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Abstract

During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-
aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+

influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic
strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,
including Ca2+/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind
up to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or
depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best
understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We
constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time
courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of
calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,
supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to
unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed
that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+

with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most
beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from
which to build more complex dynamic models of postsynaptic signal transduction during learning.
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Introduction

Calcium (Ca2+) is a critical second messenger in the brain. For

example, it has long been recognized that Ca2+ influx through N-

methyl-D-aspartate (NMDA) receptors initiates changes at synap-

ses that enable us to form memories and to learn. Transient influx

of Ca2+ through NMDA receptors triggers activation of complex

protein signaling networks that regulate changes in synaptic

efficacy including long-term potentiation (LTP) and long-term

depression (LDP) [1,2]. Calmodulin (CaM), a small protein (18

kDal) with four Ca2+ binding sites, is a molecular detector of

influxes of Ca2+ across the synaptic membrane. It is ubiquitous in

all cells including neurons [3–5], and it regulates proteins in

postsynaptic spines of excitatory neurons [6]. When Ca2+ enters

the spine, it binds to CaM and to other Ca2+-binding proteins. As

Ca2+ binds to CaM, the Ca2+/CaM complex can then bind to and

regulate its enzyme targets, many of which are immobilized in the

‘‘postsynaptic density’’ (PSD), a scaffold for signaling molecules

attached to the postsynaptic membrane [7]. The relative rates of

binding and affinities of the target enzymes for Ca2+/CaM are

believed to determine their level of activity in a sensitive and

selective fashion. Among the prominent CaM targets in the spine

is Ca2+/CaM-dependent protein kinase II (CaMKII) [8], which

plays a central role in initiating persistent synaptic changes [9]. It is

required for normal LTP; transgenic mice lacking the major

neuronal subtype of CaMKII show defective LTP and are

deficient in spatial learning and memory [10,11]. Thus, under-

standing the kinetics of interactions of Ca2+, CaM, and CaMKII

can provide important insight into the initiation of mechanisms of

synaptic plasticity.

The structure and Ca2+ binding properties of CaM have been

extensively characterized [12]. It comprises two pairs of Ca2+-

binding EF-hand domains located at the N-and C-termini,

respectively, separated by a flexible linker region (Figure 1,

[13–15]). The pairs of EF-hands at the N and C termini have

substantially different Ca2+ binding kinetics; however, both pairs
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bind Ca2+ ions cooperatively [16,17]. The interactions of Ca2+-

bound CaM with its targets are kinetically complex. CaM’s affinity

for many of its target proteins is increased upon Ca2+ binding and

it’s affinity for Ca2+ is enhanced upon binding of its target proteins

[18]. Dissociation of the N-terminal bound Ca2+ ions from CaM

often precedes dissociation of CaM from its target peptides [19].

When this is the case, the dissociation rate of the peptide from the

Ca2+-bound C-terminal domain of CaM (CaM-2C) strongly

influences the overall dissociation rate of the peptide from CaM.

The kinetics of Ca2+ binding to CaM are likely to be particularly

important in determining the outcome of Ca2+ signaling in

neuronal spines because Ca2+ triggers biochemical events in the

spine during a period when the Ca2+ concentration is fluctuating

rapidly [20]. Furthermore, in conditions of limiting Ca2+,

including basal Ca2+ or during relatively low amplitude Ca2+

transients, very few of the free CaM molecules will have four

bound Ca2+ ions. Yet physiological responses to small increases in

Ca2+ are observed [21], suggesting that CaM with fewer than 4

bound Ca2+ ions participates in initiating these responses.

CaMKII is a large holoenzyme comprising 12 homologous

catalytic subunits held together by association of their carboxyl

terminal domains [8,22]. Each of the subunits contains a single

CaM binding domain. Binding of Ca2+/CaM to this domain

releases inhibition of the active site and stimulates catalytic activity

[23]. Soon thereafter, a specific site within the catalytic subunit is

autophosphorylated; the autophosphorylation event stabilizes the

active conformation resulting in Ca2+-independent catalytic

activity [24]. Recently, we showed that CaM with two Ca2+ ions

bound to its C-terminal sites, binds to CaMKII and activates

autophosphorylation, though at a ten-fold lower catalytic rate than

fully loaded CaM (CaM with 4 Ca2+ bound) [25]. Thus, a kinetic

model that describes Ca2+ binding to each of the individual CaM

termini, as well as binding of Ca2+ to the CaM/CaMKII complex

is important for a complete description of the activation dynamics

of CaMKII in spines. Furthermore, a model that accounts for the

activity of CaM/CaMKII with less than 4 bound Ca2+, is

necessary to understand the extent of activation of CaMKII at

relatively low and/or fluctuating Ca2+ concentrations such as

occur in the spine cytosol.

Here we present two kinetic models of activation of monomeric

subunits of CaMKII which include binding of Ca2+ to free CaM

and to CaM bound to individual (ie. monomeric) CaMKII

subunits. The model of monomeric CaMKII (mCaMKII) allows

us to examine the significance of the dynamics of Ca2+ and CaM

binding independent of the effects of cooperativity of binding of

CaM between subunits within the holoenzyme [26]. Both models

include the different kinetics of Ca2+/CaM binding at the N and C

termini, and the thermodynamic stabilization of Ca2+-binding

when CaM is bound to a target protein [18]. The first model is a

complete model of binding of Ca2+ to the two CaM termini,

including 9 Ca2+/CaM states and their interactions with

mCaMKII. It differs from a recently published allosteric model

[27] in which the Ca2+ binding rates depend explicitly on whether

CaM is in one of two abstracted ensemble conformational states, R

or T. Most of the required kinetic rates in our model are well

constrained by previous experimental studies; however, a few have

not been measured directly. In these cases, we used the principle of

microscopic reversibility and fitting of existing experimental data

to derive reasonable ranges of values for the kinetic rates. The

second model is a coarse-grained model that is motivated by

experiments showing high cooperativity of binding between Ca2+

ions at each terminus [16]. Binding of the second Ca2+ to each

terminus of CaM is assumed to be rapid; thus, binding of pairs of

Ca2+ to each terminus is treated as a single event. The resulting

model includes 4 Ca2+/CaM states and their interactions with

mCaMKII.

We created computer simulations based on each of these two

models and explored their behavior under commonly used

experimental concentrations of Ca2+, CaM, and mCaMKII, and

under conditions that are closer to those believed to exist in

synaptic spines. We determined a range of initial conditions under

which the results of the coarse grained, pair-binding model are

indistinguishable from those of the complete model, and a range

under which the two deviate significantly. We show that Ca2+/

CaM species with fewer than four bound Ca2+ predominate under

Figure 1. Structure of Calmodulin (CaM). (A) A 1.7 angstrom
ribbon structure of free CaM (blue) with four bound Ca2+ ions (yellow).
PDB 1CLL [56] (B) A 2.4 angstrom ribbon structure of CaM bound to a
peptide (green) corresponding to the CaM binding domain of CaMKII.
(Residues 74–83 of the CaM linker region are not resolved in this
structure.) PDB 1CLL [15].
doi:10.1371/journal.pcbi.1000675.g001

Author Summary

Networks of neurons in the brain are connected together
by specialized signaling devices called synapses. One way
an active neuron relays its activity to other neurons is by
releasing small amounts of chemical transmitters from its
presynaptic terminals which induce electrical activity in
postsynaptic neurons connected to it. Memories are
formed when synapses in the network encoding the
memory change their strength in order to stabilize the
network. The decision whether or not a synapse becomes
potentiated is controlled by delicate variations in the
amount of Ca2+ ions that flow across the membrane at the
postsynaptic site, and by the pattern of influx over time.
The mechanisms of activation of regulatory enzymes that
decode this Ca2+ signal have been extensively studied
under laboratory conditions which are different from the
conditions encountered inside a neuron. Therefore, we
created a dynamic model of activation of one enzyme that
is critical for learning by Ca2+. The model allows us to
simulate activation of the enzyme within a biochemical
milieu similar to what it will encounter at the postsynaptic
site. It predicts unexpected behaviors of the enzyme in
vivo and provides a framework for quantitative exploration
of complex mechanisms of synaptic plasticity.

Model of Interactions of Ca2+, CaM, and CaMKII

PLoS Computational Biology | www.ploscompbiol.org 2 February 2010 | Volume 6 | Issue 2 | e1000675



many conditions that are believed to prevail in spines, and can

sometimes completely determine the level of autophosphorylation.

We find that activation of mCaMKII is highest at a particular

frequency of Ca2+ fluctuations. The frequency that gives highest

activation depends on the ratio of the time interval between Ca2+

transients and the rates of Ca2+ binding to the N and C termini of

CaM, as well as on the the width of the Ca2+ transients. Finally, we

performed global variation and sensitivity analyses to determine

which parameters most affect the levels of autophosphorylation at

particular times and under various conditions. We use these

analyses to help infer the kinetic pathways through which

autophosphorylation of CaMKII is likely to occur and to identify

parameters whose refinement by direct measurement will be most

important for the accuracy of predictions from our models.

The models presented here are a first step in a larger project to

build kinetic simulations of activation of the CaMKII holoenzyme

in the context of physiologically realistic models of Ca2+

fluctuations in postsynaptic spines [25,28]. In addition, the models

provide a framework in which to study activation of other Ca2+/

CaM dependent enzymes, including the CaM-dependent protein

kinases (CaMKI, CaMKIV, CaMKK, myosin light chain kinase),

phosphatases (calcineurin) and others (adenylate cyclase, neuronal

nitric oxide synthase, etc). Detailed kinetic analysis of these

interactions are critical for understanding the molecular mecha-

nisms that underlie synaptic plasticity because the events that

determine whether a synapse undergoes LTP or LTD are

determined under non-equilibrium conditions, when the Ca2+

concentration is fluctuating. Such analyses may also be useful for

understanding Ca2+/CaM signaling in other tissues such as

cardiac myocytes and cells of the immune system.

Methods

Models
We constructed a detailed model (Model 1) and a coarse-

grained model (Model 2), both of which describe the kinetics of

reversible binding of Ca2+ ions to free CaM and to the resulting

intermediate Ca2+/CaM complexes. The models also describe

reversible binding of Ca2+ to the Ca2+/CaM complexes after they

have bound to individual subunits of CaMKII (mCaMKII).

Finally, they describe the kinetics of irreversible autophosphoryla-

tion of mCaMKII, which is triggered by binding of Ca2+/CaM.

Model 1. Model 1 (Figure 2) is a ‘‘complete’’ nine-state

model. It describes the binding of individual Ca2+ ions to the CaM

termini, resulting in nine distinct Ca2+/CaM species or ‘‘states’’,

characterized by the number of Ca2+ ions bound at each terminus

(Figure 2A and top layer, Figure 2C). The two sites that bind Ca2+

at a terminus are not distinguished from one another because

previous investigators have shown that the sites at each terminus

interact strongly upon Ca2+ binding; whereas the sites on opposite

termini do not [16]. We use values from the literature, or our own

measurements to constrain ranges of the parameters for the top

layer of Model 1 and those for binding of CaM2C, CaM2N, and

CaM4 between the layers in Figure 2C (See Text S1 and Figure S1

for complete derivations.).

We then use the thermodynamic principle of microscopic

reversibility to constrain the equilibrium dissociation constants for

the lower layer of the reaction model (Figure 2B), and for the

remainder of the reactions between the layers, which represent

interactions of CaMnNcC with mCaMKII (Figure 2C). Binding of

CaM to CaMKII alters the affinity of CaM for Ca2+. Therefore,

the 4 equilibrium constants (KK1C
D ,KK2C

D ,KK1N
D ,KK2N

D ) and 8

kinetic rates (kK1C
on ,kK2C

on ,kK1C
off ,kK2C

off ,kK1N
on k2N

on ,k1N
off ,k2N

off ) that spec-

ify binding of Ca2+ to KNCaM in Figure 2B (and Figure 2C, lower

layer) are different from those that specify binding of Ca2+ to free

CaM in Figure 2A (and Figure 2C, upper layer). The principle of

microscopic reversibility states that the change in free energy

around a reaction loop is zero and thus defines relationships

among the equilibrium constants for Ca2+ in the upper and lower

layers, and among those of the CaMnNcC species for CaMKII in

the reactions between the layers (Figure 2C). We use the measured

affinities of Ca2+ for free CaM and these relationships to constrain

the affinities of CaM species for Ca2+ when they are bound to

mCaMKII. In the same way, we use measurements of the affinities

of CaMKII for CaM4, CaM2C, and CaM2N to constrain the

affinities of CaMKII for CaM species with odd numbers of bound

Ca2+. An example of one of these calculations is given in Text S1.

To quantify the change in affinity of CaM for Ca2+ after CaM

binds to mCaMKII, we define cooperativity coefficients s and r.

The coefficient s represents the increase in affinity of the N lobe of

CaM for Ca2+ when CaM binds to mCaMKII. Explicitly, s is the

ratio of the dissociation constant of Ca2+ from CaM1N2C to the

dissociation constant of Ca2+ from KNCaM1N2C, i.e.,

s:K2N
D =KK2N

D (Figure 3). The analagous coefficient r for the C

lobe of CaM is defined as r:K2C
D =KK2C

D . Again, using the

principle of microscopic reversibility (Figure 3), we show that s and

r also represent the proportional decrease in affinity of CaM for

mCaMKII when CaM4 loses a Ca2+ to become CaM1N2C or

CaM2N1C; thus, s~KCaM1N2C
D =KCaM4

D , and r~KCaM2N1C
D =

KCaM4
D .

To determine the contributions of individual on and off rates to

the change in affinity of CaM for Ca2+ after CaM binds to

mCaMKII, we define four relations: s2~s2
ons2

off , r2~r2
onr2

off ,

s2
CaM~s2

CaM,ons2
CaM,off and r2

CaM~r2
CaM,onr2

CaM,off ). (See Text S1

for complete derivations.) The eight cooperativity coefficients (son,

sCaM,on, ron, rCaM,on, and the corresponding off coefficients), which

represent four independent variables, are constrained by fitting to

three sets of experimental data (Figure 4, and Text S1).

The definitions of the 8 equilibrium constants and the 47 rate

constants for Model 1, and their constrained ranges of values, are

given in Table S1. The fitted values of individual cooperativity

coefficients are given in Table S2.

Model 2. Model 2 (Figure 5) is a coarse-grained version of

Model 1 in which we assume that association and dissociation of the

two Ca2+ ions at each terminus occurs simultaneously. Thus, the

model includes 4 distinct species of Ca2+/CaM; CaM0, CaM2N,

CaM2C, and CaM4. The values of rate constants for Model 2 are

derived directly from parameters of Model 1 as described in Text S1.

Model of autophosphorylation. Autophosphorylation of

mCaMKII occurs when two KNCaMnNcC species bind to form

a complex, allowing one of the monomers to act as enzyme and

the other as substrate (Figure 6; Hansen et al. [29]). We use the

autophosphorylation model shown in Figure 6 in both Models 1

and 2. We assume that dissociation of the complex after

autophosphorylation of the substrate molecule is relatively fast;

thus, we do not model it explicitly. As a further simplification, we

assume that, once the KNCaMnNcC-KNCaMnNcC complex forms,

the autophosphorylation reaction occurs sufficiently rapidly that

neither CaM nor Ca2+ dissociates from either kinase monomer in

a complex. The intrinsic rate of autophosphorylation in a complex

is ,1 s21 [25]; whereas the rate of dissociation of CaM4 from a

single KNCaM4 is 1.1 to 2.3 s21 [30]. Thus, our assumption is

equivalent to the assumption that binding of two KNCaMnNcC

species in an enzyme-substrate complex stabilizes their bound

Ca2+/CaM. After a subunit is autophosphorylated, the off rate of

CaM4 is decreased to ,.07 s21 at nM Ca2+ and ,961025 s21 at

mM Ca2+, effectively ‘‘trapping’’ CaM4 for several seconds, even at

low Ca2+ concentration [30].

Model of Interactions of Ca2+, CaM, and CaMKII
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Estimation of physiological concentration ranges of Ca2+,
CaM, and CaMKII

Many of the simulations were carried out with concentrations of

Ca2+, CaM, and CaMKII that approximate those in postsynaptic

spines of excitatory neurons in the forebrain. The concentration

ranges of CaM, CaMKII, and Ca2+ in spines were estimated from

previous biochemical studies as follows. The average protein

concentration in rat brain was taken as 100 mg/ml (equivalent to

,10% by weight, see [31]). CaMKII is an unusually abundant

enzyme in the forebrain; its concentration is 2% of total protein by

weight in the hippocampus and 1% in the rest of the forebrain as

measured by quantitative immunoblot [32]. Therefore, its average

concentration in the hippocampus is ,2 mg/ml. CaMKII is

found almost entirely in excitatory neurons which account for

approximately half of forebrain weight, the rest consisting of

inhibitory neurons, glial cells, blood vessels, and other minor cell

types. Thus, the average concentration of CaMKII in excitatory

neurons is ,4 mg/ml. Given that the molecular weight of

individual CaMKII subunits is ,56 kDa, the average concentra-

tion of CaMKII catalytic subunits in the hippocampus is ,74 mM.

In the rest of the forebrain, the average concentration is ,37 mM.

Several studies have shown that CaMKII is usually more

concentrated in the heads of spines than in dendritic shafts

[e.g. 33] and is highly concentrated in the postsynaptic density

fraction [34]. On the other hand, CaMKII appears to move into

or out of spines in response to synaptic activation [35,36] and can

associate with proteins in or near the PSD [7]. Thus, in our

simulations, we explore the effect of concentrations of CaMKII

subunits from 40 to 200 mM on the rate of autophosphorylation.

When studying other variables, we set the concentration of

mCaMKII at 80 mM.

The concentration of CaM in bovine and rat brain varies from

,17 mM in the hippocampus [3] to ,26 mM in the cerebral cortex

and whole brain [3,4]. If CaM in the particulate fraction is included,

the estimated concentration in brain rises to ,33 mM [3]. In our

simulations, we use concentrations of CaM from 20 to 40 mM.

Figure 2. Model 1: binding among Ca2+, CaM, and mCaMKII. The top layer (A) represents binding of Ca2+ to CaM. Red arrows correspond to
Ca2+ binding to the C-terminus, and blue arrows binding to the N-terminus. The bottom layer (B) represents Ca2+ binding to CaM while CaM is bound
to CaMKII. The CaM species are denoted as CaMnNcC with n, c [f0,1,2g, such that n is the number of Ca2+ bound to the amino (N) terminus and c is
the number of Ca2+ bound to the carboxyl (C) terminus. The species of CaM bound to mCaMKII are denoted KNCaMnNcC. For convenience, we use
CaM4 and KNCaM4 to denote species with n = c = 2, and CaM0 and KNCaM0 to denote those with n = c = 0. (C) The full model is represented as a cube,
with yellow arrows indicating binding between CaMnNcC and mCaMKII.
doi:10.1371/journal.pcbi.1000675.g002

Model of Interactions of Ca2+, CaM, and CaMKII
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The concentration of Ca2+ in postsynaptic spines varies

dramatically. Basal concentrations from 50 to 500 nM have been

reported; whereas, in the immediate vicinity of activated NMDA

receptors in the PSD, the transient concentration can rise to tens

of mM [28,37–39]. Here, we explore the dynamics of autopho-

sphorylation of CaMKII through a large range of physiological

Ca2+ concentrations and in response to trains of brief calcium

transients (msec duration), similar to those thought to occur in

neurons. We also examine autophosphorylation at steady-state

concentrations of Ca2+ ranging from 0.5 to 250 mM, which mimic

experimental conditions. In all simulations, the concentration of

Mg2+-ATP is assumed to be saturating, as it would be in the cell.

Simulation methods
Reaction networks were entered into Mathematica [40] with the

Xcellerator package [41] which translated the networks into

systems of ODEs based on the law of mass action. Numerical

integration was performed in Mathematica [40]. This method

assumes well-mixed conditions and thus only approximates the

situation in the cytosol.

Ca2+ spikes were simulated as exponential functi-

ons a0
:e{(t{mc)2=s2

; where a0 and s set the spike height and half

width, respectively; mc centers the spike at a location relative to the

last spike, depending upon the input frequency; and t is time. This

function was used as a fixed boundary condition representing the

free Ca2+ concentration. Thus, total Ca2+ was not conserved over

the sum of the driving function and the Ca2+ bound to various

molecular species. This algorithm simulates a neuronal environ-

ment in which Ca2+ enters the cytosol through voltage and ligand-

gated channels and is then rapidly sequestered or removed.

Mathematica packages implementing the models are available

from the authors.

Figure 3. Energy loop diagram for derivation of cooperativity
coefficients. The thermodynamic free energy around a reaction loop
must sum to zero. This principle (microscopic reversibility) constrains
the relationship between the equilibrium constants in the loop. We
define cooperativity coefficients s (for the N-terminus of CaM) and r (for
the C-terminus of CaM) to quantify the relationship between the affinity
of Ca2+ for free CaM and of Ca2+ for CaM when bound to CaMKII. The
principle of microscopic reversibility indicates that these coefficients
also quantify the relationship between the affinity of CaMKII for CaM
with three bound Ca2+ ions, and the affinity of CaMKII for CaM4, as
shown in the figure for the N-terminal coefficient s.
doi:10.1371/journal.pcbi.1000675.g003

Figure 4. Constraining of s and r cooperativity coefficients for on and off rates by fitting to experimental data. Three independent sets
of experimental data were used to constrain the values of the cooperativity coefficients s and r, that represent the ratios between the on and off
binding constants for Ca2+ to the N- and C-termini of free CaM (respectively) and the corresponding binding constants for Ca2+ to the same termini in
the KNCaM complex. The simplex method for gradient descent was used to fit the parameters to each set of data. A) Fits to data for dissociation of
CaM from CaMKII in 50 mM Ca2+ (data from Figure 2B in [30]); B) Fits to data for dissociation of CaM from CaMKII in 200 nM Ca2+ (data from Figure 2B
in [30]); and C) Fits to data for dissociation of Ca2+ from Ca2+/CaM/CaMKII (data renormalized from Figure 4A in [57]). Black, real data; Blue, best fit
when all the cooperativity was assumed to reflect a change in on rates; Green, best fit when all the cooperativity was assumed to reflect a change in
off rates; Red, best fit when cooperativity in on and off rates were allowed to vary simultaneously. (See Text S1 for details.)
doi:10.1371/journal.pcbi.1000675.g004

Model of Interactions of Ca2+, CaM, and CaMKII

PLoS Computational Biology | www.ploscompbiol.org 5 February 2010 | Volume 6 | Issue 2 | e1000675



Sensitivity analysis
We used sensitivity analyses to determine which parameters of

Model 1 (Table S1) produce the most variation in the predicted

autophosphorylation of mCaMKII. We assembled random sets

of input parameters, sampled over the range of experimental

values for each parameter, using Latin Hypercube sampling

[42–44], as described in Text S1. The values were taken from

Table S1, and from the range of estimates of physiological

concentrations of Ca2+, CaM, and mCaMKII (above). We then

calculated output of the model for each set of randomized

parameters every 0.05 s for a 2 s simulation. In one set of

calculations, we used a series of fixed concentrations of Ca2+ to

examine how the importance of individual parameters varies at

different Ca2+ concentrations. The contribution of variations in

each input parameter to variation in the output was quantified by

calculating the partial rank correlation coefficient (PRCC)

[42–45,reviewed in 46], as described in [47]. The PRCC

quantifies the correlation of values of each individual parameter

with the output, when the linear effects of the other parameters

on output are removed. A perfect positive correlation gives a

PRCC of 1; whereas, a perfect negative correlation gives a PRCC

of 21. Details are described in Text S1.

Figure 5. Model 2: coarse-grained model of binding among Ca2+, CaM and CaMKII. The reaction network includes only pairs of Ca2+ ions,
assuming highly cooperative binding at each CaM terminus. Rate constants were derived from those for Model 1 as described in Text S1.
doi:10.1371/journal.pcbi.1000675.g005

Figure 6. Model of autophosphorylation of one mCaMKII by another. Autophosphorylation requires that CaM be bound to both the subunit
acting as ‘‘enzyme’’ and the subunit acting as ‘‘substrate’’. A range of association rate constants for the subunit complex (Table S1) were calculated
based upon estimated affinity constants from experimental studies as described in Text S1. Phosphorylated KNCaMnNcC species are denoted
pKNCaMnNcC.
doi:10.1371/journal.pcbi.1000675.g006

Model of Interactions of Ca2+, CaM, and CaMKII
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Results

Time evolution of Ca2+ binding to CaM and its effect on
autophosphorylation

Model 1 was used to predict the time evolution of binding of

Ca2+ to CaM and of Ca2+/CaM to mCaMKII after a rapid

increase in concentration of Ca2+. In particular, we examined the

time evolution when the concentrations of Ca2+ or CaM are not

high enough to saturate binding to mCaMKII; conditions that are

likely to prevail in postsynaptic spines during activation of

NMDARs [7]. Figure 7 shows the predicted time evolution of

all CaM species (0–4 bound Ca2+ ions) when 10 mM Ca2+ was

introduced at time zero into a system containing 30 mM CaM and

80 mM mCaMKII. We picked these values because they are

within the likely physiological ranges of concentrations in a spine

during activation of NMDARs. Changes in the species of free

CaM (Figure 7A), CaM bound to mCaMKII (Figure 7B), and

CaM bound to autophosphorylated mCaMKII (Figure 7C) were

plotted during one sec of simulation. Ca2+ bound rapidly to the N-

terminus of free CaM within the first few msecs after addition,

resulting in peaks in the concentrations of CaM1N and CaM2N

(Figure 7A; brown and pink). Because Ca2+ also dissociates rapidly

from these sites, the concentrations decayed within the first

200 msec to a relatively low equilibrium value. In contrast, Ca2+

bound more slowly to the C-terminus of CaM (blue and purple),

but free CaM1C (blue) reached a relatively high equilibrium

concentration because Ca2+ has a higher affinity for the C-

terminal sites. The equilibrium concentration of free CaM2C

remained low because this species (purple) binds very rapidly to

mCaMKII (9.2 mM21 sec21, see Table S1). Thus, by 50 msecs,

KNCaM2C was the most abundant KNCaM species in the

simulation (Figure 7B, purple).

We have shown experimentally that CaM2C and CaM2N

support autophosphorylation upon binding to mCaMKII, al-

though at a rate 10 to 20-fold lower than CaM4 [25]. Because of

the faster autophosphorylation rate of CaM4, the most abundant

autophosphorylated mCaMKII species throughout most of the

simulation was pKNCaM4 (Figure 7C, red). Nevertheless, under

the conditions of this simulation in which the concentrations of

Ca2+ and CaM are limiting, pKNCaM2C became the dominant

species by the final 200 msecs (Figure 7C, purple).

To test whether the actual binding of mCaMKII to CaM

species with less than 4 bound Ca2+ ions influenced the final extent

of autophosphorylation under these conditions, we constrained

Model 1 such that only CaM4 could bind directly to mCaMKII.

Thus, we set reaction rates to zero for all the vertical yellow arrows

in Figure 2C, except the on and off rates for binding of CaM4 to

mCaMKII to form KNCaM4. We altered the model for autopho-

sphorylation such that only KNCaM4 could be autophosphory-

lated. However, we continued to allow KNCaM species with less

than four bound Ca2+ ions to carry out autophosphorylation of

KNCaM4 as follows:

K.CaM4zK.CaMjNkC
KCaMKII

D

K.CaM4 .K.CaMkNjC
k2,2

p

pK.CaM4zK.CaMjNkC

Thus, we continued to allow dissociation reactions in which

KNCaM4 loses Ca2+ ions. However, as in the complete Model 1,

we assumed that after autophosphorylation, pKNCaM4 did not

lose either CaM or its bound Ca2+ during a one sec reaction.

Figure 8 shows the time evolution of all CaM species predicted

by this limited model under the same conditions as in Figure 7.

The time evolution of free CaM species (Figure 8A) was similar to

that in Figure 7A, although free CaM with less than 4 bound Ca2+

ions reached higher equilibrium concentrations, presumably

because they could not bind to mCaMKII. A larger divergence

between the full and limited Models is evident in Figure 8B. The

total concentration of CaM species bound to mCaMKII after one

sec was reduced from ,3 mM in Figure 7B to less than 1 mM in

Figure 8B (note difference in scales of the ordinates). Conversely,

the concentration of KNCaM4 (Figure 8B, red) was elevated

relative to the other KNCaM species presumably because the

nonsaturated CaM species could not bind directly to mCaMKII,

leaving more of them to bind Ca2+ and be ‘‘promoted’’ to free

CaM4, after which they could bind to mCaMKII. The total

concentration of all KNCaM species with fewer than 4 bound Ca2+

was considerably reduced compared to Figure 7B because the only

kinetic pathway by which these species could be formed was via

loss of Ca2+ from KNCaM4. The only phosphorylated species was

pKNCaM4 (Figure 8C), as dictated by the design of the limited

Model 1. The most interesting result was that the equilibrium

concentration of pKNCaM4 species in the limited model was only

,25% of the level reached in the full model (,0.02 in Figure 7C

vs. ,0.005 in Figure 8C; note difference in scale of the ordinates).

This result means that, when concentrations of Ca2+ and CaM are

limiting, the most important pathway toward formation of

pKNCaM4 in Model 1 is via binding of Ca2+ to partially filled

KNCaM species prior to autophosphorylation. Thus, even if

autophosphorylation of KNCaM2C and KNCaM2N could not

occur, these partially filled CaM species would assume an

important kinetic role in the autophosphorylation reaction,

presumably because binding of CaM to the kinase target enhances

the affinity of CaM for Ca2+.

This kinetic pathway may have general significance for signaling

through CaM because theoretical considerations suggest that

different targets of Ca2+/CaM have different abilities to stabilize

Figure 7. Time courses of species of CaM, KNCaM, and pKNCaM
with varying numbers of bound Ca2+ ions, simulated with
Model 1. The initial conditions for the simulation were [CaM] = 30 mM,
[mCaMKII] = 80 mM, and [Ca2+] = 10 mM. A) Time course of formation of
species of free CaM. B) Time course of formation of species of CaM
bound to CaMKII (KNCaM). C) Time course of formation of species of
CaM bound to phosphorylated CaMKII (pKNCaM). The color code for
Ca2+ occupation of sites on CaM is indicated on the lower left. *color
code applies to all forms of CaM with the indicated bound Ca2+. Note
differences in scale for panels A), B) and C).
doi:10.1371/journal.pcbi.1000675.g007
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Ca2+/CaM species, depending on the structures of their CaM

binding sites and surrounding residues. The kinetic role of

stabilization of sub-saturated Ca2+/CaM species by targets may

significantly influence the outcome of regulatory events initiated by

Ca2+ transients in vivo; and these outcomes may not be accurately

predicted by the behavior of the enzyme targets at saturating,

steady-state Ca2+/CaM concentrations in a test tube.

Comparison of Model 1 to simpler models of interaction
among Ca2+, CaM, and mCaMKII

We compared predictions of Model 1 to two other models of

interactions of Ca2+, CaM, and CaMKII: Model 2, a coarse-

grained 4 state model derived from Model 1 (Figure 5) and the

‘‘Empirical’’ Model, a 2 state model in which only CaM4 can bind

to CaMKII. The Empirical Model includes a version of the Adair-

Klotz equation which represents the relation between Ca2+

concentration and levels of CaM4 [48], and assumes cooperativity

of binding of the four Ca2+ ions to CaM. This empirical model is

similar to other 2-state models that have been used in studies of

CaMKII [49,50]. The initial concentrations of free CaM and

mCaMKII were set to 30 mM and 80 mM, respectively, as in

Figures 7 and 8, and ratios of the output of these two models to

that of Model 1 were calculated, varying Ca2+ from 1 to 500 mM,

and time from 0 to 60 sec (Figure 9). The output of Model 2 differs

considerably from Model 1 at physiological concentrations of Ca2+

(1 to 30 mM). This result means that Model 1 is required to obtain

the most acccurate estimates of binding of Ca2+ to CaM and

CaMKII under the conditions that prevail in a spine; the simpler

Model 2 can be used when accuracy within a factor of 2 is

adequate. In contrast, the differences between the empirical model

and Model 1 in the same physiological range of Ca2+ are much

greater. For example, at 10 mM Ca2+, the empirical model

predicts ,100 fold higher autophosphorylation after 1 sec than

does Model 1; whereas, Model 2 predicts ,1.12 fold higher

autophosphorylation than does Model 1. This result means that

the empirical model, and by inference other 2 state models, do not

accurately predict Ca2+/CaM dynamics at concentrations of Ca2+,

CaM, and CaMKII present in vivo. Thus, in order to achieve the

highest accuracy in predictions of CaMKII activity in a spine, it is

necessary to include the kinetic details of binding among Ca2+,

CaM, and CaMKII.

The kinetics of interaction among Ca2+, CaM, and
mCaMKII produce frequency dependence of
autophosphorylation during transient Ca2+ signals

Previous investigators have studied the dependence of activation

of CaMKII on the frequency of rapid series of Ca2+ transients such

as occur inside a cell during signaling. One experimental study

demonstrated a frequency dependence by applying brief pulses

(80 ms to 1 s at 0.1 to 10 Hz) of fully saturated Ca2+/CaM

(500 mM Ca2+, 0.1 to 0.4 mM CaM) to immobilized CaMKII and

then measuring the resulting Ca2+-independent catalytic activity

[51]. Autophosphorylation was dependent on frequency between

,0.5 and 4 Hz for 100 ms pulses, and between ,2 and 10 Hz for

80 ms pulses. The authors theorized that the frequency depen-

dence arises from the requirement that two CaM’s must bind to

two adjacent kinase subunits in a holoenzyme to initiate

autophosphorylation [29]. Thus, if the off rate for dissociation of

Ca2+/CaM from a single subunit is significantly slower than the

inter-stimulus interval of the Ca2+ transients, some Ca2+/CaM will

remain bound individual subunits and contribute to activation of

autophosphorylation during the next transient stimulus. The

theoretical model of Kubota and Bower, which included the

empirical model described in Figure 9A for association of Ca2+,

CaM, and CaMKII, also supported this same mechanism [48].

We found that Model 1 predicts an additional mechanism for

frequency dependence in which the kinetics of Ca2+ binding to the

C terminus of CaM in the KNCaM complex give rise to frequency

dependence of autophosphorylation in the 1 to 8 Hz range.

Figure 10 shows plots of summed autophosphorylation after 30

Ca2+ pulses, as a function of frequency of the pulses. Figure 10A

illustrates pulses of width 20 ms; Figures 10B and C, pulses of

100 ms. The three curves in each figure were generated with three

different values of kK2C
off ; default (median of range in Table S1,

blue), default divided by 10 (magenta), and default times 10

(yellow). The default value produces 2-fold variation in autopho-

sphorylation from 0.5 to 4 Hz for 20 ms pulses of height 10 mM,

no frequency dependence for 100 ms pulses of 100 mM, and a 3-

fold variation from 0.5 to 7 Hz for 100 ms pulses of height 2 mM.

Faster values of kK2C
off decrease the range and magnitude of

frequency dependence; whereas, slower values increase the range

of the frequency dependence.

To determine whether this form of frequency dependence

requires that two CaM’s must bind to two kinase monomers to

initiate autophosphorylation, Model 1 was altered to permit zero-

order autophosphorylation (that is autophosphorylation without

the requirement for monomer-monomer interactions). The

modified model showed similar frequency dependence (data not

shown), indicating that the requirement for two CaM’s binding to

two monomers does not play a large role in this mechanism of

frequency dependence.

To explore the mechanism further, we examined how the

frequency of Ca2+ pulses affects the accumulation of CaM species

Figure 8. Time courses of species of CaM, KNCaM, and pKNCaM
with varying numbers of bound Ca2+ ions, simulated with
Model 1 altered to allow binding of only CaM4 to CaMKII, and
autophosphorylation of only KNCaM4. The initial conditions were
as in Figure 7. A) Time course of formation of species of free CaM. B)
Time course of formation of species of CaM bound to CaMKII (KNCaM).
C) Time course of formation of species of CaM bound to phosphor-
ylated CaMKII (pKNCaM). The level of pKNCaM4 after 1 sec is 3 times
lower than in the simulation with the complete Model 1 (Figure 7C).
This demonstrates that the dominant pathway to pKNCaM4 at short
times under these conditions is via Ca2+ binding to KNCaM species with
fewer than 4 bound Ca2+ ions. The color code for Ca2+ occupation of
sites on CaM is indicated on the lower left. *color code applies to all
forms of CaM with the indicated bound Ca2+. Note differences in scale
for panels A), B) and C).
doi:10.1371/journal.pcbi.1000675.g008
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during each pulse. Ten and 1 sec of 20 ms pulses of 10 mM Ca2+

were simulated at 0.5 and 7 Hz, respectively. At 0.5 Hz

(Figure 11A), KNCaM2C and KNCaM4 formed by a single pulse

dissociated completely before the next pulse began. Thus, there

was no interaction between the species formed from one pulse to

the next, and no frequency dependence of autophosphorylation. In

contrast, at 7 Hz, KNCaM2C was entirely converted to KNCaM4

during each pulse, but some of the KNCaM4 dissociated into

KNCaM2C during the inter-pulse interval. The additional

KNCaM2C was converted to KNCaM4 during the next pulse.

Thus, the concentrations of KNCaM2C and KNCaM4 increased

significantly with each pulse, resulting in a slightly higher level of

autophosphorylation after the same number of pulses at 7 Hz,

compared to 0.5 Hz. This small increase translates into a 2-fold

increase in autophosphorylation for 30 pulses at 7 Hz compared to

30 pulses at 0.5 Hz (Figure 10A).

Sensitivity of autophosphorylation to variations in input
parameters for Model 1

We performed sensitivity analyses, as described under Methods,

to identify which parameters most influence the outcome of Model

1. The analyses were carried out in two different ways. We first

examined the importance of each input parameter based on the

range of the estimated experimental uncertainty in its measure-

ment, as listed in Table S1. For this analysis, parameters were

varied over the full range of values in Table S1. Values of

parameters that do not have ranges, or for which the range is

unknown, were varied 4-fold with the value in Table S1 taken as

the mean. We next determined the importance of each parameter

without using the estimated range of experimental uncertainty. For

that analysis, we assumed that the mean values are accurate

estimates of the real mean. Parameters were varied 2.5-fold

around the mean values in Table S1. This second analysis

measured the influence of the relative magnitude of each

parameter and its position in the model rather than the limitations

of experimental estimates of individual parameters.

We used PRCC values (calculated as described under Methods)

to describe the relative importance of each parameter for predicting

the level of autophosphorylation. Not surprisingly, we found that

autophosphorylation is highly sensitive to changes in Ca2+

concentration when all parameters are varied globally (Table 1).

Because Ca2+ signaling in vivo often occurs over a period of a few

hundred msecs or less, we examined which parameters most

influence autophosphorylation levels at different times during a

reaction. We calculated PRCC’s for time series under three different

regimes of Ca2+ concentration; low (1–5 mM), medium (10–50 mM),

and high (50 to 250 mM). The low regime encompasses the range

believed to arise in and near the PSD during low frequency

stimulation of NMDA-receptors [28,52]. The medium regime

encompasses the concentrations believed to occur in the PSD

during strong stimulation of NMDA receptors [28,52]. Concentra-

tions above 100 mM likely do not occur under normal physiological

conditions, but are frequently used in enzymatic experiments in the

laboratory. As expected, the importance of specific binding

parameters varies considerably with time and among the three

Ca2+ regimes. Table 1 lists the parameters having a PRCC value

either above 0.3 or below 20.3, indicating a strong correlation

(positive or negative, respectively) with the output value.

The concentration of CaMKII subunits was an important

determinant at low Ca2+; whereas the concentration of CaM

assumed more importance at higher Ca2+ and longer times. The

KD for the interaction between two CaMKII subunits with bound

CaM was a strong determinant of the output at all Ca2+

concentrations and times (Table 1).

Figure 9. Differences in predicted autophosphorylation between Model 1, Model 2, and an Empirical Model, at varying
concentrations of Ca2+ and reaction times. A) Surface plot of ratio of autophosphorylation predicted by the Empirical model and by Model 1. B)
Surface plot of ratio of autophosphorylation predicted by Model 2 and by Model 1. In A and B Contour lines for 1, 5, and 60 sec reaction times are
shown in light gray. C) Ca2+-dependence of the ratio of autophosphorylation predicted by the Empirical model and Model 1 at 1, 5, and 60 sec
reaction times. D) Same as C for ratio of autophosphorylation predicted by Model 2 and Model 1.
doi:10.1371/journal.pcbi.1000675.g009
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Of the 47 individual rate constants, 14 had a significant PRCC

value in at least one of the regimes. In low Ca2+, 6 rate constants at

0.1 sec, and 5 at 1 and 2 secs, had significant PRCCs; in medium

Ca2+, 4 at 0.1 sec, and 8 at 1 and 2 secs, had significant PRCC’s;

and in high Ca2+, only the intrinsic rate of autophosphorylation

had a significant PRCC.

At lower Ca2+ concentrations and shorter times, the most

important rate constants are those for formation of KNCaM

species with fewer than 4 bound Ca2+; and the autopho-

sphorylation rate constants, kCaM1C
p and kCaM2N1C

p . When the

narrower range of parameters is used in the calculations (Table

S3), kCaM1N
p and kCaM2N

p replace kCaM2N1C
p . Thus, the ability of

KNCaM complexes with few bound Ca2+ ions to support

autophosphorylation is critical at low Ca2+. At medium Ca2+,

KNCaM4 has a strong influence on autophosphorylation at all

times because its autophosphorylation rate constant ( kCaM4
p ) is

10 times higher than that of KNCaM2C (kCaM2C
p ). The rate

constants for binding of Ca2+ to KNCaM at the N terminus (kK1N
on ,

kK1N
off , kK2N

on , kK2N
off ) have a strong influence, reflecting the fact that

KNCaM2C reaches a higher concentration than KNCaM2N after

the first 100 msecs because of the higher affinity of the C-

terminus for Ca2+. Thus, the rate of conversion of KNCaM2C to

KNCaM4 by binding of Ca2+ to the N-terminus of CaM is critical.

In the high Ca2+ regime, which represents the usual well-mixed

experimental conditions, Ca2+ concentration, kCaM4
p , CaM

concentration, and the KD for monomer-monomer association

are the determining parameters.

Figure 10. Frequency dependence of autophosphorylation
produced by Ca2+ binding dynamics. Simulations were performed
with [CaM] = 30 mM and [mCaMKII] = 80 mM. Each line plots summed
autophosphorylation of all kinase complexes in response to a series of
30 Ca2+ spikes at varying frequencies simulated with Model 1 as
described in Methods. A) The half width of each spike (s ) is set to
10 ms (width = 20 ms, FWHM = 16 ms) and the peak height (a0) is
10 mM. B) The half width of each spike (s ) is set to 50 ms
(width = 100 ms, FWHM = 83 ms) and the peak height (a0) is 10 mM.
C) The half width of each spike (s ) is set to 50 ms (width = 100 ms,
FWHM = 83 ms) and the peak height (a0) is 2 mM. Blue, simulations with
all parameters set to default (midpoint of ranges in Table S1). Gold,
same as blue except that the default kK2C

off is multiplied by 10 to
produce faster decay of KNCaM2C. Magenta, same as blue except that
the default kK2C

off is divided by 10 to produce slower decay of KNCaM2C.
doi:10.1371/journal.pcbi.1000675.g010

Figure 11. Interaction of time evolution of KNCaM2C and
KNCaM4 with frequency of Ca2+ pulses. Simulations were
performed with [CaM] = 30 mM and [mCaMKII] = 80 mM. Time courses
of Ca2+ (blue), KNCaM2C (magenta), KNCaM4 (gold) and summed
autophosphorylated CaMKII (green) are plotted. A) Pulses with half
width (s) set to 10 ms (width = 20 ms, FWHM = 16 ms) and peak height
(a0) set to 10 mM were simulated at 0.5 Hz for 10 sec. B) Same as A) but
frequency of 7 Hz was simulated for 1 sec. All parameters were set to
default as in Figure 10, blue lines.
doi:10.1371/journal.pcbi.1000675.g011
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Figure 12 A and B illustrate that the importance of some of the

parameters varies dramatically with Ca2+ concentration during a 1 s

reaction. Interestingly, the concentration of CaM is inversely correlated

with autophosphorylation between ,20 and ,100 mM Ca2+. Partially

bound Ca2+/CaM species are more prevalent than fully bound CaM4

at these Ca2+ concentrations. Thus, higher CaM concentrations may

result in less autophosphorylation because binding to extra CaM

reduces the amount of Ca2+ available for binding to KNCaM species.

Figures 12 B and C also illustrate the differing importance of the

intrinsic autophosphorylation rate constants for KNCaM2C and

KNCaM4 (kCaM2C
p and kCaM4

p , respectively) as the Ca2+ concentra-

tion rises. Below ,25 mM Ca2+, the two species have approximately

equal influence on autophosphorylation. However, above 100 mM

Ca2+, KNCaM4 and its autophosphorylation rate constant domi-

nate. The differences between the PRCC curves for autopho-

sphorylation rate constants in Figures 12 C and D reflect the

influence of KNCaM species with odd numbers of bound Ca2+

(kCaM1C
p , kCaM1N

p , kCaM2N1C
p , kCaM1N2C

p ), which have very high

experimental uncertainty. For example, note how the influence of

kCaM2N1C
p decreases when the range of uncertainty is narrowed in

Figure 12D. The experimental range of values for kCaM2N1C
p in

Figure 12C (Table S1) spanned the measured value for kCaM2N
p

(0.079 s21) to that for kCaM4
p (1.25 s21), a range of 16-fold. In

contrast, the narrower range of values (Figure 12D) spanned

0.38 s21 to .95 s21, a range of 2.5 fold around the mean of 0.66 s21.

The importance of kCaM1N2C
p , which has a smaller experi-

mental variability than kCaM2N1C
p , increased slightly from

Figure 12C to 12D; whereas, those of kCaM1C
p and kCaM1N

p

both increased significantly at the lower Ca2+ concentrations.

Important parameter values that can be specified more
precisely by improved experimental measurement

Several of the parameters for Model 1 have been measured

relatively accurately. For example, the macroscopic binding

Table 1. The sensitivity of phosphorylation of CaMKII to variations in input parameters as measured by partial rank correlation
coefficient (PRCC) at different Ca2+ concentration ranges.

0.1 sec 1 sec 2 sec

Parameter Confidence Interval Parameter Confidence Interval Parameter Confidence Interval

Low Ca2+ (1–5 mM)

[Ca2+] 0.77 0.72 [Ca2+] 0.77 0.72 [Ca2+] 0.77 0.72

[CaMKII] 0.73 0.66 [CaMKII] 0.70 0.64 [CaMKII] 0.70 0.63

kCaM1C
p

0.49 0.39 kCaM1C
p

0.61 0.53 kCaM1C
p

0.62 0.54

kCaM0
on

0.47 0.37 kCaM0
on

0.51 0.41 kCaM0
on

0.51 0.41

k1N
off

0.36 0.25 kK2N
off

20.25 20.36 kK2N
off

20.24 20.35

kCaM2N1C
p

0.35 0.24 kK1N
off

20.26 20.37 kK1N
off

20.26 20.37

k1N
on

20.25 20.36 kCaM0
off

20.44 20.53 kCaM0
off

20.48 20.57

kK1N
off

20.26 20.37 KD 20.68 20.75 KD 20.68 20.75

KD 20.67 20.74

Medium Ca2+ (10–50 mM)

[Ca2+] 0.78 0.73 [Ca2+] 0.78 0.73 [Ca2+] 0.78 0.73

kCaM4
p

0.67 0.59 kCaM4
p

0.57 0.47 kCaM2N1C
p

0.55 0.45

kCaM2N1C
p

0.54 0.45 kCaM2N1C
p

0.55 0.46 kCaM4
p

0.53 0.43

[CaMKII] 0.47 0.36 kCaM1N2C
p

0.47 0.36 kCaM1N2C
p

0.47 0.37

kCaM1N2C
p

0.39 0.27 kK2C
off

0.42 0.31 kK2C
off

0.46 0.36

kK2N
off

20.30 20.41 kK1N
on

0.41 0.31 kK1N
on

0.42 0.31

[CaM] 20.36 20.46 kK2N
on

0.38 0.27 kK2N
on

0.37 0.26

KD 20.67 20.74 kK1N
off

20.31 20.42 [CaM] 20.30 20.40

[CaM] 20.32 20.42 kK1N
off

20.31 20.42

kK2N
off

20.37 20.48 kK2N
off

20.36 20.46

KD 20.67 20.73 KD 20.67 20.73

High Ca2+ (50–250 mM)

[Ca2+] 0.70 0.63 [Ca2+] 0.68 0.61 [Ca2+] 0.68 0.60

kCaM4
p

0.64 0.56 kCaM4
p

0.59 0.50 [CaM] 0.57 0.48

[CaM] 0.54 0.45 [CaM] 0.54 0.45 kCaM4
p

0.55 0.46

KD 20.53 20.61 KD 20.46 20.55 KD 20.42 20.51

Ranges of parameters other than [Ca2+] set as in Table S1. Model parameters are ranked by their PRCC values at 0.1, 1 and 2 seconds after Ca2+ addition. Parameters
with PRCC values lower than 0.3 are not shown.
doi:10.1371/journal.pcbi.1000675.t001
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constants for binding of four Ca2+ ions to CaM have been

measured by several laboratories [16,49,53]. We calculated the

microscopic constants from the macroscopic constants by solving a

system of algebraic equations (see Text S1). The autopho-

sphorylation rates kCaM4
p , kCaM2C

p and kCaM2N
p [25]; the binding

and dissociation rates for CaM4 to mCaMKII (kCaM4
on , kCaM4

off );

and the affinities (Kact’s) of CaM2C and CaM2N for CaMKII

(KCaM2C
D , KCaM2N

D ) have all been measured [25]. In contrast, most

of the parameters for binding of CaM to mCaMKII, binding of

Ca2+ to KNCaM, and autophosphorylation of KNCaM species with

fewer than 4 bound Ca2+ have not been measured and were

derived, or deduced from fits of the model to experimental data in

the literature, as described in Methods.

We have used global sensitivity analysis to identify parameters

that have a strong impact on autophosphorylation of mCaMKII in

particular concentration regimes. Thus, we have identified which

of the relatively uncertain parameters will be most important to

measure experimentally in the future. One of the least well defined

parameters is the affinity of CaMKII monomers for each other in

the autophosphorylation reaction (KD). The lowest estimate of the

dissociation constant (highest affinity) was given by Hanson and

Schulman (1994) as 1.3 mM. However, a number of other studies

suggest that the affinity is considerably lower (KD<20–40 mM)

[54]. Given the large possible range it is not surprising that we

consistently find that autophosphorylation is sensitive to this

parameter (Table 1 and Figures 9–11).

In general, the parameters that describe binding of CaM to

CaMKII do not have a strong influence on autophosphorylation.

One exception is binding of CaM0 to CaMKII at low Ca2+

concentration (Table 1). At low Ca2+, binding of CaM to CaMKII

increases the affinity of Ca2+ for KNCaM relative to CaM [5]; thus,

facilitating the binding of Ca2+ to CaM and indirectly increasing

the rate of autophosphorylation. In low Ca2+, CaM0 is the

predominant species. Therefore, even though its affinity for

CaMKII is low, the concentration of KNCaM0 is significantly

greater than that of other KNCaM species. It will be especially

important for the accuracy of Model 1 to directly measure the

affinity of two KNCaM subunits for each other and the affinity of

free CaM with no bound Ca2+ (CaM0) for CaMKII.

Discussion

We have constructed a kinetic model of interactions of Ca2+,

CaM, and monomeric subunits of CaMKII that can be used to

understand the dynamics of activation of CaMKII by Ca2+ in the

environment of a postsynaptic glutamatergic spine. Activation of

CaMKII by Ca2+ flowing through NMDA-type glutamate

receptors is a critical early step in synaptic changes that underlie

learning and memory. We constructed this model to represent

binding of Ca2+ and CaM to monomeric subunits, rather than to

the dodecameric holoenzyme, so that it can be used to

experimentally test and verify parameters for activation of

CaMKII in the absence of cooperativity of CaM binding caused

by the structure of the holoenzyme [26]. Thus, we can use it to

eliminate ambiguity in experimental measurements of parameters.

As a first step, where possible, we assigned values of parameters

based on experimental measurements in our own laboratory and

from the literature. When direct measurements were not available,

we derived values from experimental data using conservative

assumptions. In a few cases, the uncertainty in the values of

parameters is large and we have shown by parameter variation

and sensitivity analysis that the accuracy of the model will benefit

from more precise measurements of those parameters, including

the affinity of two KNCaM subunits for each other and the affinity

of CaM0 for CaMKII.

An important finding is that two types of models, which are

more coarse-grained than our Model 1, produced significantly

Figure 12. Variation in PRCC of selected parameters as a function of Ca2+ concentration. PRCC values for a 1 sec reaction are plotted as a
function of initial free Ca2+ concentration. A) PRCC values were calculated using the range of experimental uncertainty in parameter values from
Table S1. B) PRCC values were calculated as in panel A, except that more restricted ranges of parameter values were used (2.5-fold around the mean
values in Table S1). C) PRCC values for the autophosphorylation rates of KNCaM complexes with odd numbers of bound Ca2+ were calculated as in
panel A. D) PRCC values for the autophosphorylation rates of KNCaM complexes with odd numbers of bound Ca2+ were calculated as in panel B.
doi:10.1371/journal.pcbi.1000675.g012
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different predictions for rates of autophosphorylation in a

physiological regime; in particular, when simulations were run

for times shorter than ,5 sec, and at Ca2+ concentrations lower

than ,50 mM, with concentrations of CaM and CaMKII set to

approximate those present in the spine. We conclude that these

coarse-grained models are inadequate to predict the timing and

extent of activation of CaMKII under physiological conditions

because they do not capture critical aspects of the dynamics in the

physiological regime. For example, a model that treats the binding

of two Ca2+ ions at the amino- or carboxyl-termini of CaM as

simultaneous (Model 2), overestimates the rate of autophosphor-

ylation by 30 to 60% under these conditions, compared to Model

1. An Empirical model which is similar to those often used in

previous models of activation of CaMKII [48] overestimates the

rate of autophosphorylation 100 to 350-fold in the physiological

regime (Figure 9).

A second key finding is that species of CaM with fewer than 4

bound Ca2+ ions are major activators of CaMKII at Ca2+

concentrations as high as ,30 mM, a concentration that falls in

the middle of the physiological regime. Simulations of formation of

CaM species such as those shown in Figure 7, together with

parameter sensitivity analyses (Figure 12 and Table 1) suggest that

the major kinetic pathways through which Ca2+ binds to CaM,

and Ca2+/CaM binds to and activates CaMKII, differ during the

first sec of Ca2+ influx, depending on the peak Ca2+ concentration

(Figure 13). Below ,30 mM Ca2+, KNCaM2C plays a significant

role as a precursor of autophosphorylated kinase. Furthermore,

because the affinity of CaM for Ca2+ is significantly increased

when it binds to CaMKII, the kinetic pathways involving direct

binding of Ca2+ to KNCaM (yellow in Figure 13) are more

significant than those in which Ca2+ binds first to free CaM. At

concentrations of Ca2+ greater than ,30–50 mM, CaM2C and

KNCaM2C reach higher steady state concentrations than species

with Ca2+ bound to the N-terminus alone, because Ca2+

dissociates from the N-terminus of CaM very rapidly. In addition,

CaM2C has a higher affinity for CaMKII than does CaM2N.

Once CaM2C binds to the kinase, the affinity of the N-terminus of

CaM for Ca2+ increases dramatically and, if enough free Ca2+ is

available, KNCaM4 forms rapidly (Figure 13, red arrows). The

three species, KNCaM2C, KNCaM1N2C, and KNCaM4, can all

undergo autophosphorylation. However, because the autopho-

sphorylation rate constant of KNCaM4 is 10-fold higher than that

of KNCaM2C, the rate of autophosphorylation depends most

importantly on kCaM4
p at concentrations of Ca2+ above ,30 mM

(Figure 12A and B); whereas, below ,30 mM Ca2+, kCaM2C
p and

kCaM1N2C
p play an equally important role (Figure 12C and D). The

prominent role of non-saturated species of CaM under physiolog-

ical conditions highlights the fact that competition for subsaturat-

ing concentrations of Ca2+/CaM will often determine the outcome

of Ca2+ signaling in the spine and likely in many other cell types, as

well.

A third significant finding is that when activation of CaMKII is

driven by fluctuating Ca2+ levels, the dynamics of binding of Ca2+

to the KNCaM complex produce a frequency dependence of

autophosphorylation. The mechanism of this frequency depen-

dence does not involve the binding of two CaMs to two

neighboring subunits in a holoenzyme to produce autopho-

sphorylation, which has been evoked to explain frequency

dependence of autophosphorylation of the CaMKII holoenzyme

[51]. Rather, it arises from the interaction between the decay

constant of the KNCaM2C complex and the interpulse interval of

the fluctuating Ca2+ stimulus. If the interval is sufficiently short

that residual KNCaM2C from one pulse is present at the time of

the next pulse, frequency dependence will arise. This mechanism

suggests that the contribution of partially filled Ca2+/CaM states

to activation of autophosphorylation of CaMKII will be more

significant when the Ca2+ concentration is fluctuating rapidly, as it

often does when flowing through ion pores, than it will be during a

steady-state jump in Ca2+ concentration. It is interesting to note

that Ca2+/CaM targets could be ‘‘tuned’’ during evolution to

respond to varying frequencies of Ca2+ stimuli by adjustment of

the off rates of Ca2+ from the CaMNtarget complex.

The model presented here will aide the identification and

experimental measurement of critical parameters that can be used

in constructing more complex models of the CaMKII holoen-

zyme. It also serves as an example for models of other CaM

regulated monomeric enzymes in the spine, and in other cell types,

including nitric oxide synthase and calcineurin. Ultimately, the

rate constants, optimized with the use of deterministic models like

the one presented here, can be translated into probabilities and

used for stochastic modeling in a spatially accurate model of a

postsynaptic spine with specialized modeling programs such as

MCell [55].

Supporting Information

Text S1 Supplementary Methods

Found at: doi:10.1371/journal.pcbi.1000675.s001 (0.31 MB

DOC)

Figure S1 Models of calcium binding to calmodulin. A)

Sequential binding model. In this model a state of calmodulin is

characterized by the number of calcium ions bound. The

dissociation constants are called macroscopic constants. B)

Figure 13. Hypothetical kinetic pathways leading to autopho-
sphorylation of CaMKII. Paths shown in yellow are significant at Ca2+

concentrations below ,30 mM and at times up to 1 sec after an
increase in Ca2+ concentration. Paths shown in red predominate at Ca2+

concentrations above ,30 mM.
doi:10.1371/journal.pcbi.1000675.g013
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Terminal binding model. Here, a state of calmodulin is

characterized by the number of calcium ions bound to each of

the calmodulin termini. The dissociation constants are called

microscopic constants.

Found at: doi:10.1371/journal.pcbi.1000675.s002 (0.62 MB PDF)

Table S1 Parameters for Model S1. Most values are taken from

the literature or derived from values in the literature. In a few

instances values were derived by fitting to published experimental

data as described in Methods.

Found at: doi:10.1371/journal.pcbi.1000675.s003 (0.76 MB PDF)

Table S2 Fitted cooperativity coefficients with their on and off

components. The parameters were fit as described in Methods and

Figure 4.

Found at: doi:10.1371/journal.pcbi.1000675.s004 (0.04 MB PDF)

Table S3 Sensitivity of autophosphorylation of CaMKII to

variations in input parameters. Parameters were varied over a 2.5

fold range from mean of data in Table S1. Sensitivity was

measured by partial rank correlation coefficient (PRCC) at

different Ca2+ concentration ranges. Model parameters are ranked

by their PRCC values at 0.1, 1 and 2 seconds after Ca2+ addition.

Parameters with PRCC values lower than 0.3 are not shown.

Found at: doi:10.1371/journal.pcbi.1000675.s005 (0.68 MB PDF)
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