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Abstract

The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial
and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that
dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal’s spatial location. These
findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To
investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta
coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is
stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between
neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion
and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of
hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and
reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a
fundamental mechanism of cognitive processing in the brain.
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Introduction

The hippocampus and surrounding medial temporal lobe are

implicated in declarative memory function in humans and other

mammals [1]. Electrophysiology studies in a range of species have

demonstrated that the activity of single pyramidal cells within this

region can encode for the presence of both spatial and non-spatial

stimuli [2]. The majority of empirical investigation has focussed on

place cells – neurons whose firing rate is directly correlated with an

animal’s spatial location within the corresponding place field [3].

Subsequent research has identified similar single cell responses to a

variety of non-spatial cues including odour [4], complex visual

images [5,6,7], running speed [8] and the concept of a bed or nest

[9]. It has also been demonstrated that the exact timing of place

cell discharge, relative to the theta oscillation which dominates the

hippocampal EEG during learning, correlates with distance

travelled through a place field [2,7,10–12]. This phase precession

mechanism creates a compressed ‘theta coded’ firing pattern in

place cells which corresponds to the sequence of place fields being

traversed [13]. These findings have led to the hypothesis that the

hippocampus operates using a dual rate and temporal coding

system [14,15]. Here we present a spiking neural network model

which utilises a dual coding system in order to encode and recall

both symmetric (auto-associative) and asymmetric (hetero-associa-

tive) connections between neurons that exhibit repeated synchro-

nous and asynchronous firing patterns respectively.

The postulated mnemonic function of the hippocampus has

been extensively modelled using recurrent neural networks, and

this approach is supported by empirical data [16–19]. The

biological correlate of these models is widely believed to be the

CA3 region, which exhibits dense recurrent connectivity and

wherein synaptic plasticity can be easily and reliably induced.

Pharmacological and genetic knockout studies have demonstrated

that NMDAr-dependent synaptic plasticity in CA3 is critical for

the rapid encoding of novel information, and synaptic output from

CA3 critical for its retrieval [20,21]. Recurrent neural network

models of hippocampal mnemonic function have generally utilised

rate-coded Hebbian learning rules to generate reciprocal associ-

ations between neurons with concurrently elevated firing rates

[22,23]. Hypothetically, this corresponds to the presence of either

multiple stimuli or multiple overlapping place fields encountered

at a single location [24–27]. The hippocampus is also implicated in

sequence learning, and temporally asymmetric plasticity rules have

subsequently been employed in recurrent network models to

generate hetero-associative connections between neurons that fire

with repeated temporal correlation [28–38]. Hypothetically, this

corresponds to a sequence of place fields being traversed or stimuli

being encountered on a behavioural timescale [13]. Importantly,

previous computational models of hetero-associative learning have

typically encoded each successive stage of a learned sequence with

the activity of a single neuron, while empirical studies estimate that

place fields are typically encoded by an ensemble of several

hundred place cells [2,39–45]. No computational model has thus

far integrated auto- and hetero- associative learning in order to

simultaneously generate both bi-directional and asymmetric

connections between neurons that are active at the same and

successive theta phases respectively using a single temporally

asymmetric synaptic plasticity rule.
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Empirical data indicates that changes in the strength of synapses

within the hippocampus can depend upon temporal correlations in

pre- and post- synaptic firing according to a spike-timing

dependent plasticity (STDP) rule [46–49]. It is not yet clear if

rate-coded auto-associative network models of hippocampal

mnemonic function are compatible with STDP or theta coded

neural dynamics. Here, we examine the synaptic dynamics

generated by several different STDP rules in a spiking recurrent

neural network model of CA3 during the encoding of temporal,

rate and dual coded activity patterns created by a phenomeno-

logical model of phase precession. We demonstrate that – under

certain conditions - the STDP rule can generate both bi-

directional connections between neurons which burst at concur-

rent theta phase and asymmetric connections between neurons

which fire at consecutive theta phase. Subsequent superthreshold

stimulation of a small number of simulated neurons generates

putative recall activity, driven by recurrent excitation, that

corresponds to pattern completion and/or sequence prediction

in auto- and/or hetero- associative connections respectively.

Interestingly, these neural dynamics are reminiscent of sharp

wave ripple activity observed in vivo [50–54]. These findings

demonstrate that STDP and theta coded neural dynamics are

compatible with rate-coded auto-associative network models of

hippocampal function. Furthermore, the encoding and reactiva-

tion of dual coded Hebbian phase sequences of activity in mutually

exciting neuronal ensembles demonstrated here has been proposed

as a general neural coding mechanism for cognitive processing

[50,55–60].

Methods

The Network Model
The neural network consists of 100 simulated excitatory

neurons which, in the majority of simulations, are fully

recurrently connected by single synapses except for self

connections. Although the level of recurrent connectivity present

in the CA3 region is estimated as 5–15% (and is non-random),

full recurrent connectivity has most often been employed in

previous computational models of auto- associative learning

[16–19,39]. However, all simulations described here were also

performed using networks with more realistic levels of recurrent

connectivity (15 separate pre-synaptic connections per simulated

neuron, chosen from a random uniform distribution that excludes

self-connections) and no significant differences were observed

(data not shown).

The Neuron Model
Simulated pyramidal cells operate according to the Izhikevich

spiking model [61], which can replicate the firing patterns of all

known types of cortical neurons with minimal computational

complexity. The membrane potential (v) and a membrane

recovery variable (u) are dynamically calculated based on the

values of four dimensionless constants (a, b, c and d) and a

dimensionless current input (I) according to Equations 1.1–1.3.

v0~0:04v2z5vz140{uzI ð1:1Þ

u0~a bv{uð Þ ð1:2Þ

if v§30 then
v?c

u?uzd

�
ð1:3Þ

The parameter values used to replicate firing of a standard

excitatory neuron are [a = 0.02, b = 0.2, c = 265, d = 6]. Under

these conditions, simulated neurons fire single spikes at low levels

of stimulation, but produce complex bursts that are representative

of hippocampal pyramidal cells (i.e. several action potentials at a

spontaneous rate of ,150Hz) at higher levels of stimulation [2,62].

Further details of the dynamics produced by single simulated

neurons in response to various forms of applied current can be

found in Izhikevich (2004).

Each simulated neuron has an axonal delay (Di) randomly

assigned from a uniform distribution in the range [1ms : Dms] with

D = 5 in the majority of simulations (this being realistic of the CA3

region [63]). At the beginning of each millisecond time step, before

the parameters v and u are updated, any membrane potential

values that exceed threshold are reset according to Equation 1.3.

The corresponding neuron(s) are considered to have fired in that

time step (t*), and the corresponding spikes arrive at their post-

synaptic targets at time t*+Di.

External Input during Theta Coded Learning
The hippocampal EEG is dominated by both theta and

gamma oscillations during stereotype learning behaviour

[39,43,64,65]. Here, we include only a minimal model of theta

frequency inhibition. A variable h, which oscillates sinusoidally in

the range [0 : 1] at a rate of 8Hz throughout all learning

simulations, is used to dynamically represent the theoretical local

field potential (LFP). Inhibitory input to every simulated neuron

at each millisecond time step is randomly sampled from a

Gaussian distribution with mean Iinh = 215h and standard

deviation sinh = 2. Neural noise at a rate of ,0.1Hz (this being

realistic of the CA3 region) is generated in the network by the

constant application of excitatory current, randomly sampled

from a uniform distribution in the range [0 : Inoise] where

Inoise = 0.8 in all simulations [66]. The interplay between afferent

inhibitory and excitatory currents means that the majority of

Author Summary

Changes in the strength of synaptic connections between
neurons are believed to mediate processes of learning and
memory in the brain. A computational theory of this
synaptic plasticity was first provided by Donald Hebb
within the context of a more general neural coding
mechanism, whereby phase sequences of activity directed
by ongoing external and internal dynamics propagate in
mutually exciting ensembles of neurons. Empirical evi-
dence for this cell assembly model has been obtained in
the hippocampus, where neuronal ensembles encoding
for spatial location repeatedly fire in sequence at different
phases of the ongoing theta oscillation. To investigate the
encoding and reactivation of these dual coded activity
patterns, we examine a biologically inspired spiking neural
network model of the hippocampus with a novel synaptic
plasticity rule. We demonstrate that this allows the rapid
development of both symmetric and asymmetric connec-
tions between neurons that fire at concurrent or consec-
utive theta phase respectively. Recall activity, correspond-
ing to both pattern completion and sequence prediction,
can subsequently be produced by partial external cues.
This allows the reconciliation of two previously disparate
classes of hippocampal model and provides a framework
for further examination of cell assembly dynamics in
spiking neural networks.
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firing due to neural noise tends to occur around the peak of the

LFP, as defined by the value of h.

Place cells are most often studied in the dorsal CA1 region of

the hippocampus, although some data is available from CA3

and, importantly, significant differences can be observed

[14,67–69]. Approximately 30% of CA3 pyramidal cells are

active in a typical environment, each of which can encode for

several (occasionally overlapping) place fields of ,30cm in size

(although this varies along the septotemporal axis) [10,12,70].

The phase precession of place cell firing can cover a full theta

cycle, but typically changes by 180u between entry and exit, and

is correlated with both the relative distance travelled and time

spent within a place field (i.e. the rate of phase precession is

positively correlated with running speed) [10,12,71]. The firing

rate of active place cells follows a Gaussian distribution, such

that maximum firing rate occurs around the centre of the place

field [10]. In CA3, the mean in-field firing rate of place cells is

,15Hz, although this is strongly modulated by various non-

spatial cues [14,66,68].

There is considerable debate regarding the mechanisms of

phase precession in place cells, fuelled by apparently contradic-

tory empirical findings [72]. Here, we are more directly

concerned with the manner in which theta coded neural

dynamics interact with local plasticity rules in order to mediate

the learning and recall of auto- and hetero- associative

connections between active neurons. Hence, the phase at which

simulated neurons in our network model fire is primarily dictated

by external excitatory input, although it is important to note that

phase precession has been empirically observed in both the

dentate gyrus and entorhinal cortex, which constitute the two

principal synaptic inputs to CA3 [12,73]. Furthermore, detailed

biophysical simulations suggest that input from these afferent

structures plays a significant role in dictating the neural dynamics

observed in CA3 [74,75].

During learning simulations, each place field is arbitrarily

divided into eight equally sized sub-sections, and theta

oscillations in the LFP (as defined by the value of h) are

similarly divided into subsections of p/4 (between p/8 and 15p/

8). At each millisecond time step, the theoretical position within

a place field dictates the theta phase window at which the

corresponding place cell receives external excitation, randomly

sampled from a normal distribution with mean Iext and standard

deviation sext (Figure 1a, b). This phenomenological model

dictates that the mean phase of (stochastic) activity in place cells

recedes in a step-wise fashion as the corresponding place field is

traversed. In the majority of simulations, values of Iext = 5 and

sext = 22.5 are used to generate a mean in-field firing rate of

,15Hz, with active place cells tending to fire bursts at the peak

of the LFP (as defined by the value of h) and single spikes on the

ascending and descending slope [10]. In other simulations,

values of sext = [12.5 ; 32.5 ; 42.5 ; 52.5] are used to generate a

range of mean in-field firing rates.

In these simulations, hypothetical place fields are generally

80cm in diameter and traversed at a rate of 10cms21. Although

this place field size is larger than that typically observed in vivo

[10,12], these values are chosen for computational conve-

nience such that active place cells fire stochastically in each

theta phase window for a period of 1s before receding.

Simulations were also performed using place field diameters of

[10cm ; 20cm ; 40cm] – which effectively reduces the duration of

time for which each theta coded stage of the learned sequence is

applied to the network – and the only significant effect observed

was a decrease in the rate of synaptic weight change (data not

shown).

The Synaptic Plasticity Model
The phase precession of place cells in the hippocampus

produces a compressed, theta coded, sequence of firing within

each oscillatory cycle that corresponds to the sequence of

overlapping place fields being traversed on a behavioural

timescale Figure 1c; [12,13,34]. These firing patterns are ideally

suited to induce the long-term potentiation (LTP) and depression

(LTD) of synapses by spike-timing dependent plasticity (STDP),

and there is evidence that synaptic connections between

overlapping place cells in rat hippocampus are potentiated

during exploration [47–49,76]. Mathematically, with s = tpost2tpre

being the time difference between pre- and post- synaptic spiking,

the change in the weight of a synapse (Dw) according to a

standard STDP rule can be calculated using Equations 2.1–2.5

[77–82].

Dwz~F sð Þ~PzzePzz for sw0 ð2:1Þ

Dw{~F sð Þ~P- for sƒ0 ð2:2Þ

Pz~Az 1{
1

tz

� �S

ð2:3Þ

P{~A{ 1{
1

t{

� �{S

ð2:4Þ

Pzz~Dw{ 1{
1

tzz

� �Szz

ð2:5Þ

The parameters A+ and A2 correspond to the maximum possible

change in synaptic weight per isolated spike pair, while t+ and t2

denote the time constants that approximate an exponential decay

of potentiation and depression increments respectively. The co-

efficient e determines the contribution of an additional potenti-

ation process, which is equal to a trace of the most recent weight

decrease at a synapse (with s++ = tDw+2tDw2) decaying exponen-

tially with a time constant t++. This term accounts for

experimental observations of STDP in the hippocampus obtained

using triplets of pre- and post- synaptic spikes, which suggest that

depression is suppressed by potentiation within a short temporal

window [48]. In accordance with empirical data, coincident pre-

and post- synaptic firing elicits maximal depression from all

STDP implementations examined here [49].

Previous auto-associative network models of hippocampal

mnemonic function have most frequently utilised rate-coded

Hebbian learning rules [16,17,22,23,83] – which typically

dictate that changes in synaptic strength are proportional to

the product of pre- and post- synaptic firing rates (rj,i) scaled by a

learning rate k (Equation 3.1). This form of synaptic plasticity

generates no competition between inputs or outputs of a single

neuron, as any increase in synaptic weight produces an increase

in post-synaptic firing rate in a positive feedback loop [84]. The

BCM model (Equation 3.2) was proposed to address this issue,

and postulates the existence of a theoretical modification

threshold (hm) that distinguishes between depression (at lower

firing rates) and potentiation (at higher firing rates). The value

of hm is itself a function of pre- or post- synaptic activity,

Dual Coding with STDP
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generating competition between synaptic inputs by making

potentiation more difficult to achieve as the long-term average

firing rates increases [85].

Dw~krirj ð3:1Þ

Dw~rirj ri{hmð Þ ð3:2Þ

Interestingly, it has been demonstrated that STDP can provide

inherent competition using only local synaptic variables, and

thus stabilise Hebbian learning processes [80,82]. However,

these properties rely on synaptic weights being either depressed

or unchanged following an increase in pre-synaptic stimulation,

which directly contradicts empirical data and the requirements

of rate-coded associative learning. Conversely, several compu-

tational studies have described conditions under which STDP

can be reconciled with the BCM formulation [77–79,81]. This

requires that the plasticity rule exhibit an increasing dominance

of potentiation processes as inter-spike intervals (ISIs) are

reduced [77]. Pair-based STDP rules, which assume a linear

integration of potentiation and depression processes, require

constraints to be placed on the nature of spike pair interactions

and parameters that define the asymmetric learning window

[77,78,81]. Triplet-based STDP rules, which explicitly account

for the observed non-linear integration of potentiation and

depression processes, dictate that mean synaptic weight

increases with mean stochastic firing rate irrespective of the

finer details of the STDP rule [77,79].

We examine three different additive STDP implementations

here, in order to draw a comparison between the emergent

Figure 1. The Phenomenological Phase Precession Model and Theta Coding Mechanism. (a, b) Each theoretical place field and theta cycle
(as defined by the value of h) are divided into eight equally sized sub-sections. At each millisecond time step, the theoretical position within a place
field dictates the theta phase window during which the corresponding place cell receives external excitatory input. Hence, when the theoretical
animal enters a place field (segment 1), the corresponding place cell receives external stimulation late in the theta cycle (phase window 1); in the
centre of the place field (segment 4), the corresponding place cell receives external, excitatory stimulation in the middle of the theta cycle (phase
window 4); and as the place field is exited (segment 7), the corresponding place cell receives external, excitatory stimulation early in the theta cycle
(phase window 7). The interplay of this external, excitatory stimulation with the constant, oscillatory inhibitory input to each place cell directs place
cells to fire complex spike bursts when theoretical position is near the centre of the place field, and single spikes upon entry to or exit from the place
field. Importantly, the random distribution of both inhibitory and excitatory inputs to each place cell produce stochastic firing activity within the
corresponding phase window, such that place cells which encode for the same place field will fire with the same mean phase, but not necessarily in
the same millisecond time step(s). (c) The phenomenological phase precession model creates a theta coding mechanism, whereby the sequence of
place fields being traversed on a behavioural time scale is represented by a compressed sequence of activity in the corresponding place cells,
repeated in every theta cycle.
doi:10.1371/journal.pcbi.1000839.g001
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synaptic dynamics produced by each. The ‘BCM type’ pair- and

triplet- based STDP rules have parameter values described in

previous studies as allowing a reconciliation with rate-coded

Hebbian learning (A+.A2 and t+,t2), which also concur with

empirical measurements made in the hippocampus [47,49,78,81].

Conversely, the ‘non-BCM type’ pair-based STDP rule has

parameter values noted in previous modelling studies for the

generation of synaptic competition (A+,A2 and t+ = t2) [80,82].

For each of these STDP rules, a lax nearest neighbour spike

pairing scheme – which dictates that values of P6 are reset to the

value of A6 upon afferent or efferent firing – is employed. Values

of A6 are also scaled by the value of wmax such that ,60 spike

pairings are sufficient to traverse the range of possible synaptic

weight values, in accordance with empirical data [47–49]. The full

details of each plasticity model examined are given in Table 1.

Empirical evidence indicates that the degree of synaptic

plasticity incurred by consistent stimulation protocols differs across

the theta cycle, with potentiation incurred by burst pairings at the

peak and depression (or de-potentiation) incurred by burst pairings

at the trough of the LFP [86–89]. Here, we examine the effects of

three different forms of theta modulated plasticity, for comparison,

the details of which are shown in Equation 4.

No modulation : wz~wz w{~w{

Theta modulation : wz~ 1{hð Þwz w{~ 1{hð Þw{

Inverse modulation : wz~ 1{hð Þwz w{~hw{

ð4Þ

In all simulations, hard limits are placed on the achievable strength

of synapses, such that synaptic weights are maintained continu-

ously in the range [0 : wmax]. While there is little clear biological

basis to inform the relative scale of synaptic weights, it is known

that recurrent synapses in the CA3 region are generally incapable

of solely provoking post-synaptic activity [90]. In order to generate

an action potential using the neural dynamics employed here, a

single synaptic current of I = 16.5 is required, and therefore the

value generally assigned to the maximum weight limit in these

simulations is wmax = 1. In each simulation, all synaptic connections

in the network are initialised with a weight of 0.01wmax.

Neuromodulation and Recall
The neuromodulatory effects of Acetylcholine (ACh) have been

hypothesised to separate periods of learning and recall in the

hippocampus in order to avoid issues of interference [35,91,92].

Cholinergic input from the septum, terminating on local

interneurons, can induce theta frequency oscillations in the CA3

region, facilitate LTP and enhance afferent input from the dentate

gyrus and entorhinal cortex while suppressing recurrent excitation

from intrinsic connections – thereby creating the ideal conditions

for learning external associations via theta coding [92]. In the

absence of cholinergic input pyramidal neurons in CA3 are

disinhibited, synaptic plasticity is suppressed, and neural dynamics

enter a state of large-amplitude irregular activity (LIA). During this

period, postulated recall activity is observed in the form of sharp

wave ripples (SWR) – short periods of high frequency firing in

large populations of neurons with fine temporal structure that last

,100ms and originate in CA3 [50–53,69].

In our model, an abstract, global ACh signal modulates the

scale of recurrent excitation and synaptic plasticity in the network

throughout all simulations. The hypothetical concentration of

ACh maintains a dimensionless value of W = 1 during periods

of theta coded learning and falls to a lower value during periods of

recall. In both cases, the relative magnitude of recurrent synaptic

weights in the network is scaled by a factor of 1/W, while the

magnitude of synaptic weight change is scaled by a factor of W.

During periods of recall, theta frequency inhibitory input to the

network is ceased and superthreshold excitation of magnitude

Icue = 30 is provided to a small number of randomly selected

neurons for a single millisecond time step. Subsequent activity -

dictated by recurrent excitation alone - can then be compared to

the auto- and hetero- associative correlations present in external

input during learning and SWR activity observed in vivo. In these

simulations, the effective speed of recall is strongly dependent on

the size and overlap of place fields, as a reduction in place field size

and offset implies a reduction in the total length of the learned

route, such that the same temporal compression of recall firing

equates to a slower traversal of that route.

We use several different measures to assess the fidelity of

putative recall activity in this model. For hetero-associative and

dual coded activity patterns, we examine the timing of the first

action potential fired by each simulated place cell: firing before the

first action potential in any place cell encoding for the following

place field on the learned route is considered to be accurate, firing

at the same time as the first action potential in any place cell

encoding for the following place field on the learned route is

treated indifferently, and failure to fire or firing after the first

action potential in any place cell encoding for the following place

field on the learned route is considered to be erroneous. For auto-

associative patterns, we examine firing in all simulated neurons for

a period of 20ms following the external stimulation of a subset of

‘cued’ neurons from one of the learned activity patterns. Firing in

any of the neurons from that learned pattern which are not

externally stimulated (‘uncued’) during this period is considered to

be accurate recall, while activity in any neuron that is not part of

that pattern is considered to be erroneous. The Mann-Whitney U

test is used to assess the significance of differences in the strengths

of disparate populations of synaptic connections throughout this

paper.

Results

The aim of this study is to examine the encoding and

subsequent reactivation of rate, temporal and dual coded activity

patterns in a spiking recurrent neural network inspired by the

neurobiology of CA3. Firstly, we compare the synaptic dynamics

produced by three different STDP rules during theta coded

Table 1. Computational details of the STDP rules.

STDP Rule A+ A2 t+ (ms) t2 (ms) t++ (ms) e

(A) Pair Based BCM type 0.02wmax 20.01wmax 20 50 N/A 0

(B) Triplet Based BCM type 0.02wmax 20.01wmax 20 50 20 1

(C) Pair Based Non-BCM type 0.02wmax 20.021wmax 20 20 N/A 0

doi:10.1371/journal.pcbi.1000839.t001
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learning: two ‘BCM type’, which can replicate the properties of

rate-coded Hebbian learning (see Equation 3); and one ‘non-BCM

type’, which has been demonstrated to generate competition

between synapses and thereby stabilise Hebbian learning processes

[77–82]. We also examine the effects of three dynamic plasticity

modulation schemes, motivated by the empirical observation that

identical stimulation protocols can induce significantly different

changes in synaptic strength depending on their timing relative to

the ongoing theta oscillation [86–89]. We demonstrate that, under

certain conditions, STDP can encode both symmetric and

asymmetric connectivity patterns between neurons that fire at

concurrent or consecutive theta phase respectively. Secondly, we

describe the putative recall dynamics generated in this network

model, whereby superthreshold stimulation of a small number of

randomly selected neurons following learning produces both

pattern completion and sequence prediction via recurrent

excitation.

Theta Coded Hetero-Associative Learning
Lesions of the hippocampus have been demonstrated to disrupt

the temporal ordering of information in memory, impairing recall

of a sequence of locations visited [93,94], olfactory cues presented

[4,95,96], and trace eyeblink conditioning performance [97,98].

This has led to the theory that the hippocampus – which exhibits

sparse connectivity, temporally asymmetric synaptic plasticity, and

theta coded neural dynamics - is critical for sequence learning and

predictive recall [13,28–37]. Hence, in the first set of simulations,

we examine the learning of theta coded activity patterns in single

neurons.

In these simulations, place cell firing corresponds hypothetically

to ten traversals of a route of one hundred equidistant and

overlapping place fields of 80cm diameter, each encoded by a

single neuron, at a constant speed of 10cms21 (Figure 2a).

However, this form of activity could just as easily correspond to a

temporal sequence of non-spatial stimuli encountered on a

behavioural timescale [29,40,64]. The spike raster shown in

Figure 2b is representative of the neural dynamics generated by

the phenomenological theta coding model, which replicates the

gross features of phase precession observed in the hippocampus in

vivo.

Figure 2c illustrates the typical asymmetric weight matrix that

develops – with connections between each place cell and those that

follow it on the theoretical route being selectively and significantly

potentiated to create a bi-modal distribution of synaptic strengths

(inset). Figure 2d illustrates the asymmetric expansion of place

fields that proceeds over the course of these simulations, a

phenomenon that has been observed experimentally [99]. This

results from an increase in excitatory input to each place cell from

those preceding it on the route as recurrent connections are

potentiated, and the magnitude of place field expansion is

therefore correlated with the value assigned to the maximum

excitatory synaptic weight (wmax).

It is important to note that the particular details of the STDP

rule utilised here makes little difference to the efficient learning of

hetero-associative sequences (Figure 2e). Furthermore, the strength

of asymmetric connections saturates at the upper bounds

regardless of whether neurons fire bursts or single spikes

throughout each theta cycle – although mean in-field firing rate

is correlated with the rate of synaptic weight change (Figure 2f).

These results demonstrate that the combination of theta coding

and STDP in a spiking recurrent network is sufficient to mediate

rapid and robust sequence learning, irrespective of the finer details

of the plasticity rule, in accordance with several previous models

[12,13,28–37].

Theta Coded Auto-Associative Learning
Although the majority of electrophysiology studies have focused

on spatial memory, there is a growing body of evidence to suggest

that non-spatial stimuli are also encoded in the activity of single

neurons in the hippocampus and can significantly modulate the

firing rate of established place cells [4–7,9,14,57,68,100]. Com-

putational theories of episodic memory function generally posit

that discrete patterns of rate-coded activity, corresponding to the

conjunctively coded sensory elements that constitute an experi-

ence, are auto-associated in the recurrent connections of CA3.

This cortical activity can subsequently be fully recreated from

partial sensory cues via a process of pattern completion [16–

23,68,101].

However, auto-associative network models of the CA3 region

have often been criticised on the grounds of biological realism for

failing to include realistic neural and synaptic dynamics [39,102].

Furthermore, it has been suggested that the inherently asymmetric

nature of STDP directly contradicts rate-coded associative

learning, which explicitly depend on the development of strong

bi-directional connections [13,82, but see 41,42,44,45,77]. Here,

we examine whether auto-associative learning can be achieved in a

network model that incorporates the main features of neural and

synaptic dynamics observed in CA3 – namely, phase precession

and STDP.

In these simulations, input to the network effectively corre-

sponds to ten presentations of ten binary and orthogonal activity

patterns, in accordance with previous auto-associative network

models [22,23]. However, this form of input could also correspond

to ten traversals of a route of ten non-overlapping place fields of

80cm diameter, each encoded by the activity of multiple place

cells, at a constant speed of 10cms21 (Figure 3a). The

phenomenological phase precession model implemented dictates

that neurons which are active in the same pattern (i.e. place cells

that encode for the same place field) fire stochastically with equal

mean phase, the value of which decreases in a step-wise fashion

over the course of a single presentation (Figure 3b).

Our results demonstrate that successful auto-associative learning

depends on a plasticity rule that produces net potentiation at the

high instantaneous firing rates (i.e. short ISIs) present during near-

synchronous firing in bi-directionally connected neurons [77].

Accordingly, both the pair- and triplet- based BCM type STDP

rules selectively and significantly potentiate synaptic connections

between place cells that encode for the same place field (Figure 3c,

Mann-Whitney U-test, p,0.01). Conversely the non-BCM type

STDP rule produces net depression of synaptic connections

between concurrently active neurons (Figure 3d). This demon-

strates that efficient auto-associative learning can be achieved in a

spiking recurrent neural network when an STDP rule that can be

reconciled with rate-coded Hebbian learning is employed, and

that this function is fully compatible with theta coded neural

dynamics created by the phase precession of principal cells in vivo.

However, in contrast to the hetero-associative learning

simulations described above, the mean weight of auto-associative

connections in simulations with BCM type STDP rules generally

reaches an asymptote well below the upper bounds - exhibiting a

bi-modal distribution (Figure 3c, inset) except where potentiation

and depression processes are inversely modulated (Figure 3e). This

is a consequence of the persistently alternating temporal order of

spike pairings at these synapses, which produces an equilibrium

between potentiation and depression processes. The position of

this equilibrium is significantly affected by several features of the

neural dynamics and synaptic plasticity rule employed. For

example, the asymptotic mean weight of auto-associative connec-

tions increases with mean in-field firing rate for the BCM type
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Figure 2. Theta Coded Hetero-associative Learning in a Spiking Recurrent Neural Network. (a) Theoretical details of theta coded hetero-
associative learning simulations. 100 equidistant and overlapping place fields of 80cm diameter, offset by 10cm, form a circular route that is traversed
repeatedly at a constant speed of 10cms21. Each place field is encoded by the activity of a single place cell. (b) Typical spike raster in seven
representative place cells with consecutive and overlapping place fields, showing theta coded neural dynamics generated by the phenomenological
phase precession model. For illustrative purposes, this figure was generated with much smaller place fields (10cm diameter) such that active place
cells fire in each theta phase window for one oscillatory cycle only. (c) Typical synaptic weight matrix following learning. Asymmetric connections
between place cells which correspond to consecutive place fields on the learned route are selectively and significantly potentiated. Inset: synaptic
weight histograms for foreground and background connections (i.e. between a neuron and those that encode for either the three successive place
fields on the learned route, or all other neurons in the network respectively). Data illustrated for the triplet based BCM type STDP rule with no
plasticity modulation. (d) Mean phase of firing in all place cells at place field entry and exit on successive traversals of the route, averaged over 50
separate simulations. This demonstrates the asymmetric expansion of place fields against the direction of motion during spatial learning. Data
illustrated for the triplet based BCM type STDP rule with no plasticity modulation. (e) The relative mean weight of synaptic connections between
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STDP rules, but decreases with mean in-field firing rate for the

non-BCM type STDP rule (Figure 3f). In both cases, the rate of

synaptic weight change (whether positive or negative) correlates

with the mean in-field firing rate.

In these simulations, spike pairing events that dictate changes in

synaptic strength do not take place immediately following firing,

but rather once an action potential reaches the pre-synaptic

terminal. Hence, the range of axonal delays (D) can also have a

significant impact on the relative strength of auto-associative

connections. In bi-directionally connected neurons exhibiting

near-synchronous bursting, longer axonal delays imply that the

arrival of spikes at pre-synaptic terminals is more likely to occur

after post-synaptic firing and therefore generate depression; while

shorter axonal delays imply that afferent spikes are more likely to

precede post-synaptic activity and therefore generate potentiation

(Figures 4a, b). Accordingly, for the BCM type STDP rules

examined here, both the rate of potentiation and asymptotic mean

weight of auto-associative connections increase as the scale of

axonal delays is decreased (Figure 4c). This also explains why, in

Figure 3c, the strength of auto-associative post-synaptic connec-

tions formed by some place cells is uniformly weak, as the axonal

delay of that neuron is higher than others encoding for the same

place field.

Similarly, for BCM type STDP rules, parameters that dictate

the profile of the asymmetric learning window (A6 and t6)

effectively define the position of the theoretical modification

threshold (hm, Equation 3.2) that marks the transition between net

synaptic depression (at low stochastic firing rates) and potentiation

(at high stochastic firing rates) [41–43,64]. Hence, lowering the

theoretical modification threshold – by increasing the value

assigned to A+, for example – produces a greater degree of

potentiation at set in-field firing rate, and therefore increases the

asymptotic mean weight of auto-associative connections in these

simulations (Figure 4d).

Dual Coded Learning
It has been proposed that the sequential co-activation of groups

of neurons during behaviour can be encoded via Hebbian

plasticity [55,56]. Subsequently, transient activity patterns in the

same cell assembly can be initiated by internal cognitive processes

and maintained via mutual excitation. Phase precession in

ensembles of place cells encoding for overlapping place fields

represents a prominent empirical model of cell assembly dynamics

in the brain [50,57,59]. However, previous models of hippocampal

mnemonic function have generally focussed on the learning and

recall of either discrete rate-coded or sequential temporally-coded

activity patterns, while few studies have attempted to integrate

these computational models within a single framework [27,39,42–

44]. Here, we demonstrate that both auto- and hetero- associative

learning can proceed simultaneously in our network model, such

that repeatedly synchronous firing with weak sequence bias

produces bi-directional connections while repeatedly asynchro-

nous firing produces asymmetric connections.

Input to the network during these simulations corresponds to a

route of twenty overlapping place fields of 80cm in diameter, each

encoded for by five place cells, being traversed at a constant speed

of 10cms21 (Figure 5a). This form of input is equivalent to the

repeated presentation of a sequence of binary orthogonal activity

patterns [39]. Figure 5b illustrates a representative spike raster

observed during these simulations, demonstrating how the

phenomenological phase precession mechanism dictates that place

cells encoding for the same place field fire stochastically within the

same theta phase window while place cells encoding for successive

place fields fire in successive theta phase windows.

Figure 5c illustrates the typical synaptic weight matrix that

develops during simulations with BCM type STDP rules, where

synapses connecting each hypothetical place cell to those that

encode for the same or successive place fields are rapidly,

selectively and significantly potentiated (Figure 5d). Conversely,

when the non-BCM type STDP rule is utilised (and potentiation

and depression are not inversely modulated), then hetero-

associative sequence learning proceeds robustly but strong, bi-

directional auto-associative connections are not generated

(Figure 5e). In fact, there is no significant difference in the

asymptotic mean weight of auto- or hetero- associative connec-

tions generated in any of these dual coding simulations and those

described above with equal parameter values (Figures 2e, 3e, f,

4c, d; 5f). The experimentally observed asymmetric expansion of

place fields against the direction of motion during spatial learning

(Figure 2d) also proceeds during dual coded learning simulations

(data not shown).

These results again demonstrate that an STDP rule which

exhibits a dominance of potentiation at short ISIs – and can

therefore mediate rate-coded Hebbian learning – is essential for

efficient auto-associative learning to proceed. However, each of

the BCM type STDP rules examined here exhibits a significant

functional weakness: background connections (i.e. synapses

between neurons which are not in the same or immediately

successive patterns) undergo slight but continual potentiation

throughout all simulations, indicating a lack of inherent synaptic

competition (Figure 5d). Effectively, a positive feedback loop arises

between the potentiation of a synapse and a reduction in the

latency of post-synaptic firing following an identical pre-synaptic

input. This lack of competition may be necessary to allow the

development of strong, bi-directional connections using the

asymmetric STDP rule, as the mean weight of background

connections correlates with that of auto-associative connections in

all simulations (Figure 5f), but is also reminiscent of the global

stability issues commonly encountered by rate-coded Hebbian

learning [84].

Recall Phase
Electrophysiology studies have demonstrated that learned routes

– corresponding to the theta coded activity patterns observed in

place cells during exploration – are pre-played in sharp wave

ripples (SWR) at the beginning of (and during) a journey, replayed

in reverse order at the end of a journey, and replayed in the

original order during sleep [51–53]. The temporal order and

relative latency of firing observed during exploration is preserved

during this rehearsal and replay activity, which suggests a Hebbian

learning mechanism on the timescale of STDP [50,54]. Here, we

examine the recall activity generated by recurrent excitation in our

place cells in typical simulations with every combination of STDP rule and plasticity modulation scheme examined. The value of the post-synaptic
neuron index corresponds to the distance – in place fields – between the pre- and post- synaptic place cell. (f) The mean rate of synaptic weight
change at synapses connecting each place cell to that immediately ahead of it on the theoretical route averaged over 50 separate simulations, which
correlates with mean in-field firing rate for (A) the pair-based BCM type; (B) the triplet-based BCM type; and (C) the non-BCM type STDP rule. Data
illustrated for simulations with theta modulated plasticity, and synaptic weight change averaged over all neurons until synaptic weights saturate at
the upper bounds.
doi:10.1371/journal.pcbi.1000839.g002
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Figure 3. Theta Coded Auto-associative Learning in a Spiking Recurrent Neural Network. (a) Theoretical details of theta coded auto-
associative learning simulations. 10 equidistant but non-overlapping place fields of 80cm diameter, offset by 80cm, form a circular route that is
traversed repeatedly at a constant speed of 10cms21. Each place field is encoded for by ten place cells. This form of input effectively corresponds to
repeated presentations of ten binary and orthogonal activity patterns. (b) Typical spike raster in place cells encoding for a single place field. For
illustrative purposes, this figure was generated with much smaller place fields (10cm diameter) such that typical activity at each phase of theta can be
seen more clearly. (c) Typical synaptic weight matrix following learning with the BCM type STDP rules, illustrating how connections between neurons
that encode for the same place field are selectively and significantly potentiated. Data shown for triplet-based STDP with theta modulated plasticity.
(d) Synaptic weight matrix following learning with the non-BCM type STDP rule and theta modulated plasticity. Under these conditions, synapses
between place cells that encode for the same place field are depressed below the mean weight of other connections in the network. (e) The mean
weight of synapses connecting each place cell to those that encode for the same place field (dark grey) and different place fields (light grey)
following ten traversals of the theoretical route, averaged over 50 separate simulations, for the pair- and triplet- based BCM type STDP rules (A and B
respectively) and the non-BCM type STDP rule (C). (f) The relative mean asymptotic weight of auto-associative connections averaged over 50 separate
simulations, illustrating that the relative strength of auto-associative connections is positively correlated with mean in-field firing rate for (A) the pair
based BCM type STDP rule (with theta modulated plasticity); and (B) the triplet based BCM type STDP rule (with theta modulated plasticity); but
negatively correlated with mean in-field firing rate for (C) the pair based non-BCM type STDP rule (with inversely modulated plasticity).
doi:10.1371/journal.pcbi.1000839.g003
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network under similar conditions - when theta frequency

inhibitory input is ceased, the hypothetical concentration of ACh

is reduced (to modulate the magnitude of recurrent excitation and

synaptic plasticity), and superthreshold external excitation is

applied to small numbers of neurons. This activity can then be

compared to both the auto- and hetero- associations created

during learning in the simulations described above and SWR

activity observed in vivo.

Firstly, we examine sequence prediction following hetero-

associative learning. As illustrated by Figure 6a, superthreshold

stimulation of a single, randomly selected neuron typically

produces accurate sequential firing in all neurons that constitute

the original learned pattern over a period of ,400ms. Over one

thousand separate recall epochs, the fidelity of recall activity

produced is typically ,90% for every STDP rule and plasticity

modulation scheme examined (Figure 6b). The sequential firing

patterns observed in these recall simulations continue indefinitely

in the absence of inhibitory input to suppress the effects of

recurrent excitation. This is a product of the fact that each neuron

has few strong post-synaptic connections, and hence the

concentration of ACh must be reduced to a level whereby the

relative scale of recurrent synaptic weights allows single synapses to

produce post-synaptic firing (W = 0.05 in Figures 6a, b for

example).

Secondly, we examine pattern completion following auto-

associative learning by providing superthreshold excitation to

random partial cues consisting of five out of ten simulated neurons

from each learned pattern. As illustrated in Figure 6c, the uncued

neurons in each pattern are typically activated by recurrent

excitation shortly after externally cued activity while other neurons

Figure 4. Effects of Axonal Delay and Profile of the Asymmetric Learning Window on Auto-associative Learning. (a) Action potentials
in bi-directionally connected neurons are more likely to reach the pre-synaptic terminal before the end of synchronous (but stochastic) complex
bursts, and therefore induce the potentiation of inter-connecting synapses, if axonal delays are shorter. (b) Conversely, action potentials in each
simulated neuron are more likely to arrive at the pre-synaptic terminal after the end of synchronous (but stochastic) complex bursts, and therefore
induce depression of the inter-connecting synapses, if axonal delays are longer. (c) Relative mean synaptic weight (w/wmax) of auto-associative and
background connections (i.e. between neurons that are in the same or different patterns respectively) produced by the BCM type STDP rules
following ten traversals of the theoretical route described in Figure 3a with a varying scale of axonal delays (D). Data is averaged over 50 separate
simulations. (d) Relative mean synaptic weight (w/wmax) of auto-associative and background connections produced by the pair- and triplet- based
BCM type STDP rules following ten traversals of the theoretical route described in Figure 3a with varying values of A+ and therefore different
positions of the theoretical modification threshold (hm). Data is averaged over 50 separate simulations.
doi:10.1371/journal.pcbi.1000839.g004
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Figure 5. Dual Coded Learning in a Spiking Recurrent Neural Network. (a) Theoretical details of dual coding simulations. 20 equidistant and
overlapping place fields of 80cm diameter, offset by 10cm, form a circular route that is traversed repeatedly at a constant speed of 10cms21. Each
place field is encoded by five place cells. (b) Representative spike raster in thirty-five place cells encoding for seven separate but overlapping place
fields. Place cells encoding for different place fields fire stochastically within different theta phase windows. (c) Typical synaptic weight matrix
following ten traversals of the route for the BCM type STDP rules. Synaptic connections between place cells that encode for successive place fields on
the theoretical route saturate at the upper weight bounds and synaptic connections between place cells that encode for the same place field are
selectively and significantly potentiated. Data illustrated for triplet-based STDP with theta modulated plasticity. (d) Dynamic changes in the relative
mean weight (w/wmax) of auto-associative (between place cells encoding for the same place field), hetero-associative (between place cells encoding
for a place field and that either one or two steps further along the route), and background (between place cells and those encoding for place fields
not within three steps further along the route) connections. Data illustrated is for the triplet-based BCM type STDP rule with theta modulated
plasticity. (e) Typical synaptic weight matrix following ten traversals of the route when the non-BCM type STDP rule is employed with theta
modulated plasticity. In contrast to (c), auto-associative connections between place cells that encode for the same place field are depressed, while
hetero-associative connections between place cells that encode for successive place fields saturate at the upper weight bounds. (f) The relative mean
weight of synapses connecting each place cell to those that encode for the same place field (dark grey), the next place field on the learned route
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in the network remain silent. The fidelity of recall activity

produced in these simulations reflects the relative strength of auto-

associative connections generated during learning (Figures 3e; 6f).

However, pattern completion does not rely on an ‘idealised’

weight matrix: .90% accurate recall activity is produced

following learning with the triplet-based BCM type STDP rule,

which produce a mean auto-associative weight of ,0.7wmax.

Furthermore, no erroneous activity (i.e. firing in neurons that are

not part of the cued pattern) is produced following learning with

any of the STDP rules over a thousand separate recall simulations

(Figure 6d).

Finally, we examine recall activity following dual coded learning

by applying superthreshold stimulation to a randomly selected

subset of simulated neurons (three out of five) that encode for a

single theoretical place field on the learned route. As illustrated in

Figure 6e, this generates sequential recall activity in all neurons

encoding for each consecutive place field on the route over a

period of ,33ms. This activity is self-terminating and on

approximately the same timescale as sharp wave ripples observed

in vivo. Interestingly, strong auto-associative connections are not

necessary to generate these sequential activity patterns in encoded

place cell assemblies. Consistently high recall fidelity is produced

following learning with the non-BCM type STDP rule, when only

strong hetero-associative connections are generated (Figure 6f). In

fact, the fidelity of recall activity is generally inversely correlated

with the relative strength of auto-associative synaptic weights,

regardless of the concentration of ACh employed.

However, further simulations demonstrate that the relative scale

of background synaptic connections contributes more significantly

to erroneous recall activity than that of auto-associative connec-

tions – as arbitrarily setting the weight of all background

connections to zero following dual coded learning generally

eliminates all incorrect firing activity during subsequent recall

(Figure 7a). Furthermore, the temporal error in recall activity

following dual coded learning with BCM type STDP rules is

generally low (Figure 7b), such that correct sequence prediction

might be produced if one considers only the mean time of firing in

all neurons that encode for a single place field. It is also interesting

to note that recall fidelity consistently decreases over time, with the

vast majority of erroneous recall activity occurring in the final

,15ms of each putative sharp wave ripple event (Figure 7c).

Intuitively, the effective speed of putative SWR activity –

calculated using the time taken for sequential activity to progress

through place cells encoding for the entire length of the 2m track –

is significantly affected by the concentration of ACh present in the

network (Figure 7d), which dictates the magnitude of recurrent

synaptic currents. The effective speed of recall following hetero-

associative learning simulations is significantly slower (,25ms21),

due to the fact that fewer strong pre-synaptic connections (and

therefore weaker recurrent synaptic currents) exist for each

simulated place cell.

Discussion

Recurrent neural networks have an established history in

computational neuroscience as prototypical models of declarative

memory function [16,17,22,23]. It is widely accepted that the CA3

region of the hippocampus – which contains the densest recurrent

connectivity in the brain, and wherein synaptic plasticity can be

rapidly and reliably induced – represents their biological correlate

[18–21]. Despite their success in replicating key features of spatial

and declarative mnemonic function, these models have often been

criticised for their lack of biological realism in failing to integrate

neural and synaptic dynamics which correspond to those observed

in the hippocampus [39,102]. In contrast, we have presented a

spiking recurrent neural network that utilises theta coded neural

dynamics and STDP to encode and recall both rate and

temporally coded input patterns. This integrates previous auto-

and hetero- associative network models of the hippocampus within

a single framework using a single plasticity rule and provides them

with a firmer basis in modern neurobiology. The encoding and

reactivation of dual coded cell assemblies – putative phase

sequences of activity in mutually exciting ensembles of cells – is

believed to represent a fundamental mechanism for cognitive

processing [55,56,58].

Our findings demonstrate that, under certain biologically

feasible constraints, the temporally asymmetric STDP rule can

replicate rate-coded Hebbian learning by generating strong bi-

directional connections between neurons firing at an elevated rate

with no repeated sequence bias [77–79,81]. This implies that

STDP can support rate-coded auto-associative network function

and mediate cognitive map formation during open field explora-

tion [3,16,17,20,22,23]. The critical condition upon which this

dual rate- and temporally- coded learning relies is that the

magnitude of potentiation exceeds the magnitude of depression

incurred by spike pair interactions at shorter ISIs. For pair-based

STDP rules, this requires temporal restrictions on spike pairing

and constraints on the profile of the asymmetric learning window,

which concur with empirical measurements in the hippocampus

[47,77,78]. For triplet-based STDP rules, it is implicitly generated

by the short-term dominance of potentiation which, interestingly,

is on a similar timescale to the duration of a single theta cycle

[48,79]. Conversely, STDP rules which do not dictate a

dominance of potentiation at short ISIs prevent the development

of strong bi-directional connections, except where synaptic

plasticity is modulated such that only potentiation can proceed

at the peak of the LFP. Under these conditions, however, synaptic

weights undergo net depression as mean in-field firing rate

increases [80,82].

Despite replicating the gross phenomenological features of rate-

and temporally- coded synaptic plasticity data, the BCM type

STDP rules examined here exhibit several emergent features that

contradict empirical observations. Firstly, the additive nature of

these plasticity rules generates bimodal weight distributions that

are at odds with experimental measurements [103]. However, an

additive STDP rule might better approximate the known bi-

stability of synaptic strengths, and a unimodal distribution of

maximum weight limits could account for their observed

heterogeneity [104]. Previous computational modelling has also

demonstrated that the synaptic dynamics produced by additive

STDP rules can, under certain conditions, be qualitatively

replicated by a multiplicative plasticity rule [77]. Secondly,

empirical studies suggest that no depression is incurred at

connections between place cells encoding for overlapping place

fields in vivo [76]. In our model, a synaptic plasticity rule that

accounts for this data would more fully potentiate auto-associative

connections, although our results indicate that this is not necessary

for efficient pattern completion. Furthermore, it is interesting to

note that connections between place cells that encode for place

(medium grey), and all place fields not within three steps ahead on the learned route (light grey) following ten traversals, averaged over 50 separate
simulations, with the pair- and triplet- based BCM type STDP rules (A and B respectively) and the non-BCM type STDP rule (C).
doi:10.1371/journal.pcbi.1000839.g005
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Figure 6. Putative Sharp Wave Ripple Recall Activity Following Theta Coded Learning. (a) Typical spike raster observed in the network
during recall simulations following hetero-associative learning (as described in Figure 2). Externally stimulated firing of a single neuron produces
sequential recall activity in all neurons that constitute the originally learned pattern; (b) Statistics relating to hetero-associative recall for each STDP
rule and plasticity modulation scheme examined. Figures shown represent data averaged over 1000 randomly initialised recall epochs with W = 0.05
following hetero-associative learning simulations with the (A) pair-based BCM type; (B) triplet-based BCM type; (C) pair-based non-BCM type STDP
rules. Data illustrated for the relative frequency of neurons that fired before (dark grey); at the same time as (medium grey); and after (light grey) the
simulated neuron encoding for the next place field on the learned route. (c) Typical spike raster observed in the network during recall simulations
following auto-associative learning (as described in Figure 3). External stimulation of a random subset of (cued) neurons from each learned pattern
(five out of ten, in this case) generates selective firing in (uncued) neurons that encode for the same place field/pattern after 5–10ms (depending on
the plasticity rule employed during learning, and the concentration of ACh employed during recall). (d) Statistics relating to auto-associative recall for
each STDP rule and plasticity modulation scheme examined. Figures shown represent data averaged over 1000 randomly initialised recall epochs
following learning with the (A) pair-based BCM type STDP rule, and W = 0.05; (B) triplet-based BCM type STDP rule, and W = 0.083; (C) pair-based non-
BCM type STDP rule, and W = 0.05. Data illustrated for the relative frequency of uncued neurons that fire within 20ms of externally cued activity in
other neurons within the same pattern (dark grey) and the relative frequency of neurons in different, uncued patterns that fire within the same
temporal window (light grey). (e) Typical spike raster observed in the network during recall simulations following dual coded learning (as described in
Figure 5). External stimulation of a random subset of neurons from a single pattern (three out of five, in this case) produces sequential recall activity in
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fields with higher degrees of overlap appear to be more modestly

potentiated in vivo see Figure 5G in [76].

Empirical studies of synaptic plasticity in the hippocampus have

also demonstrated that the potentiation of asymmetric connections

by STDP depends on post-synaptic bursting [46]. A plasticity rule

that accounted for this data might therefore generate hetero-

associative synaptic weights that rely explicitly on mean in-field

firing rate, as observed for auto-associative connections in this

study. This should allow the implications of rate re-mapping in

pyramidal cells within CA3 – whereby the manipulation of non-

spatial cues within an environment significantly modulates the

firing rate of active place cells – to be examined [14,68]. In this

context, connections between place cells that exhibit high in-field

firing rates during learning – indicating the current configuration

of non-spatial stimuli within the corresponding environment –

would be preferentially potentiated. During subsequent SWR

activity, more complex transient dynamics within the global place

cell assembly encoding for that environment might therefore be

produced, according to the particular stimulus applied to the

network and its relationship to previously encoded configurations.

Figure 7. Further Details of Putative Sharp Wave Ripple Recall Activity. (a) Statistics relating to dual coded recall following learning with the
triplet-based BCM type STDP rule, when all background connections (i.e. between place cells and those encoding for all place fields that are not
within three steps on the learned route) are set to 0 following learning. Data shown for W = 0.111 and averaged over 1000 randomly initialised recall
epochs, illustrating the relative frequency of neurons that fired before (dark grey); at the same time as (medium grey); and after (light grey) the first
action potential in any simulated neuron encoding for the next place field on the learned route. This can be directly compared with Figure 6f. (b)
Histogram of temporal magnitude for every erroneous spike fired during 1000 randomly initialised dual coded recall epochs with W = 0.111 following
learning with the triplet-based BCM type STDP rule and theta modulated plasticity (that being the lowest recall fidelity displayed in Figure 6f). (c) The
mean percentage of incorrectly timed recall spikes observed during sharp wave ripple recall activity, displayed in terms of the distance along the
learned route, in place fields, from the externally stimulated place cells. Data is averaged over 1000 randomly initialised dual coded recall epochs for
the BCM type STDP rules with W = 0.111. (d) The effective speed of SWR activity – calculated using the time interval between the first spike caused by
superthreshold external stimulation and the first subsequent spike in a place field encoding for the same place field following the propagation of
activity along the entire length of the learned route – for different concentrations of ACh. Data is averaged over 1000 randomly initialised dual coded
recall epochs, following learning with theta modulated plasticity.
doi:10.1371/journal.pcbi.1000839.g007

simulated neurons that encode for each successive place field on the learned route. This neural activity pattern is reminiscent of sharp wave/ripple
dynamics observed during putative recall activity in the hippocampus; (f) Statistics relating to dual coded recall for each STDP rule and plasticity
modulation scheme examined. Figures shown represent data averaged over 1000 randomly initialised recall epochs with W = 0.111 following dual
coded learning for the (A) pair-based BCM type; (B) triplet-based BCM type; and (C) pair-based non-BCM type STDP rules. Data illustrated for the
relative frequency of neurons that fired before (dark grey); at the same time as (medium grey); and after (light grey) the first action potential in any
simulated neuron encoding for the next place field on the learned route.
doi:10.1371/journal.pcbi.1000839.g006
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From a functional standpoint, our findings suggest that the

synaptic competition described in several previous theoretical

studies as a putative homeostatic mechanism is absent for BCM

type STDP rules [77,80,82]. This is not surprising, considering the

wealth of literature regarding the global instability of rate-coded

Hebbian learning mediated by purely local variables [84,85].

However, it does imply that the encoding of multiple, overlapping

cell assemblies – as opposed to the single episodes examined here -

could rapidly lead to the saturation of synaptic weights and

interference during recall. Some additional mechanism – such as

synaptic scaling, weight normalisation or metaplasticity – is

therefore required to guarantee the long-term efficiency of

network models that use BCM type STDP rules by preventing

the slow potentiation of all connections, particularly since the

strength of background connections in our network model has

been shown to correlate with erroneous recall activity [84,85]. It is

interesting to note that empirical data suggests a broad dissociation

between net synaptic potentiation during waking and net

depression during sleep [105]. Within the context of modelling

mnemonic function, any mechanism of synaptic competition is

likely to affect the emergent dynamics of learning and recall in

terms of the long-term stability of previously encoded associations.

It is also useful to appraise the results presented here in terms of

more general theories of hippocampal mnemonic function. The

plasticity model implemented prevents the potentiation of synaptic

connections between place cells corresponding to trajectories

against the direction of motion, and therefore omits the possibility

of reverse replay in encoded cell assemblies during sharp wave

ripples [51,54]. Interestingly, putative SWR activity in our

simulations also proceeds an order of magnitude more quickly

than that observed in vivo – with effective recall speeds of ,80ms21

(Figures 6e, 7d) compared to the ,8ms21 observed experimentally

in CA1 [106]. Of course, the speed of SWR activity is strongly

affected by estimates of place field size and overlap, which may

differ significantly from the values used here. However, one critical

abstraction in our network model may contribute to both the

accelerated pace of SWR activity and the generation of erroneous

recall activity following efficient dual coded learning, and that is

the relative timescales of recurrent auto- and hetero- associative

connections.

Previous theoretical research has suggested that processes of

pattern completion and sequence prediction in CA3 must operate

on different timescales in order to effectively differentiate between

neural activity corresponding to different stages of a putative

phase sequence, and it is not clear how this could be achieved in a

single network with a fixed range of axonal delays. It has

therefore been suggested that different regions of the hippocam-

pus may mediate auto- and hetero- associative learning at distinct

sets of synapses using a single plasticity rule, such as that

presented here [39]. Our model suggests that CA3 can feasibly

implement auto- and/or hetero- associative learning and recall.

However, we have also demonstrated that auto-associative

connections are not necessary for the reactivation of dual coded

cell assemblies, and it seems plausible that purely hetero-

associative dynamics could account for the putative function of

CA3 in the rapid encoding of novel information and subsequent

pattern completion [20,21]. Conversely, it is possible that auto-

associative connections exist within CA3, where relatively short

axonal delays (which we have demonstrated to be necessary for

auto-associative learning) are observed; while hetero-associative

connections may be located in polysynaptic feedback connections

between CA3 and the dentate gyrus. Activity corresponding to

sharp wave ripples, which are believed to originate in CA3, have

been documented in the dentate gyrus during sleep [107].

Identifying the loci of auto- and hetero- associative synaptic

connections in the hippocampus remains an open problem for

empirical neuroscience. It seems feasible that simultaneous

recordings from these two regions and/or or the pharmacolog-

ically induced inhibition of firing in granule cells during sleep

could elucidate the relative contribution of each region to the

replay of previously learned associations.

The segregation of auto- and hetero- associative connections

may also allow the reactivation of cell assemblies to proceed

during encoding, rather than these processes being arbitrarily

separated between different network states. Several converging

strands of empirical research - as well as simple intuition - suggest

that some element of prediction, based on prior experience, is

present during periods of theta coded learning, including changes

in place field geometry and predictive theta modulated activity in

place cells at decision points on a maze task [65,99,108–110].

Indeed, it has been suggested that the phenomena of phase

precession itself may be generated by self-propagating ‘recall’

activity in cell assemblies within the hippocampus [67]. In our

model, hetero-associative connection delays are on the same

timescale as those measured in inter-connected CA3 pyramidal

cells (i.e. ,5ms), and thus sequence prediction via recurrent

excitation proceeds more quickly than theta coded activity

corresponding to external input. It is possible that inhibition

from different classes of interneuron, creating gamma oscillations

within each theta cycle, and/or the modulated efficacy of

recurrent excitation at different theta phases could selectively

manipulate the timing of pyramidal cell firing [37,39,40,43,65].

Similarly, if the loci of hetero-associative connections are poly-

synaptic feedback loops from the dentate gyrus, as discussed

above, then the replay of sequences will be explicitly staggered

and could therefore proceed between different (gamma) sub-

cycles of the theta oscillation [39].

In summary, this research provides a synaptic plasticity rule that

can mediate both rate and temporal coded learning within a

spiking recurrent neural network. Furthermore, it provides an

associative memory model that utilises this dual code in order to

integrate the encoding and reactivation of both dynamic (spatial)

and static (non-spatial) activity patterns. This allows manipulations

of the plasticity rule, neuronal dynamics and neural network to be

directly related to systems level function. Hebbian phase sequences

of activity in mutually exciting cell ensembles, such as those

examined here, have been postulated as a general mechanism of

neural coding for cognitive processing [55,58]. Support for this

theory comes from recent empirical evidence from the hippocam-

pus and pre-frontal cortex [57–60,111,112]. Furthermore, theo-

retical considerations are making it increasingly clear that cortical

function cannot be characterised by fixed point attractor

dynamics, and neural network models must therefore account

for the transient dynamics observed in vivo [56]. This research

provides a framework for an examination of how dual coded

activity patterns could be encoded in recurrent synaptic connec-

tions and subsequently reactivated by ongoing internal or external

dynamics.
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