship between the parameters in the normalized

system of differential equations with the original description for the

cytokine production and uptake rates is thus given by:

cA~
CA

KA

, cB~
CB

KA

, ck^
Cb

A

KA

, ck^
Cb

B

KA

,

KB

KA

&1, d~
b2

b1
,

b:3

b1
&1,

a1~
aA
:SA

:NA1

aE
:V :KA

, a2~
SAE

:NA2
:RA0

V :KA

,

D~
SC
:pC

V :aE

, MP~
vMP

max

KA
:aE

,

a3~
aB
:SB

:NB1

aE
:V :KA

, a4~
SBE

:NB2
:RB0

V :KA

,

iA(t)~
IA

V :KA
:aE

, iB(t)~
IB

V :KB
:aE

MP~
KMP

KA

, t~KA
:t

The final system of differential equations for two interacting cell

populations which was solved numerically to generate all the

results presented in the paper is thus given by:

dcA

dt
~a1

: cA

1zcA

: 1

1zcB

{a2
: cA

1zcAð Þ: 1z
cA

1zcA

zd:
1

1zcA

� �

{D: cA{ckð Þ{MP:
cA

kMPzcA

ziA(t),

dcB

dt
~a3

: cA

1zcA

: cB

1zcB

{a4
: cB

1zcBð Þ: 1z
cB

1zcB

zd:
1

1zcB

� �

{D: cB{ckð Þ{MP:
cB

kMPzcB

ziB(t)

ð13Þ

All parameter values used in the above equations are given in

Table 1.

Supporting Information

Text S1 General principles of cytokine-dependent immune cell

population interactions.

Found at: doi:10.1371/journal.pcbi.1001024.s001 (1.09 MB PDF)
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