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Abstract

Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host
chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each
subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite
extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of
integration, little is known about how integration sites are selected. We attempted to identify markers predictive of
retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to
derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14
retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed
with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from
ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected
differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration
within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-
oncogene LMO?2 identical to experimentally determined values. The supermarker thus identifies chromosomal features
highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected,
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and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.
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Introduction

Retroviruses and retrotransposons are of profound importance
to cukaryotic biology, evolution, and medicine. These retro-
elements constitute at least 40% of the mass of mammalian
genomes [1] and 75% of the maize genome [2]. When
retroelements are transcribed they remodel eukaryotic genomes
by generating a cDNA and integrating it into locations scattered
throughout the host cell genome [3,4]. By doing so, retroelements
have the potential to influence local gene expression or to promote
recombination and generate deletion mutations [5-7]. In some
cases they act in frans to catalyze retrotransposition of cellular
RNAs, generating pseudogenes or new exons within existing genes
[8,9]. Since retrotransposon enhancer elements influence local
gene expression, and retrotransposon silencing can vary from cell
to cell, it has been proposed that retrotransposons contribute to the
phenotypic variation that distinguishes genetically identical
individuals [10]. Additionally, it has been suggested that
programmed release from retroelement silencing accompanies
metazoan development and leads to hypermutation in complex
somatic tissues like the brain [11,12].

Among retroelements, retroviruses have received much atten-
tion, in part due to their association with human disease. Basic
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studies concerning retroviral replication have greatly advanced
understanding of the biochemistry of retrotransposition [4,13]. A
tetramer of the viral integrase protein (IN) [14] cleaves the ends of
the viral ¢DNA to produce recessed 3'OH and free CA
dinucleotides at the terminus of each long terminal repeat (LTR)
[15]. IN catalyzes nucleophilic attack of host chromosomal DNA
by the two free 3'-OH viral DNA ends, resulting in covalent
attachment of the retroviral DNA strands to the host DNA [16—
18]. The remaining free ends of the viral DNA are then repaired
by host enzymes [19-21].

Study of HIV-1, the retrovirus that causes AIDS, has led to the
development of drugs that block retrotransposition and alter
progression to AIDS [22,23]. Attempts to develop better therapies
for HIV-1 would benefit from a deeper understanding of the
integration mechanism. Gene therapy vectors based on another
retrovirus, MLV, dramatically rescued children from a life-
threatening illness, but a large percentage of the patients suffered
from insertional activation of proto-oncogenes [24-28]. This lethal
complication further emphasizes the need to better understand
retroviral integration site selection in host chromosomal DNA.

Retroviruses establish proviruses at sites throughout the host cell
genome, but integration is not random. Some regions are favored
hundreds of times over others [29,30]. For some retroviruses,
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Author Summary

When HIV-1, murine leukemia virus (MLV), or other
retroviruses infect a cell, the virus generates a DNA copy
of the viral RNA genome and ligates the cDNA within host
chromosomal DNA. This integration reaction occurs at sites
throughout the host cell genome, but little is known about
how integration sites are selected. We attempted to
identify markers predictive of retroviral integration by
comparing the genome-wide binding sites for more than
60 factors with 14 retroviral integration datasets. We
borrowed Precision-Recall methods from the Information
Retrieval field for extracting information from highly
skewed datasets such as these. For MLV and other
gammaretroviruses, strong association was observed with
STATI1, acetylation of H3 and H4 at several positions, and
methylation of H2AZ, H3K4, and K9. We generated a
supermarker by combining high scoring markers. The
supermarker localized within 2 kB of 75% of MLV
proviruses and predicted the likelihood of integration
within specific chromosomal regions in a cell-type specific
manner. This study identified chromosomal features highly
favored for retroviral integration. It also provides clues to
the mechanism by which retrovirus integration sites are
selected, and offers a tool for predicting cell-type specific
proto-oncogene activation by retroviruses.

transcribed regions are preferred [31,32], though high-level,
concurrent transcription at a given target gene inhibits integration
[33]. Nucleosome-bearing DNA is targeted more efficiently than
free DNA wm witro [34-37] perhaps because the integration
machinery preferentially targets bent DNA [38]. Indeed, high-
throughput sequencing experiments analyzing over 40,000 HIV-1
integration sites in cells show periodic distribution on predicted
nucleosome positions, consistent with favored integration into
outward-facing DNA major grooves in chromatin [39].

The retrotransposition mechanism, and integration site selec-
tion on a genomic scale, differs considerably from one class of
retrovirus to another. HIV-1 infects non-dividing cells [40,41] and
integrates preferentially into transcriptionally active genes, all
along the length of the gene [32,42,43]. In contrast, MLV
integration requires mitosis [41,44] and has a tendency to localize
near promoters, 20% of the time within 2 kB of transcriptional
start sites [31,42]. Retroviral capsid (CA) is sufficient to determine
whether a given virus infects non-dividing cells [45,46] but both
CA and IN contribute to integration site selection: an HIV-1
vector in which IN-coding sequences and a fragment of gag
encompassing CA were replaced by the homologous MLV
sequences exhibits the retrotransposition behavior of MLV [43].

Of the many host factors reported to interact with retroviral CA
or IN [47-52], the lentiviral IN-interacting protein PSIP1/
LEDGF/p75 [53-55] is the most informative regarding integra-
tion site selection. LEDGF promotes the infectivity of HIV-1 and
related lentiviruses and influences integration site selection [56—
59] perhaps by acting as a physical tether directing integration to
the chromosomal sites this protein naturally occupies. In support
of this model, fusion of heterogeneous chromatin binding domains
to the part of LEDGTF that binds IN redirected the site of HIV-1
integration [60-62]. The mechanism by which gammaretroviruses
such as MLV preferentially target promoter regions is unknown.

We attempted to identify chromatin features predictive of
retroviral integration site selection by exploiting ChIPSeq datasets.
Compared to previous methods, this technology has brought
profiles of human DNA binding factors and histone epigenetic
modifications closer to genome-wide saturation [63-68]. Over 60
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ChIPSeq datasets were compared with 14 retroviral integration
data sets in order to develop tools for predicting viral integration
sites throughout the genome with maximal predictive power.

Results

Development of methods for detection and display of
associations between retroviral integration sites and
chromatin features

To identify markers predictive of retroviral integration site
selection, stringent associations were sought between ChIPSeq
profiles for more than 60 chromatin-associated factors (Table 1)
[63-69] and 14 retroviral integration site datasets (Table 2)
[31,43,70-77]. Following a common convention in the retrovirus
integration literature [78], association with a given marker was
defined as integration within 2 kB (wi2kB) of the nearest marker
on the linear sequence of the chromosome.

The proviruses in the datasets used here (Table 2) were cloned
from host genomic DNA using restriction enzymes, each of which
has the potential to introduce a bias [79]. Therefore, as described
in the literature [42,43,78,80], each integration site was matched
to ten control sites designed to exhibit the same bias as the
experimental set: control sites were placed the equivalent distance
from randomly chosen recognition sites of the restriction enzyme
that was used to clone the provirus (see Methods). No distortion of
the results by the control datasets was evident, in that identical
values for provirus association with a given chromatin feature were
obtained using 10 different randomly-generated control datasets.

Integration datasets are generally compared with control
datasets using Fisher’s exact test and reported as the p-value
[42,43,77,80]. Since significance determination is dependent upon
dataset size, these measures can be easily conflated, generating

Table 1. ChIPSeq datasets from human cells used in this
paper.
Cell type ChIP Target Reference
Hela STAT1 [63]
h3k4m1 [63]
h3k4m3 [63]
w4 T ®Histone methylations [64]
cD4*' T PHistone acetylations [69]
Hela POLR2 [66]
Hela CTCF [67]
D4+ T CBP [65]
MOF [65]
P300 [65]
TIP60 [65]
PCAF [65]
HDAC1 [65]
HDAC2 [65]
HDAC3 [65]
HDAC6 [65]
Hela h3k9ac [65]
h3k16ac [65]
225 different ChIPSeq profiles have been reported in this paper.
P18 different ChIPSeq profiles have been reported in this paper.
doi:10.1371/journal.pcbi.1001008.t001
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Table 2. Retrovirus integration datasets in human target cells
used in this paper.

Retrovirus Target cell Reference
MLV Hela 311

MLV Hela [43]

MLV CD4+ T [71]

MLV CD34+ hemato. [74]
HIVMINMGAG Hela [43]
HIVmIN Hela [43]
HIVMGAG HelLa [43]

HIV Hela [43]

HIV CD4+ T [75]

PERV HEK293 [77]

XMRV DU145 [76]

HTLV Hela 73]

ASLV Hela [70]

FV CD34+ hemato. [72]
doi:10.1371/journal.pcbi.1001008.t002

extraordinarily low p-values and making it difficult to compare the
mmportance of two factors [78]. Receiver operating characteristic
area methods (ROC) have also been used to identify associations
[78,80,81], but these methods also have drawbacks when it comes
to discriminating between markers for retroviral integration. With
the datasets used in these studies, the number of true negatives
(control sites not associated with the marker) is considerably higher
than the number of false positives (control sites associated with the
marker). Given that the false positive rate = false positives / [false
positives+true negatives|, two markers which differ by as much as
10-fold in terms of the number of false positives will fail to be
differentiated from one another using ROC [82].

To address the problems associated with the analysis of these
highly skewed data sets, we borrowed the concepts of Precision
and Recall from the field of Information Retrieval [82-84]. In the
context of this discussion, Precision is defined as the number of
experimentally-determined integration sites associated with a
marker divided by the sum of all associated experimental and all
associated control sites (see Methods). Recall is the number of
marker-associated experimental integration sites divided by all
experimental integration sites. The Fg score, a convenient way to
aggregate Precision and Recall, is the weighted harmonic mean of
the two measures [85]. Usual values for f are 0.5, 1 or 2 [86]. To
limit the influence of true negatives in the analysis of these skewed
datasets, we emphasized Precision over Recall by setting f=0.5.
The F score tracks better with statistical significance when f=0.5,
than 1 or 2 (see the comparison of results using different values for
B, as well as with other metrics, described below, as well as Text
S1). Moreover we normalized the number of false positives with
respect to the number of experimental integration sites so as to
make the F score independent of control sample size. For the
analysis here, markers with F scores between 0.5 and 1 were
considered to be associated with integration sites.

To wvisualize genome-wide association of proviruses with
potential markers, chromosome projection mandalas were devel-
oped (Figure 1A, see Methods). Each dot on the mandala
represents a retroviral integration site with the following polar
coordinates: angular distance corresponds to genomic location on
the indicated chromosome; radial distance from the contour of the
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circle is the distance in nucleotides from the nearest site of the
marker in question, log-scaled from 0 to 1 megabase.

Association of retroviral integration sites with ChIPSeq
datasets

Currently, the best chromosomal marker for retroviral integra-
tion site selection is the association of CpG islands and
transcription start sites (CpG+TSS) with gammaretroviruses
[31,43,71]. By examining published datasets for MLV, 21 to
27% of integration sites fall within 2 kB (wi2kB) of CpG+TSS,
with probabilities <3x10™%* to <4x10~** (Table 3). Despite
these extremely low p-values, I scores calculated for these datasets
fall between 0.36 to 0.51 (Table 3 and Figure 1E), indicating that
CpG+TSS is not a powerful predictor of MLV integration sites.
Stronger association with CpG+TSS was observed with porcine
endogenous retrovirus, PERV (50% wi2kB; p<107250; F score
0.72), and xenotropic MuLV-related virus, XMRV (33% wi2kB;
p<10"*%; F score 0.58), two viruses from the same gammare-
trovirus family as MLV (Table 3 and Figure 2). No significant
association with CpG/TSS was observed for proviruses generated
by non-gammaretroviruses, including HIV-1, for which the F
score was 0.11 (Table 3, Figure 3), or with ASLV, HTLV, or
Foamy virus (Table 3, Figure S1).

ChIPSeq datasets for 60 chromatin-associated factors (Table 1)
were compared with 14 provirus datasets for MLV, PERV,
XMRYV, HIV-1, HTLV-1, ASLV, Foamy virus, and HIV/MLV
chimeras (Table 2). Acetylation of H3 and H4 at several positions,
and methylation of H2AZ, H3K4, and K9, were strongly
associated with gammaretroviral integration sites, all with F
scores >0.80 (Figures 1 and 2, Table 3 and Tables S1 and S2).
H3K4me3 in particular was strongly associated with MLV
integration sites (68% wi2kB; p<<10™***; F score 0.83) and with
the integration sites of PERV (60% wi2kB; p<10~*% F score
0.82) and XMRYV (64% wi2kB; p<<10~'7% F score 0.81) (Figures 1
and 2, Table 3). The effect of window size on the I score was
examined for factors strongly associated with MLV and the other
gammaretroviruses. Interestingly, the I score was maximal when it
was calculated using a window of +/—2 kB for proviruses flanking
the sites of these chromatin features (Figure 4).

In contrast to the gammaretroviruses, HIV-1 integration sites
were not associated with H3K4me3 (9% wi2kB; p>0.05; I score
0.21)(Figure 3 and Table 3). Among the markers for which
ChIPSeq datasets were available from HeLa cells, H3K4mel had
the strongest association with HIV-1 proviruses (48% wi2kB;
p<<107%'; F score 0.6), though H3K4me] was the sole chromatin
marker that yielded I score values greater than 0.5 across all
queried viruses (Table 3, Table S3). H3K4me3, and other
chromatin modifications linked to transcriptionally active promot-
ers [64,87-89], were reported to be associated with HIV
proviruses when a window of 50 kB flanking the proviruses was
considered [81,90]. This could be explained by the fact that HIV-
1 proviruses localize to active transcription units with equal
distribution along the length of the genes [32,42,43], and that the
size of the average transcription unit is on the order of tens of
kilobases.

To examine this further, the F score for HIV-1 versus
H3K4me3 in HeLa cells was plotted as a function of window
size (Figure 5). For comparison, a similar plot was generated for a
hypothetical marker at the TSS of transcribed genes in Hela cells,
taking into account the length of these genes, and considering a
uniform distribution of proviruses on each gene. For both
H3K4me3 and the hypothetical TSS marker, the F score
plateaued at a window size of 20 kB, the median gene length.
Thus if the window size is large enough to encompass the TSS and

November 2010 | Volume 6 | Issue 11 | e1001008



Retrovirus Integration Site Selection

= Marker

O Integration site

e Integration site >2kB
e Integration site wi2kB

mapped
chromosome

OT]
z -
o-L

Control vs H3K4me3

0.84; 63% 0.12; 7%
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Figure 1. Visualization of association between retroviral integration sites and chromosomal markers. (A) Construction of chromosome
projection mandalas to visualize the proximity of individual proviruses to the nearest marker on the chromosome. The linear sequence of each
human chromosome was linked and circularized. Proviral integration sites were located on the circle according to their position on each chromosome
(empty circles) and then a marker (filled circles) was placed towards the center of the circle, at a distance from the perimeter that was equal, in log
scale from 0 to 1 megabase, to the distance from the closest marker (empty boxes). Blue filled circles represent proviruses that were within 2kB from
the nearest marker; red circles represent proviruses that are >2kB from the nearest marker. Examples of chromosome projection mandala for (B) MLV
(Lewinski et al. 2006) versus H3K4me3, the arrow indicates the chromosomal mapping direction (C) Control versus H3K4me3 (D) MLV versus STAT1
and (E) MLV versus CpG+TSS. The number of MLV proviruses analyzed in this dataset (Lewinski et al. 2006) was 588. The F score and the percentage
of proviruses within 2 kB are presented under each mandala.

doi:10.1371/journal.pcbi.1001008.g001
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Table 3. Association of retroviral integration sites with some ChIPSeq profiles.

Retrovirus Integration Site Selection

Provirus Dataset

CpG+TSS

H3K4 me3

H3K4 me1l

MLV Hela [31]
MLV Hela [43]
MLV CD4+T [71]
HIV [43]

HIV mIN [43]
HIV mGAG [43]
HIV mINmMGAG [43]
PERV [77]
XMRV [76]
HTLV [73]

ASLV [70]

FV [72]

24%; 0.49; 6E-24
27%; 0.51; 4E-42
21%; 0.36; 3E-22
6%; 0.11; N.S.
14%; 0.29; N.S.
4%; 0.04; N.S.
21%; 0.43; 4E-14

50%; 0.72; <1E-350

33%; 0.58; 1E-46
8%; 0.21; N.S.
10%; 0.10; N.S.
11%; 0.27; 2E-5

63%; 0.84; <1E-350
68%; 0.83; 1E-249
65%; 0.82°% 1E-110
9%; 0.24; N.S.

27%; 0.50; 1E-14
11%; 0.30; N.S.
65%; 0.82; 1E-221
64%; 0.82; <1E-350
64%; 0.81; 8E-175
30%; 0.59; 1E-15
16%; 0.43; 1E-4
17%; 0.42; 1E-17

88%; 0.80; 1E-240
90%; 0.78; 1E-226
75%; 0.80°% 1E-90
48%; 0.60; 1E-31
49%; 0.51; 1E-11
43%; 0.56; 1E-11
89%; 0.79; 1E-150

79%; 0.78; <1E-350

83%; 0.76; 1E-144
62%; 0.70; 6E-26
39%; 0.56; 1E-4
39%; 0.56; 1E-22

STAT1 POL Il CTCF

63%; 0.83; 1E-310 46%; 0.70; 1E-198 5%; 0.26; N.S.
68%; 0.83; 4E-324 49%; 0.71; 2E-164 7%; 0.19; 4E-5
47%; 0.73; 2E-46 34%; 0.64; 2E-43 3%; 0.17; N.S.
8%; 0.27; N.S. 6%; 0.16; N.S. 2%; 0.06; N.S.
30%; 0.51; 1E-12 13%; 0.36; 2E-6 5%; 0.17; N.S.
8%; 0.11; N.S. 3%; 0.14; N.S. 1%,; 0.04; N.S.
64%; 0.81; 1E-183 33%; 0.67; 4E-101 4%; 0.16; N.S.

60%; 0.82; <1E-350

64%; 0.81; 9E-171

56%; 0.70; <1E-350

53%; 0.75; 1E-135

12%; 0.3; 3E-40
7%; 0.36; 2E-3

31%; 0.60; 4E-15 13%; 0.39; 1E-6 6%; 0.22; N.S
13%; 0.37; N.S. 6%; 0.13; N.S. 2%; 0.08; N.S.
17%; 0.44; 6E-17 9%; 0.28; 1E-14 4%; 0.17; N.S.

2ChIPSeq profiles from CD4+ T cells. All other ChIPSeq profiles from Hela cells.
doi:10.1371/journal.pcbi.1001008.t003

half of the gene length, the I score becomes significant. This could
explain the window-size dependence of HIV-1 association with
H3K4me3.

We also analyzed an integration site map for an HIV-1 vector in
which IN-encoding pol sequences and part of gag were replaced by
homologous sequences from MLV [45]. It was shown previously
that substitution of these two viral components from MLV is
sufficient to change the integration site preference of HIV-1, such
that it targets TSS with a frequency like MLV [43]. Replacement
with these MLV genes was sufficient for HIV-1 proviruses to
associate with methylated histones (65% wi2kB, p<10~'#2 F
score 0.82) in a manner that was indistinguishable from MLV
(Figure 3).

STAT1 association with gammaretroviruses

A remarkable association was found between MLV integration
sitess and STAT1 binding sites in IFN-y stimulated HeLa cells
(68% wi2kB; p<10~**; F score 0.83) (Figure 1 and 2, Table 3).
Strong association with STAT1 binding sites was also observed for
porcine endogenous retrovirus (60% wi2kB; p<10~*°%; F score
0.82) and XMRV (64% wi2kB; p<10~'7% F scorc 0.81).
Interestingly, if MLV was compared with STAT1 bindings sites
in HelLa cells that had not been treated with IFN-vy the association
was greatly decreased (34% wi2kb; p<<107'?", F score: 0.69).
HIV-1 proviruses showed no association with STAT1 (8% wi2kB;
p>0.4; I score 0.27). Substitution of HIV-1 IN and parts of gag
with the corresponding genes from MLV was sufficient for HIV-1
proviruses to associate with STAT1 binding sites (64% wi2kB,
p<<107'82 F score 0.81) (Figure 3, Table 3).

Attempts to detect a protein-protein interaction between
STAT1 and MLV IN were unsuccessful. STAT1-deficient cell
lines, cither Stat~/~ mouse embryonic fibroblasts [91], HeLa cells
with stable STAT1 knockdown using lentiviral vectors [92], or
well-characterized, STAT1 mutant, HT1080 cells [93], were
challenged with MLV and, as a control, HIV-1. No clear defect
associated with STATI1-deficiency was detected when MLV
infectivity was compared with HIV-1 (data not shown). These
results suggest that STATTI itself is not directly responsible for
MLYV integration site preference but that its chromatin preferences
resemble those of MLV.
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Values indicate percent of integration sites within 2 kB of the indicated factor; the Fqs score; and the significance (p-value). N.S. means p value>0.01.

The F score is robust and highly discriminating

The stability of the F score for H3K4me3, an excellent marker,
and for TSS/CpG, a poor marker, was examined as the size of a
dataset containing 588 MLV proviruses [43] was decreased. The
ratio of the size of the provirus dataset with respect to the control
dataset was fixed at ten. While the p-value varied enormously as
the size of the provirus dataset decreased, the I score was constant
for both H3K4me3 and TSS/CpG over the full range from 50 to
500 proviruses (Figure 6A). The size of the provirus dataset was
then fixed at 588 [43] and the F score was plotted versus the ratio
(from 0.1 to 10) of the experimental and control datasets. Under
these conditions the F score for either factor was constant except
for a small increase when the ratio of the experimental to control
datasets decreased below 0.3 (Figure 6B). The p-value for
H3K4me3 changed markedly with the change in ratio of the
datasets. Thus, while the p-value is strongly biased by the size of
the provirus dataset or by the ratio of experimental to control sites,
the F score is a remarkably stable measure. Similar stability was
observed for the F score of all markers as compared to all proviral
integration datasets (data not shown).

As demonstrated for the F score (Figure 6), the area under the
curve (AUC) ROC method used previously to evaluate markers
associated with retroviral integration sites [78,80,81] is a robust
measure that is insensitive to dataset size. Like the F score,
AUCGROC) also works well to assess markers that are weakly or
moderately associated with integration sites (Text S1). But, as
demonstrated for the highly associated marker H3K4me3,
AUCROC) does not respond to the increase in false positives
that is expected with increasing window size (Figure 7A).
Moreover, this insensitivity to false positives leads AUC(ROC) to
overestimate the association of markers that are more common in
the genome. Consequently, AUC ranks markers differently from
statistical significance, as shown in Figure 8 and discussed in more
detail in Text S1. In contrast, the p-value and the Fy5 score
incorporate an adjustment for the increase in false positives as
window size increases, and both measures achieve a maximal
value at a window size of 2 kB (Figure 7A). A standard regression
plot shows that the Fy5 score tracks with the p-value almost
perfectly (R?=0.97), whereas the AUC(ROC) diverges consider-
ably (R?=0.37) (Figure 7B). The F, 5 score and the p-value adjust
similarly for the increasing number of false positives.
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H3K4Me3

MLV
(Wu 2003)
N=962

Retrovirus Integration Site Selection

CpG+TSS

XMRV
(Kim 2008)
N=507

PERV
(Moalic 2009)
N=1976

0.82; 64%

0.82; 60% 0.72; 50%

Figure 2. Chromosome projection mandala and F score calculated within 2 kB for the indicated markers (columns) versus the
indicated proviruses (rows). The source of the provirus datasets is listed (see Table 2 and the text) and N indicates the number of proviruses
considered for each analysis. MLV [31] proviruses were cloned from Hela cells, XMRV proviruses from DU145, and PERV proviruses from HEK 293.
H3K4me3 and STAT1 ChIPSeq datasets were from Hela (see Table 1 and text). The F score and the percentage of proviruses within 2 kB are presented

under each mandala.
doi:10.1371/journal.pcbi.1001008.9002

Indeed among a set of measures that included Fy 5, I}, Fo, Area
Under Curve (AUC), Area Under Precision/Recall (AUPR), Odds
Ratio (OR), Shannon Mutual Information (SMI), and Difference
of Proportions (DOP), the F 5 score showed the strongest link with
statistical significance (see Methods). We analyzed one of the MLV
integration dataset in HeLa cells [43] (the same results were
obtained using the other Hela dataset [31]) and the MLV
integration dataset in CD4+ T cells [71]. The strength of
association of 9 significant markers (in terms of p-value) from
Hela cells, and 31 significant markers from CD4+ T cell, was
assessed. Markers were ranked according to each of the above
methods and the results of each were compared with the ranking
obtained using significance —log(p value). This was done by fixing
the matched control data set size at 10-times the experimental
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dataset size and using window sizes of 2, 5, 10, and 20 kilobases.
Results for the analysis are reported in Table 4 and in Text S1.

Several conclusions can be drawn from this analysis. Concern-
ing markers that were highly associated with proviruses, the
ranking yielded by the F 5 score closely tracked with significance
(Table 4). By increasing the weight of recall over precision by
increasing the beta value (F; or Fy) the F score tracked less well
with significance (it was the Fy 5 score that was used throughout
this manuscript). The SMI also tracked well, but, unlike the F
score, the results with this method vary with dataset size (see Text
S1). The AUC, OR, AUPR, and DOP were clearly not as good as
the F 5 score.

Concerning markers that are moderately or weakly associated
with proviruses (Text S1), the ranking based on the Fy 5 score was

November 2010 | Volume 6 | Issue 11 | e1001008
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Figure 3. Chromosome projection mandala and F score calculated within 2 kB for the indicated markers (columns) versus the
indicated proviruses (rows). All proviruses were cloned from Hela cells (Table 2 and text). H3K4me3 and STAT1 ChiIPSeq datasets were from Hela
cells (Table 1). N indicates the number of specific proviral integrations considered for each analysis. The F score and the percentage of proviruses

within 2 kB are presented under each mandala.
doi:10.1371/journal.pcbi.1001008.9003

similar to that obtained by significance, AUC, AUPR, OR, or
DOP (Table 4). SMI scored less well for these markers.

Figure 8 wvisualizes the deviation of AUC, AUPR or Fy; from
significance. Red squares indicate cases in which the ranking calculated

@ PLoS Computational Biology | www.ploscompbiol.org

by the specified metric differs from the rank obtained by significance.
All results indicate that, for the datasets evaluated here, the Fy 5 score is
a superior measure at discriminating among factors for differences in
magnitude of association with genomic sites of integration.
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Generation of a supermarker for retrovirus integration
Given the effectiveness of the I score for identifying and ranking
individual factors associated with retrovirus integration site
selection, markers with the best F scores were combined in an
attempt to generate a supermarker (see Methods for more details).

An estimate of the probability of proviral integration into the host
genome (P(V)) was derived based on the genomic distribution of
combinations of ChIPSeq peaks for the best scoring markers with
respect to particular experimental provirus datasets. The resulting
probability mass function (at base- pair resolution) is
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Figure 5. Association (F score) between HIV-1 proviruses and t

100

wo markers as a function of window size in kB. The first marker is

H3K4me3 sites in Hela (green solid line). The second is a virtual marker placed in the promoter region of transcribed genes in Hela cells (blue dashed

line), assuming a uniform distribution of integration sites in transcribed
doi:10.1371/journal.pcbi.1001008.g005
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regions. The median length of transcribed genes in Hela is ~20kB.

November 2010 | Volume 6 | Issue 11 | e1001008



Retrovirus Integration Site Selection

A 10 : : : : . -248
F score H3K4me3
0.8} 1200
F score CpG+TSS
O 0.6 ———— g 7 150 1
e 1 Lgee e e tieag o= e
S o)
O 0
0.4} 1100
-log(pyH3K4me3
0.2} 150
A0g(p) CPGHTSS i
0055100 150 200 250 300 350 400 450 500
Dataset size in kB
B 10 ; ; : : —1248
F score H3K4me3
0.8} 1200
7_F__§Lcore CpG+TSS
v 06 1150
| -
o)
I I e —— Q
o °
W 0.4} 1100
{50
011 021 031 051 11 1:2 1:3 1:5 1:10

Dataset size ratio

Figure 6. Stability of F score as function of dataset size. (A) Plot of the absolute value of the p-value exponent (right Y scale) or the F score

(left Y scale) for H3K4me3 or CpG+TSS, as a function of MLV provirus dataset

size. The experimental MLV dataset size (x-axis) was reduced by random

sampling and the ratio of control dataset points was fixed at 10. (B) Examination of the same parameters as a function of the ratio between
experimental and control dataset size (x-axis). The experimental dataset size was reduced by random sampling from 1:1 down to 0.1:1. From 1:1 up to

1:10 the control dataset size was proportionally increased by matched rand
doi:10.1371/journal.pcbi.1001008.9006

—(x— p)2

P(V)~ZK ’Ze 242

peF

(A)

where V is the set of proviral integration sites, Fj is the I score
associated with each marker M;, for the set of peaks I';. x is the
physical position on chromoeomal DNA and K is a normahzatlon
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om generation.

constant. From this composite distribution, the peaks with the
largest amplitude were identified, and the subset of peaks yielding
the maximal F score in the test dataset was defined as the
supermarker peak set.

Two strategies to validate the supermarker
procedure. First we calculated the supermarker and the relative
peak set on each single proviral dataset and then we evaluated the
association with the remaining datasets. The second strategy was a

were used

November 2010 | Volume 6 | Issue 11 | e1001008
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doi:10.1371/journal.pcbi.1001008.g007

standard 10-fold cross-validation applied to each single dataset.
The two evaluations yielded the same results (Table 5 and Table
S5). Further, we compared the strength of association of the
supermarker peak set for gammaretroviral datasets to the
performance of the Random Forest machine learning algorithm
[94]. The two methods obtained superimposable results (Table S6,
see Methods for details).

With respect to MLV integration in HeLa cells, H3K4mel,
H3K4me3, H3K9ac and STAT1 were the markers with the best F
scores (>0.80)(Table S1 and S2). Examination of the ChIPSeq
peaks derived from all combinations of these five candidates
revealed that the best supermarker was generated by combining
H3K4me3, H3K4mel, and H3K9ac (75% wi2kb; p<10~2**; F
score 0.87) (Figure 9 and Table 5). Figure 9A shows the
distribution of supermarker density and MLV integration sites

@ PLoS Computational Biology | www.ploscompbiol.org
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across the human genome, with an expansion of chromosome 1 to
help visualize detail in Figure 9B. The Pearson correlation for the
supermarker density and MLV integration site density across the
whole genome was 0.75 (p =0, with both functions averaged over
a non-overlapping 10 kB window). Figure 9C shows the
correlation for chromosome 1 in isolation. As with the single
marker H3K4me3, the supermarker yields a maximal I score
using a window size of 2 kB (Figure 4).

Inclusion of STAT1 in the HelLa supermarker increased the
number of false positives over the number of true positives and
thus decreased the composite I score. This suggests that any
information carried by STAT1 is contained within the other
markers.

Among the ChIPSeq data in CD4" T cells, the best individual

markers associated with MLV  were H3K4ml, H3K4m?2,
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Figure 8. Comparison of different methods for ranking markers associated with integration. Markers for MLV integration in HeLa cells (A)
or in CD4+ T cells (B) were ranked by Area Under Curve (AUC), Area Under Precision and Recall Curve (AUPR), or using the Fq s score. The rankings
obtained by these methods were compared with the ranking obtained by the Fisher's exact test: each crosslink between markers in the grid
represents a comparison. Red squares indicate when the ranking calculated by the specified metric disagrees with the ranking calculated by
significance. Markers were arranged in order of decreasing significance (from left to right).

doi:10.1371/journal.pcbi.1001008.g008

H3K4m3, H3K9ac, H2BKI120ac, H2BKbac, H3Kl8ac, A similar analysis was attempted with provirus datasets for the
H3K27ac, and H2AZ (all >0.80, Table S1 and S2). The best gammaretroviruses XMRV and PERV (Table 5). The XMRV
supermarker for MLV on CD4" T cells was composed of provirus data was obtained in the human prostate cancer cell line
H3K4ml1, H3K4m2, H3K4m3, and H3K9ac (71% wi2kb; DU145 [76] and ChiPSeq datasets are not available for these cells.
p< 107"2% F score 0.84). Despite the mismatched cell lines, when the XMRYV dataset from
DU145 cells was compared with the epigenetic markers mapped

The F score detects differences between cell types in Hella cells strong correlation was observed with the super-
The F scores reported here (Tables 3 and 4) were calculated marker (66% wi2kB; p<107'"; F score 0.83). When the
using ChIPSeq and provirus datasets that were matched for cell supermarker was derived from CD4" T cell data, the association
type. In a previous report, when AUC(ROC) was used to evaluate  with XMRV was much less significant (41% wi2kB; p<10~%; F
epigenetic marks mapped in T cells, the correlation with score 0.70). Similarly, the PERV provirus dataset cloned from
proviruses cloned from T cells was no greater than the correlation HEK 293 cells was better associated with the supermarker from

with proviruses cloned from other target cell types such as the Hela cells (66% wi2kB; p<<10~*°; F score 0.83) than from CD4+
human embryonic kidney cell line HEK 293 or the fibrosarcoma T cells (51% wi2kB; p<10~*°%; F score 0.75).
cell line HT1080 [90]. Differences due to experimental error were To understand why some mismatched cell comparisons gave
in fact greater than differences due to cell type [90]. higher F scores than others, CD4+ T cells, HeLa, DU145, Jurkat,
To determine if the F score has the ability to discriminate HEK 293, and CD34+ hematopoietic stem cells were clustered
between cell types, MLV provirus data sets from Hel.a and CD4" based on global gene expression profiles (http://www.ncbi.nlm.
T cells were compared with the supermarker for each of these cell nih.gov/geo). The resulting dendrogram (Figure S2) demonstrated
types, in all combinations. As mentioned above, when an MLV that the cells clustered into two groups, one consisting of Hel.a,
provirus dataset obtained from infection of HeLa cells [43] was DU146, and HEK 293 cells, and the other CD4+ T cells, Jurkat
compared with the supermarker from HeLa cell ChIPSeq data, cells, and CD34+ cells. Based on expression profiles DU145 cells
very strong association was observed (75% wi2kB; p<10~%*% F are more similar to HeLa cells than to CD4+ T cells, offering an
score 0.87) (Table 5 and Figure 10). When the same provirus explanation for the higher F score when XMRYV was compared
dataset was compared with the supermarker derived from CD4* T with HeLa.
cell ChIPSeq data the strength of the association was much
decreased (32% wi2kB; p<10~°"; F score 0.61) (Table 5 and . .
Figure 10). The same pattern was seen for the chimera Use of the supermarker to predict the likelihood of
HIVmINmGag, for which association with the supermarker in  integration at specific loci within specific cell types
HeLa cells (70% wi2kB; p<107%°%; F score 0.86)(Table 5 and As a first step towards examining the utility of the supermarker
Figure 10) was much greater than association with the super- in the context of published clinical or experimental data,
marker in CD4+ T cells (27% wi2kB; p<10~2* F score 0.56) supermarker density was examined in proto-oncogenes that have
(Table 5 and Figure 10). The opposite pattern was also seen in that been activated by retroviral insertion. 20 SCID-X1 patients were
MLV proviruses cloned from CD4+ T cells [71] were strongly successfully treated with autologous bone marrow CD34+

associated with the supermarker derived in these cells (71% wi2kB; hematopoietic stem cells transduced ex-vivo with an MLV vector
p<10"""%; F score 0.84) (Table 5 and Figure 10), and less well expressing the therapeutic gene IL2RG. 5 of these patients
associated with the supermarker from Hela cells (39% wi2kB; developed T cell leukemia and 4 possessed insertional mutations
p<<10~*% F score 0.67) (Table 5 and Figure 10). from the MLV vector at LMO2 [24-28], a T cell oncogene [95].

Table 4. Comparison of different methods for ranking markers of MLV integration.

Provirus Dataset Window Size AUC AUPR Fos F, F, OR SMI DOP

Hela [43] 2K 0.80 0.88 0.95 0.83 0.80 0.83 0.95 0.80
5K 0.73 0.91 0.95 0.73 0.70 0.75 0.95 0.68
10K 0.68 0.93 0.95 0.83 0.66 0.73 0.91 0.65
20k 0.68 0.78 1.00 0.83 0.60 0.60 1.00 0.59

CD4+T [71] 2K 0.88 0.91 0.96 0.87 0.85 0.81 0.95 0.84
5K 0.85 0.91 0.95 0.81 0.76 0.89 0.95 0.76
10K 0.82 0.89 0.95 0.81 0.74 0.92 0.95 0.72
20k 0.81 0.90 0.92 0.87 0.70 0.88 0.94 0.66

Similarity of the ranking of integration markers obtained by each metric with that yielded by Fisher’s statistical significance. The formula used to calculate the similarity
is in the methods. By this formula, 0 <D <1, and D=1 when the ranking perfectly matches that obtained by significance. AUC - Area Under the Curve, AUPR - Area
Under Precision and Recall curve, F - F score at $=0.5, 1, 2, OR - Odd Ratio, SMI - Shannon Mutual Information, DOP - Differences Of Proportions.
doi:10.1371/journal.pcbi.1001008.t004
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Table 5. Association of supermarker with gammaretroviruses.

Retrovirus Integration Site Selection

Matched® Unmatched
Retrovirus Fo.5 score p-value wi2kb(%) Fo.5 score p-value wi2kb(%)
MLV Hela [43] 0.87 3E-285 75 0.61 1E-57 32
MLV Hela [31] 0.85 <1E-350 70 0.60 1E-88 29
MLV CD4+T [71] 0.84 2E-113 71 0.67 1E-42 39
HIVMINMGAG [43] 0.86 4E-264 70 0.56 1E-24 27
XMRV [76] 0.83 1E-190 66 0.70 1E-85 41
PERV [77] 0.83 <1E-350 66 0.75 <1E-350 51

doi:10.1371/journal.pcbi.1001008.t005

The fifth patient had a provirus near CGND2, another lymphoid
oncogene [96] that encodes cyclin D2.

When ChIPSeq datasets from HeLa cells were used to generate
the supermarker, no high probability sites were identified near the
promoters of LMOZ2 or CCNDZ (Figure 11). For LMO2 the nearest
sites in HeLa cells were >150 kbp upstream and >200 kbp
downstream of the TSS. For CCND2 the nearest sites in Hela
were >800 kbp upstream and >50 kbp downstream of the TSS.

Sufficient ChIPSeq datasets to generate a supermarker were not
available for CD34" hematopoietic stem cells. Given the relative
similarity of the transcription profile (Figure S2) we used the
supermarker data generated from CD4" T cells. The F score when
crossing from CD34+ cells to CD4+ cells decreases from 0.85 to
0.78 (57% wi2kb, p<<10~'°%), but is much better than when using
HeLa cell data (38% wi2kB; p<10748 ; F score 0.66).

With respect to the LMO2 TSS a very prominent supermarker
peak was observed at —1730 bp (Figure 11A). Based on the
probability of the supermarker we estimate that 1 out of 10° MLV
proviruses would target this gene in CD34+ cells or CD4+ T cells,
as compared to a much less frequent 1 out of 10’ MLV proviruses
in HeLa cells. Nearly identical probabilities were calculated based
on experiments in which MLV proviruses were cloned from T cell
lines and HeLa cells [97]. These authors observed a hotspot for
MLYV integration located between —1740 to —3000 of the LMO2
promoter within CD4+ T cells but not within HeLa. Though
experimental data for calculating the probability of integration
into CCND?2 is not available, it is interesting that multiple, high-
probability supermarkers are located wi2kB of the promoter
(Figure 11B).

Discussion

Here we attempted to identify epigenetic markers predictive of
retroviral integration site selection. To this end, the growing body
of ChIP-Seq and retroviral integration datasets was exploited.
Borrowing from the field of information retrieval, we derived a
measure, the I score, that allowed us to identify and rank
candidate markers for association with proviruses. Covalent
modification of histone H3, most prominently H3K4mel,
H3K4me3, and H3K9ac, as well as binding sites for the
transcription factor STATI1, were tightly linked to proviruses
from MLV, XMRYV, and PERV. The F score also permitted us to
combine factors to generate a supermarker that predicted 75% of
integration sites with precision and with specificity for integration
site preference within a given cell type. The ChIPSeq datamining
approach used here identified markers for gammaretroviral

@ PLoS Computational Biology | www.ploscompbiol.org

13

“Matched means that the supermarker was calculated using proviruses cloned from the same cell type as the ChIPSeq dataset. In the case of XMRV and PERV, proviruses
were cloned from a cell type that is similar to the ChIPSeq dataset, according to the transcriptional profile (see text and Figure S2).

integration site selection that are superior to any markers
previously reported.

Advantages of the F score

Prior to this study, the best predictor for retroviral integration
site selection was the association of TSS/CpG with gammare-
troviruses such as MLV [31,43,71]. Given a window of 2 kB,
TSS/CpG predicts 21 to 27% of MLV integration sites. But even
this modest prediction comes with the cost of a high background
rate (low precision) and consequently a borderline I score (0.51
under the best conditions). In contrast, H3K4me3 predicts 63 to
68% of MLV integration sites with high precision (F score 0.84).
H3K4mel predicts 90% of MLV integration sites but, in isolation,
this marker has a higher background rate (I' score 0.78) due to the
larger size of the H3K4mel ChIPSeq dataset (300,000 binding
sites for H3K4mel versus 70,000 for H3K4me3).

Previous studies have reported the same histone modifications
as markers associated with integration sites [81,90]. The Precision-
Recall methods used here have been shown to be better suited
than ROC when negative results far exceed positive ones [82].
Precision-Recall methods have been shown to perform better than
ROC in a number of other areas in biology, including the
prediction of functional residues within proteins [98] or predicting
the function of genes [99]. In our case, the resolution offered by
the Precision-Recall-based I score allowed us to rank markers
according to statistical significance (Text S1). Then, by ranking
markers with respect to their I’ score, we were able to combine
them to generate a supermarker which predicts 75% of MLV
integration sites wi2kB with very high precision (F score 0.87). It
will certainly be important to find an explanation for the
remaining 25% of integration sites not accounted for by the
markers identified here.

Significance of the supermarker

The supermarker was used here to predict the probability of
gammaretroviral integration into a specific locus, in a cell-type
specific manner (Figure 11). Our @ silico probability estimates for
integration near a particular proto-oncogene, LMO2, were nearly
identical to the probabilities calculated from experimental data
[97], and even concurred with respect to the cell-type specificity of
the experimentally determined probability. Additional experimen-
tal confirmation of supermarker predictions is called for but the
case of LMO2 suggests that the supermarker is indeed the first
powerfully predictive tool for retroviral integration site selection. A
supermarker generated from cell-type-specific ChIPSeq data for a
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Figure 9. Visualization of association between retroviral integration sites and the chromosomal supermarker. (A) Chromosome
projection mandala showing MLV proviruses from Hela cells plotted as in Figure 1 and 2 with supermarker density (gray shading) from the 2 kB circle
to the contour of the circle. (B) Chromosome projection mandala for chromosome 1 in isolation. (C) Plot showing density of supermarker (red dashed
line) vs MLV proviruses (solid blue line) in Hela cells, calculated over a 10 kB sliding window on chromosome 1. Pearson correlation is 0.81 for

chromosome 1 and 0.75 for the whole genome.
doi:10.1371/journal.pcbi.1001008.g009

handful of markers has the potential to transform how decisions
are made concerning clinical gene-therapy trials.

The calculations here were based on distinct datasets from
multiple sources (Tables 1 and 2). It is possible that by generating
matched datasets, i.e., integration datasets and ChiPSeq datasets
from identical cells and by the same laboratory, or by combining
ChIPSeq data for new factors in new combinations, the ability of
the supermarker to predict integration sites will be improved even
further. On the other hand, STAT1, a powerful marker in
isolation, increased the false positive rate and decreased the F
score. In addition to the ChIPSeq datasets in Table 1, we checked
if the F score was improved by examining other previously
reported features, including GC content, AT content, putative
consensus sequences for integration or transcription factors
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[80,100]. When a window of 2kB was considered, these features
failed to yield a significant I' score (all were =0.5) for all of the
retroviral provirus datasets, and these factors considerably lessened

the I score when combined with the highly associated markers
(Table S7).

Mechanistic implications

The strength of the associations with H3K4me3, H3K4mel,
and H3K9ac indicates that gammaretroviral integration is not a
quasi-random process, but rather, a deterministic process that
follows the epigenetic histone code. Though some of these histone
modifications are linked to transcriptionally active promoters
[64,87-89], the link to transcription per se seems not to be relevant
since 60 to 70% of supermarker loci are not associated with TSS/
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Figure 11. Cell type-dependence of supermarker density near
the promoters of protooncogenes. (A) Schematic diagram of the
region on human chromosome 11 flanking the promoter of the
protooncogene LMO2. In CD4+ T cells, a very prominent supermarker
peak is found wi2kB of the TSS. According to supermarker density, the
probability of MLV integration in this region is 1 in 10°. In HeLa cells, the
nearest supermarker is found more >150 kB upstream and the
probability of MLV integration is 1 in 10”. (B) Schematic diagram of
the region on human chromosome 12 flanking the promoter of the
protooncogene CCND2. In CD4™ T cells, a dense cluster of supermarker
peaks is found wi2kB of the TSS, and the probability of MLV integration
is 1.in 10*% In Hela cells, the nearest supermarker is found >50 kB
downstream and the probability of MLV integration is 1 in 10,
doi:10.1371/journal.pcbi.1001008.9011
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CpG. Consistent with this point, our supermarker is highly
associated with the LMO2 promoter in CD4+ T cells, but not in
HeLa cells, and these cell-type-specific differences in marker
binding do not correlate with differential LMO2 expression in
these cells [97]. The 2 kB window maxima for the F score of the
supermarker is intriguing and suggests that it is a physical property
of chromatin that is favored for integration by gammaretroviruses,
perhaps linked to the position of the supermarker relative to
nucleosomes or bent DNA [34,36-38].

The factors constituting the supermarker, along with the other
histone modifications listed in Tables SI and S2 that are also
associated with MLV integration, suggest a mechanistic link
between gammaretroviral integration and chromatin-associated
complexes with H3K4 methyltransferase and histone acetyltrans-
ferase activity. H3K4 methylation is clearly linked with histone
acetylation, in that promoters which are methylated are much
more likely to become acetylated [65] and knockdown of WDRS,
a factor required for H3K4 methylation [101] leads to altered
histone acetylation [65,102]. Methylation may recruit chromatin
remodeling complexes [103,104], the methylated histone may be
bound by the acetylases [105], or acetylases may be components of
the methylase complex itself [101]. CBP/p300 is associated with
H3K4 methyltranferase activity in vivo [106,107]. ChIPSeq data
on acetyltransferases shows a weak but significant association
between CBP and MLV integrations in CD4+ T cells (F score
0.68, Table S4). Interestingly, combination of CBP and p300 leads
to an aggregated I score of 0.75. Thus, any of these chromatin
associated factors, methylated histones, methylases, chromatin
remodeling complexes or acetylases are candidates for gammar-
etroviral IN-binding factors. Interestingly, HIV-1 IN associates
with, and is acetylated by, p300 [108] but the p300 ChIPSeq
binding profile was not associated with the HIV-1 proviral datasets
(F score 0.34).
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Gammaretrovirus association with STAT1

Though very strong association was observed when any of the
gammaretroviruses were compared with STATI binding sites,
adding this transcription factor to the supermarker did not
improve the F score. This is perhaps because any retroviral
targeting information derived from STAT1 binding sites is already
present in the modified histone H3. 90 to 95% of the STAT1
binding sites are in fact within 2 kB of the nearest H3K4mel site.
Our attempts to detect STAT1 binding to MLV IN, or to see
effects of STAT1 disruption on MLV infectivity were unsuccessful.
Taken together it seems likely that STATI1 itself is not
mechanistically involved in gammaretrovirus integration. More
likely, STAT1 homes to chromosomal regions that are also
preferred targets for integration by these viruses. STAT1 has a
complex relationship with the histone acetylase CBP/p300.
Acetylation of histones is required for STAT1-mediated transcrip-
tion [89,109] but STATT itself binds CBP/p300 [110] and is also
acetylated and this contributes to its inactivation [111].

HIV integration site selection

The best single marker for HIV-1 in HelLa cells, H3K4mel,
predicted 48% of proviruses wi2kB but with only moderate
precision (F score 0.60). Using the F score we were able to detect a
stronger association of HIV-1 with H3K4mel in CD4+ T cells
(57% wi2kB, p<10~7', F score 0.73) but combining markers in an
attempt to generate a supermarker failed to improve the F score.
The associations that were observed may be related to HIV-1’s
propensity to integrate along the length of transcriptionally active
genes [81,90]. Association with histone modifications at active
promoters may be detected given short enough gene-length, or a
wide-enough window around the provirus (Figure 5). Either way,
we were unable to identify a marker capable of predicting HIV-1
integration site selection wi2kB. Perhaps the HIV-1 IN-interacting
protein PSIP1/LEDGF/p75 [53-55] would be such a factor.
Though binding sites have been reported for LEDGF [112], this
dataset is limited to 1% of the human genome and cannot be used
for a genome-wide association study. LEDGF influences HIV-1
integration site selection in that its disruption causes a shift away
from transcriptional units and towards CpG-rich sequences
[56,58,59]. Nonetheless, these are relatively general effects and
LEDGEF binding sites may fail to give resolution down to a window
of 2 kB. It appears that integration site selection by HIV-1 is
mechanistically quite different than for the gammaretroviruses.

Methods

Retrovirus integration site datasets and generation of
controls

The analysis of integration sites was based on the published
integration datasets in Table 2. In the analysis performed here, to
control for possible bias introduced during the cloning of the
integration sites, 10 control sites in the human genome were
generated for each integration site, as previously described
[42,43,78,80]. These control, in silico-generated sites were used
to calculate the significance and the F score (see below).

CpG island and transcription start sites

These genomic features were obtained from Annotated
Genome version hgl8 for human (http://genome.ucsc.edu/).
CpG island and transcription start sites were combined into single
datasets for determining association with retrovirus integration
sites.
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ChIPSeq datasets

ChIPSeq peaks were derived from published ChIPSeq datasets
(Table 1) with a robust and fast algorithm, F-Seq [113] running
with default parameters and standard Poisson statistics. We
recalculated the peaks even when the peak set was already
available to confirm the reproducibility of published procedures.

Statistical analysis

Two-sided Fisher exact test (or %? approximation when
appropriate) was used to evaluate statistical significance. All p-
values were Bonferroni corrected for multiple testing. p-values
<0.01 were considered significant.

To measure marker performance with respect to a given
retroviral integration dataset, we used the Fg-score (van Rijsber-
gen 1979). It is defined as the B-weighted harmonic mean of

t
p=—2L and Recall
b+lp

Precision

t
(R: P ), that is :
ty+1fu

Fy=(1+5)

PR (1)

B*P+R

where # is the number of actual integration sites within 2 kB from
a specified factor; t is the number of control datapoints (generated
in stlico as described above) >2 kB from a specified factor; fp is the
number of control datapoints within 2 kB from a specified factor
and fn is the number of actual integration sites >2 kB from a
specified factor. We set $=0.5 to give more weight to Precision
than to Recall. This balances type I and type II errors by adjusting
for the high rate of False Positives (fp) inherent in the examination
of large datasets for genome-wide binding sites according to
statistical significance (Text S1). Moreover, to overcome the
limitation of standard statistical methods we normalized fp with
respect to the number of actual integration sites.
The normalized Fj s-score 1s finally

1.251,
v
1.251,+0.25/,+/, &

Fos=

with V and C being, respectively, the number of effective and
control integration sites. The resulting I score is almost constant
with respect to the size and ratio of experimental and control
datasets (Figure 7).

It is worth noting that a null-predictor yielding f,=C (i.e. a
marker composed of all bases in the genome) gives P=10.5 and
R =1, resulting in an F score~0.5. A marker is considered
significant if the F score lies between 0.5 and 1.0.

Marker ranking and metric comparison

Different metrics can be used to measure the association
between proviruses and given markers. We opted to identify the
metric among Fy 5, Fy, Fy, Area Under Curve (AUC), Area Under
Precision/Recall (AUPR), Odds Ratio (OR), Shannon Mutual
Information (SMI), and Difference of Proportions (DOP) that best
agrees with statistical significance. The association between
markers and proviruses was measured according to each of the
above-mentioned metrics. Then the markers were ranked by
comparing the measure associated to the i-esim marker with that
associated with the j-esim marker and filling in an NXN matrix M
for each measure. Formally
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where X is one of the considered metrics. As a reference, a similar
matrix was built using the p-value (significance) obtained by
Fisher’s exact test, defined for the i-esim marker as S; = — log (p;).

Thus
.. 1
Mslij]= {0

A simple measure of similarity between metric X and reference S
1= [Misiyj] — My [i,]]
N2

it S[]>
if  S[i]<

Sy
Si

was calculated by D(X,S)= Z
iy
over all matrices elements). Observe that 0<D<1.

(sum spans

Generation of a supermarker

The mass probability functions p(V =1) or p(M =1) are defined
as the probability of a provirus V or a marker M to be localized at
a given genomic location defined as i=(chromosome, position).
p(V=1i) is estimated from the linear combination of mass
probability functions for candidate markers, that is

pV=0="> " mp(M;=i).
J

Coefficient ; measures the goodness of fit of the marker M; and it
seems reasonable to write 7; as a function of the related F score.
Indeed the probability of integration P(V) can be written as

P(V)="_ p(VIMy=i)p(M; =i),
P(V)=_p(VIMy=i)p(M>=1),

B

P(V)=_ p(VIMy =0p(My =i),

with respect to a set of markers M;,M,...,.My.
Adding these equations we get the mixture model

P(V)= Z Z!’( VIM;=

(M—)

1
Now, from (1) and ff= 5 we have

a+py_1 p_ 1 B
F P R PVIM) P(M|V)
then
F>~P(V|M).

A first order approximation of (2) is then
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(V}M k)

S = <3 S =D
K33 M=)
i

Zp(M =)

. . F;
where K is a normalization constant. Eventually we set nj=KNj

and the resulting new probability mass function is

F:
P =i)=> K ip(M;=1. (3)
J

The marker mass density p(M;=i) was modeled as the sum of
Gaussian functions centered on ChIPSeq peaks, with the variance
set as the average size of the peak regions, as determined by the F-
seq algorithm [113]. In this way we minimized the potential bias
that can arise by summing ChIPSeq densities obtained over
different experimental conditions. Briefly, each marker probability
density function was written as

—(i— ,,)2
pM=i)=> e 27,

pel’

where I"1s the peak set of the marker M.

This function (3) summarizes the properties of all the markers
and can be interpreted as a new ChIPSeq density. Indeed it
contains all markers associated and not associated peaks. To
reduce the number of false positives we applied a thresholding
procedure similar to that used to filter raw ChIPSeq data in a
training set of experimental and control integration sites. The
peaks of function (3) were ranked with respect to their amplitude
and the F score is recalculated on the training set as a function of
the number of peaks. We define the supermarker AM* as the
marker set that yields a maximal F score.

The supermarker density function is finally written as

—(—p)?

EeZa,

pel‘ *

(M =x)= ZK (A)

where I™* is the reduced peak set.

To validate the model, we adopted two strategies. First we
calculated the supermarker and the relative reduced peak set on
each single proviral dataset and then we evaluated the association
with the remaining datasets. The second strategy was a standard
10-fold cross-validation applied to each single dataset.

Machine learning

To validate the effectiveness of the supermarker peak set, we
trained RandomForest [94], a machine learning algorithm, with
the same set of markers composing the supermarker. Our datasets
are extremely imbalanced and this results in a classifier with an
high misclassification error for predicting the minority class (i.e.
the experimental dataset) as shown in Table S6. In order to correct
for that, RandomForest can be tuned by an additional parameter,
that can be wused to assign priors to the classes
(experimental and control) to minimize the misclassification error
and improve the performance. We adopted a 10-fold cross-
validation procedure by correcting the priors in the training set.

classwt,
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Interestingly, the maximum achievable F score and the number of
associated integration sites wi2kb match almost exactly with the I
score and wi2kb that we obtained with our supermarker
procedure. We consider this as further evidence of the effectiveness
of the supermarker.

Position specific scoring matrix (PWM)

PWM for retroviruses and human transcription factors was
borrowed from [80] and from the JASPAR database (jaspar.
cgb.ki.se).

Computation

All computation and graphics were done with ad-hoc Python
scripts with the support of the motility library for PWM
calculations (cartwheel.caltech.edu/ motility), Matplotlib library for
graphical and scientific computing (matplotlib.sourceforge.net) and the
Random Forest implementation on R environment (http://cran.
r-project.org/web/packages/randomForest/).

Graphic representation of data

Chromosome projection mandalas (Figure 1) represent the
distribution across of the genome of binding sites for a specific
factor or histone modification on the circumference of a circle.
Each dot represents a retroviral integration site with the following
polar coordinates: angular distance corresponds to genomic
location on the indicated chromosome; radial distance from the
contour of the circle is the log-scaled distance in nucleotides from
the closest marker site. Diagrams have been set to visualize
proviruses located between 0 and 1 megabase. Proviruses located
more than 1 megabase from the nearest marker accumulate at the
center of the mandala.

Supporting Information

Figure S1 Chromosome projection mandala and FO0.5 score
calculated within 2 kB for the indicated markers (columns) versus
the indicated proviruses (rows). ASLV and HTLVI1 proviruses
were cloned from HeLa cells, the Foamy virus from CD34+
hematopoietic stem cells (Table 2 and text). H3K4me3 and
STAT1 ChIPSeq datasets were from HeLa cells (Table 1). N
indicates the number of specific proviral integrations considered
for each analysis. The F0.5 score and the percentage of proviruses
within 2 kB are presented under each mandala.

Found at: doi:10.1371/journal.pcbi.1001008.s001 (0.35 MB TIF)

Figure 82 Hierarchical clustering applied to the expression
profiles of the cell types cited in this study as a measure of
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